Top five onshore wind energy and offshore wind markets in 2018 [13].
\r\n\t
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"abf31c9873fc2d88b8ee05c6adb53a29",bookSignature:"Dr. David Bienvenido-Huertas",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10104.jpg",keywords:"Sustainable Construction, Innovative Construction, Construction Processes, Sustainable Design, Design Optimization, Maintenance Minimization, Energy Efficiency, Energy Conservation Measures, Thermal Comfort, Socio-cultural Integration, Urban Environment, Visual Impact",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 26th 2020",dateEndSecondStepPublish:"September 23rd 2020",dateEndThirdStepPublish:"November 22nd 2020",dateEndFourthStepPublish:"February 10th 2021",dateEndFifthStepPublish:"April 11th 2021",remainingDaysToSecondStep:"5 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"David Bienvenido-Huertas has completed his Ph.D. as an Architect, currently, he is a researcher of the Building Construction II Department at Universidad de Sevilla, Spain",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"320815",title:"Dr.",name:"David",middleName:null,surname:"Bienvenido-Huertas",slug:"david-bienvenido-huertas",fullName:"David Bienvenido-Huertas",profilePictureURL:"https://mts.intechopen.com/storage/users/320815/images/system/320815.jpg",biography:"PhD Architect. Researcher of the Building Construction II Department at Universidad de Sevilla, Spain. Active member of the Research Group TEP970: Technological Innovation, 3d Modeling Systems and Energy Diagnosis in Heritage and Building at the Universidad de Sevilla. His area of expertise covers climate change in the building sector, adaptive thermal comfort, heat transfer, fuel poverty, energy conservation measures, and design of nearly zero energy buildings. He is an author of more than 25 manuscripts and frequently a reviewer of international peer-reviewed journals.",institutionString:"University of Seville",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"69923",title:"Global Prediction of Wind Energy Market Strategy for Electricity Generation",doi:"10.5772/intechopen.89968",slug:"global-prediction-of-wind-energy-market-strategy-for-electricity-generation",body:'Sustainable development needs judicious utilization of energy sources, which are integral inputs to modern society. Renewable energy (RE) sources, such as solar, wind, biomass, etc., are of paramount importance when considering economic development.
The global renewable energy market was valued at $928.0 billion in 2017 and is expected to reach $1512.3 billion by 2025, registering a compound annual growth rate (CAGR) of 6.1% from 2018 to 2025. Renewable energy technologies convert the energy from different natural sources, such as sun, tides, wind, and others, into its usable forms such as electricity [1].
The global renewable energy market is anticipated to grow significantly during the forecast period owing to increased emissions of greenhouse gases (GHGs), particularly CO2 due to utilization of fossil fuels for generation of energy. In addition, limited presence of fossil fuel on the earth as well its volatile prices fuels the renewable energy market. However, generation of energy from renewable sources requires huge investment. This factor is anticipated to hamper the market growth during the forecast period. Furthermore, in the Middle East, fossil fuels are majorly used to generate energy owing to its cost-effective nature as compared to other regions. This hampers the growth of the market. On the contrary, due to continuous advancement in technologies and increased government funding in renewable energy sector to offer lucrative growth opportunities during the assessment period, the renewable energy market size will be increasing because of rise in stringent government regulations regarding climate change in the developed and developing economies.
“Now that the Paris Agreement is coming into force, countries need to get serious about what they committed to last December. Meeting the Paris targets means a completely decarbonizes electricity supply well before 2050, and wind power will play the major role in getting us there,” said Steve Sawyer, Global Wind Energy Councils (GWEC), Secretary General.
The increasing investment in wind energy (WE) is not only significant from the point of view of bridging the demand-supply gap but also from considering environmental issue. Currently, wind energy is one of the fastest developing RE technologies around the world including Egypt.
Wind energy dominates as an immediate viable, cost-effective option that promotes energy conservation and avoids equivalent utilization of fossil fuels and avoids millions of tons of gas emission causing ozone depletion and other environmental impacts like global warming. Wind turbines do not need any type of fuel after installation, so there are no environmental risks or degradation from the exploration, extraction, transport, shipment, processing, or disposal of fuel.
World energy demand is growing by over 50% and will continue to grow up to year 2030. Figure 1 shows the energy consumption per person till the year 2050. Today, climate change is a major global concern. The main cause of global warming is CO2, at least 90% of it is a result of the combustion of fossil fuels for energy generation, and it is the cause for climate change, which is the main global concern [2].
Consumption of energy per person [1].
By 2050, Europe will achieve an electricity system that depends on renewable energy without carbon, so it will require the replacement of much of the existing electricity-generating capacity, and the price volatility in traditional energy has forced nearly all countries to review their energy policy (Figure 2). This is prompting countries that depend on imported fossil fuels to explore and evaluate alternative sources of energy to generate electricity [3].
CO2 emissions from the various sources of energy [3].
In Europe, the thirty analyzed countries refer to the total electricity demand starting with roughly 3530 TWh/y in the year 2010 and will reach a maximum of 4300 TWh/y in 2040 [2]. Figure 3 represents the expected future electricity demand in Europe to 2050 that is available to cover the demand with a surplus of 45% [3].
Electricity consumption of the European countries analyzed between 2010 and 2050 [3].
The annual market will expect to grow in 2020, breaching the 60 GW, and continue to grow in the beginning of the new decade. And the total cumulative installations will reach 840 GW by the end of 2022 (Figures 4 and 5) [4].
Current and forecast market wind energy 2018–2022 [4].
Annual market forecast by region 2018–2022 (GW) [4].
Europe intended to estimate installation of 47,000 wind turbines at the end of 2005. In 2004, the average size of turbines delivered to the market was about 1.3 and 2.1 MW for onshore and offshore, respectively (Figure 6). By 2030, the assumption of average size of a wind turbine will be 2 MW onshore and 10 MW offshore, and only 90,000 turbines (75,000 onshore and 15,000 offshore) would be needed to fulfill the 300 GW target.
More power from fewer turbines in Europe.
By 2030, Germany expects to have 15,000 MW of offshore wind capacity. The Economy Japanese Ministry, Trade and Industry (METI) has assumed a demand of wind power at 10 GW, which is including 820 MW offshore wind power by 2030, in its future energy plan called the Energy Mix Plan, which was released in 2015. The Japan Wind Power Association (JWPA) has requested a more aggressive target for wind power, calling for 36.2 GW by 2030, including 10 GW of offshore [5].
The Dutch government has intended to install 6000 MW of onshore wind energy power by 2020 and 4500 MW of offshore wind energy power by 2023. By 2030, the Dutch Wind Energy Association (NWEA) will estimate to reach 15 and 18.5 GW of onshore and offshore wind energy, respectively [4].
Taiwan’s initial offshore wind target of 3 GW by 2025 was quickly exceeded by oversubscription of projects proposed by developers, which led to an upward adjustment of the target in 2017 to 5.5 GW by 2025. The target of 520 MW by 2020 was maintained, while the target for 2030 was raised to 17 GW [3].
South Korea aims to triple the share of renewable energy in the country’s power mix by 2030, which translates to adding about 47 GW of new wind and solar capacity, according to the government’s latest draft policy roadmap.
New York State has become the new climate leader in the US, after California, with a series of government measures and targets being introduced to boost the clean energy industry. An offshore wind target has been set at 2.4 GW by 2030. In January 2018, New York State also released its long-awaited Offshore Wind Master Plan, encompassing 20 in-depth studies on a variety of factors that will affect the state’s ability to reach its 2.4 GW offshore wind target by 2030 [6].
The Vietnamese government has set a target for wind development at 800 MW by 2020, 2000 MW by 2025, and 6000 MW by 2030 [6].
By 2030, wind power could reach 2110 GW and supply up to 20% of global electricity, creating 2.4 million new jobs and reducing CO2 emissions by more than 3.3 billion tons per year, and attract annual investment of about €200 billion [7].
2018 is a solid year with a total installed capacity of 51.3 GW, which decreased 4.0% over the previous year and reached total installed capacity of 591 GW (9% more than 2017). In the onshore wind energy market, new plants reached 46.8 and 4.5 GW was installed in the global offshore market, bringing the global share to 8%. The Chinese onshore market installed 21.2 GW in 2018 and has been the market leader since 2008. China is the first market to exceed 200 GW of total installed capacities at the end of 2018, achieving the target of 200 GW 2 years early (based on the 5 Year Plan 2016–2020), with 206 GW of total installations [5].
The second-largest market in the US in 2018 was with 7.6 GW of new onshore installations and 96 GW total onshore installations. Future demand will be linked to RPS and increasing onshore wind power competitiveness by 2020 and 2030. In the US market, new financial models will most likely drive the volume of new installations further: Germany will be the top five wind markets with 2.4 GW in 2018, India with 2.2 GW, and Brazil with 1.9 GW in addition to the USA and China. Figure 7 shows the top 5 wind energy markets, and Figure 8 shows the global wind energy consumption beside renewable energy in 2017–2023 [8].
New capacity in 2018 and share of top five wind energy markets [8].
Wind energy beside renewable energy consumption in major markers, 2017–2023 [8].
At the end of 2015, the globally total installed onshore wind energy capacity reached to 420 GW [9]. Cumulative installed capacity has increased to 25%/year over the last decade. At the end of 2015, China maintained the largest share of onshore wind energy capacity in the world, at 34%. This is followed by the United States, which share with 17%; Germany, 10%; India, 6%; and Spain, 5%. Onshore wind energy has set a record of 59 GW in 2015, which is twice as high as in 2014. In 2015, China accounted for 51% of global new additions, followed by the USA with 13%; Germany, 6%; Brazil 5%; and India, 4%. Strong growth in China about 30 GW and the United States about 7.7 GW accounted for around 63% of net additions in 2015 [9].
China is expected to add more than 20 GW a year from 2016 to 2020 [10]. With policy support renewed for the medium-term, the United States will add on average more than 7 GW a year up to 2020 [11]. In 2015, Brazil had a solid installation record around 2.8 GW and is set to continue installing more than 2.5 GW a year, and Germany installed more than 3.5 GW of onshore wind energy in the same year [12].
The world installed 46.8 GW of onshore wind energy turbines last year, down by 3.9% from 2017, and 4.49 GW of offshore wind farms, up by 0.5%. China led growth in both cases, installing 21.2 GW onshore and 1.8 GW offshore. For the first time, it built more offshore wind capacity than any other country. Table 1 shows the top five onshore wind energy and offshore wind markets in 2018 [13].
Top onshore markets in 2018 | MW built | Top offshore markets in 2018 | MW built |
---|---|---|---|
China | 21,200 | China | 1800 |
USA | 7588 | United Kingdom | 1312 |
Germany | 2402 | Germany | 969 |
India | 2191 | Belgium | 309 |
Brazil | 1939 | Denmark | 61 |
Top five onshore wind energy and offshore wind markets in 2018 [13].
The 2018 total of 51.3 GW, a decrease of 3.6% year-on-year, boosted the cumulative global wind power generation capacity to 591 GW. Energy is fundamental to any economy; wind energy can be a driver for European growth. With the right kind of investment and collaboration, electricity production from wind for European electricity consumption could raise from 83 TWh to 965 TWh from 2005 to 2030, respectively, supplying 23% of European electricity. This projection takes into account that consumption is expected to increase by half over the same period [14]. Figure 9 shows wind energy contribution to European electricity consumption in 2005–2030 [15].
Contribution of wind energy to European electricity consumption, 2005–2030 [15].
Offshore wind has reached maturity in Europe, and costs have decreased decisively, with committed projects scheduled to start generating in the early 2020s likely to produce at a levelized cost of energy (LCOE) below €70/MWh by 2017 prices, including the cost of offshore and onshore grid connection. This has lead to increased confidence in the deployment of offshore wind around the world. By 2030, the forecasting for total installed capacity will be 120 GW, with an installation rate of over 10 GW/year being achieved before then. Much of this growth will come in Europe, building on the established capability and proven low cost. The significant capacity in China and the US will be smaller than significant volumes in Japan, Taiwan, and South Korea. By 2030, LCOEs below €60/MWh will be achieved by many newly installed offshore wind farms, which could be well below the average wholesale power price in many electricity networks, driving higher levels of deployment and the spread to currently uncharted waters.
Floating offshore wind has seen the first multiturbine demonstration project, but floating is likely to remain a niche sector throughout the 2020s. It will become cost-competitive by the end of the decade, giving it strong potential in the 2030s, especially through enabling new markets. Early deployment of floating offshore wind projects needs support mechanisms in multiple markets specifically targeted at enabling commercial-scale floating deployment. France and Japan are the most likely candidates, assuming governments are able to see clear long-term benefits. On this basis, the expectation of floating deployment will exceed 500 MW a year by 2026, increasing to over 1 GW a year by 2030 to give a total installed capacity of over 5 GW, 5% of the offshore market. In addition to France and Japan, commercial floating projects are also likely in Korea, Taiwan, the UK, and the US by 2030. If cost reductions are achieved quicker than currently expected and floating becomes cost effective much faster, the market could really ‘take off’ with up to 12 GW installed by the end of 2030, setting the 2030s up for substantial further global offshore wind deployment [14].
The European Commission assumes that the cost of onshore wind power will decrease to € 826/kW and €788/kW, respectively between 2020 and 2030 in its renewable energy roadmap [16].
Figure 10 shows the estimates of the European Commission on offshore and onshore cost capacity development by 2030, reflecting the capacity expenditure of wind turbine price effects in recent years. Figure 11 shows the expected annual wind power investments from 2000 to 2030, based on the European Wind Energy Association’s scenarios [17, 18] at the price of €1300 per kW onshore wind farms and offshore prices of €2300 per KW. The sharp rise in offshore wind costs reflects the few producers in the overseas market, the lack of economies of scale as a result of low market deployment, and supply chain bottlenecks [14].
Cost of onshore and offshore wind (€/kW) European Commission/EWEA assumptions [17, 18].
Wind energy investments, 2000–2030 (€mio.) [17, 18].
By 2020, the annual wind energy market will have increased to €17 billion per year. About half of the investments go offshore. Annual wind energy investment in the EU-27 will reach €20 billion by 2030, with 60% of offshore wind energy investments [11].
GWEC said it expects stable capacity additions from mature regions in Europe and the US in the next few years. Significant growth is also forecast to come from developing markets in South East Asia and the global offshore market.
Globally, offshore wind deployment is to reach up to 7–8 GW during 2022 and 2023 [19], and offshore wind energy installations in Asia could surpass 5 GW per year if governments remain committed and projects and investments continue. The US offshore wind market is seen to hit 1 GW by 2022–2023 [20].
One of the main economic advantages of wind power is that it reduces economic volatility of fuel prices. Table 2 shows cost structure of a typical 2 MW wind turbine installed in Europe (2006) [16].
Cost structure of a typical 2 MW wind turbine installed in Europe (2006) [16].
The rapid European and global development of wind power capacity has had a strong influence on the cost of wind power over the last 20 years. To illustrate the trend toward lower production costs of wind-generated power, a case in Figure 12that shows the production costs for different sizes and models of turbines is presented, which are constructed for Denmark [21].
Total wind energy costs per unit of electricity produced, by turbine size (c€/kWh, constant € prices), and assuming a 7.5% discount rate [21].
The economic consequences of the trend toward larger turbines and improved cost-effectiveness are clear. For a coastal site, for example, the average cost of the turbine (mainly installed in the mid-1980s) has dropped from around 9.2 c€/kWh to approximately 5.3 c€/kWh for a relatively fresh 2.000 kW, an improvement of more than 40% in 2006 [21].
The estimated progress ratios range from 0.83 to 0.91, which corresponds with the learning rates of 0.17 to 0.09 based on special energy expenses (expenses per kWh generated). This means that if the total wind power installed doubles, the cost per kWh produced for new turbines decreases by 9 to 17% [22].
The total installed wind turbines worldwide account for a small amount of offshore wind: about 1%. In the northern European countries of the North sea and the Baltic Sea, there have primarily been developments in offshore winds, with approximately 20 projects implemented. The capability was located offshore at the end of 2008 at 1471 MW [23].
Offshore wind capacity is still approximately 50% higher than onshore wind. However, with higher wind speeds and a lower visual impact on large turbines expected to benefit, several countries-mainly in the Member States of the European Union-have ambitious off shore wind goals.
While investments in offshore energy farms are significantly higher than those in the onshore wind farms, the overall electrical output from turbines is partially offset, given the high offshore wind speeds. The energy production indicator normally amounts to approximately 2000 to 2500 full charge hours annually for onshore operations, while the figure for a typical offshore facility reaches up to four thousand full charge hours per year, according to location [24].
The market remained stable with an estimated €10 billion per year until 2015, and investment in the offshore market gradually increased. By 2020, the wind power annual market will have grown to €17 billion per year, with roughly half of the offshore investment. By 2030, annual EU investments in wind energy are expected to reach nearly €20 billion with 60% of offshore investment [25].
In the reference price equivalent of $118/barrel in 2010 for natural gas, the price of coal is expected to double, and the price of CO2 is expected to increase by 50% and by 35€/t in 2008 to 60€ /t [26]. Figure 13 shows sensitivity analysis of costs of generated power comparing conventional plants to wind power, assuming increasing fossil fuel and CO2 [15, 27].
Sensitivity analysis of costs of generated power comparing conventional plants to wind power, assuming increasing fossil fuel and CO2 [15, 27].
To determine the amount of CO2 and fuel costs avoided from wind turbine investments over the entire life of a given year, it is important to remember that in a given year, investment in wind energy capacity will continue to avoid fuel cost and carbon costs over the 20 to 25 years of life of wind turbines. Wind farms installed throughout 2030 will continue, for example, to avoid costs until and after 2050. Figure 14 shows the total costs of CO2 and fuel avoided during the lifetime of the installed wind turbine capacitance of 2008–2030, taking into consideration the technical life of onshore wind power turbines of 20 years and offshore wind turbines of 25 years in accordance with EWEA reference scenarios [22]. It is also presumed that the average price of a CO2 allowance for wind energy is €25/t CO2, and €42 million in fuel is prevented for every TWh of wind power, which is the equivalent of €90 per barrel of oil during the period. The average cost of the allowance for CO2 is €42 million. For example, the 8554 MW of wind energy installed in the EU in 2007 had an investment value of €11,3 billion and will avoid €6,6 billion of CO2 emissions over the whole lifetime and €16 billion in the cost of fuel, assuming an average CO2 cost of €25 per ton and an average price of fuel for gas, coal, and oil based on $90/barrel of oil. Likewise, between 2008 and 2020, the €152 billion investment in wind power will avoid CO2 cost of €135 billion and fuel costs of €328 billion in the same way. Wind energy expenditure of €339 billion is avoiding €322 billion of CO2 and €783 billion of fuel for the period up to 2030.
Wind investments compared with lifetime avoided fuel and CO2.
As price reductions on wind, solar, and other renewables drop dramatically in recent years, energy decarburization is not only technically feasible but also economically competitive. African, Asian, and Latin American markets are quickly evolving, providing clean energy to promote sustainable development.
The IEA has amended its assumptions, both fuel prices and building costs, in its 2008 edition of World Energy Outlook. It therefore increased its new building cost estimates. It was also assumed for the EU that a $30 carbon price per ton of CO2 would add $30/MWh to coal production and that it could generate $15/MWh to combined cycle gas turbines (CCGT)-generated plants. Figure 15 shows the assumption of the IEA that in 2015 and 2030 new coal, gas, and wind power will generate future costs in the EU. It shows that the IEA expects new wind capacity in 2015 and 2030 to be cheaper than coal and gas [28, 29].
Costs of electricity generating in the EU, 2015 to 2030.
Conventional electricity production general cost is determined by four components:
Fuel cost
CO2 emissions cost
Cost of O&M
Investment costs, planning, and construction work
The capital costs of wind energy projects are dominated by the cost of the wind turbine itself. Figure 16 shows the typical cost structure for wind energy [22].
Cost of wind energy.
The share of the turbine costs is around 76%, while the grid link accounts for around 9% and the base for around 7%. The costs of obtaining a turbine site differ greatly from one project to the next, so the information provided in Table 3 is an instance. Other cost elements, such as land and control systems, represent only a small proportion of total expenses.
Medium-sized wind turbine cost structure [30].
The total cost per kW of installed wind power varies greatly from country to country and the costs per kW were the lowest in Denmark and somewhat higher in Greece and the Netherlands, as shown in Figure 17 [31]. Typically, the cost per kW varies between €1000/kW and €1350/kW. It should, however, be noted that Figure 17 is based on limited data so the findings for the countries mentioned may not be fully representative. In addition, there are significant variances among nations in “other expenses,” such as foundation and grid connection, which vary from approximately 32% of total turbine expenses in Portugal, about 24% in Germany, about 21% in Italy, and only about 16% in Denmark. Cost varies however depending on the size of the turbine and the nation of installation, grid distance, property ownership, and soil nature [31].
Total investment cost, including turbine, foundation, and grid connection, shown for different turbine sizes and countries of installation [31].
The typical ranges of these other cost components as a share of the total additional costs are shown in Table 3 [30]. The only major extra aspect in terms of variation is the cost of the grid connection, which in certain instances can account for almost half of the auxiliary expenses, followed by typically lower shares of the basic and electrical installation expenses. These subsidiary costs can therefore add up to the overall turbine costs to significant amounts. Cost elements, such as consultancy and land, usually account for only a small share of extra costs.
The LCOE energy cost, also known as the levelized electricity cost, is an economic evaluation of the average overall cost of building and operating an energy generation system over its lifetime divided by overall system power over this lifetime [1]. LCOE is the definition of the price that will be equivalent to the total life-cycle cost (LCC), if it is allocated to each unit of energy generated by the device during the analysis period [32].
where LCOE is the average lifetime levelized cost of electricity generation, It is the year t investment expenditures, Mt. is the year t (O&M) expenditures, Ft is the year t fuel expenditures, Et is the year t electricity generation, r is the discount rate, and n is the system lifetime.
The LCOE of a wind power project is determined by total capital costs:
Wind resource quality
Wind turbines’ technical characteristics
O&M costs
Economic life of the project and the cost of capital
As with today’s range of installed costs, the LCOE also varies by country and region. Figure 18 presents cost metrics contributing to the calculation of the LCOE [32].
Cost metrics contributing to the calculation of the LCOE [32].
By depending on one of the most significant steps within the power sector, levelized cost of electricity (LCOE), the wind sector can demonstrate its growing maturity, price competitiveness, and effectiveness.
For several years, LCOE has been the common measure to define wind and other power sources’ price. Industry stakeholders and politicians use LCOE to evaluate objectives and levels of support.
LCOE’s important role will not change and will continue to show the progress of wind power. With the aid of LCOE, wind energy is one of the cheapest sources of energy. As the energy industry is changing, the scope is expanding and wind energy is now also offering maximum system value. This enhanced emphasis on value comprises the knowledge of an energy source’s effectiveness, how to integrate an energy source, and the time frame for supply and demand [33]. Figure 19 depicts LCOE-onshore and offshore wind power historical growth.
LCOE-historical development [34].
The weighted average LCOE for onshore by country or region ranged from $0.053/kWh in China to $0.12/kWh in Asia. North America had the second lowest LCOE after China, with $0.06/kWh. Eurasia ($0.08/kWh), Europe ($0.07/kWh), and India ($0.08/kWh) had slightly higher average LCOEs than China and North America. Onshore wind energy is a highly competitive source of renewable energy generation capacity, with low and medium wind speeds becoming economically competitive [35].
The potential improvement in capacity factors by 2025 could result in reducing the global weighted average LCOE of onshore wind energy by around $0.01/kWh, or 49% of the total projected reduction in onshore wind LCOE of $0.018/kWh as the global weighted average LCOE falls to $0.053/kWh by 2025 [35].
Reductions in total installed costs, driven mostly by cost reductions for towers, turbines, and wind farm development, contribute around $0.006/kWh or 34% of the total reduction in the LCOE. Improvements in turbine reliability, improved predictive maintenance schedules, and the more widespread application of best practice (O&M) strategies reduce the LCOE by around $0.003/kWh by 2025, or 17% of the total reduction [35].
In 2018, the global weighted-average LCOE commissioned onshore wind energy projects, at $0.056/kWh, was 13% below 2017’s level and 35% below 2010, when it was at $0.085/kWh. The onshore wind electricity expenses are now at the lesser end of the price range of fossil fuel [36].
The continuous reduction of total installed expenses and the improvement of the average capacity factor led to electricity expenses to lower onshore wind energy in 2018, as in Figure 20. Continuous improvements in turbine design and production, competitive worldwide supply chains, and a growing variety of turbines intended to minimize LCOE in a range of working circumstances are key drivers of this trend, with rises of 18.5 and 6.8 GW, respectively; China and the United States accounted for the largest development in onshore wind power. GW or greater capacity additions have endorsed deployment in Brazil, around 2.1 GW; France 1.6 GW; Germany about 2.7 GW; and India, 2.4 GW, respectively [37].
Global average total installed costs, capacity factors, and LCOE for onshore wind, 2010–2018 [36].
The LCOE’s worldwide weighted average of 13% decrease in 2018 relative to 2017 represents a culmination of a large number of countries’ experiences. The weighted average LCOE in 2018 in China and the United States for newly commissioned wind farms was 4% lower than in 2017, as Figure 21. However, both India and Brazil faced slight increases in the weighted average LCOE for 2018 projects, partly due to currency weaknesses in the last several years. Such rises are also motivated by an estimated average slightly reduced weighted lifetime factor for projects started in 2018 [36].
Weight average LCOE of commissioned onshore wind energy projects in 12 countries, 1984–2018 [36].
Onshore wind farms operated in China and the USA in 2018 had the same weighted average LCOE of $0.048/kWh. While China has lower capacities than the USA, lower installed costs offset this. In 2018, the average LCOE weighted onshore wind farms commissioned in Brazil was $0.061/kWh; in France, it was $0.076/kWh; in Germany, it was $0.075%; in India, it was $0.062/kWh; and in the UK, it was $0.063/kWh [38].
The number of LCOE projects that have been commissioned with a volume from $0.03 to $.04/kWh has increased since 2014. The combinations of competitive installed costs in regions with excellent wind resources are becoming an increasing proportion of new installations in some markets. The projects are much cheaper than even the cheapest fossil fuel-fired options for new energy production, and the variable operating costs of certain existing generators of fossil fuel are undercut.
The global weighted average total installed cost for onshore wind farms decreased by 6% year-on-year from $1600/kW in 2017 to $1500/kW in 2018, when price rates for wind turbines continued to drop. The reduction in total installation costs still depends on reductions in wind turbine prices. Figure 22 shows wind turbine price indices and price trends, 1997–2018, which decreased by around 10 to 20% between 2017 and 2018 and also on reductions in the project cost balance. Improved technical and process technologies, regional infrastructure, and competitive supply chains all contribute to keeping turbine pricing under pressure [39, 40].
Wind turbine price indices and price trends, 1997–2018 [39, 40].
The average turbine prices of 2018, China and India excluded, varied between $790 and $900 per kW and decreased between $910 and 1050/kW in 2017, respectively. In 2018 for the onshore wind farms installed in China, there was approximately $1170/kW, approximately $1200/kW in India, around $1660/kW in the United States, $1820/kW in Brazil, approximately $1830/kW in Germany, and around $2030/kW in Europe that shows in Figure 23. Australia added 940 MW and installed costs were a competitive 1640$/kW [39, 40].
Onshore wind energy weighted average installed costs in 12 countries, 1984–2018 [39, 40].
The worldwide weighted average capacity factor of onshore wind energy farms commissioned in 2018 grew to 34% of 32% in 2017, due to the trend toward greater turbine hub heights, bigger sweeping regions, and greater capabilities and harvesting more electricity from the same wind resource. While the final data for 2018 cannot be accessible, between 2010 and 2017, both turbine diameter and turbine size were significantly increased, and this is expected to continue until 2018. Higher hub heights allow access to higher wind speeds, while larger swept areas can increase output across the range of operating wind speeds.
There is a slightly greater cost for longer blades and taller towers, but with the correct optimization, a total decrease in LCOE can be accomplished. Ireland’s continuous trend toward larger turbines with larger swept areas is distinguishing, but for both these metrics, Denmark is still absolutely behind the market leader [39, 40].
Between 2010 and 2017, Ireland improved its average plate capabilities by 95%, with its rotor diameter by 76%. Denmark had an average 118 m rotor diameter and a turbine capability of 3.5 MW for projects launched in 2017. Brazil, Canada, France, and the United States are interesting examples of markets that have increased the rotor diameter faster than the nameplate capacity. The newly commissioned rotor diameter has risen 42% in Brazil, 64% in Canada, 25% in France, and 34% in the United States between 2010 and 2017, while the growth in nameplate capability is 31%, 41%, 16%, and 29%, respectively [39, 40].
The average rotor diameters in 2017, in Brazil, Denmark, Germany, India, Sweden, Turkey, and the United States, were over 110 m compared to 2010 when the range was from 77 m in India to 96 m in Denmark. In 2018, onshore wind farms commissioned 46% in Brazil, 44% in the United States, 40% in Britain, 37% in Australia, and 29% in China; France and Germany had a weighted average capacity factor of 46% (Figures 24 and 25). In 2018, the country’s particular weighted average capacity factor decreased slightly from 48 to 46% in Brazil, year-on-year. In 2018, there was an increase in most other significant markets.
Weighted average rotor diameter and nameplate capacity evolution, 2010–2018 [39, 40].
Historical onshore wind energy weighted average capacity factors in a sample of 12 countries by year of commissioning, 1984–2018 [39, 40].
The worldwide weighted average LCOE for offshore wind power projects started to slightly decrease by 1% relative to 2017 (Figures 26 and 27). This leads to an increase from $0,159/kWh to $0,127/kWh in LCOE offshore winds from 2010 to 2018 to 20%. In 2018, the full construction expenses for offshore wind projects built were 5% smaller than those in 2010. Innovative wind turbine technology, installations, and logistics have led to the reduction in the cost of electricity from offshore wind energy; economies of scale in O&M (from large turbines and offshore wind power clustering); and improved capacity factors from higher hub heights, better wind resources (despite increasing cost in deeper waters offshore wind energy), and larger rotor diameters (Figures 28–30).
Global weighted average total installed costs, offshore wind capacity factors, and LCOE, 2010–2018 [39, 40].
LCOE for commissioned offshore wind energy projects and global weighted average, 2000–2018 [39, 40].
Average distance from port and water depth for commissioned offshore WE projects, 2001–2018 [39, 40].
Turbine sizes for commissioned offshore WE projects and global weighted average, 2000–2018 [39, 40].
Total installed costs for commissioned offshore WE and global weighted average, 2000–2018 [39, 40].
In 2018, a total of 4.5% GW of global offshore wind power plants is mostly in Europe and China. Global average weighted LCOE offshore wind energy was 0.127 $per kWh, which was 1% below 2017 and 20% below the 2010 average. A further 4.5 GW of new offshore power was concentrated in China by 40% in 2018, with an important share of the UK capacity growth of approximately 29% and Germany of approximately 22%. The market is therefore limited to a small number of major players. In the coming years, projects will be implemented in North America and Oceania [39, 40].
The trend to larger turbines, which increases wind farm capacity and/or reduces the number of turbines required for a given capacity, has contributed to lower installation and project development costs. But the change to offshore wind farms in deeper waters away from ports has compensated for this decrease, to a higher or lesser extent-but often with a more stable and better wind regime. This has contributed to the rise of offshore wind farms and the global weighted average offshore wind turbines increased from 38 to 43% in 2010 to 43% in 2018. Meanwhile, the cost of O&M has been reduced with the optimization of the O&M strategies; preventive maintenance programs based on predictive failure rates analysis; and economies of scale in offshore wind energy service rather than in individual wind farms.
The offshore wind power sector remains relatively thin and LCOE declines have varied widely since 2010. LCOE fell by 14% from $0.156/kWh to $0.134/kWh in Europe, the biggest offshore wind energy deployment between 2010 and 2018 projects. Between 2010 and 2018, the largest drop was in Belgium, with LCOE falling from $0.195/kWh to $0.141/kWh. Between 2010 and 2018, there were 24% and 14% drops, with LCOE in Germany and the UK drop-offs of $0.125/kWh and $0.139/kWh in 2018, respectively. The LCOE decrease from $0.178/kWh to $0.106/kWh was 40% in Asia between 2010 and 2018. This was pushed by China, which has more than 95% of Asia’s offshore wind power systems. The LCOE in Japan has an estimated $0.20/kWh in contrast to China, as projects to date are low and may be better classified as demonstration projects.
Since 2010, total costs installed on offshore wind farms have decreased modestly. In view of the relatively low yearly capacity adds over a few years, a significant level of volatility exists in the total cost installed of the newly commissioned offshore wind farms. Between 2010 and 2018, the average global weighted installed cost for offshore wind power decreased by 5%, from $0.4572/kW to $0.4353/kW.
The general evolution in cost installations is based on a complex range of variables, with some causing costs to fall and others causing them to increase. Europe’s initial small-scale and logistical capacity and challenges as well as the shift to more offshore and more deepwater deployment have, in some cases, increased the cost of installation, foundation, and grid connection costs. In latest years, however, the sector has increased and some of these stresses have been reduced. At the same moment, turbine innovation, higher turbine ratings, more project development experience, and cost savings have contributed equally to the reduction of expenses.
Overall reductions could be around 12% in 2015 to 2025, taking into account the trend for larger turbines with higher hub heights and greater swing spaces, for the global average cost installed for onshore wind farms. This estimate falls within the range of 7% for the total installed costs, as identified by the updated onshore wind power curve and the IRENA Remap projections for 2030.
Figure 31 shows total installed cost reductions for onshore wind energy farms, 2015–2025. These account for 27% and 29%, respectively, of the total reduction in the global weighted average installed cost of onshore wind energy farms. Yet, the increased application of best practices in wind farm development by project developers and regulators could yield around one quarter of the total cost reduction. Overall, the global weighted average total installed cost for onshore wind energy could fall from around $1560/kW in 2015 to $1370/kW in 2025 [41].
Total installed cost reductions for onshore wind energy farms, 2015–2025 [41].
The combination of the technological and process innovations in the development and operation of offshore wind energy farms could potentially see the average cost of electricity from these fall by around 35% from around $0.17/kWh in 2015 to $0.11/kWh in 2025 (Figure 32). This represents a central estimate of the cost reduction potential [43].
Offshore wind energy levelized cost of electricity reduction potential, 2015–2025 [42].
By the year 2025, the LCOE of offshore wind farms could drop by 35% due to the deployment of advanced large offshore wind turbines. Future wind farms are going to have higher capacity factors while financial institutions are developing in a larger industry. The decrease in LCOE will also result from lower installation and building costs and more efficient project development practices [39, 40].
Reductions of total installed costs for offshore wind farms account for about 24% of LCOE’s overall reduction potential and a 57% decrease in construction and installation costs. Innovations regarding turbine reliability, O&M strategies, and prevention should significantly improve the LCOE as unplanned installation needs have been reduced. The reduction in unplanned service could account for about 17% of the total cost-cutting potential for LCOE between 2015 and 2025 [43].
The reduction in planned operations and maintenance expenditures will account for 6% of the total cost reduction potential. In total, the O&M $0.018/kWh decrease will bring down the total share of LCOE from 30% today to 23% by 2025. The capacity factors of offshore wind farms will be enhanced by technological developments in turbine design and manufacturing, as well as control strategies and enhanced efficiency. This is roughly 8% of the complete decrease in LCOE [44].
Combination of current technological trends, increased availability due to enhanced reliability and innovation in turbine control, improved efficiency of blades, and enhanced growth of micrositting and the growth of wind farms could result in a worldwide average weighted capacity factor rising from 27% in 2015 to 32% by 2025 [42].
At a global level, the average contribution of increased capacity factors would be to reduce the global weighted average LCOE by around $0.01/kWh. There are, however, a variety of variables that may lead to a higher or lower real weighted average capacity factor value in 2022 (represented in Figure 33). This is due to uncertainty about the pace of growth of hub heights and rotor diameters in main markets, such as India and China, which significantly influence the globally weighted average adoption rate for bigger machinery. The trends for the quality of the resources for wind farms up to 2025 may remain as the biggest uncertainty [35].
Global weighted average onshore wind energy farm, 1983–2022 [35].
Onshore wind energy is now a highly competitive source of new power generation capacity, with medium- and even low-wind speed sites now available economically. The potential improvement in capacity factors by 2025 could result in reducing the global weighted average LCOE of onshore wind by around $0.01/kWh, or 49% of the total projected reduction in onshore wind LCOE of $0.018/kWh as the global weighted average LCOE falls to $0.053/kWh by 2025. Figure 34 shows levelized cost of electricity of onshore wind, 1995–2025 [35, 45].
Levelized cost of electricity of onshore wind, 1995–2025 [35, 45].
Reductions in total installed costs, driven mostly by cost reductions for towers, turbines, and wind farm development, contribute around $0.006/kWh, which means 34% of the total reduction in the LCOE. Improvements in turbine reliability, improved predictive maintenance schedules, and the more widespread application of best practice O&M strategies reduce the LCOE by around $0.003/kWh by 2025, or 17% of the total reduction [28].
Reducing the weighted average capital cost of offshore wind energy project from the current 8–10% to an average of around 7.5% will account for around 43% of the total potential reduction in the LCOE of offshore wind energy by 2025. Figure 35 presents the LCOE historical evolution of offshore wind in 2010 to 2015 for the data available in the IRENA Renewable Cost Database. It also shows offshore wind LCOE projection evolution to 2025. Offshore wind energy projects in tidal or near-shore locations could see costs fall to as little as $0.08/kWh by 2025 [17, 46, 47].
Historical offshore wind energy cost by projections to 2025 [35].
Wind energy market is set to grow subject to effective economic feasibility across remote areas when compared with grid-connected networks. Government incentives toward rural electrification coupled with growing adoption of microgrid networks will further boost the business landscape.
Low installation costs along with government incentives including net metering and feed in tariff will positively impact the on-grid wind energy market share. Rapid expansion of utility-based electricity networks to cater growing energy demand across suburban areas will further complement the industry’s growth.
Growing demand for renewable energy coupled with rising awareness toward environmental conservation will stimulate the global market size. National targets for clean energy along with ongoing depletion of fossil fuel reserves will further propel the industry’s growth. In 2016, France set its target of renewable energy capacity to 70 GW by 2023 including 23 GW from onshore wind.
Declining project development cost subject to fall in component prices favored by government incentives will stimulate the market share. In addition, utility scale installations tend to bear lower operational costs when compared to auxiliary generation technologies. Rapid technological enhancements in line with the integration of smart monitoring and sensing units across turbines have reduced overall system losses. Therefore, economical cost structure in addition to improved efficiencies will positively influence the industry landscape.
Cys2His2 zinc finger (ZF-Cys2His2) proteins have been found in a number of plants including Arabidopsis, cotton, rice and wheat. The ZF-Cys2His2 is built by two Cys and two His residues. This structure provides a conservative motif together with Zn2+. The core has an 𝛼-helix and an anti-parallel double-stranded 𝛽-sheet so that the ZF-Cys2His2 proteins have stable and relatively independent protein domains. ZF-Cys2His2 proteins form a relatively wide family of transcriptional factors in plants. Current studies have revealed that ZF-Cys2His2 proteins operate as important transcriptional regulators in plant responses to a large broad of stress conditions (like drought, excessive light, extreme temperatures, oxidative stress, salinity, and silique shattering) [1]. Over-expression of some ZF-Cys2His2 genes has led to an increased tolerance to various stresses and activation of some stress-related genes [2]. Abscisic acid (ABA) is an important phytohormone involved in regulating stress responses and plant growth and development. In addition, ABA is involved in many important processes of plants such as stomatal closure, leaf senescence, cuticle wax accumulation, bud dormancy, osmotic regulation, seed germination and growth inhibition. Since the ABA regulates downstream responses to biotic and abiotic environmental changes through both transcriptional and post-transcription mechanisms, the responses of ABA and ZF-Cys2His2 proteins to various stresses are also mentioned here [3].
The world population has exceeded 7.5 billion. To supply the nutritional needs of this population, it is important to know the proteins and genes related to the response of plants to stress conditions. In this context, to increase the durability and yield of plants, transgenic plant researches are carried out. And the most commonly focused proteins in these researches are ZF-Cys2His2 proteins. For this reason, in this chapter, the changes occurring in ZF-Cys2His2 proteins with transgenic methods and various stress conditions and what these changes bring to the plant have been discussed (Table 1).
The kind of C2H2 zinc finger proteins | The kind of stress | References |
---|---|---|
AtSIZ1 | Salt stress | [4] |
GmZAT4 | Salt stress | [5] |
ZAT7 | Salt stress | [6] |
AhZFP1 | Salt stress | [7] |
ZFP252 | Salt stress | [8] |
ZmZF1 | Salt stress | [9] |
DST | Salt stress | [10] |
GhZFP1 | Salt stress | [11] |
SIZF3 | Salt stress | [12, 13] |
ZFP179 | Salt stress | [14] |
ZjZFN1 | Salt and cold stress | [15] |
TaZNF | Salt stress | [16] |
SICZFP1 | Salt and cold stress | [17] |
TaDi19A | Salt osmotic and cold stress | [18] |
AtDi19-3 | Salt and drought stress | [19] |
AZF2 STZ | Salt, cold and drought stress | [20] |
GsZFP1 | Cold and drought stress | [21] |
ZFP245 | Cold and drought stress | [22] |
GbZF1 | Cold stress | [23] |
PeSTZ1 | Cold and oxidative stress | [24] |
SCOF-1 | Cold stress | [25] |
OsCTZFP8 | Cold stress | [26] |
ZAT12 ZAT7 | Oxidative stress | [27] [28] |
ZFP36 | Oxidative stress | [29] |
GsZFP1 | Cold stress | [21] |
ZAT18 | Oxidative and drought stress | [30] |
OsMSR15 | Drought stress | [31] |
VTA2 | Oxidative and fungal stress | [32] |
MtSTOP | pH and aluminum stress | [33] |
ART1 | Aluminum stress | [34] |
C2H2 zinc finger proteins related with plant stress.
One of the stress factors is salt. Plants are affected with development and yield from salt stress. Transgenic plant studies in combating salt stress have become one of the most important issues of our century and ZnF proteins attract a lot of attention in this context. Salt application has induced expression of AtSIZ1. The germination energy, index and rate, cotyledon growth rate and root length were found to be importantly higher than wild-type in lines where AtSIZ1 was over-expressed under various stress applications at the germination stage. However, these indicators decreased significantly in AtSIZ1 mutants. Higher proline, potassium and soluble sugar, lower sodium, malondialdehyde, sodium/potassium ratios were observed in the lines where over-expression occurred in the mature seedling stage compared to the wild-type. Stress-related marker genes such as AtGSTU5, AtP5CS1, COR15A, RD29A, RD29B and SOS1 have been found to be over-expressed in lines with an excessive expression than those of wild-type and mutant under salt application. Due to the results AtSIZ1 functions in maintaining both ionic homeostasis and osmotic balance to improve salt tolerance in Arabidopsis [4]. It has also been shown that GmZAT4 plays a significant role in both polyethylene glycol and sodium chloride stresses tolerance and ABA responses in both A. thaliana and soybean. Over-expression of GmZAT4 increased the tolerance of A. thaliana to 20% polyethylene glycol and 150 mM sodium chloride and increased the germination rate after 1 or 2 μM ABA administration [5]. The EAR motif for ZAT7 has a significant role of defense response to salt stress in Arabidopsis. Suppressing growth and being more tolerant to salt stress have observed in transgenic Arabidopsis plants expressing ZF-Cys2His2 protein ZAT7. Mutation or deletion of ZAT7’s EAR motif did not affect growth suppression, but eliminated salt tolerance. These results showed that ZAT7’s EAR motif is important in increasing salt stress tolerance of the transgenic plants. On the other hand, the EAR motif appears not to be involved in suppressing transgenic plants growth. Other analyzes of ZAT7 using RNAi lines suggested that ZAT7 functions as a suppressor of the defense response’s suppressor [6]. Semi-quantitative RT-PCR studies have revealed that AhZFP1 expression is stimulated by salt stress in the peanut root, stem and leaves [7]. Excessive expression of ZFP252 in rice increased the amount of free proline, soluble sugar, stress defense genes expression and improved the plant’s response to both salt and drought stress. This result showed that ZFP252 plays a significant role in both salt and drought stresses of rice plant. And it is also useful for genetically modified plants to increase both salt and drought stresses tolerance [8]. ZmZF1 transcripts are strongly stimulated by salt stress. It is also stimulated by drought stress and ABA. Over-expression of ZmZF1 under cauliflower mosaic virus 35S promoter control increased both salt and drought tolerance in young seedling phase of transgenic Arabidopsis [9]. Stomata control the absorption of carbon-dioxide and improve water use efficiency. Thus, it plays an important role in abiotic stress tolerance. H2O2, stimulates stomatal closure, is an important signaling molecule. Another ZFP, DST is directly organizing genes related to H2O2 homeostasis. Therefore, the stomatal closure is regulated negatively. The loss of DST function decreases stomatal density and increases stomatal closure. As a result, increased salt and drought tolerance appears in the rice plant. These findings provide a different perspective on the abiotic stress tolerance mechanism associated with stomata and also a significant genetic engineering approach in developing abiotic stress tolerance [10]. GhZFP1 over-expression in transgenic tobacco plant increased salt stress tolerance and Rhizoctonia solani resistance. This indicates that the plant can act as a significant regulator in responding to biotic and abiotic stress [11]. Ascorbic acid supports stress tolerance by breaking down reactive oxygen species (ROS). ROS degradation capacity of ascorbic acid is increased in plants that over-expressed SIZF3. This has increased the salt tolerance of plants. Findings in the studies showed that SIZF3 simultaneously supports both the collection of ascorbic acid and improves the plant salt tolerance response [12]. ZFP3 expression level was found to be highly suppressed by mannitol, sodium chloride and sucrose. The mutant Arabidopsis exhibited a reduced tolerance condition in terms of ZFP3. Excessive expression of ZFP3 reduced stress-related genes (such as AtP5CS1, KIN1, RD22 and RD29B) expression. These results showed that ZFP3 is important in osmotic and salt stress response [13]. Over-expression of ZFP179 increased salt tolerance in rice plant. And the transgenic seedlings showed hypersensitive activity to exogenic ABA. Increased amount of soluble sugars and free proline under salt stress have been observed in transgenic plants. In ZFP179 transgenic rice plant the oxidative stress tolerance, ability to break down ROS and expression level of stress-related genes such as OsDREB2A, OsLea3, OsP5CS and OsProT increased under salt stress. These findings showed that ZFP179 plays an important role in salt stress in plants and is useful for developing transgenic plants that are highly tolerant to salt stress [14]. Expression of ZjZFN1 was found to be increased by ABA, cold and salt. ZjZFN1 expression improved seed germination, plant adaptation to salt stress by growth under salt stress and increased green cotyledons in Arabidopsis thaliana. Physiological and transcriptional analyzes suggest that ZjZFN1 can affect the collection of ROS and regulate the transcription of genes associated with salt response. ZjZFN1 over-expressing plants RNA sequence analysis revealed that ZjZFN1 could function as a transcriptional activator in the regulation of stress response pathways such as alpha-linoleic acid metabolism, phenyl alanine metabolism and phenylpropanoid biosynthesis pathways. The results showed that ZjZFN1 plays an important role in the formation of salt stress response in plants [15]. In another study, it has been proven that TaZnF, a ZF-Cys2His2 protein, significantly improves salt tolerance of transgenic Arabidopsis. Various physiological indexes of transgenic plants showed improvement under salt stress compared to the control group. The noninvasive micro-test (NMT) technique showed the excretion of Na is significantly accomplished by the root end of the transgenic Arabidopsis. TaZnF is mainly found in the nucleus and has demonstrated transcriptional activity [16].
GsZFP1 was found to be stimulated by ABA (100 μM), cold (4°C) and salt (200 mM sodium chloride) in leaves and by ABA (100 μM), cold (4°C) and drought (30% PEG 6000) in root. It was found that over-expression of GsZFP1 in transgenic Arabidopsis resulted in higher tolerance in cold and drought stress and a reduced rate of water loss. Over-expression of GsZFP1 was found to increase the expression of CBF1, CBF2, CBF3, COR47, NCED3 and RD29A stress response genes in response to cold stress, and increased expression of NCED3, P5CS, RAB18, RD22 and RD29A in response to drought stress [17]. It was revealed by the semi-quantitative RT-PCR experiment that ZFP245 was strongly stimulated after 6 hours of cold and drought stress and then decreased to normal level. ZFP245 did not occur by the application of high salt or ABA [18]. High degree of aggregation of GmZF1 mRNAs stimulated by exogenic ABA suggested that GmZF1 was involved in the ABA-dependent signal transduction pathway. GmZF1 over-expression increased expression of the cold-induced cor6.6 gene by recognizing the likely protein DNA binding site. This suggests that GbZF1 of soybean can improve Arabidopsis cold stress tolerance by regulating cold regulatory genes expression in transgenic Arabidopsis [19]. PeSTZ1 increases freezing tolerance through organizing the breakdown of ROS by directly regulating PeAPX. PeSTZ1 is preferably expressed in young roots. This ZFP has been upregulated in cold applications. PeSTZ1 functions as a transcriptional activator to increase cold tolerance. PeSTZ1 upregulation decreases malondialdehyde and ROS aggregation by activating antioxidant systems. This is thought to be achieved through direct regulation of PeAPX2 expression [20]. SCOF-1 transcription is particularly stimulated by ABA and low temperature, but not neither with dehydration nor high salt. SCOF-1 over-expression stimulated the expression of genes regulated by cold and improved the cold tolerance of tobacco plants and non-acclimated transgenic Arabidopsis. SCOF-1 can function as a positive regulator of COR gene expression regulated by ABRE through protein-protein interaction and thus can improve the cold tolerance of plants [21]. SICZFP1 is strongly stimulated by cold stress, dehydration and salt stress, but not by ABA. SICZFP1 over-expression in transgenic rice and Arabidopsis plants increased expression of cold-response-related genes. This suggests that SICZFP1 plays an important role in the response of plants to cold stress [22]. TaDi19A has been found to be expressed in both leaves and roots of wheat seedlings grown under stress-free conditions, but is significantly upregulated in salt, osmotic and cold stress conditions, or in hormone applications such as stress-related ethylene and ABA. Heterologous over-expression of TaDi19A in Arabidopsis thaliana increased salinity, mannitol and ABA stress sensitivity during the germination of plants. Root elongation in these transgenic lines showed less salinity stress tolerance and less ethephon sensitivity. The expression of ABA signal path genes such as ABA1, ABF3, ERD15, RAB18 and SOS2 (SOS pathway) have changed in transgenic plants [23]. Transgenic rice expressing excessive OsCTZFP8 exhibited cold-tolerant phenotypes with significantly higher pollen fertility and seed placement rates than non-transgenic control plants. Yield of lines expressing OsCTZFP8 per plant was significantly higher (p < 0.01) than non-transgenic control plants under cold application. This result shows that OsCTZFP8 is a C2H2 zinc finger transcription factor that plays an important role in cold tolerance in rice [24].
Cytosolic Apx1, ascorbate peroxidase 1, is an important H2O2-removing enzyme in plants. Both WRKY transcription factor (WRKY25) and two ZnF proteins (ZAT12 and ZAT7) expressions have increased in Apx1 gene suppressed plants that grown under the controlled conditions. When cells were exposed to oxidative stress, heat shock, and injury, the WRKY25, ZAT7 and ZAT12 expressions increased together. However, light and osmotic stresses did not increase them. Transgenic plants expressing ZAT7 and ZAT12 were able to tolerate oxidative stress. WRKY25, ZAT7 or ZAT12 expression in transgenic plants did not increase Apx1 expression under controlled conditions. Plants without ZAT12 could not increase Apx1, WRKY25 and ZAT7 expressions in response to H2O2, so that plants without ZAT12 have become more sensitive to H2O2 applications than normal plants. It has been revealed that ZAT12 is an important component of oxidative stress signal transmission in Arabidopsis and needs Apx1, WRKY25 and ZAT7 during oxidative stress [25]. Transcription profiles of plants that are exposed to H2O2 stress, expressing excessive ZAT12 and normal have revealed that the basic expression of ZAT12 in Arabidopsis results in increased expression in oxidative and mild stress transcripts. Thus, ZAT12 has been shown to play a key role in reactive oxygen and abiotic stress signal in Arabidopsis [26]. ABA application stimulated the increase of both ascorbate peroxidase and superoxide dismutase activities and OsMPK1, OsMPK5 and ZFP182 expressions in rice plant leaves. It has been noted that ABA-induced antioxidant defense needs ZFP182. And the ZFP182 expression is regulated by rice MAPKs in ABA signaling [27]. ABA-activated mitogen active protein kinases (MAPKs) and ABA-induced H2O2 production have been shown to regulate ZFP36 expression in ABA signaling, on the other hand, NADPH oxidase genes expression regulated by ZFP36, H2O2 production and the expression of OsMPK genes in ABA signaling. It has been noted that rice plants requires to ZFP36 for tolerance of both water stress and oxidative stresses, for ABA-induced antioxidant defense and for cross-interaction between NADPH oxidase, H2O2 and MAPK in the ABA signal [28].
Over-expression of ZAT18 has increased drought tolerance in Arabidopsis while ZAT18 mutation reduced plant tolerance to drought stress. It was found that ZAT18 is expressed in stems and herbal rosette leaves. Sub-cellularly, it has been noted that ZAT18 protein is mainly localized in the nucleus. Overexpressed ZAT18 plants exhibited higher leaf water content, lower ROS content, higher antioxidant enzyme activity compared to wild-type after drought application. RNA sequencing analysis showed that the 423 and 561 genes were transcriptionally regulated by the ZAT18 transgene before and after drought application, respectively. Path enrichment analysis showed that hormone metabolism, stress and signal were over represented in ZAT18 overexpression lines. Various stress-sensitive genes (including COR47, ERD7, LEA6 and RAS1) and hormone signal transduction-related genes (including JAZ7 and PYL5) have been identified as target genes of ZAT18. Taken together, ZAT18 acts as a positive regulator and plays an important role in the plant’s response to drought stress [29]. Di19 family, protein 19 induced by drought, is a ZF-Cys2His2 protein. AtDi19-3 is a transcription activator. In plants, AtDi19-3 is significantly stimulated by ABA, mannitol and sodium chloride. Mutation of AtDi19-3 increased tolerance of plants against ABA, drought and high salinity. Excessive expression of AtDi19-3 caused drought, salt and ABA sensitivity. Seed germination and cotyledon greening rates were higher in the Atdi19-3 mutant under the condition of applying sodium chloride, mannitol or ABA. But this data in transgenic plants, in which AtDi19-3 was over-expressed, was lower than in normal plants. Although the roots of AtDi19-3 mutant seedings were longer, the roots of AtDi19-3 over-expressing transgenic seedlings were shorter than in normal plants. Although the chlorophyll and proline contents in the AtDi19-3 mutant were higher, these data of AtDi19-3 over-expressed seedlings were lower than that of normal plants. While the AtDi19-3 mutant tolerates more droughts, transgenic plants that over-express AtDi19-3 showed more susceptibility to drought than normal plants. In addition, ABA related genes expression signaling pathway varied in the Atdi19-3 mutant and in over-expressing plants of AtDi19-3 [30]. AZF2 and STZ expression has been shown to be strongly stimulated by ABA, cold and high salt stresses, and dehydration. Transgenic Arabidopsis, which over-expresses STZ, has become tolerant to growth delay and drought stress. In that study, it was suggested that STZ and AZF2 act as transcriptional suppressors on increased stress tolerance during the growth delay [31]. The expression of OsMSR15 in Arabidopsis provides it with drought resistance. Hypersensitive activity to exogenic ABA in this transgenic plant growth during sprouting and seed germination. Transgenic plants also showed less electrolyte leakage, high levels of free proline and increased expressions of a number of stress sensitive genes (such as LEA3, DREB1A, P5CS1 and RD29A) under drought stress. The results showed that OsMSR15 is a significant regulator that plays a role against plant drought stress [32]. In another study, over-expression of TaZFP34 has been shown to have a negative effect on yield performance and mimic the negative effect of drought stress on wheat productivity [33]. STF-2 is also a ZF-Cys2His2 protein. And its transgenically over-expression increased significantly drought tolerance in transgenic tobacco. The results showed that STF-2 plays a significant role in the response of soybean’s to drought stress [34].
VTA2 contains the ZF-Cys2His2 proteins. It controls H2O2 detoxification and host plant root infection. And it is an important regulator of fungal pathogenesis [35]. StZFP2 is a Q-type C2H2 zinc finger transcription factor induced by injury and invasion. Previous studies show that Q-type C2H2 TFs are involved in responding to stress and may be protective against drought, salinity, or pathogenic infections when overexpressed. The increase in StPIN2, a classic marker for insect defense in potatoes, was consistent with decreases in larval weight gain [36]. MtSTOP is also a C2H2 zinc finger protein and regulates Medicago’s response to H+ and Al3+ toxicity. MtSTOP is expressed in root, stem, nodule and other tissues. MtSTOP is upregulated with acidic pH and Al3+ stress or a combination of both. Growth or morphology in mtSTOP mutants did not change under normal conditions; however, mutant seedlings are characterized by significantly reduced root elongation and are sensitive to low pH (pH 4.3) and Al3+ stress. Compared to its control, more Al accumulated in the mutant roots and citric acid secreted from the mutant roots was significantly lower in both normal and Al stress conditions. This indicates that MtSTOP hair roots synthesize more citric and malic acids [37]. Regarding aluminum, Rice (Oryza sativa) is one of the aluminum tolerant species among small grain cereals. This type of aluminum tolerance occurs with many genes involved in the detoxification of Al at the cellular level. These findings emerged with ART1. ART1 is a C2H2 type zinc finger transcription factor and regulates the expression of 31 genes as down-stream [38].
The authors declare no conflict of interest.
This work was supported by the Selcuk University and Dicle University.
IntechOpen’s team of Scientific Advisors supports the publishing team by providing editorial and academic input and ensuring the highest quality output of free peer-reviewed articles. The Boards consist of independent external collaborators who assist us on a voluntary basis. Their input includes advising on new topics within their field, proposing potential expert collaborators and reviewing book publishing proposals if required. Board members are experts who cover major STEM and HSS fields. All are trusted IntechOpen collaborators and Academic Editors, ensuring that the needs of the scientific community are met.
",metaTitle:"STM Publishing and Free Peer Reviewed Articles | IntechOpen",metaDescription:"IntechOpen’s scientific advisors support the STM publishing team by offering their editorial input, ensuring a consistent output of free peer reviewed articles.",metaKeywords:null,canonicalURL:"scientific-advisors",contentRaw:'[{"type":"htmlEditorComponent","content":"\\n"}]'},components:[{type:"htmlEditorComponent",content:'
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"8"},books:[{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Calorimetry",subtitle:null,isOpenForSubmission:!0,hash:"bb239599406f0b731bbfd62c1c8dbf3f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10697",title:"Raman Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"6e2bfc19cc9f0b441890f24485b0de80",slug:null,bookSignature:"Dr. Marianna V. Kharlamova",coverURL:"https://cdn.intechopen.com/books/images_new/10697.jpg",editedByType:null,editors:[{id:"285875",title:"Dr.",name:"Marianna V.",surname:"Kharlamova",slug:"marianna-v.-kharlamova",fullName:"Marianna V. Kharlamova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10699",title:"Foams",subtitle:null,isOpenForSubmission:!0,hash:"9495e848f41431e0ffb3be12b4d80544",slug:null,bookSignature:"Dr. Marco Caniato",coverURL:"https://cdn.intechopen.com/books/images_new/10699.jpg",editedByType:null,editors:[{id:"312499",title:"Dr.",name:"Marco",surname:"Caniato",slug:"marco-caniato",fullName:"Marco Caniato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10700",title:"Titanium Dioxide",subtitle:null,isOpenForSubmission:!0,hash:"d9448d83caa34d90fd58464268c869a0",slug:null,bookSignature:"Dr. Hafiz Muhammad Ali",coverURL:"https://cdn.intechopen.com/books/images_new/10700.jpg",editedByType:null,editors:[{id:"187624",title:"Dr.",name:"Hafiz Muhammad",surname:"Ali",slug:"hafiz-muhammad-ali",fullName:"Hafiz Muhammad Ali"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10701",title:"Alkenes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f6dd394ef1ca2d6472220de6a79a0d9a",slug:null,bookSignature:"Dr. Reza Davarnejad",coverURL:"https://cdn.intechopen.com/books/images_new/10701.jpg",editedByType:null,editors:[{id:"88069",title:"Dr.",name:"Reza",surname:"Davarnejad",slug:"reza-davarnejad",fullName:"Reza Davarnejad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11072",title:"Modern Sample Preparation Techniques",subtitle:null,isOpenForSubmission:!0,hash:"38fecf7570774c29c22a0cbca58ba570",slug:null,bookSignature:"Dr. Massoud Kaykhaii",coverURL:"https://cdn.intechopen.com/books/images_new/11072.jpg",editedByType:null,editors:[{id:"348186",title:"Dr.",name:"Massoud",surname:"Kaykhaii",slug:"massoud-kaykhaii",fullName:"Massoud Kaykhaii"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:8},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1352",title:"Energy Engineering",slug:"technology-environmental-engineering-energy-engineering",parent:{title:"Environmental Engineering",slug:"technology-environmental-engineering"},numberOfBooks:5,numberOfAuthorsAndEditors:67,numberOfWosCitations:165,numberOfCrossrefCitations:39,numberOfDimensionsCitations:84,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"technology-environmental-engineering-energy-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7633",title:"Energy Policy",subtitle:null,isOpenForSubmission:!1,hash:"7b3214f2f9bbd4ca03ca927267b13cbf",slug:"energy-policy",bookSignature:"Tolga Taner",coverURL:"https://cdn.intechopen.com/books/images_new/7633.jpg",editedByType:"Edited by",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8496",title:"Zero and Net Zero Energy",subtitle:null,isOpenForSubmission:!1,hash:"55f42cf4f87acf2e1ade4a7b5e9835a4",slug:"zero-and-net-zero-energy",bookSignature:"Getu Hailu",coverURL:"https://cdn.intechopen.com/books/images_new/8496.jpg",editedByType:"Edited by",editors:[{id:"250634",title:"Ph.D.",name:"Getu",middleName:null,surname:"Hailu",slug:"getu-hailu",fullName:"Getu Hailu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6500",title:"Low Carbon Transition",subtitle:"Technical, Economic and Policy Assessment",isOpenForSubmission:!1,hash:"637de6ab7049f98e96b610f7b28a3d63",slug:"low-carbon-transition-technical-economic-and-policy-assessment",bookSignature:"Valter Silva, Matthew Hall and Inês Azevedo",coverURL:"https://cdn.intechopen.com/books/images_new/6500.jpg",editedByType:"Edited by",editors:[{id:"187136",title:"Dr.",name:"Valter",middleName:null,surname:"Silva",slug:"valter-silva",fullName:"Valter Silva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6525",title:"Energy Systems and Environment",subtitle:null,isOpenForSubmission:!1,hash:"bf60dee49589a07a71b7f43f338dd2fd",slug:"energy-systems-and-environment",bookSignature:"Pavel Tsvetkov",coverURL:"https://cdn.intechopen.com/books/images_new/6525.jpg",editedByType:"Edited by",editors:[{id:"10023",title:"Dr.",name:"Pavel",middleName:"V.",surname:"Tsvetkov",slug:"pavel-tsvetkov",fullName:"Pavel Tsvetkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3704",title:"New Trends in Technologies",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"new-trends-in-technologies",bookSignature:"Blandna Ramov",coverURL:"https://cdn.intechopen.com/books/images_new/3704.jpg",editedByType:"Edited by",editors:[{id:"2518",title:"doc. PhD.",name:"Blandína",middleName:null,surname:"Šramová",slug:"blandina-sramova",fullName:"Blandína Šramová"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"9113",doi:"10.5772/7588",title:"Photocatalytic Processes on the Oxidation of Organic Compounds in Water",slug:"photocatalytic-processes-on-the-oxidation-of-organic-compounds-in-water",totalDownloads:5116,totalCrossrefCites:2,totalDimensionsCites:13,book:{slug:"new-trends-in-technologies",title:"New Trends in Technologies",fullTitle:"New Trends in Technologies"},signatures:"C. J. Philippopoulos and M. D Nikolaki",authors:null},{id:"61197",doi:"10.5772/intechopen.76023",title:"Diversifying Electricity Customer Choice: REVing Up the New York Energy Vision for Polycentric Innovation",slug:"diversifying-electricity-customer-choice-reving-up-the-new-york-energy-vision-for-polycentric-innova",totalDownloads:656,totalCrossrefCites:8,totalDimensionsCites:9,book:{slug:"energy-systems-and-environment",title:"Energy Systems and Environment",fullTitle:"Energy Systems and Environment"},signatures:"Joseph Nyangon and John Byrne",authors:[{id:"225597",title:"Dr.",name:"Joseph",middleName:null,surname:"Nyangon",slug:"joseph-nyangon",fullName:"Joseph Nyangon"},{id:"245796",title:"Prof.",name:"John",middleName:null,surname:"Byrne",slug:"john-byrne",fullName:"John Byrne"}]},{id:"59860",doi:"10.5772/intechopen.74039",title:"Bioelectrochemical Systems for Energy Valorization of Waste Streams",slug:"bioelectrochemical-systems-for-energy-valorization-of-waste-streams",totalDownloads:597,totalCrossrefCites:3,totalDimensionsCites:8,book:{slug:"energy-systems-and-environment",title:"Energy Systems and Environment",fullTitle:"Energy Systems and Environment"},signatures:"María Isabel San-Martín, Daniel David Leicester, Elizabeth Susan\nHeidrich, Raúl Marcos Alonso, Raúl Mateos and Adrián Escapa",authors:[{id:"228404",title:"Dr.",name:"Adrián",middleName:null,surname:"Escapa",slug:"adrian-escapa",fullName:"Adrián Escapa"},{id:"239957",title:"MSc.",name:"María Isabel",middleName:null,surname:"San Martín Becares",slug:"maria-isabel-san-martin-becares",fullName:"María Isabel San Martín Becares"},{id:"239958",title:"Dr.",name:"Elizabeth",middleName:null,surname:"Heidrich",slug:"elizabeth-heidrich",fullName:"Elizabeth Heidrich"},{id:"239959",title:"MSc.",name:"Raúl Marcos",middleName:null,surname:"Alonso García",slug:"raul-marcos-alonso-garcia",fullName:"Raúl Marcos Alonso García"},{id:"239960",title:"MSc.",name:"Raúl",middleName:null,surname:"Mateos González",slug:"raul-mateos-gonzalez",fullName:"Raúl Mateos González"},{id:"239987",title:"MSc.",name:"Daniel",middleName:null,surname:"Leicester",slug:"daniel-leicester",fullName:"Daniel Leicester"}]}],mostDownloadedChaptersLast30Days:[{id:"69228",title:"Advances in Passive Cooling Design: An Integrated Design Approach",slug:"advances-in-passive-cooling-design-an-integrated-design-approach",totalDownloads:1049,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"zero-and-net-zero-energy",title:"Zero and Net Zero Energy",fullTitle:"Zero and Net Zero Energy"},signatures:"Ahmed A.Y. Freewan",authors:[{id:"284866",title:"Dr.",name:"Ahmed A.Y.",middleName:null,surname:"Freewan",slug:"ahmed-a.y.-freewan",fullName:"Ahmed A.Y. Freewan"}]},{id:"65521",title:"Nuclear Energy Policy after the Fukushima Nuclear Accident: An Analysis of “Polarized Debate” in Japan",slug:"nuclear-energy-policy-after-the-fukushima-nuclear-accident-an-analysis-of-polarized-debate-in-japan",totalDownloads:1144,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"energy-policy",title:"Energy Policy",fullTitle:"Energy Policy"},signatures:"Tatsujiro Suzuki",authors:[{id:"277612",title:"Prof.",name:"Tatsujiro",middleName:null,surname:"Suzuki",slug:"tatsujiro-suzuki",fullName:"Tatsujiro Suzuki"}]},{id:"58145",title:"A Value Chain Analysis for Bioenergy Production from Biomass and Biodegradable Waste: A Case Study in Northern Norway",slug:"a-value-chain-analysis-for-bioenergy-production-from-biomass-and-biodegradable-waste-a-case-study-in",totalDownloads:838,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"energy-systems-and-environment",title:"Energy Systems and Environment",fullTitle:"Energy Systems and Environment"},signatures:"Hao Yu, Elisabeth Román and Wei Deng Solvang",authors:[{id:"225415",title:"M.Sc.",name:"Hao",middleName:null,surname:"Yu",slug:"hao-yu",fullName:"Hao Yu"},{id:"225417",title:"Prof.",name:"Wei Deng",middleName:null,surname:"Solvang",slug:"wei-deng-solvang",fullName:"Wei Deng Solvang"},{id:"231044",title:"Prof.",name:"Elisabeth",middleName:null,surname:"Román",slug:"elisabeth-roman",fullName:"Elisabeth Román"}]},{id:"61197",title:"Diversifying Electricity Customer Choice: REVing Up the New York Energy Vision for Polycentric Innovation",slug:"diversifying-electricity-customer-choice-reving-up-the-new-york-energy-vision-for-polycentric-innova",totalDownloads:656,totalCrossrefCites:8,totalDimensionsCites:9,book:{slug:"energy-systems-and-environment",title:"Energy Systems and Environment",fullTitle:"Energy Systems and Environment"},signatures:"Joseph Nyangon and John Byrne",authors:[{id:"225597",title:"Dr.",name:"Joseph",middleName:null,surname:"Nyangon",slug:"joseph-nyangon",fullName:"Joseph Nyangon"},{id:"245796",title:"Prof.",name:"John",middleName:null,surname:"Byrne",slug:"john-byrne",fullName:"John Byrne"}]},{id:"9118",title:"Online Rotor Time Constant Estimator for Induction Machines with Optimum Flux",slug:"online-rotor-time-constant-estimator-for-induction-machines-with-optimum-flux",totalDownloads:4059,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-trends-in-technologies",title:"New Trends in Technologies",fullTitle:"New Trends in Technologies"},signatures:"Said Grouni, Rachid Ibtiouen, Madjid Kidouche and Omar Touhami",authors:null},{id:"59791",title:"Energy Resources in Agriculture and Forestry: How to be Prepared for the Internet of Things (IoT) Revolution",slug:"energy-resources-in-agriculture-and-forestry-how-to-be-prepared-for-the-internet-of-things-iot-revol",totalDownloads:481,totalCrossrefCites:4,totalDimensionsCites:6,book:{slug:"energy-systems-and-environment",title:"Energy Systems and Environment",fullTitle:"Energy Systems and Environment"},signatures:"Cleonilson Protasio de Souza and Orlando Baiocchi",authors:[{id:"228586",title:"Dr.",name:"Cleonilson",middleName:"Protasio",surname:"Souza",slug:"cleonilson-souza",fullName:"Cleonilson Souza"},{id:"228587",title:"Dr.",name:"Orlando",middleName:null,surname:"Baiocchi",slug:"orlando-baiocchi",fullName:"Orlando Baiocchi"}]},{id:"61655",title:"QGreen Low-Carbon Technology: Cooling Greenhouses and Barns Using Geothermal Energy and Seawater Bittern Desiccant",slug:"qgreen-low-carbon-technology-cooling-greenhouses-and-barns-using-geothermal-energy-and-seawater-bitt",totalDownloads:492,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"low-carbon-transition-technical-economic-and-policy-assessment",title:"Low Carbon Transition",fullTitle:"Low Carbon Transition - Technical, Economic and Policy Assessment"},signatures:"Esam Elsarrag and Yousef Alhorr",authors:[{id:"185960",title:"Dr.",name:"Esam",middleName:null,surname:"Elsarrag",slug:"esam-elsarrag",fullName:"Esam Elsarrag"},{id:"186304",title:"Prof.",name:"Yousef",middleName:null,surname:"Alhorr",slug:"yousef-alhorr",fullName:"Yousef Alhorr"}]},{id:"59590",title:"Biochar Derived from Agricultural Waste Biomass Act as a Clean and Alternative Energy Source of Fossil Fuel Inputs",slug:"biochar-derived-from-agricultural-waste-biomass-act-as-a-clean-and-alternative-energy-source-of-foss",totalDownloads:613,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"energy-systems-and-environment",title:"Energy Systems and Environment",fullTitle:"Energy Systems and Environment"},signatures:"Swapan Suman and Shalini Gautam",authors:[{id:"223329",title:"Dr.",name:"Swapan",middleName:null,surname:"Suman",slug:"swapan-suman",fullName:"Swapan Suman"}]},{id:"59638",title:"Impacts of Bio-Based Energy Generation Fuels on Water and Soil Resources",slug:"impacts-of-bio-based-energy-generation-fuels-on-water-and-soil-resources",totalDownloads:464,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"energy-systems-and-environment",title:"Energy Systems and Environment",fullTitle:"Energy Systems and Environment"},signatures:"Daniel G. Neary",authors:[{id:"40845",title:"Dr.",name:"Daniel",middleName:"George",surname:"Neary",slug:"daniel-neary",fullName:"Daniel Neary"}]},{id:"9110",title:"Toward Personalized Therapy Using Artificial Intelligence Tools to Understand and Control Drug Gene Networks",slug:"toward-personalized-therapy-using-artificial-intelligence-tools-to-understand-and-control-drug-gene-",totalDownloads:1756,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"new-trends-in-technologies",title:"New Trends in Technologies",fullTitle:"New Trends in Technologies"},signatures:"Alexandru G. Floares",authors:null}],onlineFirstChaptersFilter:{topicSlug:"technology-environmental-engineering-energy-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/107095/john-kouvaris",hash:"",query:{},params:{id:"107095",slug:"john-kouvaris"},fullPath:"/profiles/107095/john-kouvaris",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()