Details on the presented BioMOFs.
\r\n\tThis book will intend to look at different migrant patterns, voluntary and involuntary migration, over the last three centuries. What influenced people to leave their home countries, family, and friends and settle somewhere else? The book may include histories of the 19th century, consider tragedies and movements activated by political events in the 20th century, and/or look at recent events of the 21st century. Push and pull factors are important points. While most of us may be influenced in a negative way by the current happenings in Eastern Europe, the Russian invasion and resulting tragedies also demonstrate some very positive human traits – the preparedness of Ukraine’s surrounding countries to help those in need and to provide a safe place for the present.
\r\n\tWhether one looks at voluntary or involuntary migration into any country, after a period of adjustment, migrants do play a positive role. The research found that migrants contribute to the economy (food, shelter, employment, tax) and enrich a country’s cultural norms. Prerequisites for successful settlements are that the host society adopts a tolerant approach and that the migrants recognize the law and the language of the host country. Nothing is ever easy or without controversy, but I am a migrant (German Australian), and life in Australia has been relatively harmonious. Issues that could be considered in the book are multicultural societies (do monocultural societies still exist?) and theories of acculturation versus integration (settlement processes).
\r\n\tTwo further issues are very important in relation to human migration. There is climate change, global warming, and the environment, which clearly affect people’s movement. Small island populations are very concerned about rising sea levels. 2021 has also seen floods costing human lives: Turkey (August 2021), Brazil (December 2021), Chile (January 2021), and South India (November 2021), to name but a few. In Australia (March 2022), farms and whole townships in New South Wales and Queensland have been flooded for the second time in five years, and plans to resettle these towns are considered. Official and social media provide ample coverage of the events, which leads me to the next issue. There is today’s very important role of the media, of the official and social media. We are constantly bombarded with images of human war tragedies and flood victims. People in industrialized, western countries must be the best-informed populace. How far do the images and up-to-date TV news influence us, make us change our behavior, and perhaps even consider us more generous than we have been?
\r\n\tClimate change and the media are relatively new to the human migration debate, but both issues play important parts, and some interesting discussions are appreciated.
\r\n\t
The development of new solid forms of pharmaceuticals is of utmost importance in modern science as they present a single opportunity to modify the properties of active pharmaceutical ingredients (API) without interfering with its biological role. The influence of the crystal forms is very wide and diverse, changing not only the solid-state characteristics (density, habit, shape, colour, stability, melting point) but also properties that might affect their function (dissolution rate, solubility, stability to temperature and humidity, thermal properties, moisture uptake, bioavailability, pharmacokinetics) and even some industrial aspects of formulation (flowability, mixability, stress stability, granulation, encapsulation, tabletting). The combination of crystal engineering and supramolecular chemistry principles allows the design and synthesis of smartly designed drugs with tailor-made properties, keeping their pharmacological properties, and thus presenting major advantages, including reduced time for introduction in the market [1–6].
\nConsequently, the synthesis of new crystal forms evolved tremendously in the last decade, and the interest of pharmaceutical companies in the appearance/disappearance of new solid forms of APIs has vastly increased. Polymorphs, hydrates and salts of drugs are long-known forms with recognized impact in their properties. Cocrystals represent a more recent class of crystal forms that own particular scientific and regulatory advantages (FDA guidance is already available and cocrystals are now being commercialized as drugs in some countries). Many examples show their relevance in the pharmaceutical industry, most of them by enhancing stability, solubility and/or bioavailability of known drugs [7–20].
\nLikewise, nanoporous materials recently became of pertinent use in the medicinal and pharmacological fields for drug storage, delivery and controlled release in addition to applications in imaging and sensing for therapeutic and diagnostic [21–34]. Particularly, metal organic frameworks (MOFs) have generated large interest owing to their versatile architectures [35] and their promising applications not only in ion exchange, adsorption and gas storage [36–41], separation processes [42], heterogeneous catalysis [43, 44], polymerization reactions [45, 46], luminescence [47], non-linear optics [48] and magnetism [49], but also as drug carriers, systems for drug delivery [22, 23, 50, 51], contrast agents for magnetic resonance imaging (MRI) [21] and systems with potential use in other biomedical applications [23].
\nUp to now, drug delivery from porous solids has been achieved by encapsulation in mesoporous silicas or zeolites, methods that are strongly dependent on the pore size and on the host-guest interactions. Both hypotheses suffer from important drawbacks: low drug-storage capacity, too rapid delivery and solid degradation that brings toxicity concerns [23, 25, 26, 28, 29, 52]. Extended metal-ligand networks with metal nodes and bridging organic ligands such as coordination networks, porous coordination networks (PCNs), porous coordination polymers (PCPs) and MOFs have attracted great attention in the last years [24, 25, 28, 53, 54]. Particularly, MOFs with biological-friendly composition emerged as new drug carriers capable of tackling these problems [21, 23, 25, 26, 28, 29, 55, 56].
\nIn fact, MOFs are among the most exciting architectures in nanotechnology and are defined as hybrid self-assemblies of metal ions or metal clusters (coordination centres) and organic fragments (linkers). They exhibit some of the highest porosities known, turning them into ideal materials for capture, storage and/or delivery applications [21, 24–26, 29, 54, 57]. Compared to other nanocarriers, MOFs are candidates to extensive applications since they combine high pore volume with a regular porosity, and the presence of tuneable organic groups allows an easy modulation of the framework as well as of the pore size [22, 24–26].
\nThe first families of MOFs considered as potential drug delivery systems were the coordination polymers from Oslo (CPO), such as CPO-27(Mg) [58] built up from magnesium coordination polymers, and the materials of Institute Lavoisier (MIL) [22]. Horcajada et al. [22, 23] prepared MIL-100 (with trimesic acid) and MIL-101 (with terephthalic acid) applied for the delivery of ibuprofen in the gastrointestinal tract, exhibiting high drug-storage capacity and a complete drug-controlled release under physiological conditions [22, 23]. Less toxic systems, using iron and more flexible MILs, are under study [25], and the first biodegradable therapeutic MOF, BioMIL-1, was reported by Miller et al. in 2010 [27]. The large breathing effect that MOFs can attain is another particularly interesting feature for potential applications in drug delivery [54, 59, 52].
\nZeolite-like MOFs (ZMOFs) are a unique subset of MOFs with exceptional characteristics arising from the periodic pore systems and distinctive cage-like cavities, in conjunction with modular intra- and/or extra-framework components [60–62]. Zeolitic imidazolate frameworks (ZIFs) are a special class of ZMOFs comprising imidazolate linkers and metal ions. ZIFs simultaneously have the following characteristics of MOFs and zeolites, combining the advantages of both: ultrahigh surface areas, unimodal micropores, high crystallinity, various functionalities and exceptional thermal and chemical stabilities, making them very promising for biomedical applications [63, 64]. Several studies describe the successful incorporation of anticancer drugs into ZIF-8 with positive results for the controlled pH-sensitive drug release and fluorescence imaging [65–69]. Also caffeine was already encapsulated into ZIF-8 showing a controlled release [70, 71].
\nThe scope of this brief review focuses on presenting some aspects on the BioMOFs preparation, and a few examples of promising bioapplications of MOFs, including ZIFs.
\nThe use of porous solids for biomedical applications requires a biological friendly composition, making compulsory the use of metals and linkers with acceptable toxicity [28].
\nWhen designing BioMOFs, the decision to exclude one linker and/or metal depends on several parameters: application, balance between risk and benefit, degradation kinetics, biodistribution, accumulation in tissues and organs as well as body excretion [21, 23, 25, 26, 28, 55, 56]. Both exogenous (not intervening in the body cycles) and endogenous (constitutive part of body composition) linkers have been used in MOF synthesis for drug delivery, with the first group having a higher prevalence [21, 25–29, 57]. It is also worth noting that if the therapeutic molecule is directly used as a linker, no large pores are required and the release of the drug molecule is achieved directly through the degradation of the solid, without any side effects arising from the release of a non-active ligand [26, 52].
\nDifferent methods have been explored to design BioMOFs, including ZMOFs, from which we highlight the molecular building block (MBB), supermolecular building block (SBB) and supermolecular building layer (SBL) approaches. Also, a brief allusion to the influence that computational simulations may have in building and studying BioMOFs is made.
\nTo construct a MOF, it is necessary to make a pre-selection of building blocks that would give the desired structural and geometrical information for a given underlying network—molecular building block approach (MBB) [72]. The prerequisites for the successful implementation of this approach are (a) selection of an ideal blueprint net exclusive for the assembly of its corresponding basic building units and (b) isolation of the reaction conditions that allow the formation of the desired MOF. Simple MBBs based on simple organic ligands or polynuclear clusters are often limited in terms of connectivity [72]. To overcome this issue, two conceptual approaches were recently implemented to facilitate the design and deliberate construction of MOFs: supermolecular building block (SBB) and supermolecular building layer (SBL). These approaches allow the rational design of made-to-order MOFs [73].
\nThe SBB approach consists of using metal-organic polyhedral (MOPs) as SBBs in building an MOF, presenting great potential to control the targeted framework. To obtain the desired topology, the MOP must have the correct geometrical information and peripheral points of extension (connectivity). The prerequisites for this approach are (a) a blueprint net with minimal edge transitivity, preferably singular, exclusive for the assembly of given building units, and not susceptible to self-interpenetration upon net expansion and/or decoration and (b) reaction conditions that allow the formation of the SBB in situ.
\nThe SBL is based on the use of 2-periodic MOF layers (SBLs) as building blocks for the desired functional 3-periodic porous MOFs. This implies the chemical cross-linking of layers via accessible bridging sites on the layers, such as open metal sites or functionalized positions on the organic linker, whose judicious selection is mandatory. This approach, in principle, allows to predict MOFs with tuneable cavities, the endless expansion of confined space (as cavities and pores), and its modularity further permits an easy functionalization and introduction of additional functionalities [74] to aim specific applications. The prerequisites for this approach are (a) a blueprint net with minimal edge transitivity, rather singular, exclusive for the particular pillaring of the given building units and (b) the reaction conditions to allow the consistent formation of the SBL in situ.
\nSystematic studies relating MOF structures with their performance in drug delivery is crucial for the identification of promising structures. Molecular simulations are a mean that can be explored to seek for the optimal structure for a given application. The grand canonical Monte Carlo (GCMC) simulation is the preferred method for simulating adsorption in porous materials and for explaining and predicting new results. However, the simulation in the case of large guest molecules is difficult and that justifies the limited number of studies on drug-porous solid systems [75].
\nFatouros et al. reported the use of molecular dynamics to study the diffusion properties of salbutamol and theophylline in the zeolite BEA, an indication that this method can be used for screening purposes on zeolite-drug systems [76].
\nRegarding MOFs, very few computational studies are reported and those are focused on one or more structures simultaneously, limiting the possibility of correlating drug delivery performance with structural features. A combined experimental and computational study of three MOFs for the drug delivery of 5-fluorouracil was recently presented, in which GCMC simulations were used to investigate the interactions between the drug and the porous cage [77]. Density functional theory (DFT) calculations have been applied to identify the most favourable conformations and adsorption sites of ibuprofen and busulfan on MIL-53(Fe) [78]. Quantitative structure-activity relationship (QSAR) models were used to rationalize the experimental uptake of caffeine as model in a series of MIL-88B(Fe) materials with different functional moieties [79]. The energetics and dynamics of ibuprofen in MIL-101 were also studied recurring to simulated annealing followed by DFT of one single ibuprofen molecule to study the preferential adsorption sites [56].
\nAlso worth mentioning an extensive study on GCMC simulations to screen a series of bio-compatible MOFs as carriers of ibuprofen has been reported. Simulations include microporous, mesoporous and nanoporous MOFs and have shown to be a successful pathway to predict the drug adsorption properties of porous adsorbents. Furthermore, this work proposes new tools that allow the study of new porous materials as potential drug carriers prior to experiment [75].
\nMOFs are still widely synthesized using solvo/hydrothermal techniques, the most common methods to obtain coordination networks [21, 25, 28, 29]. Nevertheless microemulsion synthesis [80] is also a typical method and interesting alternatives are being used based on environmental-friendly synthetic routes: ionothermal [81], microwave, ultrasound-assisted, and sonochemical synthesis [21, 25, 28], as well as mechanochemistry [82, 83]. The synthesis of this type of compounds has been reviewed several times [63, 84, 85] and therefore only brief details on each technique are presented herein.
\nThe solvo/hydrothermal synthesis involves polar solvents under moderate to high pressures and temperatures. This method often requires toxic solvents such as DMF, and its use is limited by safety and time-consuming reasons. Alternative techniques allow higher efficiencies, have lower energy costs and have less impact in the environment [86].
\nMicroemulsion synthesis is based on thermodynamically stable dispersions of two immiscible liquids in the presence of an emulsifier or surfactant (i.e., microemulsions). This technique confines the synthesis of MOFs to the nanoscale and offers the possibility of tuning the size. The disadvantages of the microemulsion approach include poor yields, reproducibility issues, usage of highly toxic surfactants and solvents that strongly limit biomedical applications and the possible decrease of the sorption capacity due to the combination of surfactants with highly porous structures [80, 86].
\nIonothermal synthesis requires the use of green solvents such as ionic liquids and eutectic mixtures (a special type of ionic liquid) to obtain MOFs and it can be performed in open air. These solvents act both as solvents and templates to avoid the competition interactions between the solvent framework and the template framework that are present in the solvothermal methods [63, 81].
\nMicrowave and ultrasound-assisted syntheses usually lead to the fast crystallization of MOFs and are considered green methods. In the case of microwaves, the heating involved in the process favours a rapid and uniform nucleation process, which results into a more homogeneous particle size distribution. Regarding ultrasounds, it has shown to be a highly efficient method [86].
\nSonochemical synthesis or sonocrystallization method not only promotes the nucleation process but also stimulates the homogeneity of the nucleation, what represents an advantage over the traditional solvothermal methods. This approach is prone for industrial applications due to its easy scale-up [63].
\nMechanochemistry is a green, solvent-free and efficient strategy to build MOFs. It is based on the direct grinding of the linkers and the metal salts either in a mortar or in a ball mill, without recurring to solvent (neat grinding, NG) or recurring only to catalytic amounts of solvent to activate the process (liquid-assisted grinding, LAG). Alternatively, also catalytic amounts of ionic salts can be used to trigger the process (ion- and liquid-assisted grinding, ILAG). This is a simple method and the absence of solvent makes it very appealing to biomedical applications [63, 82, 83, 86].
\nThe loading of relevant molecules, such as imaging and therapeutic agents, into MOFs can be done directly during the MOF synthesis or in the postsynthesis.
\nThe direct incorporation implies using those molecules directly to assemble the framework. This strategy also encloses the networks in which paramagnetic metal ions, such as Gd3+, Fe3+ and Mn2+, do not act only as the metal sites to connect the ligand but act also as magnetic resonance imaging contrast agents. High loadings of the relevant compounds can be achieved by this strategy; however, it is necessary to tune the morphology and physicochemical properties of these MOFs for each case and it is important to guarantee that there is no degradation of the compound during the synthesis [21].
\nThe postsynthesis strategy requires high porosity and the active compound is incorporated within the MOF by noncovalent or covalent interactions. In the case of noncovalent loading, the process is reversible and therefore the drug release can be premature. On the other hand, the covalent loading creates a prodrug in which the drug release happens at the same time as the MOF degradation and thus it may be considered a more robust approach [87].
\nThe improved biomedical properties of MOFs also depend on the rational design of the surface. However, the task of changing the outer surface of the MOF without changing its characteristics is still very difficult. Ideally, MOFs should have a coating shell to confer stability to the material under the different physiological media, but it must be non-toxic and must not interfere with the pores [86]. There are two approaches to achieve the surface modifications: covalent and noncovalent attachments. The choice of the best method relies on the parameters and nature of the MOF, as well as on the nature of the molecule to be grafted [88]. To date only a few successful examples have been reported of which we highlight the following three.
\nA simple, fast and biofriendly method was reported for the use of heparin for the external functionalization of MIL-100(Fe), preserving all the properties of the MOF. The coating obtained by this method led to improved biological properties, such as reduced cell recognition, lack of complement activation and reactive oxygen species production [89].
\nThe coating of MIL-101(Fe) with a thin film of silica resulted in the prevention of the rapid degradation of the MOF [87].
\nAnother example of successful coating of MOFs concerns the use of phosphate-modified biocompatible cyclodextrins. This method was applied to MIL-100(Fe) and resulted in improved stability in body fluids without interfering with the MOFs properties [90].
\nThe first biomedical applications of nanoscale MOFs were as delivery vehicles for imaging contrast agents and molecular therapeutics. However, the large amount of paramagnetic metal ions in these systems further allows their exploration for magnetic resonance imaging (MRI). [21]. Furthermore, BioMOFs are also being studied as materials for drug storage as well as controlled drug delivery and release. A few examples of such applications are briefly discussed and the details of the mentioned BioMOFs are presented in Table 1. For a matter of clarification, examples of different bio-inspired applications of ZIFs are given in the next section.
\nAs previously mentioned, one of the best approaches to construct BioMOFs is the direct incorporation of therapeutically active molecules containing multiple complexing groups with biocompatible metal cations (Ca2+, Ag2+, Zn2+, Fe2/3+), and thus the delivery of the active compounds is accomplished via framework degradation [25, 91, 94–97]. Tamames-Tabar et al. recently discussed the possibility of directly introducing azelaic acid as linker and an endogenous low-toxicity transition metal cation (Zn2+) [98]. Both linker and metal exhibit interesting antibacterial and dermatological properties for the dermatological treatment of several skin disorders and their combination results into a novel biocompatible and bioactive MOF, named BioMIL-5. It was synthesized by hydrothermal methods and its stability was assessed through tests in water and in bacteria broth at 37°C; also antibacterial activity studies against two Gram-positive bacteria
In the antibacterial activity studies, the MIC/MBC (MIC = minimal inhibitory concentration; MBC = minimal bactericidal concentration) values in
Details on the presented BioMOFs.
Bearing in mind that BioMOFs are envisaged as new tools for the controlled drug delivery [22, 19-23, 25, 26], Horcajada et al. prepared the first examples of MOFs for the delivery of ibuprofen in the gastrointestinal tract: MIL-100 (with trimesic acid) and MIL-101 (with terephthalic acid) [22, 56]. Ibuprofen was chosen as a model drug because it is a worldwide used pharmaceutical compound with analgesic and antipyretic features [56]. Both MOFs have large pores: MIL-100 contains pore diameters of 25–29 Å with pentagonal window openings of 4.8 Å, and hexagonal windows of 8.6 Å; MIL-101 contains 29–34 Å pore diameter with a large window opening of 12 Å for the pentagonal and 16 Å for the hexagonal windows. They exhibit a very high drug storage capacity: up to 0.35 g of ibuprofen per gram of porous solid for MIL-100 and 1.4 g of ibuprofen per gram of porous solid for MIL-101 [22, 23, 25, 56]. MIL-101 displays a higher loading capacity due to the fact that ibuprofen can fit in both pentagonal and hexagonal windows of MIL-101, but not into the smaller pentagonal window of MIL-100 [22, 23, 25]. This demonstrates the real importance of material’s pore size in drug loading [25, 50]. The kinetics of ibuprofen delivery to stimulated body fluid at 37°C was also studied, revealing a complete drug controlled release from 3 to 6 days [22, 23, 25].
\nAnother example of a BioMOF constructed by the direct incorporation of simple biomolecules and biocompatible metal cations in their structures is Bio-MOF-1 proposed by An et al. [30] Bio-MOF-1 is based on (i) adenine, a purine nucleobase, as a biomolecular ligand, (ii) a second ligand, biphenyldicarboxylic acid, which was used to promote the formation of larger accessible pores, and (iii) Zn2+ as a biocompatible metal cation [30]. Bio-MOF-1 has shown to be stable and maintains its crystallinity for several weeks in biological buffers. Due to the intrinsic anionic nature of Bio-MOF-1, An et al. explored its potential use as a system for the storage and release of cationic drug molecules [30], more specifically the storage and release of procainamide HCl, an effective antiarrhythmic agent used to treat a variety of atrial and ventricular dysrhythmias with a short half-life
Some MOFs can present structural flexibility or “breathing effects,” which allows them to modulate their pore size upon adsorption of organic molecules into the pores, while their crystallinity is maintained [22, 50, 54, 59]. One example of BioMOFs presenting a “breathing effect” is MIL-53 [22, 54, 100]. The structure of MIL-53 consists on terephatalate anions and trans-chains of metal (III) octahedra sharing OH groups and thus creating a 3D framework with one-dimensional pore channel systems [22, 100]. The capacity to expand its structure upon heating explains the ``breathing effect’’ observed in MIL-53 (Figure 3) [22]. In this study, Horcajada et al. also observed that aluminium and chromium MIL-53lt (lt is low temperature) present a reversible pore opening involving atomic displacements by 5.2 Å upon dehydration, whereas the iron analogue only open its pores during the adsorption molecules [101, 102]. This can be explained by the formation of hydrogen bonds between the water molecules and the inorganic hydrophilic parts of the pore. After approximately 3 weeks, a complete release of ibuprofen is observed, where 20 wt% of ibuprofen loading was achieved at high temperature (Figure 3) [22].
\nAn interesting example that shows the potential use of BioMOFs in biomedical applications is the recently disclosed work of Au et al. which is based on the reformulation of zoledronate (Zol) exploring nanotechnology to develop a new nanoscale MOF (nMOFs) formulation of Zol, turning a bone antiresorptive agent into an anticancer agent [92].
\nZol is a third-generation nitrogen heterocycle containing bisphosphonate that is widely used as an antiresorptive agent for bone cancer metastasis. In the preclinical data, it was observed that bisphosphonates such as Zol have direct cytotoxic effects on cancer cells. However, such effect has not been firmly established in the clinical settings, what led Au et al. to develop a new bioresorbable sub-100 nm diameter pH-responsive calcium zoledronate (CaZol) nMOF as a potential cytotoxic anticancer agent. Folate receptor (FR) is known to be overexpressed in tumours, and therefore folate (Fol) was incorporated as a target ligand into the CaZol nMOFs to facilitate tumour uptake. This study successfully demonstrated that the active-targeted CaZol nMOF possesses excellent chemical and colloidal stability on physiological conditions, encapsulating more Zol than other existing drug delivery systems. It further shows higher efficiency than small molecule Zol in inhibiting cell proliferation and inducing apoptosis in FR-overexpressing H460 non-small cell lung and PC3 prostate cancer cells
The combination of both imaging and therapeutic agents in the same MOF greatly facilitates the efficacy studies of theranostic nanoparticles. Having this in mind, Chowdhuri et al. developed a new magnetic nanoscale MOF (IRMOF-3) consisting of a MOF with encapsulated Fe3O4 nanoparticles for targeted anticancer drug delivery with cell imaging and magnetic resonance imaging (MRI). More specifically, authors conjugated the magnetic nanoscale MOF with folic acid and labelled it with the fluorescent molecule rhodamine B isothiocyanate due to its fluorescent properties. These systems were then successfully loaded with the hydrophobic anticancer drug paclitaxel. The efficiency of this nMOF towards targeted drug delivery was evaluated using an
There are many applications for ZIFs, specifically ZIF-8 (Figure 5). However, this type of materials has largely been explored as a way to deliver anticancer drugs and other chemotherapeutics. Only a few relevant examples are mentioned herein.
\n(a) Synthesis of ZIF-8; (b) fragment of the crystal structure of ZIF-8 (images adapted from Katsenis et al. [
Zheng et al. successfully developed a simple one-pot synthesis of ZIFs that contain encapsulated organic molecules. One-pot synthesis is a new approach that combines MOF synthesis and molecule encapsulation in a one-pot process and that has been extremely used to overcome the drawbacks observed when using the two processes separately [104].
\nIn this study, the doxorubicin: ZIF-8 complex, which aims to treat mucoepidermoid carcinoma of human lung, human colorectal adenocarcinoma (HT-29) and human promyelocytic leukaemia (HL-60) cell lines, exhibits lower toxicity than pure doxorubicin, probably due to the slow release of the drug that is achieved with this complex (Figure 6) [69, 104]. Furthermore, ZIF-8 crystals loaded with doxorubicin proved to be efficient pH-responsive drug delivery systems, in which the drug is released in a controlled manner at low pH (5.0–6.5). With this work, Zheng et al. opened a new opportunity to develop multifunctional materials for biomedical applications using this simple, scalable, and environment-friendly one-pot synthesis [104].
\n“Smart” drug delivery of anticancer drugs is being explored making use of pH-sensitive systems [65–68]. The interest in the use of a pH-responsive drug vehicle is due to the fact that they can reduce undesired drug release during transportation in blood circulation and improve the effective release of the drug in the tumour tissue or within tumour cells [105, 106].
\nSun et al. evaluated the possibility to use ZIF-8 as a pH-responsive drug vehicle and they have demonstrated that ZIF-8 exhibits a remarkable loading capacity for the anticancer drug 5-fluorouracil (around 600 mg of 5 FU g−1 of desolvated ZIF-8) (Figure 7) [66]. Ren et al. further developed polyacrylic acid@ZIF-8 (PAA@ZIF-8) nanoparticles that exhibit ultrahigh doxorubicin loading capability (1.9 g doxorubicin/g nanoparticles) and that thus can be used as pH-dependent drug delivery vehicles [65].
\nSchematic representation of the synthetic route of the C-dots@ZIF-8 for simultaneous anticancer drug delivery and fluorescence imaging of cancer cell (image from He et al. [
Zhuang et al. successfully encapsulated small molecules, such as fluorescein and the anticancer drug camptothecin, in ZIF-8 nanospheres for drug delivery. In this study, the evaluation of fluorescein-encapsulated ZIF-8 in the MCF-7 breast cancer line demonstrated cell internalization and a minimal cytotoxicity. Furthermore, the pH-responsive dissociation of the ZIF-8 framework likely results in endosomal release of the small-molecule cargo proved that ZIF-8 can be an ideal drug delivery vehicle [68].
\nAnother example of a pH-responsive drug vehicle using ZIF-8 is the work of Liu et al., who fabricate green fluorescent carbon nanodots@ZIF-8 (c-dots@ZIF-8 NPs). In this work, the authors observed that the nanoparticles synthesized exhibit green fluorescence and microporosity, characteristics that unveil its ability as potential platforms for simultaneous pH-responsive anticancer drug vehicle and fluorescence imaging in cancer cells (Figure 8). Moreover, the fluorescence intensity and size of c-dots@ZIF-8 NPs can be tuned by varying the amount of C-dots and the concentration of the precursors [67].
\nOne extraordinary example of the biomedical applications of ZIFs is the recent work from Chiacchia et al. who synthesized and characterized nanospheres of biodegradable zinc-imidazolate polymers (ZIPs) as a delivery system into human brain endothelial cells, the main component of the blood-brain barrier (BBB) [107].
\nSynthesis and assembly of loaded ZIP particles and their uptake into human brain endothelial cells: (I) encapsulation process of cargo species into the ZIP matrices at the point of synthesis; (II) cross-section of the human cerebral microvasculature and cell-uptake of loaded ZIP particles by the isolated and immortalized human brain endothelial cell line (image from Chiacchia et al. [
In this work, both biodegradable particles synthesized, RhB@ZIP and AuNP@ZIP, have shown to be able to encapsulate fluorophores and inorganic nanoparticles at the point of synthesis with extremely high loading efficiencies. Furthermore, these ZIP particles are non-cytotoxic, stable in cell culture medium and able to penetrate the hCME\\D3 human cerebral microvascular endothelial cell line. This cell line is a well-established
Nevertheless this work needs more studies related to the exact cellular uptake mechanism, clearance rate and blood-stream stability of the ZIPs, but this is a promising result in the use of ZIPs as a novel platform for brain-targeting treatments [107].
\nBio-inspired metal-organic frameworks have already proven to have promising biomedical applications not only as drug delivery systems but also in magnetic resonance imaging (MRI), optical imaging and X-ray computed tomography (CT) imaging.
\nAuthors acknowledge Fundação para a Ciência e Tecnologia for funding (RECI/QEQ-QIN70189/2012, SFRH/BPD/78854/2011, SFRH/BD/100029/2014, UID/QUI/00100/2013). Authors would also like to acknowledge Professor Maria Teresa Duarte for her support.
\nIn order to develop an eco-friendly island, it is necessary to make electricity, heat and water independence using renewable energy as an energy source. Present study is aimed at developing a sustainable eco-friendly energy and water-independent community inside a small island called Deokjeokdo island—Incheon, South Korea. Considering the natural environment and geographical features with hills, a small communities called Urumsil town in Deokjeokdo island through eco-friendly energy sources based on a hybrid power system are developed. The hybrid power system consists of a small wind turbine, a photovoltaic panel, a pumped storage hydroelectricity and energy storage system. The renewable energy hybrid system can provide stable electricity and water to the island without greenhouse gas emission by fossil fuels. The Korea Institute of Civil Engineering and Building Technology (KICT) has signed a memorandum of understanding with Incheon city and is participating in the eco-island project centered on Deokjeokdo island. A local community in Deokjeokdo, Incheon city, was selected in 2013 to be developed as an environmentally-friendly energy and water independent community. A hybrid power system based on a small wind turbine, a photovoltaic panel, a pumped storage hydroelectricity and energy storage system was built. Through this arrangement, electricity is supplied to the community without diesel power generation.
\nHybrid renewable energy system (HRES) comprises of multiple sorts of sustainable power sources, for example, sun based and wind. The principle thought behind the idea of HRES is to give continues and maintainable supply of power to regions particularly far from primary terrains. A HRES can be associated with principle grid or it can likewise be an independent power producing unit, having its very own framework for storing surplus power, depending upon the nearby land conditions and some other monetary conditions. Figure 1 demonstrates the working structure of a conventional HRES with pumped hydro storage (PHS) as energy storage system (ESS).
\nConceptual design of HRES.
Recently, many case studies of installing HRES at a remote location have been conducted around the globe. For instance, Perez-Navarro et al. [1] designed a hybrid system consisting of wind-biomass in order to compensate and stabilize the power production of a 40 MW wind power plant in Spain. Apart from the main equipment, their designed HRES also consisted of other auxiliaries such as stand-by generators, separate ESS and biomass gasifier as well. The extra power generated by the biogas generator was used to compensate the low power production of wind farm. Borhanazad et al. [2] conducted a comprehensive study to investigate the wind conditions, solar radiations and hydro potential of multiple locations in Malaysia for rural electrification. Similarly, Zuberi et al. [3] estimated the biomass potential of Pakistan and concluded that biomass can contribute to generate almost 24% of the total electricity demand of the country. They covered biomasses such as municipal solid waste (MSW), bagasse and livestock in their study. They also presented an idea of stand-alone power generation system using biomass as raw fuel. Bhandari et al. [4] studied a very classic model of HRES for rural electrification, consisting of wind-PV-hydro as primary energy sources. They showed that installing such HRESs at very remote locations can be economically cheaper than connecting aforementioned areas with main grids. Mazzola et al. [5] designed a PV-biomass based HRES for a small town in India and conducted its economic feasibility as well. The authors mentioned that LCOE can be reduced up to 40% if compared with electricity generation from diesel generators. Ahmad et al. [6] investigated the HRES consisting of wind-PV-biomass as primary energy sources for electrification of a small town in Pakistan called the Kallar Kahar. The study was conducted for multiple load conditions and authors recommended the installation of HRES near aforementioned site on the basis of strong economical conclusions.
\nDeokjeokdo island (latitude: 37.22°, longitude: 126.15°) is the biggest island in the Ongjin-kun area in South Korea, arranged 50 km far from Incheon ocean port. At the end of 2013, the total population of Deokjeokdo island was approximately 5000 and its area is 21 km2. The island has a relatively large population engaged in agriculture and tourism, rather than fishing, and is actively developing tourism resources as Green Island. This island is excessively long way from primary land of South Korea, so it is not monetarily suitable to associate it with main framework for power transmission. Subsequently, this island has its very own power generation system fueled by diesel. In any case, the local government has demonstrated its enthusiasm to make Deokjeokdo island, a green island as far as power generation is concerned. Present study investigates the sustainable power source potential at the mentioned site and after that recommends an ideal HRES dependent on economic assessments.
\nFigure 2 demonstrates geographical details of the Deokjeokdo including the Urumsil town and test bed of the hybrid renewable energy system.
\nGeographical location of Deokjeokdo island in South Korea.
Experimental HRES facility installed at Deokjeokdo island is shown in Figure 3. The experimental HRES consists of two Darrieus type vertical axis wind turbines (VAWT) and photovoltaic (PV) panels. The total capacity of this system is 24 kW, with each wind turbine rated at 1.5 kW and solar panels of 3 kW capacity, respectively. In order to record the wind conditions such as wind speed and wind direction, a vertical tower called the “wind master” has been installed at the local site, as shown in Figure 3. Anemometer and anemoscope are attached on wind master to record wind speed and wind angle, respectively. Solar panels are inclined at 30° to capture the maximum radiations from sun. This system was being monitored for two consecutive years, i.e., 2016 and 2018.
\nExperimental HRES at Deokjeokdo island.
Prior to assessing the power production from HRES, specifically from wind turbine, it is of immense importance to analyze the wind conditions of local site at first place. In current case, the wind data used for this purpose come from measured by wind master as mentioned above. Figure 4 shows the season wise plots of wind characteristics in the form of wind rose. It is clear from the figures that prevailing wind direction is south-west (180–270°); with most frequent wind speeds are in the range from 2 to 3 m/s and spring is the “windiest” season. It is to be noted that wind data were measured at 10 m height.
\nWind rose at Deokjeokdo island (a) winter (b) spring (c) summer (d) fall.
Weibull probability density function (PDF) and cumulative density function (CDF) are two classical tools to study the wind characteristics of a region. Both functions can be defined as follows, respectively:
\n\n
where
\n
\n
\n
\n
Figure 5 shows the season wise Weibull plots for Deokjeokdo island prepared using 2 years measured data (2016 and 2017). These figures also show the curves for Rayleigh distributions (PDF and CDF), which are essentially Weibull distributions at
Weibull plots at Deokjeokdo island (a) winter (b) spring (c) summer (d) fall.
Table 1 explains the distribution of wind coming from different directions on monthly basis. Table 1 also concludes the same as Figure 4 that prevailing wind direction is south-west.
\nAngle range [°] | \nPercentage of total wind occurrence | \n|||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jan | \nFeb | \nMar | \nApr | \nMay | \nJun | \nJul | \nAug | \nSep | \nOct | \nNov | \nDec | \n|
[0–30] | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
[30–60] | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
[60–90] | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
[90–120] | \n2 | \n0 | \n0 | \n0 | \n0 | \n1 | \n1 | \n2 | \n2 | \n1 | \n1 | \n1 | \n
[120–150] | \n8 | \n4 | \n2 | \n3 | \n5 | \n14 | \n12 | \n14 | \n15 | \n8 | \n9 | \n5 | \n
[150–180] | \n23 | \n18 | \n13 | \n23 | \n29 | \n43 | \n43 | \n36 | \n36 | \n24 | \n28 | \n17 | \n
[180–210] | \n32 | \n36 | \n33 | \n47 | \n46 | \n35 | \n36 | \n35 | \n34 | \n37 | \n36 | \n28 | \n
[210–240] | \n26 | \n31 | \n35 | \n24 | \n19 | \n6 | \n7 | \n12 | \n12 | \n24 | \n20 | \n26 | \n
[240–270] | \n8 | \n10 | \n15 | \n3 | \n2 | \n0 | \n0 | \n1 | \n1 | \n6 | \n5 | \n14 | \n
[270–300] | \n1 | \n1 | \n1 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n1 | \n4 | \n
[300–330] | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n4 | \n
[330–360] | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n0 | \n
Monthly variation in percentages of total wind speed according to wind direction ranges.
Figure 6 shows the wind power density (WPD) on the basis of seasons. The patterns being observed in Figure 6 are very much identical to patterns of Figure 4.
\nObserved WPD at Deokjeokdo island (a) winter (b) spring (c) summer (d) fall.
Figure 7 shows the average solar radiations (W/m2) over different major cities of South Korea. Daejeon has the highest solar radiations value (175 W/m2) whereas Seoul has the lowest (145 W/m2).
\nSolar radiations over different cities of South Korea (W/m2) [
Similarly, Figure 8 shows the average values of daily solar radiations and clearness index over Deokjeokdo island, on monthly basis.
\nSolar radiations over Deokjeokdo island [
This section presents the results such as power production from small Darrieus VAWT. Table 2 summarizes the important details about the wind turbine whereas Figure 9(a) shows the geometrical dimensions and Figure 9(b) shows the power curve of wind turbine installed at Deokjeokdo island. The blade height and chord of the turbine rotor are 3 and 0.2 m, respectively. Design blade section profile is NACA0015, while the rotational diameter of the turbine rotor is 2 m. Rated wind speed and rotor rotational speed are 13.5 m/s and 300 rpm, respectively.
\nParameter | \nValue | \n
---|---|
Rated power, kW | \n1.5 | \n
Rated wind speed, m/s | \n13.5 | \n
Rated rotational speed, RPM | \n300 | \n
Cut-in wind speed, m/s | \n3 | \n
Chord length, m | \n0.2 | \n
Blade length (height), m | \n3 | \n
Rotational diameter, m | \n2 | \n
Blade profile | \nNACA0015 | \n
Specifications of test Darrieus wind turbine.
Darrieus wind turbine installed at Deokjeokdo island (a) rotor dimensions (b) power curve.
Figure 10 shows diagram for data acquisition system to obtain experimental data from the wind turbine and the wind master. Turbine performance data is measured between turbine and power transducer, thus contains power generator loss. Power output is stored in battery bank first, then supplied to users after converting to AC voltages.
\nDiagram for data acquisition system.
The commercial code, SC/Tetra, has been employed in the present numerical simulation. It solves the governing fluid dynamics equations, which consist of continuity and unsteady Reynolds averaged Navier-Stokes (URANS) equations. The computational domain which consists of rotational and stationary domains, is shown in Figure 11. Tetrahedral, prism and pyramid elements have been used overall but mostly only tetrahedral element type is employed. The total number of meshing elements is around 13 million, whereas the total number of nodes is approximately 3.5 million in complete domain. Shear stress transport (SST) model with a scalable wall function is employed to estimate eddy viscosity. In terms of the boundary conditions, a velocity of 5 m/s is specified at the inlet, and natural outflow condition is imposed at the outlet.
\nComputational domain (left) and grid system around turbine rotor (right).
Figure 12 shows the comparisons of turbine power between numerical simulation and experimental measurement for two time averages. In the figure, turbine power obtained by numerical simulation has similar trend to the experimental result. Especially turbine power determined by 10-min average is more similar to the results of numerical simulation compared to 30-min average. This is considered that 10-min average step having lower SD is more effective to analyze the performance of a small vertical wind turbine. From the above comparisons, it can be said that turbine power obtained by numerical simulation is correctly analyzed.
\nComparisons of turbine power between numerical simulation and experimental measurement for 10-min average (left) and 30-min average (right).
Figure 13 shows contours of wind speed around turbine rotor at two different rotation positions, where maximum and minimum values of power coefficient (Cp) occurred, during one complete revolution. Blade having maximum power surrounded by dashed line in the left side is located at the blade rotation angle of 240° where maximum wind velocity around the blade is occurred without large separation flow along the blade surface. An increase in linear speed of the blade leads to increase the rotational speed of rotor and eventually overall power output is enhanced. Larger separated flow is observed at the blade having minimum power because inflow in front of turbine rotor directly interfaces to the blade surface.
\nWind speed around turbine rotor with wind speed of 5m/s (a) Rotor orientation for maximum CP (b) Rotor orientation for minimum CP.
This section describes an optimum HRES for Deokjeokdo island based on lowest net present cost (NPC) and levelized cost of energy (LCOE) using HOMER pro software model. Hybrid optimization model for electric renewables (HOMER) pro software can efficiently model and optimize renewable energy plans for a specific region. The optimum HRES must fulfill hourly and annual electricity demand of the island, which corresponds to approximately 7.296 MWh/year without any external assistance such as grid, etc.
\nBefore starting energy simulations in HOMER pro, one must define pre requisites such as electric load, equipment such as wind turbines, PV panels and other essential details like interest rate and project life.
\nIn order to optimally design a HRES, electric load information such as peak load, daily average electricity consumption and hourly load profile are of critical importance. The maximum availability of load information enables designing a more compact HRES. In the present case, the load data were not collected from any official government source (because of unavailability of such data), but from a previous study on Deokjeokdo island [11]. The average daily load was found to be approximately 24,720 kWh with peak load of 2292 kW typically occurring during winter season and total annual electricity consumption corresponds to a value of 7.296 GWh. The electricity consumption during winter season is higher than rest of the seasons due to the extensive use of space heating equipment powered by electricity. Figure 14 shows the daily and monthly electricity consumption at Deokjeokdo island.
\nTotal AC electric load at Deokjeok island (a) daily load (b) monthly load.
Table 3 presents all technical and economic details about the selected equipment for the study. It is to be noted that all the equipment have been selected by default by HOMER pro except wind turbine; which has been selected after a detailed analysis of wind characteristics at Deokjeokdo island by same authors in Ali et al. [12].
\n(a) Converter | \n|||||||
---|---|---|---|---|---|---|---|
Model | \nCapital ($/kW) | \nReplacement ($/kW) | \nO&M ($/year) | \nLifetime (years) | \nInverter efficiency (%) | \nRectifier capacity (%) | \nRectifier efficiency (%) | \n
Leonics MTP-413F 25kW | \n800 | \n800 | \n10 | \n10 | \n96 | \n80 | \n94 | \n
(b) Battery | \n|||||||
---|---|---|---|---|---|---|---|
Model | \nCapital ($/battery) | \nReplacement ($/battery) | \nO&M ($/year) | \nLifetime (years) | \nInitial state of charge (%) | \nNominal voltage (V) | \nNominal capacity (kWh) | \n
Surrette 6CS25P (kinetic) | \n250 | \n250 | \n1 | \n20 | \n100 | \n6 | \n6.91 | \n
(c) PV panel | \n|||||||
---|---|---|---|---|---|---|---|
Model | \nCapital ($/kW) | \nReplacement ($/kW) | \nO&M ($/year) | \nLifetime (years) | \nDerating factor (%) | \nRated capacity (kW) | \nEfficiency (%) | \n
CS6X-325P | \n1500 | \n1500 | \n30 | \n25 | \n88 | \n50 | \n17 | \n
(d) Wind turbine [10] | \n||||||||
---|---|---|---|---|---|---|---|---|
Model | \nCapital ($/wind turbine) | \nReplacement ($/wind turbine) | \nO&M ($/year) | \nLifetime (years) | \nHub height (m) | \nWake loss (%) | \nOther losses (%) | \nRated capacity (kW) | \n
STX 93/2000 | \n2,869,747 | \n2,869,747 | \n110,375 | \n25 | \n80 | \n5 | \n10 | \n1500 | \n
Selected equipment.
Figure 15 shows the HOMER pro model built for current study with two electric transmission lines, i.e., DC and AC. Basically, the electricity generated from each energy source is stored in the battery based on the DC line. This is because, in comparison with AC, small-scale power generation systems can reduce losses due to electricity conversion. Electric load is used after converting it to AC by using the converter as shown in the figure.
\nHOMER pro model constructed for current study.
Table 4 displays the values of all the sensitivity variables considered in current study. First values of all sensitivity variables in Table 4, makes the default case.
\nAverage load (kWh/day) | \nDiscount rate (%) | \nProject lifetime (years) | \n
---|---|---|
24,720 | \n8 | \n25 | \n
20,000 | \n6 | \n20 | \n
30,000 | \n4 | \n15 | \n
Sensitivity variables.
This section presents the characteristics and analysis of the most optimal HRESs recommended for Deokjeokdo island on the basis of techno-economic evaluations. HOMER simulations generated a total of 551,035 alternatives, out of which only 232,683 solutions were found to be feasible. Figure 16 shows the breakdown of all the solutions generated and it also specifies the multiple reasons for omitted solutions.
\nBreakdown of multiple solutions obtained from HOMER simulations.
Out of the 232,683 feasible solutions, only following two HRESs were finalized as the most suitable options.
System A: HRES with lowest overall net present cost (NPC)
System B: HRES with lowest overall levelized cost of energy (LCOE)
Table 5 shows the basic characteristics of both of the optimized system solutions. It is to be noted that both systems have batteries as default option for storing surplus electricity. System A has the lowest overall NPC (11.3 million $) whereas LCOE is lowest in case of system B ($ 0.123). Table 5 also displays the values of sensitivity variables at which optimal system solutions have been obtained. Project life of system A (15 years) is less than that of system B (25 years), which is also one of the reasons for low NPC of system A.
\nVariable | \nUnit | \nSystem A | \nSystem B | \n
---|---|---|---|
NPC | \nMillion $ | \n11.3 | \n17.61 | \n
LCOE | \n$/kWh | \n0.158 | \n0.123 | \n
Total load scaled average | \nkWh/day | \n20,000 | \n20,000 | \n
Nominal discount rate | \n% | \n8 | \n4 | \n
Project lifetime | \nyears | \n15 | \n25 | \n
Basic information about both system solutions.
Table 6 displays the selected size of each component for both systems. Both systems consist of one wind turbine and system converter of almost 1000 kW size. PV panel size for system B (3,157 kW) is higher than system A (2,504 kW), that is why NPC of system B is higher than system A. By selecting an appropriate model of wind turbine according to the wind conditions of Deokjeokdo island, both system architectures might be different from present cases. But, a right choice of wind turbine depends on the detailed wind data analysis of local site, which is beyond the scope of current study; therefore not performed here.
\nComponent | \nModel | \nUnit | \nSize (system A) | \nSize (system B) | \n
---|---|---|---|---|
PV panels | \nCanadian Solar Max Power CS6X-325P | \nkW | \n2504 | \n3157 | \n
Battery | \nSurrette 6 CS 25P | \nStrings | \n7197 | \n6269 | \n
Wind turbine | \nSTX 93/2000 | \nea. | \n1 | \n1 | \n
System converter | \nLeonics MTP-413F 25 kW | \nkW | \n1006 | \n1009 | \n
Dispatch strategy | \nHOMER cycle charging | \nN/A | \nN/A | \nN/A | \n
Systems architecture.
Finally, Table 7 shows the annual amount of pollutant gases emissions due to operation of both systems.
\nPollutant | \nUnit | \nQuantity (system A) | \nQuantity (system B) | \n
---|---|---|---|
Carbon dioxide | \nkg/year | \n795 | \n700 | \n
Carbon monoxide | \nkg/year | \n8.83 | \n7.77 | \n
Unburned hydrocarbons | \nkg/year | \n0 | \n0 | \n
Particulate matter | \nkg/year | \n0 | \n0 | \n
Sulfur dioxide | \nkg/year | \n0 | \n0 | \n
Nitrogen oxides | \nkg/year | \n5.52 | \n4.86 | \n
Pollutants emission.
Figure 17 displays the graphical representation of power produced by PV panels in both cases. Both the images of Figure 17 indicate that summer is the ideal season for harvesting energy from sun in South Korea, as the average day-time is almost 14–15 hours in Deokjeokdo island. The average hourly power generated by PV panels in case of system A is 425 kWh whereas this value corresponds to 536 kWh for system B.
\nDaily PV power output for both systems (a) system A (b) system B.
Although the most optimal system solutions have already been explained in detail in above sections. But it is also of critical importance to briefly explain some of the other alternate system solutions on the basis of economic evaluations. In order to achieve this goal, Figure 18 has been prepared which shows multiple system solutions obtained by superimposing NPC over LCOE.
\nMultiple system solutions with LCOE superimposed over NPC (a) discount rate = 4% (b) discount rate = 6% (c) discount rate = 8%.
Figure 18 shows a total of 27 optimal system solutions obtained by varying the values of all sensitivity variables mentioned in Table 4.
\nThe present study provides a basic information about the working methodologies of a hybrid renewable energy system (HRES) consisting of wind and solar as primary energy resources. Two case studies of HRES have also been included to further clarify the economic aspects of such energy systems.
\nFirst case study deals with the analysis of a small HRES consisting of wind turbines and PV panels with batteries as energy storage system (ESS). This small HRES is being installed at Deokjeokdo island in South Korea and its performance have been monitored for two consecutive years (2016 and 2017). Analysis showed that the prevailing wind direction at Deokjeokdo island is either north-east or south-west, with mean wind speed of 3.6 m/s at 10 m height. Similarly, average value of daily solar radiations was estimated to be 4.13 kWh/m2 with mean clearness index of 0.5. The total capacity of this small HRES is 6 kW; with two Darrieus VAWTs of 1.5 kW size each and 3 kW size of PV panels.
\nSecond case study finds an optimum HRES to fulfill the yearly electricity demand of Deokjeokdo island, which corresponds to approximately 7.296 MWh/year. Over 8760 simulations were performed to find out two optimum HRESs based on lowest NPC (system A) and lowest LCOE (system B), respectively. The overall NPC of system A was calculated to be 11.29 million USD, whereas for system B, it was 17.61 million USD. On the other hand, LCOE for system A was slightly higher than system B as it was 0.158 $/kWh for system A and 0.123 $/kWh for system B. Both systems can independently provide electricity to Deokjeokdo island throughout the year without any external assistance such as grid, etc.
\nThis study was supported with major project funding from the Korea Institute of Civil Engineering and Building Technology. We would also like to thank the KMA for providing long-term measured wind data at all proposed wind farm sites.
\nThe authors declare no actual or potential conflicts of interest.
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{id:"965887@"},profiles:[],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",topicId:"23,21"},books:[{type:"book",id:"11433",title:"Human Migration in the Last Three Centuries",subtitle:null,isOpenForSubmission:!0,hash:"9836df9e82aa9f82e3852a60204909a8",slug:null,bookSignature:"Dr. Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/11433.jpg",editedByType:null,editors:[{id:"77112",title:"Dr.",name:"Ingrid",surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11443",title:"Empathy - Advanced Research and Applications",subtitle:null,isOpenForSubmission:!0,hash:"4c1042dfe15aa9cea6019524c4cbff38",slug:null,bookSignature:"Ph.D. Sara Ventura",coverURL:"https://cdn.intechopen.com/books/images_new/11443.jpg",editedByType:null,editors:[{id:"227763",title:"Ph.D.",name:"Sara",surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11437",title:"Social Media - Risks and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"000e31f2e2f7295805e9a3864158ad63",slug:null,bookSignature:"Dr. Shafizan Mohamed and Dr. Shazleen Mohamed",coverURL:"https://cdn.intechopen.com/books/images_new/11437.jpg",editedByType:null,editors:[{id:"302450",title:"Dr.",name:"Shafizan",surname:"Mohamed",slug:"shafizan-mohamed",fullName:"Shafizan Mohamed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11780",title:"Volunteering",subtitle:null,isOpenForSubmission:!0,hash:"008a5fc8005ea6b9228cfe39f9521abe",slug:null,bookSignature:"Ph.D. Diann Kelly",coverURL:"https://cdn.intechopen.com/books/images_new/11780.jpg",editedByType:null,editors:[{id:"325207",title:"Ph.D.",name:"Diann",surname:"Kelly",slug:"diann-kelly",fullName:"Diann Kelly"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11783",title:"Motivation and Success",subtitle:null,isOpenForSubmission:!0,hash:"f660b7cd35b9af94bdfc3564df138161",slug:null,bookSignature:"Dr. Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/11783.jpg",editedByType:null,editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11781",title:"Family Therapy - Recent Advances in Clinical and Crisis Settings",subtitle:null,isOpenForSubmission:!0,hash:"8c5b7d5e4233594de70d2f830209b757",slug:null,bookSignature:"Dr. Oluwatoyin Olatundun Ilesanmi",coverURL:"https://cdn.intechopen.com/books/images_new/11781.jpg",editedByType:null,editors:[{id:"440049",title:"Dr.",name:"Oluwatoyin Olatundun",surname:"Ilesanmi",slug:"oluwatoyin-olatundun-ilesanmi",fullName:"Oluwatoyin Olatundun Ilesanmi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",subtitle:null,isOpenForSubmission:!0,hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",slug:null,bookSignature:"Ph.D. Sage Arbor",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",editedByType:null,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11777",title:"LGBT Communities",subtitle:null,isOpenForSubmission:!0,hash:"e08bb222c250dcebf093b7ab595a14a7",slug:null,bookSignature:"Dr. Deborah Woodman",coverURL:"https://cdn.intechopen.com/books/images_new/11777.jpg",editedByType:null,editors:[{id:"463750",title:"Dr.",name:"Deborah",surname:"Woodman",slug:"deborah-woodman",fullName:"Deborah Woodman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11478",title:"Recent Advances in the Study of Dyslexia",subtitle:null,isOpenForSubmission:!0,hash:"26764a18c6b776698823e0e1c3022d2f",slug:null,bookSignature:"Prof. Jonathan Glazzard",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",editedByType:null,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11779",title:"Non-government Organizations - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"c109a472a9e0ea8398ae95e2d21be039",slug:null,bookSignature:"Prof. Vito Bobek and Dr. Tatjana Horvat",coverURL:"https://cdn.intechopen.com/books/images_new/11779.jpg",editedByType:null,editors:[{id:"128342",title:"Prof.",name:"Vito",surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11444",title:"Happiness - Biopsychosocial and Anthropological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fa84e7fc3611e5428e070239dcf5a93f",slug:null,bookSignature:"Dr. Floriana Irtelli and Prof. Fabio Gabrielli",coverURL:"https://cdn.intechopen.com/books/images_new/11444.jpg",editedByType:null,editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11782",title:"Personality Traits - The Role in Psychopathology",subtitle:null,isOpenForSubmission:!0,hash:"d3a491e5194cad4c59b900dd57a11842",slug:null,bookSignature:" Vladimir V. Kalinin",coverURL:"https://cdn.intechopen.com/books/images_new/11782.jpg",editedByType:null,editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:17},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4389},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1337",title:"Social Welfare",slug:"social-policy-social-welfare",parent:{id:"277",title:"Social Policy",slug:"social-policy"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:2,numberOfWosCitations:0,numberOfCrossrefCitations:2,numberOfDimensionsCitations:3,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1337",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8090",title:"Who Wants to Retire and Who Can Afford to Retire?",subtitle:null,isOpenForSubmission:!1,hash:"90fe30d224594414bb156e42afa47f5e",slug:"who-wants-to-retire-and-who-can-afford-to-retire-",bookSignature:"Ingrid Muenstermann",coverURL:"https://cdn.intechopen.com/books/images_new/8090.jpg",editedByType:"Edited by",editors:[{id:"77112",title:"Dr.",name:"Ingrid",middleName:null,surname:"Muenstermann",slug:"ingrid-muenstermann",fullName:"Ingrid Muenstermann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"70904",doi:"10.5772/intechopen.90807",title:"Addressing the Pension Decumulation Phase of Employee Retirement Planning",slug:"addressing-the-pension-decumulation-phase-of-employee-retirement-planning",totalDownloads:626,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Longevity increases and population ageing create challenges for all societal institutions, particularly those providing retirement income, healthcare, and long-term care services. At the individual level, an obvious question is how to ensure all retirees have an adequate, secure, stable, and predictable lifelong income stream that will allow them to maintain a target standard of living for, however, long the individual lives. In this chapter, we review and discuss the main pension decumulation options by explicitly modelling consumers’ behaviour and objectives though an objective function based on utility theory accounting for consumption and bequest motives and different risk preferences. Using a Monte-Carlo simulation approach calibrated to US financial market and mortality data, our results suggest that purchasing a capped participating longevity-linked life annuity at retirement including embedded longevity and financial options that allow the annuity provider to periodically revise annuity payments if observed survivorship and portfolio outcomes deviate from expected (or guaranteed) values at contract initiation deliver superior welfare results when compared with classical annuitization and non-annuitization decumulation strategies.",book:{id:"8090",slug:"who-wants-to-retire-and-who-can-afford-to-retire-",title:"Who Wants to Retire and Who Can Afford to Retire?",fullTitle:"Who Wants to Retire and Who Can Afford to Retire?"},signatures:"Jorge Miguel Ventura Bravo",authors:null},{id:"71712",doi:"10.5772/intechopen.91856",title:"The Age Pension Means Tests: Contorting Australian Retirement",slug:"the-age-pension-means-tests-contorting-australian-retirement",totalDownloads:565,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Most Australian retirees are likely to be subject to the Age Pension assets or income test at some point. Evidence is that many retirees adapt their consumption to increase Age Pension entitlements, but long-term implications are difficult to determine—even if the current rules were to remain in place. This chapter evaluates the current approach to means testing against the principles set out in a Department of Social Services discussion paper on this topic. We evaluate the implied “effective marginal tax rates” (EMTRs) on the assets of part pensioners who are subject to the assets test. We find that depending on a variety of parameters such as assumed future earnings rates, demographic status, drawdown strategy and the base level of assets held, the EMTRs are high enough to explain material distortions to savings decisions of those still in employment, and the spending and investment decisions of retirees. Optimal decisions in this context require contorted retirement strategies that do not appear to be in anyone’s interest. Some possible remedies are suggested, which should include incorporating the value of the principal residence within the assets test. The chapter therefore illustrates the application of principled analysis to policy issues of this sort.",book:{id:"8090",slug:"who-wants-to-retire-and-who-can-afford-to-retire-",title:"Who Wants to Retire and Who Can Afford to Retire?",fullTitle:"Who Wants to Retire and Who Can Afford to Retire?"},signatures:"Anthony Asher and John De Ravin",authors:null},{id:"72453",doi:"10.5772/intechopen.92273",title:"The End of the Retirement “Age”: How the New World of Work Is Transforming the Old World of Retirement",slug:"the-end-of-the-retirement-age-how-the-new-world-of-work-is-transforming-the-old-world-of-retirement",totalDownloads:619,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The nature of work is undergoing fundamental transformation in the twenty-first century with drivers including digitalization, automation, and new forms of work organization. This chapter explores how the concept of retirement itself is increasingly redundant in relation to the new world of work. Of course, working lives inevitably do come to an end, but for whom, and at what point, and under what personal and social financial conditions, is this end point? Many people will want, and be required by public policy, to continue their working lives well into later life. In addition, the new dynamics of work and employment unfolding may enable this later life engagement. But in the “post-work” world predicted by many scholars, will later life employment be a possibility for them, and even for many people in their middle and younger years? This chapter explores the implications of the future of work for how traditional models of working lives and retirement need to be restructured and examines the one vital reform to ensure everyone can sustain a decent life in the new highly volatile world of work.",book:{id:"8090",slug:"who-wants-to-retire-and-who-can-afford-to-retire-",title:"Who Wants to Retire and Who Can Afford to Retire?",fullTitle:"Who Wants to Retire and Who Can Afford to Retire?"},signatures:"Veronica Sheen",authors:null},{id:"72847",doi:"10.5772/intechopen.93250",title:"Lifestyles, Health, and Life Satisfaction among the Portuguese Seniors",slug:"lifestyles-health-and-life-satisfaction-among-the-portuguese-seniors",totalDownloads:454,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter focuses on the interaction between lifestyles, health, and life satisfaction of Portuguese seniors. The aim of the analysis is to find the main determinants of health and life satisfaction and to verify the importance of lifestyle variables as determinants of health and life satisfaction. We used data collected by the National Health Survey of 2014 and estimated two ordered probits. The main results show that not all lifestyle variables are meaningful in explaining self-assessed health and life satisfaction. The determinants of the health status include education and income; however, it can be assumed that overall good health, family, or close people and income contribute to life satisfaction. A general profile of the Portuguese seniors is provided; however, the results obtained here are changing as a new scenario is emerging, generation X enters old age.",book:{id:"8090",slug:"who-wants-to-retire-and-who-can-afford-to-retire-",title:"Who Wants to Retire and Who Can Afford to Retire?",fullTitle:"Who Wants to Retire and Who Can Afford to Retire?"},signatures:"Aida Isabel Tavares",authors:[{id:"196819",title:"Prof.",name:"Aida Isabel",middleName:null,surname:"Tavares",slug:"aida-isabel-tavares",fullName:"Aida Isabel Tavares"}]},{id:"73975",doi:"10.5772/intechopen.94281",title:"Retired but Not Tired: Entrepreneurial Motives and Performance among Retired Public Servants in Tanzania",slug:"retired-but-not-tired-entrepreneurial-motives-and-performance-among-retired-public-servants-in-tanza",totalDownloads:413,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Venturing into a business venture at an old age is an interesting phenomenon. Retirees seem to consider this decision as imperative as it provides them with a source of earning and keeps them active post-retirement. Despite a plethora of research on entrepreneurship, there is a paucity of research on entrepreneurial behavior and performance retired public servants. The current study examines the motive and performance of businesses owned by retired public servants in Tanzania, one of the developing economies. The study used a survey of 90 randomly selected public servants who retired between 2012 and 2016. The descriptive and probit regression analyses were used to examine the entrepreneurial performance and factors associated with it. The results of the analysis suggest that the performance of the businesses is generally not good, as the majority made losses for the past 3 years consecutively. As for the determinants of performance, the study observed that age and source of capital negatively affect performance, whereas education and planning/preparations for business establishment positively influenced entrepreneurial performance. The findings imply that employees, employers and social security industry have a role to play in creating awareness and preparing public service employees for life after retirement especially in sustaining post-retirement income. Lumpsum pension and monthly allowance may be necessary, but the knowledge to manage them through profitable business ventures my be sufficient for a better post-retirement life.",book:{id:"8090",slug:"who-wants-to-retire-and-who-can-afford-to-retire-",title:"Who Wants to Retire and Who Can Afford to Retire?",fullTitle:"Who Wants to Retire and Who Can Afford to Retire?"},signatures:"Anselm Namala and Mursali A. Milanzi",authors:null}],mostDownloadedChaptersLast30Days:[{id:"70904",title:"Addressing the Pension Decumulation Phase of Employee Retirement Planning",slug:"addressing-the-pension-decumulation-phase-of-employee-retirement-planning",totalDownloads:626,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Longevity increases and population ageing create challenges for all societal institutions, particularly those providing retirement income, healthcare, and long-term care services. At the individual level, an obvious question is how to ensure all retirees have an adequate, secure, stable, and predictable lifelong income stream that will allow them to maintain a target standard of living for, however, long the individual lives. In this chapter, we review and discuss the main pension decumulation options by explicitly modelling consumers’ behaviour and objectives though an objective function based on utility theory accounting for consumption and bequest motives and different risk preferences. Using a Monte-Carlo simulation approach calibrated to US financial market and mortality data, our results suggest that purchasing a capped participating longevity-linked life annuity at retirement including embedded longevity and financial options that allow the annuity provider to periodically revise annuity payments if observed survivorship and portfolio outcomes deviate from expected (or guaranteed) values at contract initiation deliver superior welfare results when compared with classical annuitization and non-annuitization decumulation strategies.",book:{id:"8090",slug:"who-wants-to-retire-and-who-can-afford-to-retire-",title:"Who Wants to Retire and Who Can Afford to Retire?",fullTitle:"Who Wants to Retire and Who Can Afford to Retire?"},signatures:"Jorge Miguel Ventura Bravo",authors:null},{id:"72453",title:"The End of the Retirement “Age”: How the New World of Work Is Transforming the Old World of Retirement",slug:"the-end-of-the-retirement-age-how-the-new-world-of-work-is-transforming-the-old-world-of-retirement",totalDownloads:615,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The nature of work is undergoing fundamental transformation in the twenty-first century with drivers including digitalization, automation, and new forms of work organization. This chapter explores how the concept of retirement itself is increasingly redundant in relation to the new world of work. Of course, working lives inevitably do come to an end, but for whom, and at what point, and under what personal and social financial conditions, is this end point? Many people will want, and be required by public policy, to continue their working lives well into later life. In addition, the new dynamics of work and employment unfolding may enable this later life engagement. But in the “post-work” world predicted by many scholars, will later life employment be a possibility for them, and even for many people in their middle and younger years? This chapter explores the implications of the future of work for how traditional models of working lives and retirement need to be restructured and examines the one vital reform to ensure everyone can sustain a decent life in the new highly volatile world of work.",book:{id:"8090",slug:"who-wants-to-retire-and-who-can-afford-to-retire-",title:"Who Wants to Retire and Who Can Afford to Retire?",fullTitle:"Who Wants to Retire and Who Can Afford to Retire?"},signatures:"Veronica Sheen",authors:null},{id:"71893",title:"Alternatives to Serve the Interests of Russian Pensioners",slug:"alternatives-to-serve-the-interests-of-russian-pensioners",totalDownloads:417,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The results of the analysis of statistical data on the Russian labor market, employment and wages, as well as the specific features of the Russian pension system, provide the basis for several important conclusions. Firstly, the living standards of the majority of Russian pensioners do not meet their needs as the Russian pension system is focused on the achievement of minimum living standards. Secondly, the regulation on the functioning of the pension system established by Russian legislation is often violated by the regulators without coordination with economic entities and citizens, participants of the pension system, which prevents future pensioners from feeling protected upon retirement. For this reason, citizens of the retirement age do not seek to retire even when they reach the retirement age. The growth rate of working pensioners (who pay taxes, including insurance deductions to the Pension Fund of Russia and private pension funds) confirms this. Thirdly, there is a need to create a socially-comfortable environment for pensioners, to counteract the psychological problems of older people their sense of “uselessness” to society. The article proposes practical measures to mitigate the negative phenomena in the pension provision of Russian citizens.",book:{id:"8090",slug:"who-wants-to-retire-and-who-can-afford-to-retire-",title:"Who Wants to Retire and Who Can Afford to Retire?",fullTitle:"Who Wants to Retire and Who Can Afford to Retire?"},signatures:"Elena Ivanovna Kulikova",authors:null},{id:"71593",title:"Called to Plan: Changing Patterns and Perceptions of Retirement for Australian and New Zealand Faith-Based Ministers",slug:"called-to-plan-changing-patterns-and-perceptions-of-retirement-for-australian-and-new-zealand-faith-",totalDownloads:533,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The rising tide of aging citizens globally suggests a compelling argument for increasing understanding of factors impacting retirement. Factors such as health and finance have been identified as principal, but these results generally apply to homogenous groups with little reference to the impact of culture and tradition. This study adopted an ex post-facto, cross-sectional, self-reporting survey from working faith-based ministers in Australia and New Zealand to ascertain personal and professional factors affecting retirement perception in specific context including results for age-related differences. Results from four areas of foci show participants generally regarded retirement as a positive season. They were, however, less confident about their preparedness and mostly dissatisfied with the level of planning for retirement. Significant differences were noted in age-related groups with health and financial considerations constituting the primary differences. Increased understanding of changing patterns and perceptions for specific groups including age differences, potentially aids the response of state and society to the ageing phenomenon.",book:{id:"8090",slug:"who-wants-to-retire-and-who-can-afford-to-retire-",title:"Who Wants to Retire and Who Can Afford to Retire?",fullTitle:"Who Wants to Retire and Who Can Afford to Retire?"},signatures:"Bernadene Erasmus and Peter John Morey",authors:null},{id:"71712",title:"The Age Pension Means Tests: Contorting Australian Retirement",slug:"the-age-pension-means-tests-contorting-australian-retirement",totalDownloads:562,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Most Australian retirees are likely to be subject to the Age Pension assets or income test at some point. Evidence is that many retirees adapt their consumption to increase Age Pension entitlements, but long-term implications are difficult to determine—even if the current rules were to remain in place. This chapter evaluates the current approach to means testing against the principles set out in a Department of Social Services discussion paper on this topic. We evaluate the implied “effective marginal tax rates” (EMTRs) on the assets of part pensioners who are subject to the assets test. We find that depending on a variety of parameters such as assumed future earnings rates, demographic status, drawdown strategy and the base level of assets held, the EMTRs are high enough to explain material distortions to savings decisions of those still in employment, and the spending and investment decisions of retirees. Optimal decisions in this context require contorted retirement strategies that do not appear to be in anyone’s interest. Some possible remedies are suggested, which should include incorporating the value of the principal residence within the assets test. The chapter therefore illustrates the application of principled analysis to policy issues of this sort.",book:{id:"8090",slug:"who-wants-to-retire-and-who-can-afford-to-retire-",title:"Who Wants to Retire and Who Can Afford to Retire?",fullTitle:"Who Wants to Retire and Who Can Afford to Retire?"},signatures:"Anthony Asher and John De Ravin",authors:null}],onlineFirstChaptersFilter:{topicId:"1337",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 13th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",biography:"Full Professor and Vice Chair, Division of Pharmacology, Loma Linda University, School of Medicine. He received his B.S. Degree in Biology at La Sierra University, Riverside California (1980) and a PhD in Pharmacology from Loma Linda University School of Medicine (1988). Post-Doctoral Fellow at University of California, Irvine, College of Medicine 1989-1992 with a focus on autonomic nerve function in blood vessels and the impact of aging on the function of these nerves and overall blood vessel function. Twenty years of research funding and served on NIH R01 review panels, Editor-In-Chief of Edorium Journal of Aging Research. Serves as a peer reviewer for biomedical journals. Military Reserve Officer serving with the 100 Support Command, 100 Troop Command, 40 Infantry Division, CA National Guard.",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}]},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}]},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",biography:"Dr. Emad Shalaby is a professor of biochemistry on the Biochemistry Department Faculty of Agriculture, Cairo University. He\nreceived a short-term scholarship to carry out his post-doctoral\nstudies abroad, from Japan International Cooperation Agency\n(JICA), in coordination with the Egyptian government. Dr.\nShalaby speaks fluent English and his native Arabic. He has 77\ninternationally published research papers, has attended 15 international conferences, and has contributed to 18 international books and chapters.\nDr. Shalaby works as a reviewer on over one hundred international journals and is\non the editorial board of more than twenty-five international journals. He is a member of seven international specialized scientific societies, besides his local one, and\nhe has won seven prizes.",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11576",title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",hash:"5a01644fb0b4ce24c2f947913d154abe",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 26th 2022",isOpenForSubmission:!0,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",hash:"3d72ae651ee2a04b2368bf798a3183ca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 29th 2022",isOpenForSubmission:!0,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:39,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Bioinformatics and Medical Informatics",value:7,count:13,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"41",type:"subseries",title:"Water Science",keywords:"Water, Water resources, Freshwater, Hydrological processes, Utilization, Protection",scope:"