Comparison of material properties of Si, GaAs, 4H-SiC and GaN [1].
\\n\\n
Dr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\\n\\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\\n\\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\\n\\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\\n\\nThank you all for being part of the journey. 5,000 times thank you!
\\n\\nNow with 5,000 titles available Open Access, which one will you read next?
\\n\\nRead, share and download for free: https://www.intechopen.com/books
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Preparation of Space Experiments edited by international leading expert Dr. Vladimir Pletser, Director of Space Training Operations at Blue Abyss is the 5,000th Open Access book published by IntechOpen and our milestone publication!
\n\n"This book presents some of the current trends in space microgravity research. The eleven chapters introduce various facets of space research in physical sciences, human physiology and technology developed using the microgravity environment not only to improve our fundamental understanding in these domains but also to adapt this new knowledge for application on earth." says the editor. Listen what else Dr. Pletser has to say...
\n\n\n\nDr. Pletser’s experience includes 30 years of working with the European Space Agency as a Senior Physicist/Engineer and coordinating their parabolic flight campaigns, and he is the Guinness World Record holder for the most number of aircraft flown (12) in parabolas, personally logging more than 7,300 parabolas.
\n\nSeeing the 5,000th book published makes us at the same time proud, happy, humble, and grateful. This is a great opportunity to stop and celebrate what we have done so far, but is also an opportunity to engage even more, grow, and succeed. It wouldn't be possible to get here without the synergy of team members’ hard work and authors and editors who devote time and their expertise into Open Access book publishing with us.
\n\nOver these years, we have gone from pioneering the scientific Open Access book publishing field to being the world’s largest Open Access book publisher. Nonetheless, our vision has remained the same: to meet the challenges of making relevant knowledge available to the worldwide community under the Open Access model.
\n\nWe are excited about the present, and we look forward to sharing many more successes in the future.
\n\nThank you all for being part of the journey. 5,000 times thank you!
\n\nNow with 5,000 titles available Open Access, which one will you read next?
\n\nRead, share and download for free: https://www.intechopen.com/books
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"},{slug:"suf-and-intechopen-announce-collaboration-20200331",title:"SUF and IntechOpen Announce Collaboration"}]},book:{item:{type:"book",id:"6113",leadTitle:null,fullTitle:"Human Robot Interaction",title:"Human Robot Interaction",subtitle:null,reviewType:"peer-reviewed",abstract:"Human-robot interaction research is diverse and covers a wide range of topics. All aspects of human factors and robotics are within the purview of HRI research so far as they provide insight into how to improve our understanding in developing effective tools, protocols, and systems to enhance HRI. For example, a significant research effort is being devoted to designing human-robot interface that makes it easier for the people to interact with robots. HRI is an extremely active research field where new and important work is being published at a fast pace. It is neither possible nor is it our intention to cover every important work in this important research field in one volume. However, we believe that HRI as a research field has matured enough to merit a compilation of the outstanding work in the field in the form of a book. This book, which presents outstanding work from the leading HRI researchers covering a wide spectrum of topics, is an effort to capture and present some of the important contributions in HRI in one volume. We hope that this book will benefit both experts and novice and provide a thorough understanding of the exciting field of HRI.",isbn:null,printIsbn:"978-3-902613-13-4",pdfIsbn:"978-953-51-5818-9",doi:"10.5772/51",price:159,priceEur:175,priceUsd:205,slug:"human_robot_interaction",numberOfPages:524,isOpenForSubmission:!1,isInWos:1,hash:"9a29f8c78e1bb0d526244fc8549e9994",bookSignature:"Nilanjan Sarkar",publishedDate:"September 1st 2007",coverURL:"https://cdn.intechopen.com/books/images_new/6113.jpg",numberOfDownloads:67099,numberOfWosCitations:75,numberOfCrossrefCitations:62,numberOfDimensionsCitations:94,hasAltmetrics:0,numberOfTotalCitations:231,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 1st 2017",dateEndSecondStepPublish:null,dateEndThirdStepPublish:null,dateEndFourthStepPublish:null,dateEndFifthStepPublish:null,currentStepOfPublishingProcess:1,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"80960",title:"Dr.",name:"Nilanjan",middleName:null,surname:"Sarkar",slug:"nilanjan-sarkar",fullName:"Nilanjan Sarkar",profilePictureURL:"https://mts.intechopen.com/storage/users/80960/images/system/80960.jpg",biography:"Nilanjan Sarkar is a Professor of Mechanical Engineering (primary) and Electrical Engineering and Computer Science (secondary) at Vanderbilt University. He received his Ph.D. from the GRASP Lab at the University of Pennsylvania. He directs the Robotics and Autonomous Systems Lab and co-directs the Autos Lab at Vanderbilt University. Dr. Sarkar’s research interests are in dynamics, controls, robotics and human-robot and human-machine interactions. He is a Fellow of the ASME.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Vanderbilt University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"569",title:"Intelligent System",slug:"human-computer-interaction-intelligent-system"}],chapters:[{id:"582",title:"Adaptive Personal Space for Humanizing Mobile Robots",doi:"10.5772/5184",slug:"adaptive_personal_space_for_humanizing_mobile_robots",totalDownloads:2165,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Janaka Chaminda Balasuriya, Chandrajith Ashuboda Marasinghe and Keigo Watanabe",downloadPdfUrl:"/chapter/pdf-download/582",previewPdfUrl:"/chapter/pdf-preview/582",authors:[null],corrections:null},{id:"583",title:"The Potential for Modeling Human-Robot Interaction with GOMS",doi:"10.5772/5185",slug:"the_potential_for_modeling_human-robot_interaction_with_goms",totalDownloads:1944,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Jill L. Drury, Jean Scholtz and David Kieras",downloadPdfUrl:"/chapter/pdf-download/583",previewPdfUrl:"/chapter/pdf-preview/583",authors:[null],corrections:null},{id:"584",title:"Supporting Complex Robot Behaviors with Simple Interaction Tools",doi:"10.5772/5186",slug:"supporting_complex_robot_behaviors_with_simple_interaction_tools",totalDownloads:2202,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"David J. Bruemmer, David I. Gertman, Curtis W. Nielsen, Douglas A. Few and William D. Smart",downloadPdfUrl:"/chapter/pdf-download/584",previewPdfUrl:"/chapter/pdf-preview/584",authors:[null],corrections:null},{id:"585",title:"Augmented Reality for Human-Robot Collaboration",doi:"10.5772/5187",slug:"augmented_reality_for_human-robot_collaboration",totalDownloads:2815,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Scott A. Green, Mark Billinghurst, XiaoQi Chen and J. Geoffrey Chase",downloadPdfUrl:"/chapter/pdf-download/585",previewPdfUrl:"/chapter/pdf-preview/585",authors:[null],corrections:null},{id:"586",title:"Robots That Learn Language: A Developmental Approach to Situated Human-Robot Conversations",doi:"10.5772/5188",slug:"robots_that_learn_language__a_developmental_approach_to_situated_human-robot_conversations",totalDownloads:1805,totalCrossrefCites:25,totalDimensionsCites:29,signatures:"Naoto Iwahashi",downloadPdfUrl:"/chapter/pdf-download/586",previewPdfUrl:"/chapter/pdf-preview/586",authors:[null],corrections:null},{id:"587",title:"Recognizing Human Pose and Actions for Interactive Robots",doi:"10.5772/5189",slug:"recognizing_human_pose_and_actions_for_interactive_robots",totalDownloads:2306,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Odest Chadwicke Jenkins, German Gonzalez Serrano and Matthew M. Loper",downloadPdfUrl:"/chapter/pdf-download/587",previewPdfUrl:"/chapter/pdf-preview/587",authors:[null],corrections:null},{id:"588",title:"Development of Service Robot System With Multiple Human User Interface",doi:"10.5772/5190",slug:"development_of_service_robot_system_with_multiple_human_user_interface",totalDownloads:2327,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Songmin Jia and Kunikatsu Takase",downloadPdfUrl:"/chapter/pdf-download/588",previewPdfUrl:"/chapter/pdf-preview/588",authors:[null],corrections:null},{id:"589",title:"Human-Robot Interface for End Effectors",doi:"10.5772/5191",slug:"human-robot_interface_for_end_effectors",totalDownloads:3063,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Marcin Kaczmarski",downloadPdfUrl:"/chapter/pdf-download/589",previewPdfUrl:"/chapter/pdf-preview/589",authors:[null],corrections:null},{id:"590",title:'"From Saying to Doing" - Natural Language Interaction with Artificial Agents and Robots',doi:"10.5772/5192",slug:"_from_saying_to_doing__-_natural_language_interaction_with_artificial_agents_and_robots",totalDownloads:1795,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Christel Kemke",downloadPdfUrl:"/chapter/pdf-download/590",previewPdfUrl:"/chapter/pdf-preview/590",authors:[null],corrections:null},{id:"591",title:"Can robots replace dogs? Comparison of Temporal Patterns in Dog-Human and Robot-Human Interactions",doi:"10.5772/5193",slug:"can_robots_replace_dogs_comparison_of_temporal_patterns_in_dog-human_and_robot-human_interactions",totalDownloads:2822,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Andrea Kerepesi, Gudberg K. Jonsson, Eniko Kubinyi and Adam Miklosi",downloadPdfUrl:"/chapter/pdf-download/591",previewPdfUrl:"/chapter/pdf-preview/591",authors:[null],corrections:null},{id:"592",title:"A Facial Expression Imitation System for the Primitive of Intuitive Human-Robot Interaction",doi:"10.5772/5194",slug:"a_facial_expression_imitation_system_for_the_primitive_of_intuitive_human-robot_interaction",totalDownloads:2336,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Do Hyoung Kim, Kwang Ho An, Yeon Geol Ryu and Myung Jin Chung",downloadPdfUrl:"/chapter/pdf-download/592",previewPdfUrl:"/chapter/pdf-preview/592",authors:[null],corrections:null},{id:"5260",title:"Evaluating Emotion Expressing Robots in Affective Space",doi:"10.5772/6112",slug:"evaluating_emotion_expressing_robots_in_affective_space",totalDownloads:3079,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Kolja Kuehnlenz, Stefan Sosnowski and Martin Buss",downloadPdfUrl:"/chapter/pdf-download/5260",previewPdfUrl:"/chapter/pdf-preview/5260",authors:[null],corrections:null},{id:"593",title:"Cognitive Robotic Engine: Behavioral Perception Architecture for Human-Robot Interaction",doi:"10.5772/5195",slug:"cognitive_robotic_engine__behavioral_perception_architecture_for_human-robot_interaction",totalDownloads:2102,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Sukhan Lee, Seung-Min Baek and Jangwon Lee",downloadPdfUrl:"/chapter/pdf-download/593",previewPdfUrl:"/chapter/pdf-preview/593",authors:[null],corrections:null},{id:"594",title:"Contact Task by Force Feedback Teleoperation Under Communication Time Delay",doi:"10.5772/5196",slug:"contact_task_by_force_feedback_teleoperation_under_communication_time_delay",totalDownloads:2501,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Masahiro Nohmi and Thomas Bock",downloadPdfUrl:"/chapter/pdf-download/594",previewPdfUrl:"/chapter/pdf-preview/594",authors:[null],corrections:null},{id:"595",title:"What People Assume about Robots: Cross-Cultural Analysis between Japan, Korea, and the USA",doi:"10.5772/5197",slug:"what_people_assume_about_robots__cross-cultural_analysis_between_japan__korea__and_the_usa",totalDownloads:2858,totalCrossrefCites:3,totalDimensionsCites:4,signatures:"Tatsuya Nomura, Tomohiro Suzuki, Takayuki Kanda, Jeonghye Han, Namin Shin, Jennifer Burke and Kensuke Kato",downloadPdfUrl:"/chapter/pdf-download/595",previewPdfUrl:"/chapter/pdf-preview/595",authors:[null],corrections:null},{id:"596",title:"Posture and Movement Estimation Based on Reduced Information. Application to the Context of FES-based Control of Lower-Limbs",doi:"10.5772/5198",slug:"posture_and_movement_estimation_based_on_reduced_information__application_to_the_context_of_fes-base",totalDownloads:1963,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Nacim Ramdani, Christine Azevedo-Coste, David Guiraud, Philippe Fraisse, Rodolphe Heliot and Gael Pages",downloadPdfUrl:"/chapter/pdf-download/596",previewPdfUrl:"/chapter/pdf-preview/596",authors:[null],corrections:null},{id:"597",title:"Intelligent Space as a Platform for Human Observation",doi:"10.5772/5199",slug:"intelligent_space_as_a_platform_for_human_observation",totalDownloads:1914,totalCrossrefCites:4,totalDimensionsCites:4,signatures:"Takeshi Sasaki and Hideki Hashimoto",downloadPdfUrl:"/chapter/pdf-download/597",previewPdfUrl:"/chapter/pdf-preview/597",authors:[null],corrections:null},{id:"598",title:"Semiotics and Human-Robot Interaction",doi:"10.5772/5200",slug:"semiotics_and_human-robot_interaction",totalDownloads:2001,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Joao Sequeira and M.Isabel Ribeiro",downloadPdfUrl:"/chapter/pdf-download/598",previewPdfUrl:"/chapter/pdf-preview/598",authors:[null],corrections:null},{id:"599",title:"Effect of Robot and Screen Agent Recommendations on Human Decision-Making",doi:"10.5772/5201",slug:"effect_of_robot_and_screen_agent_recommendations_on_human_decision-making",totalDownloads:1796,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Kazuhiko Shinozawa and Junji Yamato",downloadPdfUrl:"/chapter/pdf-download/599",previewPdfUrl:"/chapter/pdf-preview/599",authors:[null],corrections:null},{id:"600",title:"Collective Motion of Multi-Robot System based on Simple Dynamics",doi:"10.5772/5202",slug:"collective_motion_of_multi-robot_system_based_on_simple_dynamics",totalDownloads:2244,totalCrossrefCites:3,totalDimensionsCites:5,signatures:"Ken Sugawara, Yoshinori Hayakawa, Tsuyoshi Mizuguchi and Masaki Sano",downloadPdfUrl:"/chapter/pdf-download/600",previewPdfUrl:"/chapter/pdf-preview/600",authors:[null],corrections:null},{id:"601",title:"Modeling and Control of Piezoelectric Actuators for Active Physiological Tremor Compensation",doi:"10.5772/5203",slug:"modeling_and_control_of_piezoelectric_actuators_for_active_physiological_tremor_compensation",totalDownloads:3474,totalCrossrefCites:2,totalDimensionsCites:4,signatures:"U-Xuan Tan, Win Tun Latt, Cheng Yap Shee, Cameron Riviere and Wei Tech Ang",downloadPdfUrl:"/chapter/pdf-download/601",previewPdfUrl:"/chapter/pdf-preview/601",authors:[null],corrections:null},{id:"602",title:"Automatic Speech Recognition of Human-Symbiotic Robot EMIEW",doi:"10.5772/5204",slug:"automatic_speech_recognition_of_human-symbiotic_robot_emiew",totalDownloads:2423,totalCrossrefCites:7,totalDimensionsCites:7,signatures:"Masahito Togami, Yasunari Obuchi and Akio Amano",downloadPdfUrl:"/chapter/pdf-download/602",previewPdfUrl:"/chapter/pdf-preview/602",authors:[null],corrections:null},{id:"603",title:"Mixed-initiative Multirobot Control in USAR",doi:"10.5772/5205",slug:"mixed-initiative_multirobot_control_in_usar",totalDownloads:1675,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Jijun Wang and Michael Lewis",downloadPdfUrl:"/chapter/pdf-download/603",previewPdfUrl:"/chapter/pdf-preview/603",authors:[null],corrections:null},{id:"604",title:"Robotic Musicianship - Musical Interactions Between Humans and Machines",doi:"10.5772/5206",slug:"robotic_musicianship_-_musical_interactions_between_humans_and_machines",totalDownloads:2151,totalCrossrefCites:4,totalDimensionsCites:4,signatures:"Gil Weinberg",downloadPdfUrl:"/chapter/pdf-download/604",previewPdfUrl:"/chapter/pdf-preview/604",authors:[null],corrections:null},{id:"605",title:"Possibilities of Force based Interaction with Robot Manipulators",doi:"10.5772/5207",slug:"possibilities_of_force_based_interaction_with_robot_manipulators",totalDownloads:2817,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"Alexander Winkler and Jozef Suchy",downloadPdfUrl:"/chapter/pdf-download/605",previewPdfUrl:"/chapter/pdf-preview/605",authors:[null],corrections:null},{id:"606",title:"Playing Games with Robots - A Method for Evaluating Human-Robot Interaction",doi:"10.5772/5208",slug:"playing_games_with_robots_-_a_method_for_evaluating_human-robot_interaction",totalDownloads:2316,totalCrossrefCites:5,totalDimensionsCites:12,signatures:"Min Xin and Ehud Sharlin",downloadPdfUrl:"/chapter/pdf-download/606",previewPdfUrl:"/chapter/pdf-preview/606",authors:[null],corrections:null},{id:"607",title:"Designing Simple and Effective Expression of Robot's Primitive Minds to a Human",doi:"10.5772/5209",slug:"designing_simple_and_effective_expression_of_robot_s_primitive_minds_to_a_human",totalDownloads:2058,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Seiji Yamada and Takanori Komatsu",downloadPdfUrl:"/chapter/pdf-download/607",previewPdfUrl:"/chapter/pdf-preview/607",authors:[null],corrections:null},{id:"5276",title:"Hand Posture Segmentation, Recognition and Application for Human-Robot Interaction",doi:"10.5772/6097",slug:"hand_posture_segmentation__recognition_and_application_for_human-robot_interaction",totalDownloads:4173,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Xiaoming Yin and Ming Xie",downloadPdfUrl:"/chapter/pdf-download/5276",previewPdfUrl:"/chapter/pdf-preview/5276",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"5324",title:"Ambient Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"a05278706b60124f3975fb674f783a08",slug:"ambient-intelligence",bookSignature:"Felix Jesus Villanueva Molina",coverURL:"https://cdn.intechopen.com/books/images_new/5324.jpg",editedByType:"Edited by",editors:[{id:"6504",title:"Dr.",name:"Felix Jesus",surname:"Villanueva",slug:"felix-jesus-villanueva",fullName:"Felix Jesus Villanueva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5113",title:"Augmented Reality",subtitle:null,isOpenForSubmission:!1,hash:"954d173e8f2d779038eab3d42ef6b159",slug:"augmented-reality",bookSignature:"Soha Maad",coverURL:"https://cdn.intechopen.com/books/images_new/5113.jpg",editedByType:"Edited by",editors:[{id:"7692",title:"Dr.",name:"Soha",surname:"Maad",slug:"soha-maad",fullName:"Soha Maad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6935",title:"Toward Super-Creativity",subtitle:"Improving Creativity in Humans, Machines, and Human - Machine Collaborations",isOpenForSubmission:!1,hash:"98c0eed8bde901e69239d5217d9be28d",slug:"toward-super-creativity-improving-creativity-in-humans-machines-and-human-machine-collaborations",bookSignature:"Sílvio Manuel Brito",coverURL:"https://cdn.intechopen.com/books/images_new/6935.jpg",editedByType:"Edited by",editors:[{id:"170935",title:"Ph.D.",name:"Sílvio Manuel",surname:"Brito",slug:"silvio-manuel-brito",fullName:"Sílvio Manuel Brito"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65667",slug:"erratum-the-roll-of-the-entrepreneur-in-the-establishment-of-economic-equilibria",title:"Erratum - The Roll of the Entrepreneur in the Establishment of Economic Equilibria",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65667.pdf",downloadPdfUrl:"/chapter/pdf-download/65667",previewPdfUrl:"/chapter/pdf-preview/65667",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65667",risUrl:"/chapter/ris/65667",chapter:{id:"57461",slug:"the-roll-of-the-entrepreneur-in-the-establishment-of-economic-equilibria",signatures:"Er’el Granot",dateSubmitted:"April 7th 2017",dateReviewed:"August 22nd 2017",datePrePublished:"December 20th 2017",datePublished:"January 24th 2018",book:{id:"6165",title:"Entrepreneurship",subtitle:"Development Tendencies and Empirical Approach",fullTitle:"Entrepreneurship - Development Tendencies and Empirical Approach",slug:"entrepreneurship-development-tendencies-and-empirical-approach",publishedDate:"January 24th 2018",bookSignature:"Ladislav Mura",coverURL:"https://cdn.intechopen.com/books/images_new/6165.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"85474",title:"Associate Prof.",name:"Ladislav",middleName:null,surname:"Mura",slug:"ladislav-mura",fullName:"Ladislav Mura"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"181601",title:"Prof.",name:"Er'El",middleName:null,surname:"Granot",fullName:"Er'El Granot",slug:"er'el-granot",email:"erelgranot@gmail.com",position:null,institution:{name:"Ariel University",institutionURL:null,country:{name:"Israel"}}}]}},chapter:{id:"57461",slug:"the-roll-of-the-entrepreneur-in-the-establishment-of-economic-equilibria",signatures:"Er’el Granot",dateSubmitted:"April 7th 2017",dateReviewed:"August 22nd 2017",datePrePublished:"December 20th 2017",datePublished:"January 24th 2018",book:{id:"6165",title:"Entrepreneurship",subtitle:"Development Tendencies and Empirical Approach",fullTitle:"Entrepreneurship - Development Tendencies and Empirical Approach",slug:"entrepreneurship-development-tendencies-and-empirical-approach",publishedDate:"January 24th 2018",bookSignature:"Ladislav Mura",coverURL:"https://cdn.intechopen.com/books/images_new/6165.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"85474",title:"Associate Prof.",name:"Ladislav",middleName:null,surname:"Mura",slug:"ladislav-mura",fullName:"Ladislav Mura"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"181601",title:"Prof.",name:"Er'El",middleName:null,surname:"Granot",fullName:"Er'El Granot",slug:"er'el-granot",email:"erelgranot@gmail.com",position:null,institution:{name:"Ariel University",institutionURL:null,country:{name:"Israel"}}}]},book:{id:"6165",title:"Entrepreneurship",subtitle:"Development Tendencies and Empirical Approach",fullTitle:"Entrepreneurship - Development Tendencies and Empirical Approach",slug:"entrepreneurship-development-tendencies-and-empirical-approach",publishedDate:"January 24th 2018",bookSignature:"Ladislav Mura",coverURL:"https://cdn.intechopen.com/books/images_new/6165.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"85474",title:"Associate Prof.",name:"Ladislav",middleName:null,surname:"Mura",slug:"ladislav-mura",fullName:"Ladislav Mura"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9878",leadTitle:null,title:"Electromagnetic Wave Propagation for Industry and Biomedical Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tElectromagnetic imaging is an emerging biomedical imaging modality, which when matured, might present an effective supplement to current imaging technologies for non-invasive assessment of functional and pathological conditions of tissues. This book aims to provide a state-of-art for the most relevant advancements in the development of electromagnetic sensing and imaging for non-invasive detection, by covering all aspects related to the design, modeling, and experimentation. The authors are welcome to submit original research and review articles reporting recent advances in the application of electromagnetic waves technologies in industry and bioengineering.
\r\n\r\n\tThe scope of this book will be the collection of new and/or review results exploring the use of electromagnetic waves for industrial and biomedical applications with particular focus on inclusion detection and medical treatment as well as a diagnostic tool for disease detection. Potential topics include but are not limited to the following: Electromagnetic sensing and imaging for industry applications, Electromagnetic sensing and imaging for biomedical applications, Microwave sensing and imaging , Non-invasive electromagnetic diagnostic tools, Usage of electromagnetic waves for probing organs and advanced MRI techniques, Theoretical modeling of electromagnetic wave propagation, Application of electromagnetic waves in advanced MRI techniques, RF sensors and coils, Biomaterials for wearable sensors, In vitro and in vivo testing.
",isbn:"978-1-83968-582-8",printIsbn:"978-1-83968-581-1",pdfIsbn:"978-1-83968-583-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"e57ef4b5bada0d966637cd303d76278f",bookSignature:"Distinguished Prof. Lulu Wang",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9878.jpg",keywords:"Electromagnetic Sensing, Imaging, Biomedical Applications, Electromagnetic Measurements, Conductivity, Electromagnetic Induction Tomography, Electric Impedance Imaging, Microwave Imaging, Biomaterials, RF Coils, Electromagnetic Scattering Problems, Integral Equations",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 26th 2020",dateEndSecondStepPublish:"November 3rd 2020",dateEndThirdStepPublish:"January 2nd 2021",dateEndFourthStepPublish:"March 23rd 2021",dateEndFifthStepPublish:"May 22nd 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"With an M.E. (Hons.) and a Ph.D. degree from the Auckland University of Technology, New Zealand, Dr. Wang is the first author of over 60 peer-reviewed publications, received multiple national and international awards from various professional societies and organizations she is a member of (ASME, IEEE, AAAS, PSNZ, and IPENZ ).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/257388/images/system/257388.jpg",biography:"Lulu Wang is a Full Professor of Biomedical Engineering at Shenzhen Technology University in China. She received the M.E. (First class Hons.) and Ph.D. degrees from the Auckland University of Technology, New Zealand, in 2009 and 2013, respectively. From 2013 to 2015, she was a Research Fellow with the Institute of Biomedical Technologies, Auckland University of Technology, New Zealand. In 2015, Dr. Wang became an Associate Professor of biomedical engineering with the Hefei University of Technology. In 2019, she became a Full Professor of biomedical engineering with the College of Health Science and Environmental Engineering, Shenzhen Technology University. Her research interests include medical devices, electromagnetic sensing and imaging, and computational mechanics. Over the past five years, Dr. Wang is the first author of 60 peer-reviewed publications, 2 ASME books, 7 book chapters, and 12 innovation patents. She has edited three books and two special issues of international journals. Dr. Wang is a member of ASME, IEEE, AAAS, PSNZ, and IPENZ. She has been an active scientific reviewer for numerous journals and international conferences. She received multiple National and International Awards from various professional societies and organizations.",institutionString:"Shenzhen Technology University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"20",title:"Physics",slug:"physics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"259492",firstName:"Sara",lastName:"Gojević-Zrnić",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/259492/images/7469_n.png",email:"sara.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6835",title:"Computer Methods and Programs in Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"19f08ef15d97900c94dc8fb04f9afb5f",slug:"computer-methods-and-programs-in-biomedical-signal-and-image-processing",bookSignature:"Lulu Wang",coverURL:"https://cdn.intechopen.com/books/images_new/6835.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8347",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3d7024a8d7d8afed093c9c79ec31f15a",slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",bookSignature:"Lulu Wang and Liandong Yu",coverURL:"https://cdn.intechopen.com/books/images_new/8347.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8356",title:"Metastable, Spintronics Materials and Mechanics of Deformable Bodies",subtitle:"Recent Progress",isOpenForSubmission:!1,hash:"1550f1986ce9bcc0db87d407a8b47078",slug:"solid-state-physics-metastable-spintronics-materials-and-mechanics-of-deformable-bodies-recent-progress",bookSignature:"Subbarayan Sivasankaran, Pramoda Kumar Nayak and Ezgi Günay",coverURL:"https://cdn.intechopen.com/books/images_new/8356.jpg",editedByType:"Edited by",editors:[{id:"190989",title:"Dr.",name:"Subbarayan",surname:"Sivasankaran",slug:"subbarayan-sivasankaran",fullName:"Subbarayan Sivasankaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"61629",title:"GaN-Based Schottky Diode",doi:"10.5772/intechopen.77024",slug:"gan-based-schottky-diode",body:'\nWide band gap (WBG) semiconductor materials are the best candidates for high frequency, high power and high temperature applications because of their superior intrinsic material properties compared to Si, and GaAs (Table 1).
\nParameter | \nSi | \nGaAs | \n4H-SiC | \nGaN | \n
---|---|---|---|---|
Eg (eV) | \n1.12 | \n1.42 | \n3.25 | \n3.40 | \n
Ec (MV/cm) | \n0.3 | \n0.4 | \n3.0 | \n4.0 | \n
μn (cm2·V−1·s−1) | \n1500 | \n8500 | \n1000 | \n1250 | \n
ε | \n11.8 | \n12.8 | \n9.7 | \n9.0 | \n
Vsat (107 cm/s) | \n1 | \n2 | \n2 | \n2.5 | \n
λ (W·cm−1·K−1) | \n1.5 | \n0.5 | \n4.9 | \n2.3 | \n
Comparison of material properties of Si, GaAs, 4H-SiC and GaN [1].
Eg: bandgap; Ec: critical electric field; μn: electron mobility; ε: dielectric constant; Vsat: saturation electron velocity; λ: thermal conductivity.
Among the WBG materials, SiC and GaN are the most successfully developed in terms of material growth, device fabrication and commercialization. GaN and related III-Nitride materials such as InN and AlN and their alloys have many advantages in optoelectronics. III-Nitride materials have a wide range of direct bandgap from the lower end 1.9 eV (InN) to the high end 6.2 eV (AlN) and can also support multi-quantum well and superlattice structures, enabled by epitaxial thin-film growth technology, primarily metal organic chemical vapor deposition (MOCVD). GaN and AlGaN are also the preferred WBG materials in high frequency applications as two-dimensional electron gas (2DEG) with high carrier concentration and mobility can be formed at the AlGaN/GaN heterointerface by spontaneous and piezoelectric polarization effect [2]. GaN based light emitting diode (LED), GaN based laser diode (LD) and AlGaN/GaN based high-electron-mobility transistor (HEMT) were commercialized in early 1990s, late 1990s and mid 2000s respectively.
\nIn the realm of high power and high temperature applications, as Si based power device is reaching its theoretical limit and cannot meet the increasing demand of key performance metrics, such as high blocking voltage, low switching loss, high switching speed and high operating temperature at the same time, WBG materials has great potential to replace Si in those applications [3].
\nSpecifically, in applications that require high reverse blocking voltage and high switching frequency, SiC and GaN Schottky barrier diodes (SBDs) are preferred over bipolar Si p-i-n diode, whose switching speed is compromised due to long minority carrier lifetime. SiC and GaN are comparable in many aspects: GaN has higher Baliga’s figure of merit (BFoM) because of its better electrical properties, while SiC has better thermal conductivity, thus the two materials are in direct competition for the application [4]. SiC SBD was successfully introduced to the market in early 2000s, and gradually matured to displace the Si p-i-n diode. On the other hand, because of the nonoptimal material quality, which once limited the application of its SiC counterpart, GaN SBD still cannot achieve its theoretical performance. Researchers around the world have been continuously working on improving GaN material quality, while exploring novel ways to fabricate GaN SBD with better performance since mid-1990s. Although great progress has been made, significant amount of effort is still need for GaN SBD to overcome the technical challenges, close its performance gap to SiC SBD, and eventually achieve commercial success.
\nIn the following sections of this chapter, several topics are discussed in details:
Schottky contacts to GaN: Theoretical basis, current transportation mechanisms, characterization methods, metal selection and comparison, the impact to contact performance by material and surface quality, and thermal stability of Schottky contact to GaN were discussed sequentially in this section. The section also covers topics such as nonmetal Schottky contact to GaN, Schottky contact to AlGaN, and Schottky contact to nonpolar GaN.
GaN lateral, quasi-vertical and vertical SBDs: This section covers material growth and epitaxial structure optimization techniques, device fabrication and device structure optimization techniques such as: surface treatment, dielectric deposition, floating metal ring, field plate, ion implanted guard ring and Schottky junction barrier diode.
AlGaN/GaN field effect SBDs: This section discusses about AlGaN/GaN heterojunction formation, material growth and epitaxial structure optimization techniques, device fabrication and device structure optimization techniques that are unique to AlGaN/GaN field effect Schottky barrier diodes such as: dual Schottky anode, Schottky-ohmic-combined anode, gated edge termination, fully recessed Schottky anode and MIS-gated hybrid anode.
A brief summary and outlook on GaN SBD development are presented in the last section.
\nMetal–semiconductor contact plays a crucial role in semiconductor devices, such as diodes and transistors. There are two types of metal-semiconductor contact: Ohmic and Schottky. Schottky contact has a rectifying barrier, which is formed when there is an energy level mismatch between the semiconductor and the metal. The difference between the semiconductor electron affinity and metal work function is defined as Schottky barrier height. The band structure before and after Schottky contact formation to n-type semiconductor, such as intrinsic GaN, is shown in Figure 1. Fermi levels of the metal and semiconductor need to line up to reach an equilibrium when they are put in contact, and the space charge built at the semiconductor side leads to band bending effect.
\nBand structure of Schottky barrier formation [1].
There are two carrier transportation mechanisms for an ideal Schottky contact: thermionic emission (TE) and field emission (FE). At a forward bias, the carrier transportation is determined by temperature and the n doping concentration of GaN. A lower temperature and a more highly doped GaN can lead to a higher FE component. As Schottky contact is usually deposited on intrinsic GaN or lightly n doped GaN, and the operation temperature of GaN SBD is usually above room temperature, the dominant transportation mechanism is TE. The current-voltage characteristics of the SBD in the TE regime is given by Eq. (1, 2):
\nwhere I0 is the saturation current:
\nThe three most common Schottky contact characterization methods are current-voltage (IV), current-voltage-temperature (I-V-T) and capacitance-voltage (C-V). Key parameters, such as Schottky barrier height (ΦB), ideality factor (n), effective Richardson’s constant (A*), doping concentration (ND) and series resistance (Rs) can be extracted from the characterization methods mentioned above.
\nTremendous amount of work on Schottky contacts to GaN was done in mid 1990s, which built solid foundation for later development of vertical and lateral GaN SBDs. Au Schottky contact to n-GaN was first reported by Hacke et al. [5] and Khan et al. [6]. Schottky contact formation of Ni, Pd and Pt to GaN was then extensively studied by various research groups [7, 8, 9, 10, 11, 12]. I-V, I-V-T and C-V measurements were performed to find the characteristics of the Schottky contacts, such as ideality factor, effective Richardson coefficient, and Schottky barrier height. Table 2 shows a brief summary of Schottky barrier heights of common contact metals by the three methods mentioned above.
\nMetal | \nΦb (eV) by I-V | \nΦb (eV) by I-V-T | \nΦb (eV) by C-V | \nReported | \n
---|---|---|---|---|
Au | \n0.844 | \n— | \n0.94 | \nHacke et al. [5] | \n
0.91 | \n— | \n1.01 | \nKhan et al. [6] | \n|
1.03 | \n— | \n1.03 | \nKalinina et al. [9] | \n|
0.87 | \n0.88 | \n0.98 | \nPing et al. [10] | \n|
Schmitz et al. [11] | \n||||
Ni | \n1.15 | \n— | \n1.11 | \nKalinina et al. [9] | \n
0.95 | \n0.99 | \n1.13 | \nSchmitz et al. [11] | \n|
0.83 | \n0.93 | \n1.03 | \nLiu et al. [12] | \n|
Pd | \n— | \n0.91 | \n0.94 | \nGuo et al. [7] | \n
1.11 | \n0.96 | \n1.24 | \nWang et al. [8] | \n|
0.94 | \n0.92 | \n1.07 | \nPing et al. [10] | \n|
Schmitz et al. [11] | \n||||
Pt | \n— | \n1.03 | \n1.04 | \nGuo et al. [7] | \n
1.13 | \n— | \n1.27 | \nWang et al. [8] | \n|
1.01 | \n1.08 | \n1.16 | \nSchmitz et al. [11] | \n
Summary of Schottky barrier height of Au, Ni, Pd, and Pt to GaN from I-V, I-V-T, and C-V experiment results.
Liu and Lau reviewed the scattered results reported and suggested the nonideal Schottky contact behavior probably stemmed from surface defect which can cause inhomogeneity in the transport current even within a single device, while material quality and metal-GaN reactions were the other two contributing factors [13]. Hsu et al. performed scanning current–voltage microscopy (SIVM) measurements and found nonuniform spatial reverse leakage distribution within a device. The correlation of SIVM, topographical and TEM images showed that leakage occurred at screw and mixed dislocation [14]. The experiment confirmed surface and material quality is crucial to good Schottky contact formation.
\nMiller et al. designed an experiment to detect localized leakage path on GaN surface by conductive atomic force microscope (AFM), and developed a surface modification method by selectively applying voltage at the recorded leakage locations to form a thin passivation layer that blocks the leakage path. Schottky contact made on surface modified GaN showed much better reverse leakage characteristics than unmodified GaN [15]. Sang et al. performed detailed analysis on leakage path by photon emission microscopy (PEM), and found the leakage current occurred at polygonal pits, where carbon impurity accumulated and acted as trap in carrier tunneling [16]. The result aligned with the Cao et al.’s finding that low carbon concentration was necessary to achieve high Schottky contact quality, by an experiment correlating contact performance with carbon doping level [17]. Reddy et al. demonstrated a homogeneous Schottky contact to GaN with unity ideality factor and low leakage current by acid treatment. XPS studies showed the treatment removed excess carbon and restored Ga/N composition at the interface [18]. It can be concluded that removal of impurities such as carbon, and/or passivation of leakage path by surface treatment, is effective in improving Schottky contact quality.
\nSchottky contact thermal stability is important to GaN SBDs, as high operating temperature is desired for power applications. At elevated temperature, Schottky metal reacts with GaN, gradually turning the contact nonrectifying. Guo et al. reported Ni Schottky contact started to react with GaN, forming nickel nitrides, at temperature above 200°C [19]. For noble metal Pd, interdiffusion of the metal and GaN was discovered at 300°C [20]. If stable temperature is defined as temperature at which Schottky contact is still rectifying after 1 hour of annealing, the highest stable temperature for Ni and Pt was reported to be 500°C [12] and 400°C [21], respectively. Several techniques were applied to improve stability of Schottky contact to GaN. Thermal stability of metal silicide is usually better than elemental metal. The stable temperature was reported to be 600°C for NiSi [12] and PtSi [21], 100–200°C higher than elemental Ni and Pt. Multilayer contact structure with inert and high melting point metal as insert or cap layers can also help to improve the thermal stability of Schottky contact. Stable temperature of Ni/Ta bilayer Schottky contact was reported to be 700°C [22], 200°C higher than pure Ni.
\nITO and graphene Schottky contacts to GaN were also studied, as they are transparent and have potential applications in optoelectronic devices such as MSM photodetector. Sheu et al. reported ITO Schottky contact to GaN with increasing barrier height from 0.68 eV as deposited to 0.95 eV after annealed at 600°C [23]. Tongay et al. first reported graphene and multilayer graphene (MLG) Schottky contact, with barrier height of 0.74 eV as deposited and 0.70 eV after prolonged annealing at ~ 600°C [24]. The large ideality factor (>2) indicated high contact inhomogeneity. Kim et al. reported improved graphene Schottky contact with 0.9 eV barrier height and 1.32 ideality factor [25].
\nSchottky contacts need to be made to AlGaN in some AlGaN/GaN field effect SBD applications. Qiao et al. characterized Ni Schottky contact to AlGaN by I-V, C-V and photoemission methods, and found the barrier height increased linearly with Al mole fraction up to 0.23 [26]. Lv et al. applied two-diode model and determined barrier height of Ni Schottky contact to AlGaN/GaN heterostructures by forward I-V measurement [27]. Shin et al. investigated common GaN Schottky metals, such as Au, Ni, Pd and Pt, to AlGaN/GaN heterostructures and found barrier inhomogeneity was related with Schottky metal type [28]. Nonmetallic materials such as TiN was also studied. TiN can be deposited to AlGaN surface by reactive sputtering [29]. The lower barrier height of TiN compared to common Schottky metals enables a lower turn-on voltage, which is preferred in application such as microwave rectification [30].
\nSchottky contacts made to a-plane and m-plane nonpolar GaN were also studied. Phark et al. studied Pt Schottky contacts to a-plane n-GaN [31]. Yamada et al. fabricated Ni Schottky diode on m-plane n-GaN [32], and compared with the Schottky diode with same structure fabricated on c-plane [33]. Although the carbon concentration of the m-plane GaN was much less than c-plan GaN, the reverse leakage was three orders of magnitude larger due to lower barrier height. To date, it still remains unclear whether c-plane or nonpolar GaN is preferred in Schottky diode application mainly because nonpolar GaN Schottky devices were much less frequently investigated [34].
\nThe extensive study of Schottky contacts to GaN enabled the development of high breakdown GaN SBDs in late 1990s. GaN based SBDs have three common structures: lateral, quasi-vertical and vertical. Figure 2 shows the schematics of the three structures. Lateral and quasi-vertical SBDs are usually fabricated on GaN grown on a foreign substrate, such as sapphire, SiC and Si. For lateral SBD, Schottky contact and ohmic contact are on the same surface. For quasi-vertical SBDs, a mesa is etched first, followed by ohmic contact deposition on the etched GaN and Schottky contact deposition on top of mesa. Vertical SBDs are usually fabricated on freestanding GaN substrate by depositing ohmic contact on the nitride face and Schottky contact on the gallium face. Lateral SBDs are easy to fabricate and thus are still used as development vehicles for testing new material growth and device processing methods, while quasi-vertical and vertical structures are preferred for practical applications.
\nSchematics of (a) lateral, (b) quasi-vertical, and (c) vertical SBDs on GaN: the gray region is Schottky contact, black region is ohmic contact and the grid region is substrate.
Hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) are the three most common methods for substrate growth. The GaN thickness, doping level are critical to SBD performance. While a design with a thinner and more highly doped GaN can lead to better on-state resistance and lower turn-on voltage, it has negative impact on breakdown voltage. The ideal substrate for GaN SBD shall have a gradient doping profile, with low dopant concentration on the Schottky side, and high dopant concentration on the ohmic side. However, such structure cannot be well supported by the current GaN material growth technology.
\nQuasi-vertical and vertical GaN SBDs are usually fabricated on substrates with layer structure, which has a lightly doped GaN drift layer on top of a highly doped low resistivity GaN layer, where Schottky contact and ohmic contact are formed, respectively. The layer structure has been developed on various substrate types. Sheu et al. reported a very thin low-temperate-grown (LTG) cap layer can greatly suppress reverse leakage current [35]. The layer structure consisted of a 30 nm LTG GaN cap layer, a 0.6 μm thick intrinsic GaN layer and a 1 μm thick highly doped GaN layer, grown by MOCVD on sapphire substrate. The highly doped and intrinsic GaN layers were grown at 1060°C, while the LTG GaN cap layer was grown at 550°C. Lu et al. reported a method to regrow GaN epitaxial layers by MOCVD on HVPE grown low resistivity freestanding GaN substrate. The layer structure has a 2 μm thick lightly doped GaN lay on a 0.5 μm thick highly doped GaN layer. It was reported that the structure greatly reduced the on-state resistance [36]. Fu et al. made further improvement to MOCVD regrown drift layers on HVPE substrate by introducing double-drift-layer (DDL) design [37]. An additional moderately doped GaN layer was inserted in between the lightly doped top layer and the highly doped bottom layer. It was demonstrated the breakdown voltage was improved with DDL design, while the forward characteristics was not compromised. The DDL design is much close to the ideal structure mentioned above. Cao et al. introduced a graded AlN cap layer on top of the GaN drift layer [38]. The cap layer has a thickness of 5 nm with Al composition from 0–23%. It was reported the cap layer reduced the leakage current by three orders of magnitude and the turn-on voltage from 0.77 to 0.67 V from tunneling effect.
\nThe theoretical limit of the key parameters of GaN SBDs, such as breakdown voltage etc., are determined by the substrate structure. However, the SBDs performance reported is still far from the theoretical limit. Premature breakdown and high reverse leakage are the two main major areas that can be improved by better device processing and structure. Surface treatment, dielectric deposition, floating metal ring, field plate, ion implanted guard ring and Schottky junction barrier diode are discussed below.
\nMesa etch is a necessary step for quasi-vertical GaN SBD fabrication. The mesa wall quality after etching can greatly affect the breakdown voltage and reverse leakage of the SBD. Surface treatment after mesa etching or material growth is critical for device performance. Bandić et al. first fabricated high breakdown voltage (450 V) lateral and quasi-vertical SBDs using Au as Schottky contact metal. The substrates used in the study consisted of an 8–10 μm GaN drift layer on a very thin (<100 nm) n+ layer, and were grown by hydride vapor phase epitaxy (HVPE) on sapphire [39]. High leakage current was observed on quasi-vertical SBD structure due to plasma etch damage on mesa wall. Cao et al. explained the forms of plasma-induced damage to GaN as follows: generation of surface defects by ion, dopants passivation by atomic hydrogen, deposition of impurities and creation of nonstoichiometric surfaces [40]. The study also found a subsequent annealing at 750°C under N2 or photoelectrochemical (PEC) etching in KOH solution to remove ~ 500–600 Å of the surface helped on the mesa wall quality improvement and leakage current reduction. Further study by Cao et al. suggested that the wet KOH etching is more effective than annealing for mesa wall treatment and diode characteristics restoration [41]. The GaN structures used in both studies were grown by RF plasma-assisted MBE on sapphire [40, 41]. Zhu et al. fabricated quasi-vertical SBDs with mesa formed by both dry etching with a following KOH mesa wall treatment, and full wet PEC etching [42]. The GaN epitaxial structure with a 2 μm drift layer on top of a 1 μm n+ GaN layer was grown by low-pressure MOCVD on sapphire substrate. Pt/Au was used as Schottky contact metal. The study demonstrated the device performance with wet-etched mesa is comparable or better than dry-etched. Spradlin et al. used molten KOH etching instead of PEC etching in KOH solution, and showed the molten KOH etching reduced the surface roughness and form etch pits around defects [43]. The leakage characteristics was improved for SBDs fabricated on both MBE and HVPE grown GaN substrates. It can be concluded that surface treatment, with a variety of techniques such as annealing, PEC etching in KOH solution, and molten KOH etch, is very effective to improve the GaN SBD quality.
\nDielectric layer deposition on drift layer top surface or mesa side wall can reduce the arcing effect, thus can improve the breakdown voltage of the GaN SBD. Most common dielectric materials used are SiO2, SiNx and Al2O3. The layer can be deposited by plasma-enhanced chemical vapor deposition (PECVD), RF sputtering and e-beam evaporation. In Zhu et al.’s work, a dielectric SiO2 layer was deposited on the mesa wall by PECVD for passivation [42]. Float metal ring (FMR) technique uses an additional metal ring around Schottky contact to reduce electric field crowding at reverse bias. Two parameters: ring width and ring space, are critical to the FMR effectiveness. Schematics of FMR structure is shown in Figure 3a. GaN SBDs fabricated with FMR was first reported by Lee et al. A high breakdown voltage of 353 V was obtained on the SBD fabricated with FMR versus only 159 V without FMR [44]. The author also demonstrated the optimized structure by a design of experiment (DOE) with parameters ring width and ring space. Field plate (FP) incorporates both dielectric layer and metal overlay on top of dielectric layer to reduce electric field crowding. Dielectric layer thickness, metal overlay extent and dielectric permittivity are the three key parameters of FP. Schematics of FP structure is shown in Figure 3b. Bandić et al. first compared GaN lateral SBD with a field plate on sputtered SiO2 dielectric layer and without field plate and found the field plate can suppress the leakage current by one to two orders of magnitude. Simulation was performed by Baik et al. to find the optimized FP structure [45]. A minimum metal overlay extent of 5 μm and a minimum dielectric layer thickness of 0.3 μm for SiNx was needed to avoid dielectric breakdown at the FP on GaN cap layer with an unintentional n doping level of 5 × 1016 cm−3. Kang et al. fabricated GaN vertical SBD with Pt/Au Schottky contact and FP on e-beam deposited SiNx dielectric layer based on the simulation result, but to find a much lower experimental breakdown voltage than theoretical because of the GaN surface degradation from device processing [46]. Lei et al. did a comprehensive investigation of the GaN SBD FP design rule by simulation and came with the conclusions: Metal overlay extent beyond maximum depletion depth of GaN under reverse bias do not further improve breakdown voltage; The two competing reverse breakdown modes: GaN breakdown and dielectric breakdown lead to an optimum dielectric layer thickness; Optimum dielectric layer thickness is related with dielectric permittivity [47]. In summary, both simulation and experiment results demonstrated that addition device structures such as dielectric passivation layer, FRM and FP, can contribute to better GaN SBD performance.
\nSchematics of (a) FMR and (b) FP structure: the gray region is Schottky contact, black region is ohmic contact, and the dotted region is dielectric.
Guard ring formed by ion implantation is also a very effective technique for edge termination: a high resistivity layer can be formed on the surface and help spreading electrical field under reverse bias. There are two types of implantation ion: p-type dopant or noble gas. Zhang et al. reported a p type guard ring by ion implantation of Mg at the edge of the Schottky contact followed by annealing [48]. A high breakdown voltage of ~700 V was achieved on vertical SBD structure with a 75 μm diameter circular Pt/Ti/Au Schottky contact. Laroche et al. reported simulation of multiple p type guard rings with 1 μm, and 5 μm spacing, and found a theoretical breakdown voltage of 700 V with 1 μm spacing, and the breakdown voltage did not further improve when multiple guard rings were applied [49]. Ozbek et al. reported that ion implantation of Ar can greatly improve the breakdown voltage of vertical GaN SBD [50, 51]. Simulation and experiment were carried out to analyze breakdown voltage versus length of implantation region. It was found that 50 μm is the optimum length, leading to a breakdown voltage of 1700 V, about four times higher than unterminated SBD.
\nBesides guard rings, ion implantation can also be used in fabrication of GaN junction barrier Schottky diode (JBSD). JBSD has been successfully demonstrated in Si and SiC. For n type JBSD, a p+/n grid structure is used instead of an intrinsic or n- layer in the drift region. Under forward bias, the p+ region is not functioning, and the current flows through Schottky contact into the n channel. Under reverse bias, the depletion region spreads around the p+ well and pinch off the n channel, thus suppresses premature breakdown and excessive leakage current. The p+ well spacing and depth are important for best JBSD performance. Schematic of p+ well JBSD is shown in Figure 4a. Zhang et al. fabricated GaN JBSD using both p+ well on n channel and n+ well on p channel, by ion implantation of Mg and Si into n-GaN and p-GaN respectively [52]. Both types of devices has breakdown voltages of 500 V- 600 V, and the leakage current was reduced 100-fold than conventional SBD fabricated without grid structure. The forward characteristics of the n type JBSD is much better than its p type counterpart. Ion implantation is not the only method to fabricate JBSD. Li et al. demonstrated trench JBSD, which eliminate the ion implantation step [53]. The schematics of the trench JBSD is shown in Figure 4b. The major difference between trench JBSD and regular JBSD is the formation of the p+/n junction. In trench JBSD, a p+ epitaxy layer is firstly deposited, followed by a selective etching down to nGaN substrate to form trench structure. The Schottky contact is then deposited on the trench. Under reverse bias, the depletion region spread laterally from the p+/n interface and pinch off the Schottky barrier. The study of Li et al. shows about 20 times reduction in the leakage current compared to traditional SBD.
\nSchematics of (a) JBSD and (b) trench JBSD: the gray region is Schottky contact, black region is ohmic contact, and the dotted region is p+ doped GaN.
Spontaneous and piezoelectric polarization can result in built-in electric field in AlGaN/GaN heterostructure. Band bending and alignment of Fermi level in AlGaN and GaN forms a two-dimensional electron gas (2DEG) at the interface. Figure 5 shows band diagram of the AlGaN/GaN heterostructure. Because of the high carrier mobility of the 2DEG, low on-state resistance can be achieved for device utilizing AlGaN/GaN heterostructure. GaN based High-electron mobility transistor (HEMT) has been developed for power and RF applications and showed significant improvement of performance compared to Si and GaAs.
\nBand structure of the AlGaN/GaN heterostructure.
The AlGaN/GaN heterostructure can also be used in SBD. The concept of GaN field effect Schottky barrier diode (FESBD) was first brought up by Yoshida et al. in 2004 [54], with device schematics shown in Figure 6. AlGaN/GaN FESBD shares the same epitaxial structure and device fabrication process with AlGaN/GaN HEMT, making it a perfect diode for monolithic microwave integrated circuit (MMIC) application. Standalone AlGaN/GaN FESBD also has lower cost than GaN vertical SBD on freestanding substrate.
\nSchematics of AlGaN/GaN FESBD.
AlGaN/GaN heterostructure is usually grown on foreign substrates such as sapphire, SiC, or Si by MOCVD or MBE. In order to achieve high blocking voltage, low leakage and low on-state resistance at the same time, the epitaxial structure needs to be carefully designed. Several growth techniques have been reported to improve the device performance of AlGaN/GaN FESBD.
\nA buffer layer structure under the GaN channel layer is crucial because it can reduce the screw dislocation density thus can help on reducing reverse leakage and prevent premature breakdown. Lee et al. systematically investigated the electrical characteristics of the FEBSD with and without a composite buffer layer [55]. The buffer layer consisted of an 800 nm of AlN followed by a 30 nm of AlGaN. The breakdown voltage of the FEBSD with buffer layer was 3489 V, while that of FEBSD without buffer layer was only 382 V.
\nSimilar to GaN SBD, a cap layer can help on the reverse leakage and breakdown voltage in FEBSD. Kamada et al. reported LTG GaN cap layer for edge termination in FEBSD [56]. A 20 nm LTG GaN, a 25 nm AlGaN and a 1 μm GaN were grown on Si substrate by MOCVD. A selective dry etching removed part of the GaN cap layer and exposed AlGaN layer for Schottky contact deposition. The FESBD with the GaN cap layer for edge termination has three order of magnitude lower leakage current than the traditional FESBD. A cap layer on top of barrier layer can also lower the barrier height and the turn-on voltage for better forward characteristics in FEBSD. Lee et al. developed a method to in situ grow a SiCN cap layer on top of the AlGaN barrier [57]. A 2 nm SiCN cap, a 25 nm AlGaN, and a 3 μm GaN were grown on sapphire substrate by MOCVD. It was found that forward current, reverse leakage and breakdown voltage of FESBD with SiCN cap layer were much better than regular FESBD.
\nBecause of the 2DEG feature, the device structure optimization for FESBD is not exactly the same as GaN SBD. Some structures that are widely used in GaN SBD and has been discussed in Section 3, such as dielectric passivation, FMR and FP, can also be used in FESBD, while some structures such as dual Schottky anode, Schottky-ohmic combined anode, recessed Schottky anode, gated edge termination and MIS-gated hybrid anode are unique to FESBD. The unique techniques that are discussed in the following paragraphs of this section share the same mechanism: Current flow path is optimized in the forward regime, while reverse blocking capability is not compromised by depletion of the 2DEG channel.
\nYoshida et al. first introduced dual Schottky anode concept [54]. The schematics of the dual Schottky anode is shown in Figure 7a. A low Schottky barrier metal Al/Ti was used as lo Schottky barrier metal for better on-voltage, while a high Schottky barrier metal Pt was used to pinch off the device under reverse bias. A breakdown voltage of over 400 V was achieved. Park et al. adopted the concept and made improvement by introducing different Schottky and Ohmic contact patterns [58]. Schematics of the device was shown in Figure 7b. The on-state resistance was reduced by 25–75% at the cost of up to 3 orders of magnitude increment in leakage current, improved from 5 to 7 orders of magnitude increment with Yoshida’s original design that has no pattern. However, the leakage current of the FESBD with dual Schottky anode design cannot be reduced to the same level of regular FESBD with only high Schottky barrier no matter how the contact pattern is optimized because of its normally-on nature.
\nSchematics of AlGaN/GaN FESBD with dual Schottky anode: the gray region is Schottky contact, black region is ohmic contact, and dotted line is 2DEG.
To further reduce the turn-on voltage and suppress the reverse leakage, Schottky-ohmic combined (SOC) anode technique was introduced. Note that the technique can only be applied to depletion mode (normally-off) FESBD as the device will be shorted by the 2DEG under reverse bias if it is normally-on. As we know, there are two common methods to fabricate depletion mode HEMT: surface treatment and recessed gate. Both methods are also applicable to FESBD, with recessed gate changed to recessed Schottky. Takatani et al. [59] and Chen et al. [60] introduced SOC FESBD with surface treatment. CF4 plasma was applied to the Schottky region of the FESBD to achieve normally-off mode, as the 2DEG under the Schottky region was depleted by negative fluorine ions. The device structure is illustrated in Figure 8a. The technique effectively improved the forward characteristics of the device and did not degrade reverse leakage and breakdown voltage [60]. SOC FESBD with recessed Schottky was also reported by multiple research groups. The device structure is illustrated in Figure 8b. Lee et al. compared it with conventional normally-on FESBD and normally-off FESBD with recessed Schottky but no SOC structure [61]. It was clearly demonstrated that the SOC FESBD with recessed Schottky is far superior to conventional FESBDs in turn-on voltage without breakdown voltage degradation. Recess depth is a very important parameter of SOC FESBD with recessed Schottky. Lee et al. did a comprehensive study of recess depth [62]. An optimized recess depth was found in between half and full thickness of AlGaN layer.
\nSchematics of AlGaN/GaN FESBD with SOC anode by (a) CF4 plasma surface treatment (b) recessed Schottky: the gray region is Schottky contact, black region is ohmic contact, dotted region is plasma-treated AlGaN, and dotted line is 2DEG.
Lenci et al. introduced gated edge termination (GET) as illustrated in Figure 9a [63]. A thin dielectric layer was inserted underneath the recessed Schottky contact and formed an MIS gate structure. Under reverse bias, the 2DEG below the gate was pinched off. The reverse leakage current can be significantly reduced by the dielectric layer. The marginal extend-out of the Schottky metal on the dielectric layer formed a FP and reduced the electric field crowding. Bahat-Treidel et al. introduced a fully recessed Schottky anode with a slanted FP, which can significantly reduce the turn-on voltage because of the direct contact of Schottky anode to the 2DEG [64]. The schematics of the device structure is shown in Figure 9b. Yao et al. further investigated the current transport mechanism of the full recessed Schottky FESBD and found it was thermal field emission (TFE) instead of TE [65]. The GET and full recessed is compatible with other device optimization techniques. Hu et al. [66] and Zhu et al. [67] combined a 2nd FP technique with GET and fully recessed Schottky, respectively. The dual FP structure improved the breakdown voltage of FESBD with fully recessed Schottky.
\nSchematics of AlGaN/GaN FESBD with (a) GET (b) fully recessed Schottky (c) MIS-gated hybrid anode: the gray region is Schottky contact, black region is ohmic contact, crossed region is gate dielectric, and dotted line is 2DEG.
Zhou et al. further optimized the device structure by combining the techniques above, and named it MIS-Gated hybrid anode [68]. The schematics of the device structure is shown in Figure 9c. It has an SOC anode with GET recessed Schottky, and fully recessed ohmic in direct contact with 2DEG. It also has a fully recessed ohmic contact on the cathode side. High breakdown voltage over 1.1 kV and leakage current as low as 10 μA/mm were achieved.
\nIn this chapter, we gave a broad review of the GaN based Schottky diodes. The competitive position of GaN among the WBG materials in the high temperature, high frequency and high voltage rectifying applications was discussed first, followed with Schottky contact to GaN, and the development of GaN SBD and AlGaN/GaN FESBD in the last two decades. A lot of progress was made; and the best performing GaN based Schottky diode got close to SiC material limit. However, there are still challenges ahead for the GaN based Schottky diodes: (a) Improvement of the material quality is desired. (b) Novel epitaxial and device structures leveraging state-of-art growth and fabrication techniques are needed. (c) Significant cost reduction from substrate and fabrication is crucial. With continuous effort from academia and industry, GaN based Schottky diodes will mature and be successful commercialized in a foreseeable future.
\nIt is more urgent than ever to find alternative ways to develop the Amazon. This realization comes with the science-based analysis that the Amazon may have come much closer to a tipping point than previously thought. Recent analysis [1] lends support to the idea that the whole Amazon system might flip to second stable climate-vegetation equilibrium, with degraded savannas covering most of the central, southern and eastern portions of the basin.
\nThe drivers of such change are deforestation, climate change and increased forest fires. Given the simultaneous and synergistic impact of these drivers of change, total deforestation must not exceed 20–25% to avoid transgressing a potentially irreversible tipping point.
\nGlobal climate considerations also matter: CO2 emissions from forest burning may well be the biggest unresolved global climate challenge. Without reductions in rainforest burning, including in the Amazon, international goals called for in ratified international Conventions for climate, biodiversity and water protection cannot be reached.
\nThe heightened critical risk to the Amazon forests calls for intensifying the search for disruptive socioeconomic alternatives and transformations. For many decades, contradicting strategies to develop the Amazon have been at work: conservation (we call it the ‘First Way’) versus resource-intensive development (which we call the ‘Second Way’). Considerable efforts were made by successive governments and by NGOs to reconcile those two ways through agricultural ‘sustainable intensification’,—albeit with meager results. The question therefore remains how to unveil the potential of a forest-biodiversity economy in the Amazon.
\nWe argue that a radically different ‘Third Way’ for sustainable development of the Amazon is within reach. We propose to utilize modern technologies of the 4th Industrial Revolution to harness the biological and biomimetic assets of the Amazon’s biodiversity. And we postulate that this Third Way can support a standing forest-flowing river bio-economy while being socially inclusive [2].
\nThe methodological approach of this study starts with a perfunctory examination of land use patterns in the Amazon. We examine two distinct models of land use pathways that in general terms may direct and define the maintenance or not of the Amazon forest. The first model is characterized by expansion of protected areas in the Amazon. It has been labeled ‘The First Way’. In the other model, it is prevalent intensive natural resources exploitation. It has been labeled ‘The Second Way’. In Section 3 of this chapter we briefly assess the overall results of these models in land use (for a comprehensive review, see [2]). We present updated literature data in support for current trends in land use changes, such as planned infrastructure, policies and evidence of ongoing land use processes and change.
\nWe pose two research questions to guide the next phase of the study: Overall, current and planned patterns of land use are environmentally sustainable in the long run? If not, what would be an alternative way? The answers are developed from the basic concepts proposed by [2] for the so-called Amazonia Third Way (A3W), which is based upon a novel economic model. This rests on an innovative, knowledge-based standing forest-flowing rivers bio-economy, valuing the Amazon’s renewable natural resources, biological and biomimetic assets, environmental services and biodiverse molecules and materials. A conceptual model of the A3W is proposed with the main drivers for its planning and implementation. Two of these drivers, namely Technological Drivers and Capacity Development, were considered key to the construction of A3W and are further developed in this work. The technologies of the 4th Industrial Revolution were coupled with core A3W guidelines, leading to the conceptual definition of the Amazonia 4.0. Figure 1 shows a diagram of the methodological approach used in this work.
\nMethodological diagram for the conceptual development of the Amazonia Third Way.
The Amazon forest biome has a total of 45.4% of its territory formed by protected areas and indigenous territories [3] as depicted in Figure 2. This large area where the forest is predominantly protected or managed in a sustainable way [4, 5] is the ballast that makes the First Way a possible model of land use for the Amazon. An effective example of the implementation of conservation policies by Amazonian governments is given by Brazil. In the 1990–2013 period, protected areas of the Amazon have grown from 11 to 125 million hectares and indigenous land have grown from 33 to 125 million hectares [6]. Indigenous territories and protected areas occupy 47.85% of the Brazilian Amazon [7].
\nProtect areas in the Amazon basin. Source: Conservation International [8].
On the other hand, the model of resource-intensive development (Second Way) rests mostly on economic activities that lead to the elimination of the forest and had cycles of intense growth for many decades. RAISG’s ‘Deforestation in the Amazon (1970–2013)’ (see Figure 3) study indicates that up to 9.7% of the region have been deforested until the year 2000, and that between that year and 2013 that rose to 13.3%, which represents 37% increase in 13 years [9]. Given that, by and large, Amazon deforestation rates increased in the last 5 years, it is likely that total deforestation is close to reaching 16% of the whole basin by 2018.
\nMapping of deforestation of the Amazon forest biome for two distinct periods: the total accumulated up to 2000 (red color) and the increment from 2000 to 2013 (black color). Source: RAISG [9].
Other studies show that protected areas and indigenous territories are not necessarily blocking deforestation completely. Although deforestation in indigenous territories in the Amazon remains relatively small, rates have grown 32% between 2016 and 2017 [7]. That points out that the barrier formed by indigenous land and other protected areas may vanish under the pressure of environmental crime and expansion of the commodities frontier, if adequate protection policies are not enforced. The increase of deforestation in some indigenous territories occurs at a time when the total rate of destruction of the Amazon rainforest fell by 16%, from 7892 km2 in August 2015–July 2016 to 6624 km2 in August 2016–July 2017. Notwithstanding the observed decrease, the level is still extremely high in absolute terms [7]. For the same period, the Sistema de Alerta de Desmatamento (SAD) from Instituto do Homem e Meio Ambiente da Amazônia (Imazon) detected an increase of 22% in the rate of deforestation in protected areas [10].
\nBesides the current evidences indicating that protected areas may not be a good proxy for permanent forest conservation because the prevalent model of intensive use of natural resources is a permanent dynamic force toward disrupting it, there are evidences that the future can be even more challenging for the First Way to ensure forest conservation. Official Amazonian countries’ planned infrastructure developments indicate a huge increase in the construction of dams, roads, railroads and ports [11] throughout the Amazon basin. These types of infrastructure pose severe threats to the forestland through their construction and will almost certainly induce new developments of high deforestation profile.
\nIn the Brazilian Amazon, which comprises 65% of the whole biome, deforestation figures from 2005 to 2017 show that a period of consistent decrease from 2004 to 2012 may be now reversed (Figure 4).
\nAnnual deforestation rates in Brazilian Amazon (km2) from 2004 to 2017 and map of fraction of land cover change for 2010 (left panel) based on PRODES data [14] and projections of two possible scenarios for the Amazon in the future up to 2030 [13]: one of large deforestation (called ‘Fragmentation’) and one of declining deforestation (called ‘Sustainability’).
Future land use change in the Amazon has been modeled [12, 13] for two rather opposed scenarios which lead to very different land cover changes (Figure 4). In one of them (the so-called ‘Fragmentation’ scenario), there is a continuous weakening of strict deforestation control policies successfully implemented from 2005 to 2012 in Brazilian Amazon and expansion of resource-intensive activities leading to agricultural and livestock expansion, resulting in over 50% of the Brazilian Amazon deforested by 2050. That is a scenario quite consistent with a progression in time of the Second Way. The other scenario in Figure 4 (the so-called ‘Sustainability’ scenario) calls for continuation and strengthening of the environmental policies to bring deforestation rates close to zero in the near future. It is the land cover change scenario compatible with the Third Way.
\nThe economic rationale to protect the tropical forests (The First Way or the ‘Sustainability’ scenario of Figure 4) rests to some degree upon the assumed low costs of maintaining intact forests as carbon storage and carbon sinks as a non-costly way to mitigate climate change in comparison to more expensive alternatives such as switching energy systems to renewable energy. Calculations for Brazil [15] estimate savings up to USD 100 billion/year to 2030 for Brazil to fulfill its NDC commitments to the Paris Accord if deforestation of the Amazon and Cerrado biomes can become smaller than 4000 km2/year and the bulk of its commitment to reduce national emissions 43% relative to 2005 emissions by 2030 come from land use policy and not from rapidly switching the energy matrix to renewable energy. However, it is clearly short-sighted to view only the carbon pathways as justification to preserve tropical forests. In fact, the Third Way Initiative raises various limitations of such approach (see [2]) and proposes that, in addition to ecosystems services, the economic potential of tropical forests rests on their biological and biomimetic assets to a larger extent.
\nIn this chapter, we analyze the issues and circumstances that have impeded to date socioeconomic development based on Amazon biodiversity assets to occur in large scale. We point out the major failures in dimensions such as concepts (imagination challenges), knowledge (research and information challenges) and implementation (governance and policy challenges & entrepreneurial capacity failures), and the lack of imagination of the potential of an innovative green economy based on nature that goes beyond the Amazon regional institutions. In the opportunity side, we present a summary of a major review in the scientific and technical literature, which identified more than 200 species of Amazonian plants with known potential to provide raw for an initial low-end bio-economy in the Amazon. Many biodiversity products of the Amazonian flora follow have established value chains. We did qualitative analysis on a sample of it to identify its main characteristics, problems, virtues and bottlenecks. This analysis included selected cases of innovative entrepreneurship leveraging relatively low-end technologies and evaluation of 25 enterprises that markets non-timber products of Amazonian biodiversity. The sample encompasses a range of segments, types, sizes and bio-assets processed.
\nThe challenges to achieving sustainable development in the Amazon can be broadly categorized in three categories, similarly to a conceptual framework laid out for planetary health [16]:
conceptual failures (imagination challenges), such as the vision of the Amazon as only a source of commodities for the world and the lack of imagination to create alternative, less socially and environmentally damaging development pathways based on the Amazon’s renewable natural resources (e.g., its rich biodiversity), with value added via technological innovations for an inclusive ‘bio-industrial’ model of development, generating higher income jobs and sustainable development.
knowledge failures (research and information challenges), such as reduced amount of funding to research institutions in the Amazon, focus of research and monitoring systems on land use transformations, insufficient R&D investments by the private sector, and lack of innovative research, for instance, to unveil the hidden economic and societal value of biological assets, that is, a ‘tropical model of development’.
implementation failures (governance and policy challenges & entrepreneurial capacity failures), such as the failure of Amazonian countries’ government to recognize the risks of current and past development policies and the inefficient implementation of a diversified economy by public and private actors and even the failure to share more equitably the benefits of the current resource-intensive economy, reducing social and income inequities.
The lack of imagination of the potential of an innovative green economy based on nature is not restricted to the Amazon regional institutions. Economic viability studies for the Amazon of serious institutions such as the World Bank almost completely ignore such potential. For example, recent studies [17] continue to see the value of forest products in an exclusively extractive way and assume very low returns. For example, less than $10 per year per hectare for non-timber products and just over $20 for sustainable selective logging. They ignore the concrete case of market success of agroforestry systems such as çaí, with proven annual returns of between $200 and $1000 per hectare [18], adding more than $1 billion annually to the regional economy [19].
\nThe intense resource-based agribusiness, mining and hydropower in the Amazon generate wealth and little of that is reinvested to propel health and education improvements within the Amazon beyond what is called for in the licensing process. That is in part due to the regressive taxation system and in part due to historical inefficiencies in investments in public services. For instance, the highest average per capita income region in Pará—annual per capita income of close to R$50,000—is the iron ore-rich Carajás area, with overall income higher than national average. However, social indicators such as health and education services are no different than other regions of the State of Pará and much lower than national averages. In summary, very little of the wealth remains in the region and improves the wellbeing of the population.
\nThe discourse on sustainability has been allowed to proceed as a sign of the times and to be aligned with global trends starting with the 1992 Earth Summit in Rio and to transmit an international aura of adherence, but in fact the concrete development policies for the Amazon never in fact deviated from the one devised by the military government out of geopolitical concerns: livestock and agricultural occupation to ensure sovereignty and exploitation of minerals, hydropower and fossil fuels as drivers for economic development.
\nThe intense and swift expansion of the Brazilian agriculture frontier in the Amazon resulted not only in the growth of the country’s GDP since the 1960s, but also in the rates of tree felling and greenhouse gas emissions—a consequence of conversion of forest landscapes into pasture for cattle raising and agricultural fields for grain production. Some numbers illustrate this human-orchestrated metamorphosis. Since 1997, more than 20 billion trees have been cut in the world’s largest rainforest. In 2016, more than half of the 8000 km2 of Amazon deforestation was transformed into new pastures. Currently, beef and dairy farming and production account for 45% of gross Brazilian GHG emissions.
\nThe main public policies responsible for the sharp reduction in deforestation from 2005 to 2014 seem to have already reached their limit, so much so that deforestation has been growing in 2015 and 2016, even in a period of historic economic recession, demonstrating once again the decoupling of deforestation with economic growth, neither when GDP grows nor when GDP shrinks. The underlying reasons for continued land cover change are more complex than simply responding to global markets.
\nUnfortunately, we may not have a long window of time to change course with respect sustainable pathways for the Amazon. Tipping points not to be transgressed for forest-climate stability are in the horizon. The synergistic effects of land cover and climate changes, and with increased forest fires due to a combination of forest degradation, use of fire in agriculture and droughts, make the risks even greater. Earth system modeling [2] shows that the synergistic combinations of those drivers could lead to a relatively rapid transition to new forest-climate equilibrium with loss 50–60% of the forest over eastern, southern and central Amazon, replaced by degraded savannas and dry forests. The sense of urgency to avert a systemic risk to the Amazon forests must be kept in mind in the search for solutions.
\nThe knowledge of nature, accumulated over 3.5 billion years of evolutionary processes, that finds in the Amazonian biodiversity one of its greatest showrooms, is a potentially very large bio-economic asset. The number of molecular substances with specific and usable functions is practically incalculable, since each existing species is itself a biochemical design laboratory. And most species are yet unknown and every 3 days, on average, one new species is discovered [20].
\nEven though a single substance with a desired function discovered by the study of living things in the Amazon could be biologically synthesized and produced industrially by laboratories to reduce costs or to provide quantities demanded for world consumption, the intrinsic knowledge that generated its form and function was stored in the forest and ready to be copied.
\nA review carried out in the scientific and technical literature as part of this work identified more than 200 species of Amazonian plants with known potential to provide raw for an initial low-end bio-economy in the Amazon. A reduced listing of the 20 very promising species that have been widely used, integrate local productive chains or show strong potential use in food, cosmetics, perfumery, medicinal, advanced materials and biotechnology have their distribution modeled. The listing includes rosewood (Aniba rosaeodora), Brazil nut (Bertholletia excelsa), cumaru/tonka (Dipteryx odorata), açaí (Euterpe oleracea) and rubber tree (Hevea brasiliensis) among other. A sample distribution for rosewood in the territory is shown in Figure 5.
\nGeographic distribution for rosewood (Aniba rosaeodora) in the Brazilian Amazon [21].
Few of the biological assets of Amazonian biodiversity are known, others are being researched for their nutritional, structural, biochemical and market properties, to become products of future use.
\nA good example of this transition in the area of food is the açaí fruit of the Euterpe oleracea palm, widely and historically consumed only by local populations until the 1990s. From then on, it gained the world for its nutritional and functional qualities and its flavor, even with the operational difficulties of being a fresh, minimally processed fruit transported frozen from the vicinity of the forest to consumer markets elsewhere in Brazil and abroad (e.g., to the US and Japan) [18]. Its botanical genus (Euterpe) bears the name of one of the nine muses of Greek mythology, daughter of Zeus, who represents pleasure and happiness, as many consumers of açaí pulp may well attest.
\nLike açaí, many of the Amazonian biodiversity foods are traditionally consumed by the local population, with marked flavors and excellent nutritional properties, as well as functional foods and nutraceuticals in many cases. Camu-camu (Myrciaria dubia (HBK) McVaugh), for example, has 4 times more vitamin C than acerola [22]; murici (Byrsonima crassifolia (L.) Rich.), has excellent antioxidant properties [23], as well as açaí, that reached global markets. In addition to antioxidant activity and being a source of five types of carotenes, taperebá (Spondias mombin L.) is a rich source of vitamin A, at the rate of 100 g of fruit corresponding to more than 37% of the daily needs of the vitamin [24]. Besides the well-known Brazil nut (Bertholletia excelsa), which is already a nut consumed worldwide for a long time, there are many other fruits and seeds of the Amazon with potential to gain new markets, such as cumaru-ferro (Dipteryx odorata); cupuaçu (Theobroma grandiflorum); uxi (Endopleura uchi (Huber) Cuatrecasas); graviola (Annona muricata L.); patauá (Oenocarpus bataua Mart.); guaraná (Paullinia cupana); priprioca (Cyperus articulatus L.); and bacuri (Platonia insignis), among many others.
\nThe raw materials of Amazonian biodiversity are used in the industry of essences and oils to make cosmetic and perfumery products. As an example, the cumaru-ferro (Dipteryx odorata) fermented seeds produce an essential and industrial oil, while coumarin (coumarinic anhydride), which is an aromatic essence used as a narcotic and stimulant [25]. This oil is also used as a fixative in the perfumery industry [26]. Another example is andiroba (Carapa guianensis) available in the market in the form of essential oil, with anti-inflammatory, moisturizing, healing properties [27], being also sold for especially sensitive skin care cosmetics [28].
\nAçaí has also been studied and is used far beyond food: in the cosmetics sector its oil has properties for skin nutrition, revitalization and hydration, it contains omega 6, it is an antioxidant agent rich in polyphenols indicated for the formulation of anti-aging products [29, 30]. The anthocyanin present in large quantities in the açaí pulp was used in an application as a natural marker for teeth bacterial plaque [31] with large potential markets. In another development, nanoparticles of açaí oil are used to treat cancerous lesions [32]. Proving that applications of biodiversity raw materials tend to be innumerable, especially when combined with modern technological tools and cutting-edge research, a natural plastic was developed from açaí, with polyurethane produced from the seeds [33]. Discarding the abundant açaí berry seeds is a potential environmental problem in the pulp for food production cycle. The development of a plastic from the seeds also shows the possibilities of using by-products of a production chain in other associated chains for an even more efficient bio-economy with minimized externalities.
\nOther examples of uses of bio-composites are ucuuba (Virola surinamensis) from which a patented [34] butter is produced, which is capable of providing a matte effect in the skin. From the leaves and branches of the pau-rosa (Aniba rosaeodora Duckei), the linalool compound is extracted [35] which is one of the traditional components of the classic Channel No. 5 perfume. Currently, the following products of the Amazonian biodiversity for diversified products are on the market for cosmetics applications: Babaçu (Orbignya oleifera) oil, Buriti (Mauritia flexuosa) oil, Brazil nut (Bertholletia excelsa) oil, Copaíba (Copaífera officinalis) oil, Passionflower (Passiflora edulis) oil, Urucum (Bixa orellana) oil, Patauá (Oenocarpus bataua) oil, Pequi (Caryocar brasiliense) oil, Bacuri (Platonia insignis) oil, Cupuaçu (Theobroma grandiflorum) oil, Murumuru (Astrocaryum murumuru) oil and Ucuúba (Virola surinamensis) butter.
\nResearch in the medical field confirms the value of many indigenous traditional medicines and goes beyond, with its own and advanced research methods [36]. As an example, we can mention the chichuá (Maytenus guianensis Klotzsch ex Reissek) that presents anti-leishmaniosis [37] and anti-microbial [38] compounds; guaraná (Paullinia cupana) with its properties for the treatment of Alzheimer’s disease [39], priprioca (Cyperus articulatus L.) with anticonvulsant properties [40], babaçu (Orbignya phalerata) with a cicatrizing compound [41], sacaca (Croton cajucara Benth.) with hypoglycemic properties [42] and as ulcer healing [43], pracaxi (Pentaclethra macroloba Willd.) with anti-hemorrhagic activity [44] and natural larvicide [45], in addition to estoraque (Ocimum micranthum Willd.) with its antifungal [46] and antioxidant [47] properties.
\nQuercetin is a flavonoid that has the ability to suppress free radicals and thereby help preserve the brain and heart, keep the immune system active, protect the body against cancer, and act to prevent diseases, especially neurodegenerative diseases such as Alzheimer’s disease [48]. Quercetin, present in many foods but in low concentrations, is obtained from the natural purification process of the fava d’anta (Dimorphandra mollis Benth) [49]. And the uncera (cat’s claw) (Uncaria tomentosa and Uncaria guianensis) and is largely used in the pharmaceutical industry [50]. Pilocarpine, an alkaloid with extensive use in ophthalmology [51], is extracted from jaborandi (Pilocarpus microphyllus Stapf ex Holm). These are many other examples of species already studied that integrate or can integrate local production chains in the production of drugs and phytotherapeutics.
\nBut the biological assets also have application in industry, with emphasis on endophytic fungi (Coniochaeta lignaria, for example) with the capacity to degrade lignin in the cell walls of plant cells, with great potential for the bioenergy industry [52].
\nAnother study with phytosterols isolated from endophytic fungus (Colletotrichum gloeosporioides), an Amazon fungus, offers potential sources of novel natural products for exploitation in medicine, agriculture and the pharmaceutical industry [53]. Microorganisms are an attractive source of new therapeutic compounds, they serve the ultimate readily renewable, and inexhaustible source of novel structures bearing pharmaceutical potential [54].
\nState-of-the-art research can unveil new and surprising uses even for forest assets that have been exploited for a long time. For instance, that is the case for natural rubber (Hevea brasiliensis). When combined with nanoclay composites using biomechanical technology, it results in an advanced material to be utilized as artificial skin (Biocure)—a patented active material that induces the formation of new blood vessels (angiogenesis) and new tissues (neoformation) on the surface on which it is applied [55]. Latex and clay compounds have also been developed to manufacture high-tech tire (run cooler, thus increasing tire durability and fuel economy), anti-rust coatings, tennis balls, gloves and masks [55].
\nThe biodiversity products of the Amazonian flora follow well-defined paths between the origins of the raw material, to its processed form for final consumption or to be reprocessed into components for very high specialty products. The value-added paths of biodiversity products involve multiple steps and social and business actors, varying according to the nature of the raw material, the products to be processed and the location of the harvesting and processing regions. As a general rule, the production of the raw material, which may be fruit, seed, sap, or other part or component of the plants occurs in the rural environment. They may come from primitive areas of natural forest or managed agroforestry systems (SAF), such as natural forests with extensive extractive species and intercropped planted forests.
\nThe rural area is home to communities where the first basic stages of preparation of the material collected or harvested for subsequent supply occur, such as cleaning, threshing, drying and other low-tech processes. Logistic processes such as the transport of the material from the collection and production sites to the pre-processing sites, storage and shipment to the processing centers also occur in the rural domain. In every aspect of this beginning of the value chain, there are opportunities for individual, family, cooperative or business based on local entrepreneurship.
\nAfter pre-processing, the materials are taken by boat or truck to companies or cooperative facilities in the Amazon or in another region in Brazil or in other Amazonian countries (e.g., Bolivia) where most or the entire product’s actual processing takes place, in facilities with varying degrees of automation. From there it is ready for consumption, locally or in markets elsewhere in Brazil or abroad. Based on a comprehensive study we conducted with value chains of five plant species, we developed a conceptual diagram that represents the main places, environments and activities carried out throughout the whole transformation cycles, from inputs origin to final consumption, as shown in Figure 6.
\nConceptual diagram of the location of the basic stages of value chains of Amazonian biodiversity products. Solid lines mean the last stage of a product in the value chain [21].
Not all paths shown in Figure 6 have fair remuneration in the value adding they represent. A 2005 study for cumaru (Dipteryx odorata) value chain in the State of Pará, Brazil, illustrates the problem [56]. The markup was 75.0% for the intermediary, 166.7% for wholesale companies in towns nearer production areas, and 233.3% for the wholesale companies from Belém, the State capital. The total markup from the beginning to the end of the market chain was approximately 500%. The price of the nut ranged from R$3.00 per kg for the collectors to R$18.00 per kg for the wholesale companies. It was observed that the exporting companies, which generated unequal gains within the chain, imposed the major additions to the product price. There were approximately 2700 families involved in cumaru nuts collection, exported mainly to Japan, France, Germany and China.
\nAnother evidence of such imbalance in the value sharing was revealed by our study of five value chains. While Brazil nut (Bertholletia excelsa) seeds, mostly from manual forest extraction, come from dozens of places along the Amazon basin, the value aggregation of such yields takes place only on just a few locations furnished with processing plants, as shown in Figure 7.
\nDifferences between the many places where Brazil nut (Bertholletia excelsa) is collect in the forest (left map) and the few places where there is value aggregation of it (right map), in the Brazilian Amazon, found in a sample survey [21].
Recent corporate social responsibility efforts focused on purchasing biodiversity products from communities or cooperatives have generated more balanced and fair-trade relations, as with the operations of a range of forest products purchased by the Natura company and açaí purchased by the Sambazon company. However, the typical market distortions in the values paid to the extractivist-producer by intermediaries still has to be resolved.
\nAgroforestry systems (SAF—Sistema Agroflorestal) are agricultural crops intercropped with tree species, used to restore forests and recover degraded areas. The SAF technology overcomes terrain limitations, minimizes degradation risks inherent in agricultural activity and optimizes the achieved productivity. There is a reduction both in soil fertility losses and pest attacks. The use of trees is fundamental for the recovery of ecological functions, since it allows the reestablishment of much of the relationships between plants and animals. The tree components are inserted as a strategy to combat erosion and the contribution of organic matter, restoring soil fertility. Two successful tropical agroforestry projects illustrative of this system in the Amazon are the CAMTA cooperative [57] in Tomé Açu, in the state of Pará and the RECA cooperative [58] in Abunã, in the state of Rondônia.
\nWith the advancement of consumer markets, technologies and business models, new business development opportunities have emerged from the products of Amazon biodiversity. Four examples of this innovative entrepreneurship model were selected to demonstrate the combination of technology and corporate social responsibility for the generation and fair distribution of benefits to all links and actors of value chains. Two of the examples illustrate production companies and the other two examples show companies that developed digital platforms to increase efficiency in transactions and traceability of biodiversity products.
\nThe first example is the Tahuamanu company, a Bolivian producer of Brazil nut products, which illustrates the case of an Amazonian company that innovated by applying relatively low-end technologies, to all links of the Brazil nut productive chain, reflected in tremendous increases in productivity and benefits also to collectors at the base of the value chain. The 2016 severe El Niño-related drought in many parts of the Amazon may have wreaked havoc to the Brazil nut production that supplies the company. It is reported a 70% drop in harvest in 2017, responsible for laying off over 300 employees from his Cobija processing plants [59]. This unprecedented fall in production raise the question of the potential impact of climate change on the new development paradigm for the Amazon.
\nThe second example is the NATURA cosmetics company and its bio-industrial operations. It is probably the most successful case of exploration Amazon biodiversity assets within the most desirable parameters of socio-environmental excellence. Natura has developed a network of suppliers of raw materials from Amazon biodiversity that organizes production of almost 3000 families across the region. It supports training programs and community empowerment toward sustainability. The example of the ucuuba butter shows how the combination of innovative R&D and training communities in sustainable exploitation can deliver good results. Ucuuba trees were used as timber for broom sticks and that was accelerating risks of tree extinction. Butter was developed out of the ucuuba seeds and that new product found its way in cosmetics of high added-value. Floodplain communities of the Marajó Island were trained to collect and pre-process the seeds for sale to Natura and to other companies which also process ucuuba butter. The net profit of those operations for those families is three times larger per year as compared to the only once income for felling the tree. Natura is also promoting the bio-industrialization in the Amazon itself. It opened the Ecopark, an industrial complex in Benevides, near Belém, state of Pará.
\nThe third example is the FLORAUP digital platform that shows how information technology can be used to foster direct connection between local producers, from their remote locations in the forest, with potential buyers of their Amazon biodiversity products. After 1 year on air, the platform has only 57 registries, perhaps due to the relatively low digital connectivity of remote communities across the Amazon.
\nFinally, the fourth example is ORIGENS BRASIL, a production chain tracking digital platform. The platform allows anybody to know instantly the origin of the product that contains assets of Amazonian biodiversity since its raw material harvesting, its history and actors involved in the production. This is done simply by pointing a smartphone to the product packaging, which is equipped with a QR Code that accesses a remote live database. If one assumes that responsible consumers are an accelerating trend, such traceability platforms are in dire need for the Amazon.
\nNatural products developed on a sustainable basis have a long history in the Amazon since the rubber boom years. An increasing demand for these products for traditional and innovative uses in the food, cosmetics, perfumery and pharmaceutical industries has promoted new business opportunities in the Brazilian Amazon. As part of this trend, advances in biotechnology research have demonstrated a key role in expanding this potential, thus boosting the value chains that have as one of the main attributes the bio-industries focused on the processing of forest raw materials into biodiversity products.
\nThis research evaluated 25 enterprises that markets non-timber products of Amazonian biodiversity. The sample encompasses a range of segments, types, sizes and bio-assets processed. From international corporations with more than 100 years in the market of extracting the finest Amazonian essences, to innovative indigenous entrepreneurship of collecting and selling forest’s native species seeds in large amounts to support much needed reforestation efforts elsewhere.
\nThese industries deliver a vast array of products: It ranges from an exfoliating agent of açaí seed (Beraca company) to a powder form of the same fruit for energy drinks (Yerbalatina Phytoactives and 100% Amazônia companies). The Amazon-based bio-industry is also well-defined and consolidated in the supplying chains of oils and essences. As early as 1921, the essential oil extracted from the pau-rosa (Aniba rosaeodora) wood, a native tree from the Amazon, which is rich in the aromatic compound linalool, was the main ingredient of the famous French perfume Chanel n° 5 [35]. From them on, the supplying of the finest and unique ingredients from the Amazon biodiversity thrived, adopting, mostly, adequate standards for social and environmental sustainability, which was not always the case with Pau-Rosa. Today, extracts of cumaru are present in the most famous and popular fragrances (Givaudan company) and the ingredients market for the cosmetics industry is supplied with essential oils of priprioca (Laszlo Aromaterapia & Aromatologia companies), pracaxi (Amazon Forest Trading company); copaiba (IFF—International Flavors & Fragrances company) and andiroba (Amazonoil company), among many other.
\nAnother sector that has shown significant growth is the food, functional food and nutraceutical industries (e.g., Sambazon, Tahuamanu companies). Companies in this sector tap in the healthy food market and, by applying relatively low-end technologies, have put Amazon bio-actives available worldwide at anyone’s table. As a rule of thumb, most sectors have benefited from the adoption of newer and accessible technologies in their processing facilities. From Brazil nuts micro-factories for peeling seeds (COOPERACRE cooperative) to agrosilviculture producer’s cooperatives focused on traditional bio-industries (CAMTA, RECA cooperatives).
\nIn our study, we analyzed many products offered by the Amazon traditional bio-industries based on two defining axis: the amount of technology involved in the making of their products and the degree to which they are closer or further to their original state as furnished by Nature. It was a qualitative analysis and it shows status classes for these products. The diagram in Figure 8 shows the result of this qualitative analysis.
\nDiagram depicting status classes for Amazon bio-industry products based on the amount of technology involved in their making and the degree to which they are closer or further to their original raw material state as furnished by nature [21].
As it might be expected, values such as environmental sustainability, social development and fair-trade are a matter of concern for virtually all operations, to a greater or lesser extent, from small chestnut cooperatives to the giants of the essences and cosmetics sector. Nevertheless, there are reports of large traditional bio-industry operations that required botanical resources at large scales that have driven transformation in the supplying of natural asset, once coming from extractivism or agroforestry systems, into an asset generated from monocultures in the agroindustry’s usual patterns. It also disrupted traditional handmade extractive processes [60]. Accommodating increasing demands for bio-products with limitations inherent to Nature’s carrying capacity and traditional and local people culture, needs and potentials for insertion into new economic development paradigm is an imperative challenge for a real sustainable Amazon development strategy.
\nThe industrial sector transforming biodiversity assets into available consumables act in the interface between biodiversity, biotechnology and bio-industry, which involves a complex system of partnerships between companies, universities, research institutes, official financial agencies, organized communities and cooperatives inside and outside the Amazon region.
\nThe Amazonia Third Way initiative is conceived as a disruptive social and technological transformation toward a sustainable Amazonian development path. It calls for ‘an Amazon-specific Fourth Industrial Revolution innovation (4IR) “ecosystem”. This system must be able to rapidly prototype and scale innovations that apply a combination of advanced digital, biological, and material technologies to the Amazon’s renewable natural resources, biomimetic assets, environmental services, and biodiverse molecules and materials’ [2].
\nIn support of socioeconomic development, systemic innovations will also apply to enhancing biodiversity-based value chains. Ideally, these would shape a unique ‘Amazon-brand’ able to conquer global markets [61, 62, 63].
\nThe Amazonia Third Way Initiative promotes in-depth research on alternative pathways for sustainably developing the Amazon territory, in harmony with the twenty-first century’s Zeitgeist. Forests in the Amazon are the result of evolution over millions of years. Nature has developed a wide variety of biological assets, which include metabolic pathways, and genes of life on land, in aquatic ecosystems, and in their natural products—both, chemical and material—in conjunction with biomimetic assets, that is, the functions and processes used by nature.
\n4IR technologies increasingly harness these assets across many industries from pharmaceutics to energy, food, cosmetics, materials and mobility. Indeed, they are making profits, but to date these profits have not been channeled back to conserve the Amazon and to support the custodians of nature—indigenous and traditional communities—and also urban population in the region.
\nWithin a proper legal and ethical framework, the Amazonia Third Way Initiative offers unprecedented opportunities to local populations to develop a vibrant, socially inclusive ‘standing-forest, flowing-river’ green economy. By harnessing nature’s value through physical, digital and biological technologies of the 4th Industrial Revolution, we can simultaneously protect the Amazon ecosystems and their traditional custodians.
\nThe region is still largely disconnected from the main centers of technological innovation dealing with 4IR technologies and the advanced bio-economy. The Amazonia Third Way Initiative is conceived as a multi-level path toward a new inclusive bio-economy, combining a highly innovative, entrepreneurial and technological economy with the re-valuation of non-timber forest products and industries with low-end technologies.
\nThe conceptual framework for the Third Way follows the overall structure of Figure 9 for the determinants of sustainable pathways for the Amazon.
\nDeterminants of sustainable pathways for the Amazon. The Amazonia third way initiative seeks ‘to add value to the heart of the forest’ by promoting a novel sustainable development paradigm based upon harnessing biological and biomimetic assets of Amazon biodiversity.
At the broader level, first we need to understand the nature of the socioeconomic and political drivers accounting for the rapid transformation of the Amazon in the last 50 years and the consequences of the resource-intensive development policies in action in contrast with the view of forest preservation and setting aside large tracts for conservation.
\nAs mentioned before, the Third Way Initiative is not one more attempt to reconcile resource-intensive development with conservation. Instead, it will seek to implement the twenty-first century paradigm of knowledge societies to Amazon realities through research and development, entrepreneurship, twenty-first century skills and education, and fit for purpose sustainable development policies toward a standing forests-flowing rivers inclusive bio-economy.
\nSecond, we deal with solution spaces, recognizing that an important effort has been done to identify and diagnose the risks to the Amazon of the current development actions and policies, including their fragilities. We are in urgent need to find feasible solutions of a different nature: driven by communities and by an entrepreneurial revolution powered by the Fourth Industrial Revolution and not only by powerful legacies, assisted by altogether more sustainable policies based on knowledge, be it scientific/technological or traditional.
\nThird, we discuss in more detail the role of some key enablers and catalysts to jumpstart sustainable pathways for the Amazon in two categories, those to enable a biodiversity-based development, namely research, development and innovation; harnessing the Fourth Industrial Revolution technologies to unlock the economic value of nature; and conducive regulatory framework; and those necessary to implement such novel paradigm, agroforestry systems; innovative entrepreneurship; bio-industries; product-based and knowledge-based value chains.
\nWithin the Amazonia Third Way initiative, an approach has been developed to operationalize the principles and practices that will allow a proposed paradigm shift for Amazon sustainable development. It defines seven interconnected realms: (1) the existing natural knowledge; (2) the ability for learning from nature; (3) the capacity to applying biodiversity-based knowledge to human needs; (4) the capacity to producing biodiversity-based goods and solutions; (5) the insertion of biodiversity-originated products on a local-to-global bio-economy; (6) the fair sharing of socioeconomic benefits and life quality improvement for all; and (7) the rising of an Amazon Biome intrinsic valuing. With the advancements of 4th Industrial Revolution (4IR) technologies and its wide accessibility, we identified ways it can interact and make feasible a game-changing realization of such realms. We call ‘Amazonia 4.0’ the prospects of realization of these seven elements by means of technological accessibility and resources, and market transformation made available by the 4IR.
\nThe existing Natural knowledge is an initial condition of the system; it does not depend on any human technology. It is a source of information we inherited from evolutionary processes, occurring associated with 3.7 billion years old life on Earth. The A3W initiative targets to keep it going its course, valorizing it in many ways.
\nLearning from Nature is inherent to humans ever since we became a species (Homo sapiens) as a part of the Natural system. Ancient and traditional knowledge come greatly from observing and interacting with the natural elements. As we evolve, we became more apt to understand Nature’s intrinsic knowledge with the building of science and its instruments. With 4IR technologies, which include biotechnology, advanced computing, genomics, nanosciences, materials science and advanced sensor platforms, we can learn from Nature in a depth and such fast pace never imagined before.
\nApplying knowledge from Nature to human needs is the next natural consequence. This is the realm of invention and innovation. 4IR technologies can boost invention and prototyping of new products and solutions. More than just facilitating invention, it creates demand for new solutions, advanced materials and innovative products.
\nOnce a new biodiversity-based product or solution is developed, producing it in varying scales is the next outcome. It may utilize biodiversity inputs directly on its making or can only be sourced from biodiversity knowledge. To carryout industrial operation in the Amazon has been always a challenging, if not impossible, operation. With the changes brought by 4IR technologies and market demands, industrial equipment became smarter, lighter and customizable. It became possible to have plenty of electrical solar-powered energy in the forest, with equipment connected with satellite internet and local crews trained with virtual and augmented reality, for example. With 4IR technologies, including advanced sensors and AI, it is possible to control more precisely the use of natural resources to prevent possible negative impacts.
\nInsertion of biodiversity-originated products on a local-to-global bio-economy is a key for driving wide interest in conserving the bio-assets. Different than the traditional model of supplying commodities for further processing and generating value away from its origins, 4IR technologies and new manufacturing paradigm eases and redefines the possibilities to produce in close association with the local people on local environments, yet reaching global markets. Complicated logistic typical of a vast forest territory can be easily offset using self-flying cargo drones, for example.
\nFair sharing of socioeconomic benefits and life quality improvement for all involved, including forest stakeholders and final consumers can be levered by 4IR technologies and social changes brought by the technological revolution. With distributed ledger technologies like blockchain and holochain, we propose the creation of the Amazon BioBank. It is a framework for attributing value to many instances of Amazon socio-biodiversity. Biological assets, biomimetic insights and discoveries, traditional knowledge, local people forest skills and other sources of resources will be registered in the Amazon BioBank digital platform through holochain distributed ledger technology [64]. The Amazon BioBank share common principles with the Earth Bank of Codes [65].
\nAside from any specific technology, the ultimate, long-term result of these chain of events and realizations would be the rising of a socially shared Amazon Biome intrinsic value. The social valuing of Nature and its knowledge as an end in itself is an ideal state of relationship between humans and other elements of the natural system. By becoming acquainted and perceiving many times actual benefit from products and solution based on the Amazon biodiversity, made available by the chain of events depicted above, one can realize the value of the tropical forest. As a utilitarian value first, that over time may crystalize as core life, intrinsic value, forming the personal and social foundations to hold attitudes and behaviors that imply, support and demand conserving the Amazon Biome.
\nThe ‘innovation ecosystems’ proposed in the Amazonia Third Way initiative are creative-productive arrangements based on the Amazon 4.0 principles that synergistically align several ‘ignition powers’ for a novel Amazon bio-economy. Major research laboratories and universities are knowledge centers on biodiversity. Processes, molecules and genetic information with potential for diverse uses are discovered on daily basis. Start-ups are companies that specialize in rapidly transforming knowledge into business that tends to transform traditional consumer and service markets. Prospects for the industries with Internet of Things, or 4.0, announce new products to be created with computational tools, to be ‘uploaded’ and produced at any scale. Inventors and new businesses can idealize customized or niche-specific products, which are done automatically, even overnight. A dynamically well-developed and structured environment for locally rooted associations of (1) knowledge, (2) business and (3) production form the ‘innovation ecosystems’. They are a way for transforming the biological wealth of the Amazon into economic wealth, locally anchored, with social benefits for communities and sustainable mechanisms for conservation of the forest.
\nTo begin to walk down the Third Way we need, above all, capacity development.
\nAs results of the long-standing Program to Protect the Rainforests of Brazil (PPG-7) show, the lack of entrepreneurial skills has stood in the way of developing a non-timber bio-economy in the Amazon. Only with field-based knowledge and supporting academic curricula can tap into the Amazon’s biological and biomimetic assets, and the mainstreaming of a standing forest-flowing river, biodiversity-based bio-economy be achieved. To do that, we propose the development of a capacity program ‘Amazon Creative Labs’ (ACL). The program is designed to promote technical, technological and entrepreneurial capacity development focused on non-timber products of the Amazon biodiversity, with training events carried out directly at local communities and towns throughout Amazon region.
\nWe propose the launching of Amazon Creative Labs (ACLs)—laboratories for innovative experimentation set up throughout Amazonia. They will provide intensive training linked to local potentials to generate a virtuous insertion on bio-economy-related new opportunities. Typically, Creative Labs will be located in smaller communities, villages and towns, assembled on tents or on floating platforms packed with state-of-the-art equipment and technology for both, wide audience learning processes and core value chain local development.
\nAmazon Creative Labs will enable development of small-scale innovation ecosystems for co-design, co-development and co-creation of solutions and applications, serving as an effective interface with the knowledge and practices of the Amazon people.
\nThe Amazon Creative Labs will operationalize sustainable ‘Solution Spaces’ (see Figure 1). It is of critical importance that the Labs be community oriented, joining technology and traditional knowledge, and designed to contribute toward a strong local and regional economy.
\nThe Labs will promote capacity development activities focused on a number of products of Amazon biodiversity illustrative of an array of bio-economic and even bio-artistic applications, such as food, nutraceuticals, cosmetics, fragrances, pharmaceuticals, industrial oils, art crafts, bio-art, biomimicry, etc. Training activities can enable local communities to gather more information on the natural resources available to them, including the use of high-end technologies such as, genome sequencing.
\nThe exposure to 4IR technologies will allow innovative concepts to emerge. With the assistance of technology experts on the one hand, and entrepreneurship specialists on the other, groups of participants from Amazonian communities, villages and towns will be invited to develop new applications and to prototype (at least digitally) such innovations. The Labs’ creative environment will bring 4IR concepts like mass customization, democratized invention and smart & autonomous factories, powered by Industrial IoT, to a meaningful level with practical outcomes accessible at planned local and regional clusters of custom-sized processing and manufacturing plants.
\nAlongside communities—forest people, riverine communities and agroforestry farmers—young undergraduate or just graduated students interested in creating sustainable biodiversity-based businesses in the Amazon will be engaged. The expectation is that such ‘on the ground’ collaboration will give rise to new partnerships.
\nThe Amazon Creative Labs design includes solar photovoltaic panels, convertors and batteries, for steady power supplying, and connection to broadband satellite internet. These features will allow digital, internet-connected equipment to work for prototyping potential applications of new products and processes. These infrastructures, operating in remote regions of the Amazon, are also proof of concept of how the newest available and accessible technologies can reach and benefit the whole spectrum of the social pyramid, from their everyday life to new work opportunities.
\nACLs also include a focus on the realm of biomimetic, that is, the functions, processes and mechanisms of living organisms that, once learned, can provide insights and solutions for engineering new technologies and innovative products. They also leverage applications, including the high-end of genetic resources and genomics; prototype innovative processing of materials through the diverse links of value chains—raw materials, intermediate products, all the way to finished products.
\nTo illustrate the potential of ACLs, we designed the three following conceptual examples of applications, based on currently available technologies and equipment. A final design should incorporate new technological solutions specifically tailored for solving implementation and scaling challenges and include consultation with local communities for accessing their specific needs, priorities and potentials.
\nA line of Amazon Creative Labs will deal with value chains feed by inputs from local biodiversity and an example of that is themed after nutraceutical Cupulate, a chocolate made from the seeds of Amazon fruit Cupuaçu, instead of cacao. From forest picking to creating a final product that combines basic Cupulate with other products of very high nutritional value, the lab also includes utilizing a 3D food printer for unique chocolate designs and precise dosage of the added natural micronutrients. A by-product of Cupulate-making is cupuaçu pulp, which is then freeze-dried in a value chain of its own. Heavy-lift electric-powered drones can help overcome logistics challenges the region poses, by easily and quickly taking loads of nutraceutical cupulate sculptures and bars to a nearby gateway.
\nAnother example of ACLs focus is the Brazil Nuts value chain, known for the discrepancies between its higher cost for consumers and the low remuneration local people who harvest it from the forest receive. To change this, in one end, the ACLs will target extractivism issues, like processes precariousness that halts productivity and seeds’ price, with accessible technological resources including GIS mapping, micro-controlled sensors arrays (for health safety on seed’s harvesting and storing) and comprehensive traceability systems (origin and processes). At the same time, ACLs will carry out further locally based nut processing, using equipment that extracts oil and flour, by-products with greater trading value. With top technical education and processes precisely controlled with the aid of computers, sensors and biotechnological checks for sanitary standards, it becomes possible to output export-grade quality products strait from the forest vicinities. Those inputs also allow bringing to small villages the manufacture of even more processed products targeted to the natural cosmetics and nutraceuticals markets.
\nAnother line of ACLs will tackle the potential of making Amazon local inhabitants aware of the genetic value of biodiversity and to take part in genome sequencing projects. The lab will take participants into a knowledge journey departing from the biodiversity that can be seen all the way to the microscopic and nanoscopic structures of it, and to the grasping of the molecular coding of life. To achieve this, the Lab will make use of optical and portable electron scanning microscopes and virtual and augmented reality gear, furnished with contents to experience and understand organic chemistry complex structures. At the end, participants will carry out actual DNA sequencing through ultra-portable genome sequencers, allowing for registering genomes of species and benefiting from the provisions of benefit sharing of the Nagoya Protocol of Access and Benefit Sharing (ABS).
\nSystemic risks to the maintenance of the Amazon forest due to the synergistic combination of the main human drivers of change—namely regional climate change due to both deforestation and global warming, and augmented forest vulnerability due to fires—poses an urgent challenge to avoid an irreversible threshold being transgressed that would threaten to turn over 50% of the forest in degraded savannas in the second half of this century [2].
\nThe natural resource-intensive mode of development (the Second Way) is the dominant mode of development and receives generous government subsidies for its continued advancement. Investments in conservation, forest restoration and a sustainable economy in the global tropics of about $20 billion annually receive less than 3% of total investments. The bulk of investments (around $770 billion annually) goes to the expansion of commodities frontier of cattle, grains, oil palm [66] and also to road, energy and mining infrastructure, which are also key drivers of deforestation [67]. One more detrimental effect of such path is the increasing rural violence in the Amazon. Brazil has the highest number of assassinated rural and environmental leaders since 2015, with more than 140 killings, mostly in the Amazon [68].
\nIt is becoming crystal clear that trying to reconcile resource-intensive development with conservation is not leading to lasting and permanent solutions. Deforestation rates are still very high and do not show a tendency to go down near zero and rural violence is on the rise. Social inequalities in the Amazon remain high and are not improving at a fast pace at least to bring social indicators to the national averages of the Amazonian countries. Imposing strict conservation to protect large swathes of the forest has had clear successes over the last decades in the Amazon—about 50% of the Amazon forest is under some kind of protection. However, that in itself does not guarantee protection forever for tropical forests and eventually may affect the livelihoods of local population as is the case documented for Madagascar [69] who may bear a high cost for forest conservation.
\nThe Amazon Third Way Initiative seeks to demonstrate the urgent need for a conceptual, educational and entrepreneurial revolution—a revolution based on knowledge, traditional and scientific. The current economy of meat, grain and timber in the Brazilian Amazon is less than $10 billion a year. The economy associated to biological assets of Amazon biodiversity in a few industries (food, cosmetics, oils, etc.) is already worth 30% of that and distributes income in fairer ways and benefits more of the local population. However, that is a tiny portion of the potential of a sustainable economy hidden in the biological and biomimetic assets of Amazon biodiversity that the Amazon Third Way initiative attempts to address and give visibility to. We will be estimating the real hidden economic value of these assets in a next phase of the initiative.
\nThe Amazon forest is not a void of human presence. Diverse communities live all over the region. Even some communities of new settlers of the 1970s and 1980s have looked to find ways of generating income in agroforestry systems. There is rich traditional knowledge in many of indigenous and caboclo communities. Supporting the diversity of communities and economic pathways for a standing forest-flowing rivers economy is mandatory.
\nFrom a more general standpoint, sustainable development pathways based on natural resources exploitation should in principle put the local populations as priority. That is not the case for the Amazon currently (low HDI and other social indicators). Therefore, the Third Way Initiative also proposes that new sustainable paradigms have the development policy as a central tenet. The sustainable economy should first and utmost be means of wellbeing to the Amazonian people. That is not the case of the Second Way, where the Amazon is seen important for intensive resource exploitation for the Amazonian countries as a whole and taxation of the resource wealth should redistribute benefits as public services for all in the Amazon. However, a regressing taxation system does not realize that.
\nThe Amazon has a number of good examples of biology laboratories and a number of entrepreneurship initiatives that beyond economic development target social responsibility and deployment of sustainable biodiversity value chains. They are true pioneers into the new era of sustainability. However, they are as yet a small minority. They may even accrue national and international visibility and are role models, but in critically insufficient numbers to create momentum economically and socially to give clout to the rupture needed to put Amazon on a different track.
\nThe new model must rely on these existing good examples, on the diversities of forest communities across the Amazon, on state-of-the art knowledge generations laboratories and innovative entrepreneurship and build up from there.
\nIn due course, one has to build up momentum for enhancing the policies that are necessary to uplift the Third Way; investment in zero-deforestation value chains; reducing the enormous subsidies for commodities that drive deforestation; but as importantly invest in knowledge generation through a network of advanced biology laboratories in the Amazon, in Amazonian Countries and internationally in association with private R&D labs and science-based start-ups and creation of innovation ecosystems throughout the regions. That is a pre-requisite to the development of local next generation bio-industries in towns and cities of the future.
\nBy attracting venture capital and productive investments both for R&D and for industries, the political interest in the Third Way will rise in the eyes of governments to a tipping point in which government investments and subsidies will start to flow to this other type of economy, even on the absence of visionary governments that would see the potential of a new Amazon bio-economy and would design the pathways to reach it.
\nThe implications of harnessing the Fourth Industrial Revolution to unlock the economic value of the Amazon’s biological and biomimetic assets for governments, start-ups, corporations and R&D centers are profound. Partnerships among public and private R&D innovation labs to create a number of hubs of innovation throughout the region is necessary. This would accelerate new research and development leading to new products and innovations relevant for many industries locally and worldwide. Amazonian countries with immensely valuable natural assets would have an additional source of income to help protect these resources and support indigenous and traditional communities. These funds would create a new incentive on the part of communities and governments to protect rather than destroy natural habitats. The interest in understanding and sustainably using our biological and biomimetic assets could propel a new era of scientific exploration of life on the planet. Large new markets for sustainably sourced innovation could be created. Technology companies and start-ups seeking to demonstrate compliance with the Nagoya Protocol could be certified, through the transparency that distributed ledger technology offers.
\nIn sum, development policy in the Amazon has historically taken two pathways. The first embraces nature conservation and protects large swathes of territory from any human activity. The second approach has focused on conversion or degradation of forests for the production of agricultural commodities like meat and soya or tropical timber at the forest frontier, and also mineral commodities and the build-out of massive hydropower generation capacity. These uses together have been historically responsible for the massive deforestation of the Amazon.
\nThere is, however, a Third Way within reach in which we aggressively embrace high-tech innovation and look at the Amazon as a tremendous source of biological and biomimetic assets that can provide new, innovative products and services for current and new markets. System-level change in the Amazon as proposed cannot be executed single-handedly. On the contrary, we are proposing collaboration with leading public, private, academic and philanthropic actors for the journey ahead, engaging Indigenous and traditional communities across Amazonian countries, uniting the best capabilities of regulators, R&D centers, universities, technology start-ups and visionary companies all over the world.
\nThe Amazonia Third Way can be the most effective Land Use Change Planning policy for the Amazon because it is fully based on a standing forest-flowing river bio-economy. If successful, this new development model can be applied to all tropical regions helping to preserve the Earth’s great biological diversity. We have an important choice to make. The future of the Amazon and its impact on the planet lie so clearly in the balance. Time is not on our side, but we can still choose the Third Way.
\nThis work has been supported by the National Institute of Science and Technology for Climate Change via CNPq Grant Number 573797/2008-0 and FAPESP Grant Number 2008/57719-9 and additional financial support by the Climate and Land Use Alliance (CLUA) and Moore Foundation. We express our thanks to Juan Carlos Castilla-Rubio and Luciana Castilla for their contributions to the development of the Amazon Third Way Initiative.
\nIntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"105746",title:"Dr.",name:"A.W.M.M.",middleName:null,surname:"Koopman-van Gemert",slug:"a.w.m.m.-koopman-van-gemert",fullName:"A.W.M.M. Koopman-van Gemert",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105746/images/5803_n.jpg",biography:"Dr. Anna Wilhelmina Margaretha Maria Koopman-van Gemert MD, PhD, became anaesthesiologist-intensivist from the Radboud University Nijmegen (the Netherlands) in 1987. She worked for a couple of years also as a blood bank director in Nijmegen and introduced in the Netherlands the Cell Saver and blood transfusion alternatives. She performed research in perioperative autotransfusion and obtained the degree of PhD in 1993 publishing Peri-operative autotransfusion by means of a blood cell separator.\nBlood transfusion had her special interest being the president of the Haemovigilance Chamber TRIP and performing several tasks in local and national blood bank and anticoagulant-blood transfusion guidelines committees. Currently, she is working as an associate professor and up till recently was the dean at the Albert Schweitzer Hospital Dordrecht. She performed (inter)national tasks as vice-president of the Concilium Anaesthesia and related committees. \nShe performed research in several fields, with over 100 publications in (inter)national journals and numerous papers on scientific conferences. \nShe received several awards and is a member of Honour of the Dutch Society of Anaesthesia.",institutionString:null,institution:{name:"Albert Schweitzer Hospital",country:{name:"Gabon"}}},{id:"83089",title:"Prof.",name:"Aaron",middleName:null,surname:"Ojule",slug:"aaron-ojule",fullName:"Aaron Ojule",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Port Harcourt",country:{name:"Nigeria"}}},{id:"295748",title:"Mr.",name:"Abayomi",middleName:null,surname:"Modupe",slug:"abayomi-modupe",fullName:"Abayomi Modupe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"Landmark University",country:{name:"Nigeria"}}},{id:"94191",title:"Prof.",name:"Abbas",middleName:null,surname:"Moustafa",slug:"abbas-moustafa",fullName:"Abbas Moustafa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94191/images/96_n.jpg",biography:"Prof. Moustafa got his doctoral degree in earthquake engineering and structural safety from Indian Institute of Science in 2002. He is currently an associate professor at Department of Civil Engineering, Minia University, Egypt and the chairman of Department of Civil Engineering, High Institute of Engineering and Technology, Giza, Egypt. He is also a consultant engineer and head of structural group at Hamza Associates, Giza, Egypt. Dr. Moustafa was a senior research associate at Vanderbilt University and a JSPS fellow at Kyoto and Nagasaki Universities. He has more than 40 research papers published in international journals and conferences. He acts as an editorial board member and a reviewer for several regional and international journals. His research interest includes earthquake engineering, seismic design, nonlinear dynamics, random vibration, structural reliability, structural health monitoring and uncertainty modeling.",institutionString:null,institution:{name:"Minia University",country:{name:"Egypt"}}},{id:"84562",title:"Dr.",name:"Abbyssinia",middleName:null,surname:"Mushunje",slug:"abbyssinia-mushunje",fullName:"Abbyssinia Mushunje",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Fort Hare",country:{name:"South Africa"}}},{id:"202206",title:"Associate Prof.",name:"Abd Elmoniem",middleName:"Ahmed",surname:"Elzain",slug:"abd-elmoniem-elzain",fullName:"Abd Elmoniem Elzain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kassala University",country:{name:"Sudan"}}},{id:"98127",title:"Dr.",name:"Abdallah",middleName:null,surname:"Handoura",slug:"abdallah-handoura",fullName:"Abdallah Handoura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Supérieure des Télécommunications",country:{name:"Morocco"}}},{id:"91404",title:"Prof.",name:"Abdecharif",middleName:null,surname:"Boumaza",slug:"abdecharif-boumaza",fullName:"Abdecharif Boumaza",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Abbès Laghrour University of Khenchela",country:{name:"Algeria"}}},{id:"105795",title:"Prof.",name:"Abdel Ghani",middleName:null,surname:"Aissaoui",slug:"abdel-ghani-aissaoui",fullName:"Abdel Ghani Aissaoui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105795/images/system/105795.jpeg",biography:"Abdel Ghani AISSAOUI is a Full Professor of electrical engineering at University of Bechar (ALGERIA). He was born in 1969 in Naama, Algeria. He received his BS degree in 1993, the MS degree in 1997, the PhD degree in 2007 from the Electrical Engineering Institute of Djilali Liabes University of Sidi Bel Abbes (ALGERIA). He is an active member of IRECOM (Interaction Réseaux Electriques - COnvertisseurs Machines) Laboratory and IEEE senior member. He is an editor member for many international journals (IJET, RSE, MER, IJECE, etc.), he serves as a reviewer in international journals (IJAC, ECPS, COMPEL, etc.). He serves as member in technical committee (TPC) and reviewer in international conferences (CHUSER 2011, SHUSER 2012, PECON 2012, SAI 2013, SCSE2013, SDM2014, SEB2014, PEMC2014, PEAM2014, SEB (2014, 2015), ICRERA (2015, 2016, 2017, 2018,-2019), etc.). His current research interest includes power electronics, control of electrical machines, artificial intelligence and Renewable energies.",institutionString:"University of Béchar",institution:{name:"University of Béchar",country:{name:"Algeria"}}},{id:"99749",title:"Dr.",name:"Abdel Hafid",middleName:null,surname:"Essadki",slug:"abdel-hafid-essadki",fullName:"Abdel Hafid Essadki",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Nationale Supérieure de Technologie",country:{name:"Algeria"}}},{id:"101208",title:"Prof.",name:"Abdel Karim",middleName:"Mohamad",surname:"El Hemaly",slug:"abdel-karim-el-hemaly",fullName:"Abdel Karim El Hemaly",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/101208/images/733_n.jpg",biography:"OBGYN.net Editorial Advisor Urogynecology.\nAbdel Karim M. A. El-Hemaly, MRCOG, FRCS � Egypt.\n \nAbdel Karim M. A. El-Hemaly\nProfessor OB/GYN & Urogynecology\nFaculty of medicine, Al-Azhar University \nPersonal Information: \nMarried with two children\nWife: Professor Laila A. Moussa MD.\nSons: Mohamad A. M. El-Hemaly Jr. MD. Died March 25-2007\nMostafa A. M. El-Hemaly, Computer Scientist working at Microsoft Seatle, USA. \nQualifications: \n1.\tM.B.-Bch Cairo Univ. June 1963. \n2.\tDiploma Ob./Gyn. Cairo Univ. April 1966. \n3.\tDiploma Surgery Cairo Univ. Oct. 1966. \n4.\tMRCOG London Feb. 1975. \n5.\tF.R.C.S. Glasgow June 1976. \n6.\tPopulation Study Johns Hopkins 1981. \n7.\tGyn. Oncology Johns Hopkins 1983. \n8.\tAdvanced Laparoscopic Surgery, with Prof. Paulson, Alexandria, Virginia USA 1993. \nSocieties & Associations: \n1.\t Member of the Royal College of Ob./Gyn. London. \n2.\tFellow of the Royal College of Surgeons Glasgow UK. \n3.\tMember of the advisory board on urogyn. FIGO. \n4.\tMember of the New York Academy of Sciences. \n5.\tMember of the American Association for the Advancement of Science. \n6.\tFeatured in �Who is Who in the World� from the 16th edition to the 20th edition. \n7.\tFeatured in �Who is Who in Science and Engineering� in the 7th edition. \n8.\tMember of the Egyptian Fertility & Sterility Society. \n9.\tMember of the Egyptian Society of Ob./Gyn. \n10.\tMember of the Egyptian Society of Urogyn. \n\nScientific Publications & Communications:\n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Asim Kurjak, Ahmad G. Serour, Laila A. S. Mousa, Amr M. Zaied, Khalid Z. El Sheikha. \nImaging the Internal Urethral Sphincter and the Vagina in Normal Women and Women Suffering from Stress Urinary Incontinence and Vaginal Prolapse. Gynaecologia Et Perinatologia, Vol18, No 4; 169-286 October-December 2009.\n2- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nFecal Incontinence, A Novel Concept: The Role of the internal Anal sphincter (IAS) in defecation and fecal incontinence. Gynaecologia Et Perinatologia, Vol19, No 2; 79-85 April -June 2010.\n3- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nSurgical Treatment of Stress Urinary Incontinence, Fecal Incontinence and Vaginal Prolapse By A Novel Operation \n"Urethro-Ano-Vaginoplasty"\n Gynaecologia Et Perinatologia, Vol19, No 3; 129-188 July-September 2010.\n4- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n5- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n6- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n7-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n8-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n9-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n10-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n11-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n12- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n13-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n14- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n15-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n\n16-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n17- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis\n\n18-Maternal Mortality in Egypt, a cry for help and attention. The Second International Conference of the African Society of Organization & Gestosis, 1998, 3rd Annual International Conference of Ob/Gyn Department � Sohag Faculty of Medicine University. Feb. 11-13. Luxor, Egypt. \n19-Postmenopausal Osteprosis. The 2nd annual conference of Health Insurance Organization on Family Planning and its role in primary health care. Zagaziz, Egypt, February 26-27, 1997, Center of Complementary Services for Maternity and childhood care. \n20-Laparoscopic Assisted vaginal hysterectomy. 10th International Annual Congress Modern Trends in Reproductive Techniques 23-24 March 1995. Alexandria, Egypt. \n21-Immunological Studies in Pre-eclamptic Toxaemia. Proceedings of 10th Annual Ain Shams Medical Congress. Cairo, Egypt, March 6-10, 1987. \n22-Socio-demographic factorse affecting acceptability of the long-acting contraceptive injections in a rural Egyptian community. Journal of Biosocial Science 29:305, 1987. \n23-Plasma fibronectin levels hypertension during pregnancy. The Journal of the Egypt. Soc. of Ob./Gyn. 13:1, 17-21, Jan. 1987. \n24-Effect of smoking on pregnancy. Journal of Egypt. Soc. of Ob./Gyn. 12:3, 111-121, Sept 1986. \n25-Socio-demographic aspects of nausea and vomiting in early pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 35-42, Sept. 1986. \n26-Effect of intrapartum oxygen inhalation on maternofetal blood gases and pH. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 57-64, Sept. 1986. \n27-The effect of severe pre-eclampsia on serum transaminases. The Egypt. J. Med. Sci. 7(2): 479-485, 1986. \n28-A study of placental immunoreceptors in pre-eclampsia. The Egypt. J. Med. Sci. 7(2): 211-216, 1986. \n29-Serum human placental lactogen (hpl) in normal, toxaemic and diabetic pregnant women, during pregnancy and its relation to the outcome of pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:2, 11-23, May 1986. \n30-Pregnancy specific B1 Glycoprotein and free estriol in the serum of normal, toxaemic and diabetic pregnant women during pregnancy and after delivery. Journal of the Egypt. Soc. of Ob./Gyn. 12:1, 63-70, Jan. 1986. Also was accepted and presented at Xith World Congress of Gynecology and Obstetrics, Berlin (West), September 15-20, 1985. \n31-Pregnancy and labor in women over the age of forty years. Accepted and presented at Al-Azhar International Medical Conference, Cairo 28-31 Dec. 1985. \n32-Effect of Copper T intra-uterine device on cervico-vaginal flora. Int. J. Gynaecol. Obstet. 23:2, 153-156, April 1985. \n33-Factors affecting the occurrence of post-Caesarean section febrile morbidity. Population Sciences, 6, 139-149, 1985. \n34-Pre-eclamptic toxaemia and its relation to H.L.A. system. Population Sciences, 6, 131-139, 1985. \n35-The menstrual pattern and occurrence of pregnancy one year after discontinuation of Depo-medroxy progesterone acetate as a postpartum contraceptive. Population Sciences, 6, 105-111, 1985. \n36-The menstrual pattern and side effects of Depo-medroxy progesterone acetate as postpartum contraceptive. Population Sciences, 6, 97-105, 1985. \n37-Actinomyces in the vaginas of women with and without intrauterine contraceptive devices. Population Sciences, 6, 77-85, 1985. \n38-Comparative efficacy of ibuprofen and etamsylate in the treatment of I.U.D. menorrhagia. Population Sciences, 6, 63-77, 1985. \n39-Changes in cervical mucus copper and zinc in women using I.U.D.�s. Population Sciences, 6, 35-41, 1985. \n40-Histochemical study of the endometrium of infertile women. Egypt. J. Histol. 8(1) 63-66, 1985. \n41-Genital flora in pre- and post-menopausal women. Egypt. J. Med. Sci. 4(2), 165-172, 1983. \n42-Evaluation of the vaginal rugae and thickness in 8 different groups. Journal of the Egypt. Soc. of Ob./Gyn. 9:2, 101-114, May 1983. \n43-The effect of menopausal status and conjugated oestrogen therapy on serum cholesterol, triglycerides and electrophoretic lipoprotein patterns. Al-Azhar Medical Journal, 12:2, 113-119, April 1983. \n44-Laparoscopic ventrosuspension: A New Technique. Int. J. Gynaecol. Obstet., 20, 129-31, 1982. \n45-The laparoscope: A useful diagnostic tool in general surgery. Al-Azhar Medical Journal, 11:4, 397-401, Oct. 1982. \n46-The value of the laparoscope in the diagnosis of polycystic ovary. Al-Azhar Medical Journal, 11:2, 153-159, April 1982. \n47-An anaesthetic approach to the management of eclampsia. Ain Shams Medical Journal, accepted for publication 1981. \n48-Laparoscopy on patients with previous lower abdominal surgery. Fertility management edited by E. Osman and M. Wahba 1981. \n49-Heart diseases with pregnancy. Population Sciences, 11, 121-130, 1981. \n50-A study of the biosocial factors affecting perinatal mortality in an Egyptian maternity hospital. Population Sciences, 6, 71-90, 1981. \n51-Pregnancy Wastage. Journal of the Egypt. Soc. of Ob./Gyn. 11:3, 57-67, Sept. 1980. \n52-Analysis of maternal deaths in Egyptian maternity hospitals. Population Sciences, 1, 59-65, 1979. \nArticles published on OBGYN.net: \n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n2- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n3- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n4-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n5-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n6-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n7-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n8-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n9- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n10-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n11- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n12-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n13-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n14- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis",institutionString:null,institution:{name:"Al Azhar University",country:{name:"Egypt"}}},{id:"113313",title:"Dr.",name:"Abdel-Aal",middleName:null,surname:"Mantawy",slug:"abdel-aal-mantawy",fullName:"Abdel-Aal Mantawy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ain Shams University",country:{name:"Egypt"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:1683},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"qngrRaqGuveqFgrcChoyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:63},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1178",title:"Electrophysiology",slug:"electrophysiology",parent:{title:"Neurophysiology",slug:"neurophysiology"},numberOfBooks:2,numberOfAuthorsAndEditors:108,numberOfWosCitations:84,numberOfCrossrefCitations:34,numberOfDimensionsCitations:106,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"electrophysiology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"543",title:"Amyotrophic Lateral Sclerosis",subtitle:null,isOpenForSubmission:!1,hash:"1a986185a49802e1e3beaf6cdc6dde8d",slug:"amyotrophic-lateral-sclerosis",bookSignature:"Martin H. Maurer",coverURL:"https://cdn.intechopen.com/books/images_new/543.jpg",editedByType:"Edited by",editors:[{id:"95060",title:"Prof.",name:"Martin Henrik",middleName:"H.",surname:"Maurer",slug:"martin-henrik-maurer",fullName:"Martin Henrik Maurer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"26540",doi:"10.5772/30897",title:"Protein Aggregates in Pathological Inclusions of Amyotrophic Lateral Sclerosis",slug:"protein-aggregates-in-pathological-inclusions-of-amyotrophic-lateral-sclerosis",totalDownloads:2190,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Yoshiaki Furukawa",authors:[{id:"84665",title:"Prof.",name:"Yoshiaki",middleName:null,surname:"Furukawa",slug:"yoshiaki-furukawa",fullName:"Yoshiaki Furukawa"}]},{id:"26529",doi:"10.5772/32384",title:"Dynamic Meta-Analysis as a Therapeutic Prediction Tool for Amyotrophic Lateral Sclerosis",slug:"dynamic-meta-analysis-as-a-therapeutic-prediction-tool-for-amyotrophic-lateral-sclerosis",totalDownloads:1851,totalCrossrefCites:1,totalDimensionsCites:13,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Cassie S. Mitchell and Robert H. Lee",authors:[{id:"91289",title:"Dr.",name:"Cassie",middleName:null,surname:"Mitchell",slug:"cassie-mitchell",fullName:"Cassie Mitchell"}]},{id:"26543",doi:"10.5772/30341",title:"Innate Immunity in ALS",slug:"innate-immunity-in-als",totalDownloads:1882,totalCrossrefCites:0,totalDimensionsCites:8,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"John D. Lee, Jia Y. Lee, Stephen M. Taylor, Peter G. Noakes and Trent M. Woodruff",authors:[{id:"82094",title:"Dr.",name:"Trent",middleName:null,surname:"Woodruff",slug:"trent-woodruff",fullName:"Trent Woodruff"},{id:"91937",title:"Mr.",name:"John",middleName:null,surname:"Lee",slug:"john-lee",fullName:"John Lee"},{id:"91938",title:"Ms.",name:"Jia",middleName:null,surname:"Lee",slug:"jia-lee",fullName:"Jia Lee"},{id:"91939",title:"Prof.",name:"Stephen",middleName:null,surname:"Taylor",slug:"stephen-taylor",fullName:"Stephen Taylor"},{id:"91941",title:"Dr.",name:"Peter",middleName:null,surname:"Noakes",slug:"peter-noakes",fullName:"Peter Noakes"}]}],mostDownloadedChaptersLast30Days:[{id:"26527",title:"Amyotrophic Lateral Sclerosis: An Introduction to Treatment and Trials",slug:"amyotrophic-lateral-sclerosis-an-introduction-to-treatment-and-trials",totalDownloads:5458,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Martin H. Maurer",authors:[{id:"95060",title:"Prof.",name:"Martin Henrik",middleName:"H.",surname:"Maurer",slug:"martin-henrik-maurer",fullName:"Martin Henrik Maurer"}]},{id:"26540",title:"Protein Aggregates in Pathological Inclusions of Amyotrophic Lateral Sclerosis",slug:"protein-aggregates-in-pathological-inclusions-of-amyotrophic-lateral-sclerosis",totalDownloads:2190,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Yoshiaki Furukawa",authors:[{id:"84665",title:"Prof.",name:"Yoshiaki",middleName:null,surname:"Furukawa",slug:"yoshiaki-furukawa",fullName:"Yoshiaki Furukawa"}]},{id:"26534",title:"Role of Mitochondrial Dysfunction in Motor Neuron Degeneration in ALS",slug:"role-of-mitochondrial-dysfunction-in-motor-neuron-degeneration-in-als",totalDownloads:2245,totalCrossrefCites:2,totalDimensionsCites:8,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Luz Diana Santa-Cruz, Uri Nimrod Ramírez-Jarquín and Ricardo Tapia",authors:[{id:"86426",title:"Prof.",name:"Ricardo",middleName:null,surname:"Tapia",slug:"ricardo-tapia",fullName:"Ricardo Tapia"}]},{id:"26548",title:"Genetics of Familial Amyotrophic Lateral Sclerosis",slug:"genetics-of-familial-als",totalDownloads:2666,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Emily F. Goodall, Joanna J. Bury, Johnathan Cooper-Knock, Pamela J. Shaw and Janine Kirby",authors:[{id:"90305",title:"Dr.",name:"Janine",middleName:null,surname:"Kirby",slug:"janine-kirby",fullName:"Janine Kirby"},{id:"91729",title:"Dr.",name:"Johnathan",middleName:null,surname:"Cooper-Knock",slug:"johnathan-cooper-knock",fullName:"Johnathan Cooper-Knock"},{id:"91731",title:"MSc.",name:"Joanna",middleName:null,surname:"Bury",slug:"joanna-bury",fullName:"Joanna Bury"},{id:"91733",title:"Dr.",name:"Emily",middleName:null,surname:"Goodall",slug:"emily-goodall",fullName:"Emily Goodall"},{id:"91737",title:"Prof.",name:"Pamela",middleName:null,surname:"Shaw",slug:"pamela-shaw",fullName:"Pamela Shaw"}]},{id:"68369",title:"Cerebral Spectral Perturbation during Upper Limb Diagonal Movements",slug:"cerebral-spectral-perturbation-during-upper-limb-diagonal-movements",totalDownloads:337,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-neural-signal-processing",title:"Advances in Neural Signal Processing",fullTitle:"Advances in Neural Signal Processing"},signatures:"Fabio Marson, Patrizio Paoletti, Stefano Lasaponara, Joseph Glicksohn, Antonio De Fano and Tal Dotan Ben-Soussan",authors:[{id:"191040",title:"Ph.D.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan"},{id:"195042",title:"Prof.",name:"Joseph",middleName:null,surname:"Glicksohn",slug:"joseph-glicksohn",fullName:"Joseph Glicksohn"},{id:"309442",title:"Dr.",name:"Fabio",middleName:null,surname:"Marson",slug:"fabio-marson",fullName:"Fabio Marson"},{id:"309443",title:"Dr.",name:"Patrizio",middleName:null,surname:"Paoletti",slug:"patrizio-paoletti",fullName:"Patrizio Paoletti"},{id:"309444",title:"Dr.",name:"Stefano",middleName:null,surname:"Lasaponara",slug:"stefano-lasaponara",fullName:"Stefano Lasaponara"},{id:"309445",title:"Dr.",name:"Antonio",middleName:null,surname:"De Fano",slug:"antonio-de-fano",fullName:"Antonio De Fano"}]},{id:"26535",title:"Role of Neuronal Mitochondrial Metabolic Phenotype in Pathogenesis of ALS",slug:"role-of-neuronal-mitochondrial-metabolic-phenotype-in-pathogenesis-of-als",totalDownloads:1852,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Alexander Panov, Nury Steuerwald, Valentin Vavilin, Svetlana Dambinova and Herbert L. Bonkovsky",authors:[{id:"82483",title:"Dr.",name:"Alexander",middleName:"V.",surname:"Panov",slug:"alexander-panov",fullName:"Alexander Panov"},{id:"127580",title:"Dr.",name:"Herbert",middleName:null,surname:"Bonkovsky",slug:"herbert-bonkovsky",fullName:"Herbert Bonkovsky"}]},{id:"68413",title:"Correlations of Gait Phase Kinematics and Cortical EEG: Modelling Human Gait with Data from Sensors",slug:"correlations-of-gait-phase-kinematics-and-cortical-eeg-modelling-human-gait-with-data-from-sensors",totalDownloads:148,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-neural-signal-processing",title:"Advances in Neural Signal Processing",fullTitle:"Advances in Neural Signal Processing"},signatures:"Chaitanya Nutakki, Sandeep Bodda and Shyam Diwakar",authors:[{id:"71863",title:"Dr.",name:"Shyam",middleName:null,surname:"Diwakar",slug:"shyam-diwakar",fullName:"Shyam Diwakar"},{id:"300655",title:"Mr.",name:"Chaitanya",middleName:null,surname:"Nutakki",slug:"chaitanya-nutakki",fullName:"Chaitanya Nutakki"},{id:"300656",title:"Mr.",name:"Sandeep",middleName:null,surname:"Bodda",slug:"sandeep-bodda",fullName:"Sandeep Bodda"}]},{id:"70077",title:"Computer Simulations of Hippocampal Mossy Fiber Cleft Zinc Movements",slug:"computer-simulations-of-hippocampal-mossy-fiber-cleft-zinc-movements",totalDownloads:159,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances-in-neural-signal-processing",title:"Advances in Neural Signal Processing",fullTitle:"Advances in Neural Signal Processing"},signatures:"Johnattan C.S. Freitas, João N. Miraldo, Carlos Manuel M. Matias, Fernando D.S. Sampaio dos Aidos, Paulo J. Mendes, José C. Dionísio, Rosa M. Santos, Luís M. Rosário, Rosa M. Quinta-Ferreira and Emília Quinta-Ferreira",authors:[{id:"308359",title:"Dr.",name:"Emília",middleName:null,surname:"Quinta-Ferreira",slug:"emilia-quinta-ferreira",fullName:"Emília Quinta-Ferreira"},{id:"308361",title:"Dr.",name:"Carlos",middleName:null,surname:"Matias",slug:"carlos-matias",fullName:"Carlos Matias"},{id:"311289",title:"Mr.",name:"Johnattan C.S.",middleName:null,surname:"Freitas",slug:"johnattan-c.s.-freitas",fullName:"Johnattan C.S. Freitas"},{id:"311290",title:"Dr.",name:"Fernando D.S,",middleName:null,surname:"Sampaio Dos Aidos",slug:"fernando-d.s-sampaio-dos-aidos",fullName:"Fernando D.S, Sampaio Dos Aidos"},{id:"311291",title:"Dr.",name:"Paulo J.",middleName:null,surname:"Mendes",slug:"paulo-j.-mendes",fullName:"Paulo J. Mendes"},{id:"311292",title:"Dr.",name:"José C.",middleName:null,surname:"Dionísio",slug:"jose-c.-dionisio",fullName:"José C. Dionísio"},{id:"311293",title:"Dr.",name:"Rosa M.",middleName:null,surname:"Santos",slug:"rosa-m.-santos",fullName:"Rosa M. Santos"},{id:"311294",title:"Dr.",name:"Luís M.",middleName:null,surname:"Rosário",slug:"luis-m.-rosario",fullName:"Luís M. Rosário"},{id:"311295",title:"Dr.",name:"Rosa M.",middleName:null,surname:"Quinta-Ferreira",slug:"rosa-m.-quinta-ferreira",fullName:"Rosa M. Quinta-Ferreira"},{id:"311296",title:"Mr.",name:"João N.",middleName:null,surname:"Miraldo",slug:"joao-n.-miraldo",fullName:"João N. Miraldo"}]},{id:"26529",title:"Dynamic Meta-Analysis as a Therapeutic Prediction Tool for Amyotrophic Lateral Sclerosis",slug:"dynamic-meta-analysis-as-a-therapeutic-prediction-tool-for-amyotrophic-lateral-sclerosis",totalDownloads:1851,totalCrossrefCites:1,totalDimensionsCites:13,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Cassie S. Mitchell and Robert H. Lee",authors:[{id:"91289",title:"Dr.",name:"Cassie",middleName:null,surname:"Mitchell",slug:"cassie-mitchell",fullName:"Cassie Mitchell"}]},{id:"26531",title:"Advantages and Pitfalls in Experimental Models Of ALS",slug:"advantages-and-pitfalls-in-experimental-models-of-als",totalDownloads:1977,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"amyotrophic-lateral-sclerosis",title:"Amyotrophic Lateral Sclerosis",fullTitle:"Amyotrophic Lateral Sclerosis"},signatures:"Marina Boido, Elisa Buschini, Antonio Piras, Giada Spigolon, Valeria Valsecchi, Letizia Mazzini and Alessandro Vercelli",authors:[{id:"86826",title:"Prof.",name:"Alessandro",middleName:null,surname:"Vercelli",slug:"alessandro-vercelli",fullName:"Alessandro Vercelli"},{id:"91887",title:"MSc",name:"Marina",middleName:null,surname:"Boido",slug:"marina-boido",fullName:"Marina Boido"},{id:"91890",title:"Dr.",name:"Elisa",middleName:null,surname:"Buschini",slug:"elisa-buschini",fullName:"Elisa Buschini"},{id:"91891",title:"Dr.",name:"Giada",middleName:null,surname:"Spigolon",slug:"giada-spigolon",fullName:"Giada Spigolon"},{id:"91892",title:"Dr.",name:"Antonio",middleName:null,surname:"Piras",slug:"antonio-piras",fullName:"Antonio Piras"},{id:"91893",title:"Dr.",name:"Valeria",middleName:null,surname:"Valsecchi",slug:"valeria-valsecchi",fullName:"Valeria Valsecchi"},{id:"125841",title:"Dr.",name:"Letizia",middleName:null,surname:"Mazzini",slug:"letizia-mazzini",fullName:"Letizia Mazzini"}]}],onlineFirstChaptersFilter:{topicSlug:"electrophysiology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/107395/anna-zielinska-jurek",hash:"",query:{},params:{id:"107395",slug:"anna-zielinska-jurek"},fullPath:"/profiles/107395/anna-zielinska-jurek",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()