Chemical shifts of common deuterated solvents (TMS is an internal standard).
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"3106",leadTitle:null,fullTitle:"Photodiodes - From Fundamentals to Applications",title:"Photodiodes",subtitle:"From Fundamentals to Applications",reviewType:"peer-reviewed",abstract:"This book represents recent progress and development of the photodiodes including the fundamental reviews and the specific applications developed by the authors themselves. The key idea of this book is that it allows authors to deal with a wide range of backgrounds and research progresses in photodiode-related areas. With respect to the original collection of the book chapters, this book contains several improvements and new problems and related solutions are also discussed in the areas from fundamental physics and design to device and circuit applications. \nThe book is intended for graduate students, engineers, and researchers who are especially interested in the area of optoelectronic device applications, including photodiodes, solar cells, CMOS image sensors, Optoelectronic Integrated Circuits, etc.",isbn:null,printIsbn:"978-953-51-0895-5",pdfIsbn:"978-953-51-6279-7",doi:"10.5772/3406",price:139,priceEur:155,priceUsd:179,slug:"photodiodes-from-fundamentals-to-applications",numberOfPages:378,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"a10cd693ef0a38fe4f92eac11410db46",bookSignature:"Ilgu Yun",publishedDate:"December 19th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/3106.jpg",numberOfDownloads:40918,numberOfWosCitations:57,numberOfCrossrefCitations:23,numberOfCrossrefCitationsByBook:15,numberOfDimensionsCitations:41,numberOfDimensionsCitationsByBook:27,hasAltmetrics:1,numberOfTotalCitations:121,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 9th 2012",dateEndSecondStepPublish:"March 1st 2012",dateEndThirdStepPublish:"May 28th 2012",dateEndFourthStepPublish:"June 27th 2012",dateEndFifthStepPublish:"September 27th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"150727",title:"Prof.",name:"Ilgu",middleName:null,surname:"Yun",slug:"ilgu-yun",fullName:"Ilgu Yun",profilePictureURL:"https://mts.intechopen.com/storage/users/150727/images/3508_n.jpg",biography:"Ilgu Yun received the B.S. degree in the electrical engineering from the Yonsei University, Seoul, Korea, in 1990, and his M. S. and Ph.D. degrees in electrical and computer engineering, from Georgia Institute of Technology, in 1995 and 1997, respectively. He was previously a research fellow in microelectronics research center at the Georgia Institute of Technology during 1997~1999, a senior research staff in Electronics and Telecommunications Research Institute, Daejeon, Korea during 1999~2000. In the spring of 2000, he joined the Yonsei University as an Assistant professor in the School of Electrical and Electronic Engineering. In 2010, he was promoted to full professor in the school of Electrical and Electronic Engineering in Yonsei University, Seoul, Korea. He also served as an Associate Dean of International Affairs for the College of Engineering in Yonsei University during 2010-2012. His research interests include material characterization, modeling and simulation of semiconductor processes, devices, and IC modules, and equipment/process modeling and optimization applied to computer-aided manufacturing of integrated circuits. He published more than 70 international peer-reviewed journal papers and 60 international conference proceedings. He also co-authored the book chapter entitled “Artificial Intelligence in Semiconductor Manufacturing” in Wiley Encyclopedia of Electrical and Electronics Engineering. He is currently an educational activity chair in IEEE EDS/SSCS Seoul chapter, an editor of the Korean Electrical and Electronic Material Engineers (KIEEME) and the Institute of Electronics Engineers in Korea (IEEK). He is currently a senior member of the institute for electrical and electronics engineers (IEEE).",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Yonsei University",institutionURL:null,country:{name:"Korea, South"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"739",title:"Electronic Circuits",slug:"electrical-and-electronic-engineering-electronic-circuits"}],chapters:[{id:"37681",title:"Two-Photon Absorption in Photodiodes",doi:"10.5772/50491",slug:"two-photon-absorption-in-photodiodes",totalDownloads:3527,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Toshiaki Kagawa",downloadPdfUrl:"/chapter/pdf-download/37681",previewPdfUrl:"/chapter/pdf-preview/37681",authors:[{id:"151202",title:"Prof.",name:"Toshiaki",surname:"Kagawa",slug:"toshiaki-kagawa",fullName:"Toshiaki Kagawa"}],corrections:null},{id:"41138",title:"Physical Design Fundamentals of High-Performance Avalanche Heterophotodiodes with Separate Absorption and Multiplication Regions",doi:"10.5772/50778",slug:"physical-design-fundamentals-of-high-performance-avalanche-heterophotodiodes-with-separate-absorptio",totalDownloads:2307,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Viacheslav Kholodnov and Mikhail Nikitin",downloadPdfUrl:"/chapter/pdf-download/41138",previewPdfUrl:"/chapter/pdf-preview/41138",authors:[{id:"16374",title:"Dr.",name:"Mikhail",surname:"Nikitin",slug:"mikhail-nikitin",fullName:"Mikhail Nikitin"},{id:"151470",title:"Prof.",name:"Viacheslav",surname:"Kholodnov",slug:"viacheslav-kholodnov",fullName:"Viacheslav Kholodnov"}],corrections:null},{id:"39149",title:"Fabrication of Crystalline Silicon Solar Cell with Emitter Diffusion, SiNx Surface Passivation and Screen Printing of Electrode",doi:"10.5772/51065",slug:"fabrication-of-crystalline-silicon-solar-cell-with-emitter-diffusion-sinx-surface-passivation-and-sc",totalDownloads:8815,totalCrossrefCites:7,totalDimensionsCites:11,hasAltmetrics:0,abstract:null,signatures:"S. M. Iftiquar, Youngwoo Lee, Minkyu Ju, Nagarajan Balaji, Suresh Kumar Dhungel and Junsin Yi",downloadPdfUrl:"/chapter/pdf-download/39149",previewPdfUrl:"/chapter/pdf-preview/39149",authors:[{id:"32841",title:"Dr.",name:"Iftiquar",surname:"Sk",slug:"iftiquar-sk",fullName:"Iftiquar Sk"}],corrections:null},{id:"37874",title:"LWIR Photodiodes and Focal Plane Arrays Based on Novel HgCdTe/CdZnTe/GaAs Heterostructures Grown by MBE Technique",doi:"10.5772/50822",slug:"lwir-photodiodes-and-focal-plane-arrays-based-on-novel-hgcdte-cdznte-gaas-heterostructures-grown-by-",totalDownloads:2699,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"V. V. Vasiliev, V. S. Varavin, S. A. Dvoretsky, I. M. Marchishin, N. N. Mikhailov, A. V. Predein, I. V. Sabinina, Yu. G. Sidorov, A. O. Suslyakov and A. L. Aseev",downloadPdfUrl:"/chapter/pdf-download/37874",previewPdfUrl:"/chapter/pdf-preview/37874",authors:[{id:"96743",title:"Dr.",name:"Vasily",surname:"Varavin",slug:"vasily-varavin",fullName:"Vasily Varavin"},{id:"96745",title:"Dr.",name:"Vladimir",surname:"Vasilyev",slug:"vladimir-vasilyev",fullName:"Vladimir Vasilyev"},{id:"96746",title:"Dr.",name:"Sergey",surname:"Dvoretsky",slug:"sergey-dvoretsky",fullName:"Sergey Dvoretsky"},{id:"96747",title:"Dr.",name:"Irina",surname:"Sabinina",slug:"irina-sabinina",fullName:"Irina Sabinina"},{id:"96749",title:"Dr.",name:"Yuri",surname:"Sidorov",slug:"yuri-sidorov",fullName:"Yuri Sidorov"},{id:"96753",title:"Dr.",name:"Aleksandr",surname:"Aseev",slug:"aleksandr-aseev",fullName:"Aleksandr Aseev"},{id:"152245",title:"Mr.",name:"Igor",surname:"Marchishin",slug:"igor-marchishin",fullName:"Igor Marchishin"},{id:"152246",title:"Dr.",name:"Nikolai",surname:"Mikhailov",slug:"nikolai-mikhailov",fullName:"Nikolai Mikhailov"},{id:"152247",title:"Mr.",name:"Alexander",surname:"Predein",slug:"alexander-predein",fullName:"Alexander Predein"},{id:"152249",title:"Mr.",name:"Alexander",surname:"Suslyakov",slug:"alexander-suslyakov",fullName:"Alexander Suslyakov"}],corrections:null},{id:"39641",title:"Photodiodes as Optical Radiation Measurement Standards",doi:"10.5772/51462",slug:"photodiodes-as-optical-radiation-measurement-standards",totalDownloads:3077,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Ana Luz Muñoz Zurita, Joaquín Campos Acosta, Alejandro Ferrero Turrión and Alicia Pons Aglio",downloadPdfUrl:"/chapter/pdf-download/39641",previewPdfUrl:"/chapter/pdf-preview/39641",authors:[{id:"40829",title:"Dr.",name:"Ana Luz",surname:"Muñoz",slug:"ana-luz-munoz",fullName:"Ana Luz Muñoz"},{id:"152380",title:"Dr.",name:"Joaquin",surname:"Campos Acosta",slug:"joaquin-campos-acosta",fullName:"Joaquin Campos Acosta"},{id:"152381",title:"Dr.",name:"Alejandro",surname:"Ferrero Turrion",slug:"alejandro-ferrero-turrion",fullName:"Alejandro Ferrero Turrion"},{id:"152382",title:"Dr.",name:"Alicia",surname:"Pons Aglio",slug:"alicia-pons-aglio",fullName:"Alicia Pons Aglio"}],corrections:null},{id:"37220",title:"Si-Based ZnO Ultraviolet Photodiodes",doi:"10.5772/48825",slug:"si-based-zno-ultraviolet-photodiodes",totalDownloads:3610,totalCrossrefCites:5,totalDimensionsCites:9,hasAltmetrics:1,abstract:null,signatures:"Lung-Chien Chen",downloadPdfUrl:"/chapter/pdf-download/37220",previewPdfUrl:"/chapter/pdf-preview/37220",authors:[{id:"151925",title:"Prof.",name:"Lung-Chien",surname:"Chen",slug:"lung-chien-chen",fullName:"Lung-Chien Chen"}],corrections:null},{id:"41384",title:"Infrared Photodiodes on II-VI and III-V Narrow-Gap Semiconductors",doi:"10.5772/52930",slug:"infrared-photodiodes-on-ii-vi-and-iii-v-narrow-gap-semiconductors",totalDownloads:2966,totalCrossrefCites:5,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Volodymyr Tetyorkin, Andriy Sukach and Andriy Tkachuk",downloadPdfUrl:"/chapter/pdf-download/41384",previewPdfUrl:"/chapter/pdf-preview/41384",authors:[{id:"16739",title:"Prof.",name:"Volodymyr",surname:"Tetyorkin",slug:"volodymyr-tetyorkin",fullName:"Volodymyr Tetyorkin"},{id:"151328",title:"Dr.",name:"Andriy",surname:"Sukach",slug:"andriy-sukach",fullName:"Andriy Sukach"},{id:"151329",title:"Dr.",name:"Andriy",surname:"Tkachuk",slug:"andriy-tkachuk",fullName:"Andriy Tkachuk"}],corrections:null},{id:"37717",title:"Al(Ga)InP-GaAs Photodiodes Tailored for Specific Wavelength Range",doi:"10.5772/50404",slug:"al-ga-inp-gaas-photodiodes-tailored-for-specific-wavelength-range",totalDownloads:4025,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Yong-gang Zhang and Yi Gu",downloadPdfUrl:"/chapter/pdf-download/37717",previewPdfUrl:"/chapter/pdf-preview/37717",authors:[{id:"16260",title:"Prof.",name:"Yong-Gang",surname:"Zhang",slug:"yong-gang-zhang",fullName:"Yong-Gang Zhang"},{id:"16262",title:"Prof.",name:"Yi",surname:"Gu",slug:"yi-gu",fullName:"Yi Gu"}],corrections:null},{id:"41459",title:"Single- and Multiple-Junction p-i-n Type Amorphous Silicon Solar Cells with p-a-Si1-xCx:H and nc-Si:H Films",doi:"10.5772/51732",slug:"single-and-multiple-junction-p-i-n-type-amorphous-silicon-solar-cells-with-p-a-si1-xcx-h-and-nc-si-h",totalDownloads:3552,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"S. M. Iftiquar, Jeong Chul Lee, Jieun Lee, Juyeon Jang, Yeun-Jung Lee and Junsin Yi",downloadPdfUrl:"/chapter/pdf-download/41459",previewPdfUrl:"/chapter/pdf-preview/41459",authors:[{id:"32841",title:"Dr.",name:"Iftiquar",surname:"Sk",slug:"iftiquar-sk",fullName:"Iftiquar Sk"}],corrections:null},{id:"39500",title:"Noise Performance of Time-Domain CMOS Image Sensors",doi:"10.5772/51584",slug:"noise-performance-of-time-domain-cmos-image-sensors",totalDownloads:3831,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Fernando de S. Campos, José Alfredo C. Ulson, José Eduardo C. Castanho and Paulo R. Aguiar",downloadPdfUrl:"/chapter/pdf-download/39500",previewPdfUrl:"/chapter/pdf-preview/39500",authors:[{id:"39440",title:"Dr.",name:"Fernando",surname:"de Souza Campos",slug:"fernando-de-souza-campos",fullName:"Fernando de Souza Campos"},{id:"43071",title:"Dr.",name:"Paulo Roberto",surname:"De Aguiar",slug:"paulo-roberto-de-aguiar",fullName:"Paulo Roberto De Aguiar"},{id:"152326",title:"Dr.",name:"José Alfredo",surname:"Covolan Ulson",slug:"jose-alfredo-covolan-ulson",fullName:"José Alfredo Covolan Ulson"},{id:"152327",title:"Dr.",name:"José Eduardo",surname:"Cogo Castanho",slug:"jose-eduardo-cogo-castanho",fullName:"José Eduardo Cogo Castanho"}],corrections:null},{id:"38188",title:"Design of Multi Gb/s Monolithically Integrated Photodiodes and Multi-Stage Transimpedance Amplifiers in Thin-Film SOI CMOS Technology",doi:"10.5772/50531",slug:"design-of-multi-gb-s-monolithically-integrated-photodiodes-and-multi-stage-transimpedance-amplifiers",totalDownloads:2509,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Aryan AfzalianAryan Afzalian and Denis Flandre",downloadPdfUrl:"/chapter/pdf-download/38188",previewPdfUrl:"/chapter/pdf-preview/38188",authors:[{id:"16742",title:"Dr.",name:"Aryan",surname:"Afzalian",slug:"aryan-afzalian",fullName:"Aryan Afzalian"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5268",title:"Printed Electronics",subtitle:"Current Trends and Applications",isOpenForSubmission:!1,hash:"2c178607d31182630b5d28ed7b062215",slug:"printed-electronics-current-trends-and-applications",bookSignature:"Ilgu Yun",coverURL:"https://cdn.intechopen.com/books/images_new/5268.jpg",editedByType:"Edited by",editors:[{id:"150727",title:"Prof.",name:"Ilgu",surname:"Yun",slug:"ilgu-yun",fullName:"Ilgu Yun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3576",title:"Solid State Circuits Technologies",subtitle:null,isOpenForSubmission:!1,hash:"a14e0865ac126e0234df9b53a5943ebf",slug:"solid-state-circuits-technologies",bookSignature:"Jacobus W. Swart",coverURL:"https://cdn.intechopen.com/books/images_new/3576.jpg",editedByType:"Edited by",editors:[{id:"5235",title:"Professor",name:"Jacobus",surname:"Swart",slug:"jacobus-swart",fullName:"Jacobus Swart"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3647",title:"Advances in Solid State Circuit Technologies",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"advances-in-solid-state-circuit-technologies",bookSignature:"Paul K Chu",coverURL:"https://cdn.intechopen.com/books/images_new/3647.jpg",editedByType:"Edited by",editors:[{id:"4759",title:"Prof.",name:"Paul",surname:"Chu",slug:"paul-chu",fullName:"Paul Chu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3563",title:"Advanced Microwave Circuits and Systems",subtitle:null,isOpenForSubmission:!1,hash:"2d0a7e4bb67e54ab0bbe098ebb9537d4",slug:"advanced-microwave-circuits-and-systems",bookSignature:"Vitaliy Zhurbenko",coverURL:"https://cdn.intechopen.com/books/images_new/3563.jpg",editedByType:"Edited by",editors:[{id:"3721",title:"Prof.",name:"Vitaliy",surname:"Zhurbenko",slug:"vitaliy-zhurbenko",fullName:"Vitaliy Zhurbenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"491",title:"Photodiodes",subtitle:"World Activities in 2011",isOpenForSubmission:!1,hash:"6a3cd5b56e3b5d6c986ced6a2b9e38eb",slug:"photodiodes-world-activities-in-2011",bookSignature:"Jeong-Woo Park",coverURL:"https://cdn.intechopen.com/books/images_new/491.jpg",editedByType:"Edited by",editors:[{id:"4928",title:"Prof.",name:"Jeong Woo",surname:"Park",slug:"jeong-woo-park",fullName:"Jeong Woo Park"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5864",title:"Different Types of Field-Effect Transistors",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"586a8228e9e9228e77a6a141d8d170bf",slug:"different-types-of-field-effect-transistors-theory-and-applications",bookSignature:"Momcilo M. Pejovic and Milic M. Pejovic",coverURL:"https://cdn.intechopen.com/books/images_new/5864.jpg",editedByType:"Edited by",editors:[{id:"147994",title:"Dr.",name:"Momčilo",surname:"Pejović",slug:"momcilo-pejovic",fullName:"Momčilo Pejović"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"879",title:"Advances in Piezoelectric Transducers",subtitle:null,isOpenForSubmission:!1,hash:"d868d46b3db64dcefa833403fec32346",slug:"advances-in-piezoelectric-transducers",bookSignature:"Farzad Ebrahimi",coverURL:"https://cdn.intechopen.com/books/images_new/879.jpg",editedByType:"Edited by",editors:[{id:"71997",title:"Dr.",name:"Farzad",surname:"Ebrahimi",slug:"farzad-ebrahimi",fullName:"Farzad Ebrahimi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3630",title:"VLSI",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"vlsi",bookSignature:"Zhongfeng Wang",coverURL:"https://cdn.intechopen.com/books/images_new/3630.jpg",editedByType:"Edited by",editors:[{id:"2569",title:"Dr.",name:"Zhongfeng",surname:"Wang",slug:"zhongfeng-wang",fullName:"Zhongfeng Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6521",title:"MEMS Sensors",subtitle:"Design and Application",isOpenForSubmission:!1,hash:"0da20f1660250a3391770069a4655cc5",slug:"mems-sensors-design-and-application",bookSignature:"Siva Yellampalli",coverURL:"https://cdn.intechopen.com/books/images_new/6521.jpg",editedByType:"Edited by",editors:[{id:"62863",title:"Dr.",name:"Siva",surname:"Yellampalli",slug:"siva-yellampalli",fullName:"Siva Yellampalli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5709",title:"Optoelectronics",subtitle:"Advanced Device Structures",isOpenForSubmission:!1,hash:"8b81ee1079b92050f9664d3ee61dfa39",slug:"optoelectronics-advanced-device-structures",bookSignature:"Sergei L. Pyshkin and John Ballato",coverURL:"https://cdn.intechopen.com/books/images_new/5709.jpg",editedByType:"Edited by",editors:[{id:"43016",title:"Prof.",name:"Sergei",surname:"Pyshkin",slug:"sergei-pyshkin",fullName:"Sergei Pyshkin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterial",title:"Corrigendum to: Risk Assessment and Health, Safety, and Environmental Management of Carbon Nanomaterials",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/80612.pdf",downloadPdfUrl:"/chapter/pdf-download/80612",previewPdfUrl:"/chapter/pdf-preview/80612",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/80612",risUrl:"/chapter/ris/80612",chapter:{id:"66689",slug:"risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterials",signatures:"Guilherme Lenz e Silva, Camila Viana, Danieli Domingues and Fernanda Vieira",dateSubmitted:null,dateReviewed:"February 26th 2019",datePrePublished:"April 11th 2019",datePublished:"February 19th 2020",book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251730",title:"Dr.",name:"Guilherme",middleName:"Fredeico Bernardo",surname:"Lenz E Silva",fullName:"Guilherme Lenz E Silva",slug:"guilherme-lenz-e-silva",email:"guilhermelenz@usp.br",position:null,institution:null},{id:"286148",title:"Dr.",name:"Camila",middleName:null,surname:"Viana",fullName:"Camila Viana",slug:"camila-viana",email:"camilaoviana@gmail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}},{id:"286149",title:"Dr.",name:"Fernanda",middleName:null,surname:"Vieira",fullName:"Fernanda Vieira",slug:"fernanda-vieira",email:"fevieira2001@gmail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}},{id:"286151",title:"M.Sc.",name:"Danieli",middleName:"Silva",surname:"Domingues",fullName:"Danieli Domingues",slug:"danieli-domingues",email:"danielisilva@ymail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}}]}},chapter:{id:"66689",slug:"risk-assessment-and-health-safety-and-environmental-management-of-carbon-nanomaterials",signatures:"Guilherme Lenz e Silva, Camila Viana, Danieli Domingues and Fernanda Vieira",dateSubmitted:null,dateReviewed:"February 26th 2019",datePrePublished:"April 11th 2019",datePublished:"February 19th 2020",book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"251730",title:"Dr.",name:"Guilherme",middleName:"Fredeico Bernardo",surname:"Lenz E Silva",fullName:"Guilherme Lenz E Silva",slug:"guilherme-lenz-e-silva",email:"guilhermelenz@usp.br",position:null,institution:null},{id:"286148",title:"Dr.",name:"Camila",middleName:null,surname:"Viana",fullName:"Camila Viana",slug:"camila-viana",email:"camilaoviana@gmail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}},{id:"286149",title:"Dr.",name:"Fernanda",middleName:null,surname:"Vieira",fullName:"Fernanda Vieira",slug:"fernanda-vieira",email:"fevieira2001@gmail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}},{id:"286151",title:"M.Sc.",name:"Danieli",middleName:"Silva",surname:"Domingues",fullName:"Danieli Domingues",slug:"danieli-domingues",email:"danielisilva@ymail.com",position:null,institution:{name:"Centro de Desenvolvimento da Tecnologia Nuclear",institutionURL:null,country:{name:"Brazil"}}}]},book:{id:"8137",title:"Nanomaterials",subtitle:"Toxicity, Human Health and Environment",fullTitle:"Nanomaterials - Toxicity, Human Health and Environment",slug:"nanomaterials-toxicity-human-health-and-environment",publishedDate:"February 19th 2020",bookSignature:"Simona Clichici, Adriana Filip and Gustavo M. do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/8137.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"64160",title:"Prof.",name:"Simona",middleName:null,surname:"Clichici",slug:"simona-clichici",fullName:"Simona Clichici"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10749",leadTitle:null,title:"Legumes Research - Volume 1",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tLegume crops provide a significant sources of plant-based proteins for humans. Grain legumes have outstanding nutritional and nutraceutical properties, while they are affordable food that contributes to achieving future food and feed security.
\r\n\r\n\tDue to an increasing world population, global food security requires a major re-focusing of plant sciences, crop improvement and production agronomy towards grain legumes (pulse crops) over coming decades, with intensive research and development to identify climate-resilient species and cultivars with improved grain characteristics. In this context, genetic developments have played a critical role to increase crop production, whose applications will undoubtedly contribute to sustainable agriculture and food security.
\r\n\r\n\tThis research topic aims to bring together a collection of outstanding studies for a better understanding of current improvements in agricultural and seed traits from both the biological (physiological and nutritional/nutraceutical) and genetic viewpoints. We welcome submissions of all types of articles falling under, but not limited to, the research topic highlighted in this book.
\r\n\t
The phytochemicals rich in plants have shown to be beneficial for prevention of diseases as well as long-term health. Plants are generally consumed as sources of essential compounds such as saccharides, coumarins, lignans, flavonoids, terpenoids, and steroids. The health benefits and the composition from plant have been described more and more in the literature. Because of the complexity of plant chemical constituents, pure phytochemicals must to be obtained via extraction and isolation before structure identification, bioactivity screening, and so on. In recent years, new technologies and methods of extraction occurred, which accelerate the extraction and analysis of phytochemicals.
Extraction is the first step of phytochemistry research, which is also the necessary work before the isolation of effective constituents. The purpose of extraction is to get the objective chemical constituents to the utmost extent and avoid or reduce the solution of unwanted constituents.
The separation of phytochemicals is a process of isolating the constituents of plant extracts or effective parts one by one and purifying them into monomer compounds by physical and chemical methods. Classical isolation methods, including solvent extraction, precipitation, crystallization, fractional distillation, salting-out, and dialysis, are still used commonly at present. On the other hand, modern separation technologies such as column chromatography, high performance liquid chromatography, ultrafiltration, and high performance liquid drop countercurrent chromatography also play an important role in the separation of phytochemicals [1, 2, 3].
The chemical structures of plant compounds must be identified, which may provide the necessary basis for further study on the bioactivities, structure-activity relationships, metabolisms
The structural studies are often difficult to carry out with classical chemical methods, such as chemical degradation and derivative synthesis, because of the minute amount of compound isolated from plants. Therefore, spectral analysis is mainly used. That is, consuming sample as little as possible to obtained structural information as much as possible by measuring and analyzing various spectra [4].
Solvent extraction is the commonest method to extract plant material. The main purpose is to select the suitable solvent to extract target plant materials efficiently. During the extraction, the solvent has to diffuse into the cell membrane in the first instance, in the following step it has to dissolve the solutes, then intracellular and extracellular concentration difference is formed, and finally it has to diffuse out of the cells enriched in the extracted solutes [5].
Selecting suitable solvents is the key of the solvent extraction method. Using a solvent of an appropriate polarity according to the principle of “like dissolves like” is the main point to select solvent. Thus, hydrophilic solvents are used to solubilize hydrophilic chemical constituents and vice versa. The hydrophilicity or lipophilicity of solvents and chemical constituents could be predicted by polarity. The plant compounds, such as terpenoids and steroids, possess low polarity, and could be dissolved into lipophilic solvents such as chloroform and ether, while chemical constituents, such as carbohydrates and amino acids, possess rather high polarity and could be dissolved into water and aqueous ethanol.
Solvents commonly used for extracting chemical constituents of plants are in the order of weak to strong polarity as follows: petroleum ether < carbon tetrachloride < benzene < dichloromethane < chloroform < ether < ethyl acetate < n-butanol < acetone < ethanol < methanol < water.
Water is a cheap, easy to get, and nontoxic solvent with strong polarity. It could be used to extract phytochemicals with strong polarity, such as inorganic salts, saccharides, amino acids, tannins, proteins, organic acid salts, alkaloid salts, and glycosides. Acid or alkaline water is applied sometimes to increase the solubility of certain specific components. Acid water could extract alkaline materials, such as alkaloids, via the formation of salts. Similarly, organic acids, anthraquinoids, flavonoids, coumarinoids, phenols, and other acidic materials could be extracted via the formation of salts. The disadvantage to extract chemical constituents with water is that the aqueous extract is easy to go moldy, so difficult to preserve. Additionally, water possesses high boiling point, and the water extract needs to be concentrated for a rather long time. Furthermore, the water extract contains many impurities such as proteins, pectins, tannins, mucilages, and inorganic salts, which make the extraction of target components difficult.
Hydrophilic organic solvents are strong-polarity and water miscible, such as methanol, ethanol, and acetone. Ethanol is the most commonly used hydrophilic organic solvent. Chemical constituents could be extracted by ethanol of different concentrations according to their properties. Furthermore, ethanol is inexpensive, safe, and concentrated easily. Additionally, ethanol extract is not readily moldy and glycosides are hard to be hydrolyzed in ethanol extract. Thus, ethanol is one of the most commonly used solvents in laboratories and industrial production. Methanol possesses similar property to ethanol and lower boiling point. However, methanol has rather strong toxicity, so we have to pay attention to safety when it has to be used. Acetone is a good solvent to extract lipid-soluble chemical constituents. However, acetone is easy to volatilize and flame, and it possesses certain toxicity.
Petroleum ether, benzene, chloroform, ether, ethyl acetate, dichloroform, and so on are lipophilic organic solvents and are not miscible with water. They could be applied to extract lipophilic components, such as volatile oils, fats, chlorophyll, lactones, phytosterols, some alkaloids and some aglycones (aglycones of flavonoids, anthraquinoids, steroids, and so on). These solvents possess low boiling points and are easy to concentrate. However, strong-volatility, large loss, flammability, toxicity, and high price are their disadvantages. Additionally, they are difficult to permeate into plant cell tissues.
Solvent extraction methods could be classified as cold extraction and hot extraction roughly by whether heating or not.
It is a method to dissolve out phytochemicals with appropriate solvents at room or low temperatures (<80°C). It is suitable to extract phytochemicals easily to be destroyed at high temperature. The plants with abundant starches, pectins, gums, or mucilages could also be extracted with this method. Firstly, plant powder or pieces should be loaded in the adequate container, and then the suitable solvents (water, ethanol, aqueous ethanol, and so on) are added into it to immerse the material for the given length of time. Discontinuous stirring or shaking during the process could accelerate dissolution rate. The immersion method is simple but inefficient, and the extraction ratio is also low. Furthermore, aqueous extract is easy to go moldy, so addition of appropriate preservatives is necessary.
The coarse particles of plants should be loaded in percolation apparatus and immersed with suitable solvent for 24–48 h, then collect the percolates at the bottom of percolation apparatus. New solvent should be added at the top of percolation apparatus constantly during the percolation process. It possesses higher efficiency than the immersion method because of the sustained concentration difference during the process. However, this procedure is complex and consumes rather much solvent and long time.
Load short segments, thin pieces, or coarse powder into an appropriate container, add water, and heat it to boiling; the components are then extracted. It is easy to operate; most of the constituents could be extracted in various degrees. Nevertheless, rather much nontargeted components could also be extracted, and it is not suitable to the extraction of volatile compounds and thermal unstable compounds. Furthermore, it is not suitable to extract plants with lots of starches [6].
It is a method to extract plant chemical constituents by organic solvent using heating and refluxing. Refluxing apparatus is necessary so as not to waste solvents, and the toxicity to operators or ruin the environment is deduced. It is applicable to extraction of lipophilic phytochemicals, such as steroids, anthraquinoids, and terpenoids. It is an extraction method of high efficiency but complex, and consumes much more solvent. This method is not applicable to extract thermal unstable chemical constituents because of long time heating.
It is a method developed based on the refluxing method. Soxhlet extractor is the most frequently used constant refluxing apparatus. This method avoids disadvantages of consuming too much solvent and complex operation. However, as a refluxing method, constant refluxing method is not applicable to extract thermally unstable compound either because of long time heating.
In the supercritical state, the supercritical fluid is contacted with the plant tissues. By controlling different temperatures, pressures and different kinds and contents of entrainers, the supercritical fluid can selectively extract the components of different polarities, boiling points, and molecular weights successively. This method is called the supercritical fluid extraction (SFE) method [7].
The critical point of a pure substance is defined as the highest temperature and pressure at which the substance can exist in vapor-liquid equilibrium. At temperatures and pressures above this point, a single homogeneous fluid is formed, which is known as supercritical fluid (SF). SF is heavy like liquid and has low viscosity like gas meanwhile. SF possesses rather large diffusion coefficient and could dissolve many compounds well. A number of materials could be used as SFs, such as ammonia, ethane, difluoro-dichloromethane, heptane, and so on, while the most widely used SF is CO2. The critical temperature of CO2 (
The extraction of nonpolar and medium-polar components by SFE can avoid the sample loss and environmental pollution caused by solvent recovery in traditional extraction methods, especially for the extraction of volatile compounds with thermal instability.
The biggest advantage of SFE is that it can be performed at near-room temperature, and almost all the active ingredients in the product can be retained. There is no residual organic solvent in the process. The product has high purity and high yield. Additionally, the operation is simple and energy saving.
Compared with other conventional separation methods, SFE possesses the following advantages: (1) No residual organic solvents, fast extraction speed, simple process, high yield, and easy operation; (2) no flammable and explosive dangers, no environmental pollution. Low extraction temperature, suitable for the extraction of thermal unstable components; (3) the dissolution properties of SF are easy to improve, only the pressure needs to be changed at a certain temperature; (4) entrainers can be added to change the polarity of the extraction medium to extract polar substances; extraction medium can be recycled with low cost; (5) it could be applied combined with other chromatographic techniques, such as GC, IR, GC–MS, and HPLC, to extract, separate, and determine phytochemicals efficiently and quickly, so as to achieve the integration of extraction and quality analysis. However, supercritical extraction has some limitations: strong solubility of fat-soluble components, weak solubility of water-soluble components, high cost of equipment, resulting in higher product costs, and cleaning equipment is difficult.
Supercritical fluid extraction (SFE) technology has achieved gratifying results in the fields of medicine, chemical, food, light industry, and environmental protection. Especially, it has been widely used in phytochemical extraction field, such as the extraction of alkaloids, volatile oils, phenylpropanoids, flavonoids, organic acids, glycosides, terpenoids, and so on.
It is a method of solvent extraction assisted by ultrasound. Ultrasonic wave is a kind of elastic mechanical vibration wave. The vibration frequency is as high as 20 KHz in elastic medium. The ultrasonic wave could vibrate the liquid medium. When the vibration is sparse, many small holes are formed in the medium. The instantaneous closure of these small holes can cause a pressure of up to thousands of atmospheric pressures. At the same time, the local temperature can rise to 1000°C. It can cause instantaneous rupture of the cell wall of plants and the whole organism, and make the solvent permeate into the cells of plants. This accelerates the dissolution of active ingredients in plants into solvents. Ultrasonic wave extraction could shorten the extraction time and improve the extraction efficiency, but could not change the structures of chemical constituents meanwhile.
Ultrasonic extraction technology has been widely used in the extraction of natural products in recent years, for example, extraction of soy isoflavones; see [8].
Microwave refers to the electromagnetic wave whose wavelength is in the range of 0.1–100 cm (the corresponding frequency is 300–300,000 MHz), which is between infrared and radio waves. Polar molecules can absorb microwave energy, then release energy in the form of thermal energy, which makes the temperature inside the medium rise rapidly, causes the rather high pressure inside, and then the components flow out and dissolve in the solvent. On the other hand, the electromagnetic field produced by microwave can make some components diffuse to the interface of the extraction solvent, accelerating their thermal movement, which not only improves the extraction efficiency but also reduces the extraction temperature [9].
Microwave-assisted extraction has the advantages of less decomposition of chemical constituents, shorter time, lower energy consumption and less environmental pollution. Microwave-assisted extraction has been widely used in a series of fields of perfume, condiments, natural pigments, herbal medicine, cosmetics, soil and environmental analysis, and so on. In China, microwave-assisted extraction technology has been used in hundreds of Chinese herbal medicine extraction, such as
Steam distillation is suitable for the extraction of volatile components which can be distilled with steam without being destroyed and are insoluble in water. These compounds’ boiling points of are mostly higher than 100°C, and they possess certain vapor pressures at about 100°C. The principle of steam distillation is that the vapor pressure of each component is equal to that of their pure state, while the existence of another liquid does not affect their vapor pressure. The total vapor pressure of the mixing system is equal to the sum of the vapor pressures of the two components. Because the total vapor pressure of the system is higher than that of any single component, so the boiling point of the mixture is lower than that of any component. It is mainly used to extract volatile oils, some alkaloids, and phenolic substances of small molecules from plants.
The process that solid material converts into steam directly without melting after heating is called sublimation. The phenomenon that steam condenses into solid after cooling is called deposition. Some natural chemicals have sublimation properties, which can be extracted directly with the sublimation method, for example, the extraction of camphor from camphor wood and caffeine from tea. In addition, some small molecular alkaloids, coumarins, organic acids, and other components also have sublimation properties, such as aesculetin and benzoic acid. However, it is easy to carbonize natural products because of long heating time. The volatile tar-like substances often adhere to sublimates, which are difficult to remove and often accompanied with thermal decomposition. The yield of this method is often low, and it is not suitable for large-scale production.
When the content of active ingredients is relatively high and exists in the juice of plants, the juice can be extracted directly from fresh raw materials. Volatile oils can also be extracted from plant tissues by mechanical pressing, such as orange peel oil and lemon oil. It is performed at room temperature, so its components will not be decomposed by heat. However, the products obtained are impure and often contain impurities such as water, mucoid substances, and cell tissues, so they are often turbid, and it is not easy to press the volatile oil in plants entirely. Therefore, the crushed residue is often distilled by steam to extract volatile oils completely. For example, the black soybean oil from black soybean is often extracted with the low-temperature pressing method.
The separation of phytochemicals is a process of isolating the constituents of plant extracts or effective parts one by one and purifying them into monomer compounds by physical and chemical methods. Classical isolation methods, including solvent extraction, precipitation, crystallization, fractional distillation, salting-out, and dialysis, are still used commonly at present. On the other hand, modern separation technologies such as column chromatography, high performance liquid chromatography, ultrafiltration, and high performance liquid drop countercurrent chromatography also play an important role in the separation of phytochemicals. This section describes the common methods and their specific applications in isolation of phytochemicals.
It is carried out according to the different acidity and alkalinity of each component in the mixture. Water-insoluble alkaline organic components, such as alkaloids, could react with inorganic acids and form salts, which can be separated from nonalkaline and water-insoluble components. Acid components with carboxyl or phenolic hydroxyl groups can be salted by bases and dissolved in water. Components with lactone or lactam substructures can be saponified and dissolved in water and then isolated from other water-insoluble components. The total extract can be dissolved in lipophilic organic solvents (ethyl acetate is commonly used) and extracted respectively with acid water and alkali water, and then the total extract would be divided into acidic, alkaline, and neutral parts. Of course, the total extract can also be dissolved in water and extracted with organic solvents after adjusting the pH value. The alkalinity or acidity of the fractions are different and can be separated further by pH gradient extraction.
When using the acid and basic solvent method, attention should be paid to the strength of acidity or alkalinity, the contact time with the separated components, heating temperature, and time, so as to avoid the structural changes of some compounds under severe conditions or the chemical structures cannot be restored to the original states.
This method is to achieve the separation aim based on the different polarity of each component in plant extracts and the different partition coefficients in two-phase solvents. Generally, different two-phase solvent systems are selected according to the polarity of components in plant extracts. For example, the components with strong polarity can be separated by n-butanol-water system, the components with medium polarity can be separated by ethyl acetate-water system, and the components with weak polarity can be separated by chloroform (or ether)-water system. During the operation, the plant extract should be dissolved by water firstly, and then the solution or suspension is extracted in a separating funnel with different organic solvent which is not miscible with water based on the polarity difference. Usually, the extract was extracted with petroleum ether (or cyclohexane) firstly, then ethyl acetate (or chloroform), and finally with water saturated n-butanol, as shown in Figure 1. Petroleum ether layer contains lipid-soluble compounds with low polarity. Ethyl acetate layer contains medium polar compounds such as monoglycosides, flavonoids, and compounds with more polar functional groups. N-butanol layer contains compounds with strong polarity, such as oligoglycosides and other water-soluble components. Compounds in water layer possess strongest polarity, such as glycosides with more glycosyl groups, carbohydrates, amino acids, proteins, and other water-soluble compounds.
Flow charts of common polarity gradient extraction method.
It is a method based on the formation of precipitation of some phytochemicals by reaction with specific reagents, or the precipitation of some components from the solution by adding specific reagents, which can reduce the solubility of some components in the solution. The precipitation reaction must be reversible if the target components are required to form precipitation. While if the components are nontarget, the precipitation generated will be removed, so the precipitation reaction can be irreversible. According the addition of reagents or solvents, this method could be classified as follows [11].
The solubility of some components in the mixed component solution can be changed by adding a specific solvent that can be mutually soluble with the solution, so it can be precipitated from the solution. The gradual precipitation by changing the polarity or amount of solvent added is called fractional precipitation. For example, using water as an extracting solvent to extract phytochemicals, ethanol is added to the water extracting concentrate to make its alcohol content more than 80%, and then polysaccharides, proteins, starch, gum, and so on will be precipitated and removed after filtration. The preceding procedure is called water extraction and ethanol precipitation. Crude polysaccharides from plants are often separated with this method. For example, see [12].
Some reagents could react selectively with certain chemical constituents to produce reversible precipitation, and the separation aims are achieved, which is called the exclusive reagent precipitation method. For example, alkaloid precipitation reagents such as Reynolds ammonium salt can precipitate after reacting with alkaloids, which can be used to separate alkaloids and nonalkaloids, or water-soluble alkaloids and other alkaloids. As another example, reactions of cholesterol and sterol saponins could form precipitation, which can separate them from triterpene saponins. Additionally, gelatin can precipitate tannins, which can be used to separate or remove tannins. In practical application, appropriate precipitation reagents should be selected according to the properties of target constituents and impurities in plants.
Adding inorganic salts to a certain concentration or saturated state in the water extract of plants can reduce the solubility of some components in water, thus they could be separated from water-soluble compounds. The inorganic salts commonly used for salting out are sodium chloride, sodium sulfate, magnesium sulfate, ferric sulfate, etc. For example, extractions of tetrandrine from
It is a method to let substances selectively penetrate through natural or synthetic semi-permeable membranes (or dialysis bags) under the action of concentration difference, pressure difference, or potential difference, so as to achieve the purpose of separation, classification, purification, or concentration. For example, when saponins, proteins, polypeptides, polysaccharides, and other substances in plants are separated and purified, dialysis can be used to remove inorganic salts, monosaccharides, and other impurities. On the contrary, large molecular impurities can also be left in the semi-permeable membrane, while small molecular substances can be separated and purified through the semi-permeable membrane into the solution outside the membrane [14].
Fractional distillation is a method of separating components in liquid mixtures based on their different boiling points. It is usually categorized into atmospheric, vacuum, molecular distillation, and so on. It is mainly used for the separation of volatile oils and some liquid alkaloids in plants. For example, the boiling points of the two alkaloids in total alkaloids of
Crystallization is the process of solute precipitation from mother liquor with complex components, and it is an effective method to prepare pure substances. The initial crystallization is often impure and needs to crystallize again, which is called recrystallization. It is a method to separate compounds from the mixture by using the difference of solubility of each component in the solvent. Crystallization is one of the important technologies for plant chemists to prepare pure compounds.
When the content of a phytochemical is very high in one plant, crystals can be obtained by cooling or slightly concentrating the extract after extraction with appropriate solvent. For example, see [16].
Selecting suitable crystallization solvent is the key of the crystallization method. The ideal solvents for crystallization should possess the following characteristics: high solubility for the components to be purified at high temperature, low solubility at low temperature, insoluble for the impurities at high and low temperature, or soluble for the impurities at high and low temperature, moderate boiling point, no chemical reaction with the components to be crystallized, safe, low price, easy to obtain, and so on. Solvents commonly used for crystallization are methanol, ethanol, acetone, ethyl acetate, acetic acid, pyridine, etc. When crystals cannot be obtained with a single solvent, the crystallization operation can be carried out with a mixture of two or more solvents. Mixed solvents generally consist of two miscible solvents, one of which has high solubility for the component to be crystallized, and the other has low solubility. Firstly, the sample to be crystallized is heated and dissolved in as few solvents as possible with high solubility. Then the second solvent with low solubility is added to the hot solution to make it turbid. Then the first solvent is added to dissolve the sample. The solution reaches saturation at this point and crystallizes when it is cooled. The purity of crystallization can be preliminarily identified by the crystal form, color, melting point, melting range, thin layer chromatography, paper chromatography, etc.
Chromatography is the most commonly used method for the separation of chemical constituents of natural products. It possesses advantages of high separation efficiency, rapidity, and simplicity. By choosing different separation principles, different operation modes, different chromatographic packings, or applying various chromatographic methods jointly, the separation and purification of various types of phytochemicals could be achieved. It can also be used for the identification of compounds.
It is a kind of chromatography based on the difference of adsorptive capacity of adsorbents to different compounds. The commonly used adsorbents include silica gel, alumina, activated carbon, polyamide, and so on. Silica gel adsorption chromatography is widely used, and it is suitable to the separation of most of the plant chemical constituents. Alumina adsorption chromatography is mainly used for the separation of alkaline or neutral lipophilic components, such as alkaloids, steroids, and terpenoids. Activated carbon is mainly used for the separation of water-soluble substances, such as amino acids, carbohydrates and some kinds of glycosides. Polyamide, which allows the separation to take place based on the formation of kinds of hydrogen bonds, is mainly used for the separation of phenols, quinones, flavonoids, anthraquinones, tannins, etc. [17].
Molecular sieve is the main principle of gel chromatography, which can separate mixture compounds according to the pore size of the gel and the molecular size of the compounds. Gel is a kind of solid material with a porous network structure. The molecules of the separated substances are different in size, so their ability to enter the gel is different. When the mixture solution passes through the gel column, the molecules smaller than the gel pores can enter the gel interior freely, while the molecules with larger size than the gel pores cannot enter the gel, and only pass through the gel particle gaps. Therefore, different movement rates are emerged. The molecules with large sizes are not excluded, and the retention time is shorter. The molecules with small sizes are detained because of its diffusion into the pores, thus the retention time is longer. There are many kinds of commercial gels, dextran gel and hydroxypropyl dextran gel are used most commonly [18].
It is to separate chemical constituents according to the difference of dissociation degrees. In this method, ion exchange resin is applied as stationary phase and water or solvent mixed with water as mobile phase. The ionic components existing in the mobile phase are absorbed by ion exchange resin after ion exchange reaction. Ion exchange chromatography is suitable for the separation of ionic compounds, such as alkaloids, amino acids, organic acids, peptides, and flavonoids. The ability of ion exchange reaction between compounds and ion exchange resins mainly depends on the compounds’ dissociation degree and the amount of electric charges. If the dissociation degree of a compound is high (acidic or alkaline), it is easily exchanged on resins and difficult to elute. Therefore, when the compounds with different degree of dissociation are exchanged on the resin, the compounds with lower degree of dissociation are eluted before those with higher degree of dissociation [19].
It is a chromatographic method which combines the principle of adsorption and molecular sieve. Its chromatographic behavior possesses reversed-phase properties. Macroporous resin is a kind of solid macromolecule material with no dissociable group and porous structure and is insoluble in water. It is widely used in the separation and enrichment of natural compounds because of its stable physical and chemical properties (insoluble in acids, bases, and organic solvents).
In practical work, the water solution of the mixture to be separated is usually washed by water, water-containing alcohol solution with low to high concentration. The mixture can be separated into several components. The regeneration of macroporous adsorbent resin is convenient. It is often washed by 1 mol/L hydrochloric acid and 1 mol/L sodium hydroxide solution, respectively, first, then washed by distilled water to neutral, and stored in methanol or ethanol. The alcohol should be washed out with distilled water before using.
It is a kind of chromatography method to separate components by using different partition coefficients between stationary phase and mobile phase, which are immiscible liquids. Partition chromatography could be divided into normal phase chromatography and reverse phase chromatography. The polarity of stationary phase is stronger than that of mobile phase in normal phase partition chromatography, which is mainly used to separate polar and moderately polar molecular compounds. Carriers commonly used in normal phase distribution chromatography include silica gel, diatomite, cellulose powder, etc. Silica gel with water content of more than 17% can be used as a carrier for partition chromatography because of its loss of adsorption. It is the most widely used carrier for partition chromatography. In reverse phase partition chromatography, the polarity of mobile phase is stronger than that of stationary phase. The commonly used stationary phase is octadecyl-silylated silica (ODS). The mobile phase is usually methanol-water or acetonitrile-water system, which is mainly used for the separation of nonpolar and moderately polar molecular compounds.
High performance liquid chromatography (HPLC) is a rapid separation and analysis technology developed on the basis of conventional column chromatography. Its separation principle is the same as regular column chromatography, including adsorption chromatography, gel chromatography, partition chromatography, ion exchange chromatography, and other methods. HPLC columns are produced with particle fillers (particle diameter 5–20 μm) and high pressure homogenate column loading technology. The eluents are pressed into the column by a high pressure infusion pump and equipped with high sensitive detectors and automatic recording and collection devices. As a result, it is far superior to conventional column chromatography in separation speed and efficiency. It has the characteristics of high efficiency, high speed, and automation. Preparative HPLC can be used to prepare a large amount of samples of high purity. HPLC has played an increasingly important role in the separation, qualitative identification, and quantitative analysis of plant chemical constituents. During the separation of many plant chemical constituents, it is necessary to separate trace constituents from a large amount of crude extracts. Usually, in the final stage of separation, samples with high purity are prepared by high or medium pressure liquid chromatography. Constant concentration eluents are mostly used in preparative HPLC. However, gradient elution is sometimes applied for samples that are difficult to be separated. Moreover, HPLC retains the advantages of liquid chromatography, such as a wide range of application and flexibility of mobile phase change. It can be applied to chemical constituents of difficult gasification, high molecular weight, or thermal instability.
The detectors commonly used in HPLC are ultraviolet detectors and differential refractive index detectors, but both have limitations. Differential refractive index detectors are sensitive to temperature change, the detection of a small amount of substances is often not ideal, and gradient elution cannot be used. As for ultraviolet detectors, they cannot detect samples without ultraviolet absorption. In recent years, a kind of mass detector, called evaporative light scattering detector (ELSD), has been applied in HPLC. It can not only detect samples without ultraviolet absorption, but also use gradient elution. It is suitable for most nonvolatile components [20].
DCCC is an improved liquid-liquid partition chromatography based on the counter-current partition method. The formation of droplets is required when the mobile phase passes through a liquid stationary phase column. Droplets of mobile phase contact with stationary phase effectively, and form new surfaces in thin partition extraction tubes constantly, which promote the partition of solutes in two-phase solvents, and the chemical components of mixtures are isolated in immiscible two-phase droplets due to different partition coefficients. This method is suitable for the separation of phytochemicals with strong polarity. The separation effect is usually better than counter-current partition chromatography, and there is no emulsification phenomenon. Furthermore, nitrogen is used to drive the mobile phase, so the separated substance will not be oxidized by oxygen in the atmosphere. However, the solvent system which can generate droplets must be selected in this method, the amount of sample treated is small, and special equipment is needed.
DCCC possesses good reproducibility, and can handle crude extract samples of milligram to gram grade. It can be used in either acidic or basic conditions. Because no solid separation carriers are used, the phenomenon of irreversible adsorption and band broadening of chromatographic peaks can be avoided. Compared with preparative HPLC, DCCC consumes less solvent, but the separation time is longer and the resolution is lower. For example, see [21].
HSCCC is also a liquid-liquid partition chromatography. It is another mild form of chromatography with no solid support and hence no chance of loss of substrate by binding to the column. The only media encountered by the sample are solvent and Teflon tubing. The former is common to all forms of chromatography and the latter to most. The chemical constituents with higher partition coefficient in mobile phase are eluted first, whereas those with higher partition coefficient in stationary phase are eluted later.
HSCCC chromatography could avoid the shortcomings of irreversible adsorption and abnormal tailing of chromatographic peaks caused by solid carriers in liquid chromatography because it does not need solid carriers. The sample recovery is near 100% from a chromatography. It also has advantages of good reproducibility, high purity of separated compounds, and fast speed. It is suitable for the isolation and purification of wide kinds of phytochemicals, such as saponins, alkaloids, flavonoids, anthraquinoids, lignans, triterpenes, proteins, and carbohydrates. For example, see [22].
It is an instrumental analysis method developed in the late 1980s combining classical electrophoresis with modern microcolumn separation technologies. In pharmaceutical analysis, the most commonly used separation modes are capillary zone electrophoresis, micellar electrokinetic capillary chromatography, and capillary gel electrophoresis. It is an efficient separation technology of large and small molecules in a hollow and thin inner diameter capillary (10–200 μm). The two ends of the capillary are immersed in a buffer solution and electrodes connected with a high voltage power supply are inserted separately. The voltage makes samples migrate along the capillary. According to the charge and volume of the separated substances, various molecules are separated under high voltage. In zone capillary electrophoresis, separation could be achieved by the movement of electrophoresis and electroosmotic flow. The strength of electroosmotic flow depends on the strength of electric field, PH value of electrolyte, composition of buffer solution, ionic strength, internal friction, and so on. Sample injection could be accomplished by pressing the sample into a capillary tube by atmospheric pressure or voltage.
HPCE has the advantages of high efficiency, microamount, economy, high automation, and wide application. However, it has the disadvantages of poor preparation ability, low sensitivity, and poor separation reproducibility. For example, see [23].
Affinity chromatography is a unique chromatographic separation method based on the principle of reversible combination of high affinity and specificity between molecules. By simulating the reversible and specific interaction between biological molecules, affinity chromatography uses the adsorption medium coupled with affinity ligands as the stationary phase to adsorb target compounds. It is a development of adsorption chromatography. This method can selectively separate and analyze specific chemical constituents from complex samples. Firstly, ligands that can specifically bind to the target compounds are fixed on the filler carrier to make the chromatographic column. Then the mixture containing the target compounds is passed through the column. Only the target compounds which show affinity with the ligands can bind to the ligands and remain in the column. Finally, the adsorbed target compounds are eluted by changing the composition of the mobile phase and are separated from other chemical constituents. AC is mainly used for the separation and purification of proteins, especially enzymes, antigens, and antibodies. Its application range has been expanding along with the continuous development of technology in recent years. For example, see [24].
The chemical structures of plant compounds must be identified or elucidated, which may provide the necessary basis for further study on the bioactivities, structure-activity relationships, metabolisms in vivo, structural modification, and synthesis of the active phytochemicals.
The quality of physiological active substances isolated from plants is often small, sometimes only a few milligrams, and the structural studies are often difficult to carry out with classical chemical methods, such as chemical degradation, derivative synthesis, etc. Therefore, spectral analysis is mainly used, that is, consuming sample as little as possible to obtain structural information as much as possible by measuring various spectra. Then comprehensive analysis is carried out with the assistance of literature data. If necessary, chemical means would be integrated into the former methods to determine the planar- and even the stereo-structures of the compounds.
Before the structural investigation of an active compound, the purity must be determined, which is a prerequisite for the structural identification.
The crystals of each compound have certain shape, color, and melting point, which can be used as the basis for the preliminary determination of the purity. Generally, the crystal shape of a specific compound under the same solvent is consistent, the color is pure, and has a short melting range (generally at 1~2°C). But for compounds with double melting points or amorphous substances, the purity cannot be determined by this method.
TLC, such as silica gel and paper chromatography, is the most commonly used method to determine the purity of compounds. Generally, a specific sample, showing an only spot (Rf value at 0.2~0.8) in three different developing agents, could be considered as a pure compound. In some cases, both normal and reverse phase chromatographic methods are needed.
GC and HPLC are important methods in the purity determination of phytochemicals. GC is widely used in the analysis of volatile compounds. Both volatile and nonvolatile substances could be analyzed with HPLC, which possesses various advantages of high speed, high efficiency, sensitivity, and accuracy.
The general procedures of structural determination of phytochemicals are shown roughly in Figure 2.
The main procedures for studying the structures of phytochemicals.
The structural identification of phytochemicals can be greatly simplified according to the researchers’ habits, experiences, and skill levels of different technologies. However, the literature search almost runs through the whole process of structural research, no matter for known or new compounds. A large number of facts have been proved that taxonomically related plants, that is to say, plants of same or similar genus often contain chemical constituents of similar or even same chemical structures. Therefore, it is necessary to investigate literatures of chemical studies of the study object and the plants of its same and similar genera. It is necessary to understand not only the components from different plants of similar genera, but also their extraction methods, physicochemical properties, spectral data, and biosynthesis pathways before the extraction and separation of one specific plant. The SciFinder Scholar database is used most widely to quickly determine whether the compound was “known” or “unknown”.
At present, spectrum analyses have become the main means to determine the chemical structures of plant chemicals. Particularly, with the developing of the superconducting nuclear magnetic resonance (NMR) and mass spectroscopic (MS) technologies, the speed of structural determination is greatly accelerated and the accuracy is improved. Here, the applications of infrared (IR), ultraviolet (UV), nuclear magnetic resonance (NMR), and mass (MS) spectra in the structural identification of phytochemicals are introduced briefly.
UV-vis spectrum is a kind of electron transition spectrum, which is generated after the molecules absorbing the electromagnetic waves with wavelength at the range of 200–800 nm. The valence electrons in the molecules absorb light of certain wavelengths and jump to the excited state from the ground state, and then UV spectra are recorded.
Compounds containing conjugated double bonds, α,β-unsaturated carbonyl groups (aldehydes, ketones, acids, and esters), and aromatic compounds could show strong absorption in UV spectra because of n → π* or π → π* transitions. Therefore, UV spectrum is mainly used to identify the presence of conjugated systems in the structures.
UV spectra could provide the following information: (1) the compounds show no UV absorption at 220–800 nm, indicating the compounds were aliphatic hydrocarbons, aliphatic cyclic hydrocarbons, or their simple derivatives. (2) The compounds show strong absorption at 220–250 nm, indicating that the compounds possess conjugated diene, α,β-unsaturated aldehyde, or ketone substructures. (3) The absorption at 250–290 nm is moderately strong, indicating that the compounds possess benzene rings or aromatic heterocycles. (4) Weak absorption at 250–350 nm indicates the presence of carbonyl or conjugated carbonyl groups. (5) Strong absorptions at above 300 nm indicate that the structures possess long conjugated chains.
Generally, UV spectrum can only provide part of the structural information, rather than the whole structural information of a compound, so it can only be used as an auxiliary method to identify the structures. It possesses practical value to determine the structures of phytochemicals with conjugated substructures.
IR is caused by the vibration-rotational energy level transition of the molecule, ranging from 4000 to 625 cm−1. The region above 1250 cm−1 is functional group region, and the absorption of characteristic functional groups such as hydroxyl, amino, carbonyl, and aromatic rings occurs in this region. The region of 1250 to 625 cm−1 is fingerprint region, and the peaks appear mainly due to the stretching vibrations of C-X (X = C, O, N) single bonds, and various bending vibrations. IR is mainly used for the determination of functional groups and the types of aromatic ring substitution. In some cases, IR can also be used to determine the configuration of plant chemical constituents. For example, there is a significant difference between 960 and 900 cm−1 for 25R and 25S spirostanol saponins.
In a mass spectrometer, mass and strength information of molecular and fragment ions is recorded after the molecules are ionized and enter into the collector under the action of electric and magnetic fields. The abscissa represents the mass-to-charge ratio (m/z) and the ordinate represents the relative intensity in a MS spectrum. Unlike IR, UV, and NMR spectra, MS is mass spectrum, which characterizes fragment ions, not an absorption spectrum. Its role is to determine weights, formulas, and fragment structures of molecules.
With the rapid development of modern techniques, new ion sources have emerged in recent years, which make MS play more important role in determining the molecular weights, elemental composition, detecting functional groups by cleavage fragments, identifying compound types, and determining carbon skeletons [25]. In the structural analysis, the information of molecular weights could be obtained on the basis of molecular ion peaks, and the molecular formula could be obtained by high-resolution mass spectrometry (HR-MS). Fragment ion peaks, combined with molecular ion peak, could be applied to conjecture chemical structures. Tandem mass spectrometry even can isolate and analyze the mixed ions again. According to the types of ion sources, common mass spectrometry could classified as electron impact mass spectrometry (EI-MS), chemical ionization mass spectrometry (CI-MS), field desorption mass spectrometry (FD-MS), fast atom bombardment mass spectrometry (FAB-MS), matrix-assisted laser desorption mass spectrometry (MALDI-MS), electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (MS–MS), and so on.
With the birth of Fourier transform spectrometer, the great progress of radionuclide research such as 1H, 13C, 15N, 19F, 31P, and the advancement of two-dimensional and three-dimensional nuclear magnetic technology, NMR has become the most important spectroscopic method to determine chemical structures. Particularly, hydrogen spectrum and carbon spectrum are most widely used. During the operation of nuclear magnetic resonance spectrometer, compound molecules are irradiated by electromagnetic waves in a magnetic field, energy level transitions occur after the atomic nuclei with magnetic distance absorb a certain amount of energy, and then NMR spectrum is obtained by mapping the absorption strength with the frequencies of the absorption peaks. It can provide structural information about the type and number of hydrogen and carbon atoms in the molecule, the modes they are connected, the surrounding chemical environment, configuration, and conformation [26].
Samples used to measure NMR spectra include solids, liquids, and gases. Liquid high-resolution NMR is most widely used. The solvent used in the measurement of NMR must be deuterated. The commonly used deuterated reagents to dissolve samples and their chemical shifts of their residual proton and carbon signals are shown in Table 1.
Solvent | ||
---|---|---|
CDCl3 | 77.0 | 7.24 |
CD2Cl2 | 53.8 | 5.32 |
CD3OD | 49.0 | 3.3 |
Acetone- | 29.8, 206.0 | 2.04 |
D2O | — | 4.7 |
DMSO- | 39.5 | 2.49 |
C6D6 | 128.0 | 7.16 |
C5D5N | 123.6135.6149.9 | 7.2, 7.6, 8.7 |
Chemical shifts of common deuterated solvents (TMS is an internal standard).
Resonance absorption peaks are generated after hydrogen protons absorb electromagnetic waves of different frequencies in an external magnetic field. 1H-NMR possesses high sensitivity, easy measurement, and wide application. 1H-NMR spectrum can provide structural information of chemical shifts (
Because of the different surrounding chemical environment, the 1H nuclei possess different magnetic cloud densities and magnetic shielding effects caused by the rotation around the nucleus, and then different types of 1H nuclear resonance signals appear in different regions. Tetramethylsilane (TMS) is usually used as a reference compound. Compared with the general compounds, the shielding effect of protons and carbons on the methyl groups is stronger in TMS. Therefore, regardless of the hydrogen spectrum or the carbon spectrum, the absorption peaks generated by the general compounds appear in the lower field than TMS, that is to say,
1H-NMR chemical shift range of common hydrogen protons.
In addition to the normal 1H-NMR spectrum technique, there are some auxiliary techniques that assist in structural analysis, such as selective decoupling, heavy hydrogen exchange, addition of reaction reagents, and dual irradiations.
13C-NMR spectra can provide structural information of organic compounds, including the number, types, and chemical environment of carbon atoms [27]. It is one of the important means for the structural identification of organic compounds. Especially, where there are serious signal peak overlaps in the 1H-NMR spectrum, or the molecules contain several quaternary carbon atoms, 13C-NMR spectra will provide crucial information for the structure identification. The chemical shifts of common carbon signals are shown in Figure 4 [4].
13C-NMR chemical shifts of common carbon signals.
Common 13C-NMR techniques include proton broadband decoupling, off resonance decoupling (OFR), insensitive nuclei enhanced by polarization transfer (INEPT), and distortionless enhancement by polarization transfer (DEPT). Proton broadband decoupling and DEPT spectra are most commonly used at present.
Proton broadband decoupling spectrum is measured after 1H nuclei are saturated with broadband electromagnetic radiation. At this point, the couplings between 1H and 13C are completely eliminated, and all 13C signals are shown as singlets, so it is very convenient to determine the chemical shift of 13C signals. In addition, because of the NOE effect of 1H after irradiation, the signal of 13C signal connected with 1H will be increased, while the quarterly carbon signal will show weak absorption peaks.
It is an improved method of INEPT, in which a
The DEPT spectrum of Arctiin (CD3OD).
Two-dimensional correlation spectroscopy (2D-COSY) is the most important and widely used in 2D-NMR spectroscopy. 2D-COSY spectra can be divided into homonuclear and heteronuclear correlation spectra. Both abscissa and ordinate represent chemical shifts in 2D-COSY. Common correlation spectrum types are show as follows.
It is a kind of chemical shift correlation spectrum between 1H and 1H. It is the coupling correlation spectrum between protons in the same coupling system. The adjacent hydrogen groups could be determined by their coupling relationships (3
In addition, for compounds of aromatic systems, double bond systems, and some particular configuration systems, 1H-1H COSY spectra can show 4
1H detected heteronuclear single quantum coherence (HSQC) and 1H detected heteronuclear multiple quantum coherence (HMQC) can display the correlations between 1H and 13C. HSQC possesses higher sensitivity and wider application than HMQC. In the HMQC or HSQC spectrum, the signals occurred at the crosses of chemical shifts generated by corresponding carbons and protons (Figure 6).
Schematic diagram of correlations between 1H and 13C in the HSQC or HMQC spectrum.
HMBC spectrum is short for 1H detected heteronuclear multiple bond correlation, which associates the 1H nucleus with 13C nucleus of long-range coupling. HMBC could detect the long-range coupling of 1H-13C sensitively (n
Schematic diagram of correlations between 1H and 13C in the HMBC spectrum.
When two groups of protons are located at rather close spatial distances, irradiation of one group will enhance the signal strength of another, which is known as nuclear Overhauser enhancement (NOE). The NOE spectrum can determine the spatial relative position, stereoscopic configuration, and dominant conformation of some groups in the molecule, which is very important for the study of the stereostructures of organic compounds.
2D-NOE (NOESY) spectra could show the NOE correlations of protons. The greatest advantage of NOESY is that all the NOE information between protons of a compound could be shown in one spectrum. However, not all the cross peaks are NOE correlation signals, the residual correlation signals of COSY are often shown in NOESY spectrum as well, which should be paid attention during spectroscopic analysis.
The TOCSY spectrum shows the correlation of the entire spin system, which is different from the ordinary 1H-1H COSY. The relationships between the nuclei that generated the correlation peaks are shown in Figure 8. Not only the correlation signals of a proton with protons connected to the adjacent carbons, but also its correlation signals with other protons in a whole spin system could be shown in the TOCSY spectrum, which provides important basis for the connection of structural fragments.
Schematic diagram of correlations between 1H and 13C in the TOCSY spectrum.
HSQC-TOCSY is a kind of combined 2D-NMR spectrum. Comprehensive results of HSQC and HMBC are obtained by using a long pulse sequence. The correlation is shown in Figure 9. It is very useful for the assignment of carbon and proton signals in complex chemical structures. For example, for saponins with a series of glycosyl groups, the signals generated by glycosyl groups are often overlapped seriously in common NMR spectra, which causes difficulty to assign signals of glycosyls. HSQC-TOCSY spectrum will play an important role in this case. The spectrum includes the information of HSQC, HMBC, and 1H-1H COSY.
Schematic diagram of correlations between 1H and 13C in the HSQC-TOCSY spectrum.
Polarimetry is an optical method used widely in the studies of asymmetric structures, which appeared very early. The progress of the sensitive method such as ORD and CD made it possible to study stereostructures of chiral compounds more deeply. Both of them are spectra related to the optical activity of compounds, and could provide information of absolute configurations, dominant conformations, and reaction mechanisms of chiral compounds, that cannot be replaced by any other spectroscopic methods [28].
The specific rotation [α] of a chiral compound depends upon the wavelength of the monochromatic light wave. The measurement of specific rotation as a function of wavelength is called optical rotator dispersion (ORD). The common types of ORD curves are as follows.
The ORD spectrum of an optically active compound with no chromophores is plain without peaks and troughs. An ORD curve of specific rotation increases with decrease of wavelength which is called positive plain curve, while in the case of negative plain curve, negative rotation increases with decrease of wavelength (see Figure 10).
ORD plain curves (A: Positive plain curve; B: Negative plain curve).
If there is a simple chromophore in the molecule, the ORD curve is very different from plain curve. Near the absorption wavelength region of chromophore, a peak and a trough are exhibited, which is called the Cotton effect, and the spectrum drawn is called the Cotton effect curve. The spectrum with only one peak and one trough is called pure Cotton effect curve, while the spectrum with several peaks and troughs is called complex Cotton effect curve. The Cotton effect is called positive when the trough is observed at a shorter wavelength then peak. Conversely, the Cotton effect is called negative if the trough is observed at a longer wavelength than the peak. Cotton curves of △5-cholestenone are shown in Figure 11, which shows A and B possess the same structural formula, while different opposite configurations.
The Cotton effect curves of △5-cholestenone (A) natural cholesterone (+) cotton; (B) Cholesterone in the opposite absolute configuration (−) cotton.
For compound with two or more different chromophores, its ORD curve may possess multiple peaks and troughs, which is called complex Cotton effect curve. Each ORD curve is the average effect of each chromophore in the molecule, and the contribution of each orientation and conformation of the molecule. Hence the Cotton effect curve is often complex.
Optically active compounds have different molar absorption coefficients for left-circularly and right-circularly polarized light that make up plane polarized light, which is called circular dichroism (CD). The difference value between the two molar absorption coefficients (Δє = єL−єR) changes with the wavelength of the incident polarized light. With Δє as the ordinate, the wavelength as the abscissa, the spectrum obtained is called circular dichroism spectrum. Because the absolute value of Δє is very small, it is often replaced by molar ellipticity [
Because Δє could be positive or negative, the circular dichroism curve also could be classified as positive and negative. In the CD spectrum showing positive Cotton effect, only a peak appears near the λmax of the chromophore in the molecule. Conversely, a trough appears in the CD spectrum showing negative Cotton effect. Therefore, CD spectra are simpler and easier to analyze than ORD spectra. For example, the ORD and CD spectra of (+)-camphor are shown in Figure 12. CD is more widely used than ORD in the study of chiral compounds.
The ORD and CD spectrum of (+)-camphor.
Single crystal X-ray diffraction could be applied independently to analyze the structures, components, contents, configurations, conformations, solvents, and crystal forms of samples. It is widely used in the stereostructural study of natural compounds, synthetic compounds, peptides, proteins, etc. Therefore, X-ray diffraction analysis is a necessary physical method in the field of structure and function research of modern natural drugs.
Single crystal X-ray diffraction is a kind of quantitative analysis technology, which can provide three-dimensional structural information of molecules, including atomic coordinates, bond length, bond angles, dihedral angles, hydrogen bonds, salt bonds, coordinate bonds, and so on. In addition, it is also a reliable method to determine the absolute configuration of chiral drug molecules and the epimers in the stereochemical structures. For example, see [29].
In recent years, study on phytochemicals from plants becomes more and more popular due to their demonstrated health benefits. A number of plants having high contents of phytochemicals (particularly phenolic acids and flavonoids) with associated antioxidant activities have been increasingly utilized. Complementary research is also needed to enhance the potential functionalities of the phytochemicals in future, where such plants have shown to contain numerous phytochemicals that may be beneficial to human health. The compiled results indicated that many of their bioactive compounds remain to be fully isolated, identified, and characterized (alkaloids, diterpenoids, and so on).
Therefore, phytochemicals can be considered as the source of natural medicines. The compounds of plants are bioaccessible and bioavailable in humans with some demonstrated health benefits, including antioxidant, anti-inflammatory, anti-cancer, anti-microbial, hypoglycemic action, etc. Additional well-designed human intervention studies and clinical trials are needed to validate the health benefits of phytochemicals.
Management of PCOS (polycystic ovary syndrome) related to infertility, includes lifestyle changes, ovulation induction by pharmaceuticals, or assisted reproductive technology (ART) as an
Hyperandrogenism, anovulation, and ovarian morphology are the basic determinants in the diagnosis of the polycystic ovarian syndrome (PCOS) according to international guidelines. Given the different clinical presentations in patients, the criteria for the diagnosis of this condition are still discussed, as well as whether the syndrome involves several different diseases with the same clinical picture, as well as discussions about what is really a clinical picture of the polycystic ovary. Therefore, different approaches in the diagnosis and treatment of patients, have been proposed for different phenotypes of PCOS. The criteria for pre-recognition of this condition have been adopted for years by various authoritative bodies at international meetings, such as the National Institute for Health (NIH), Rotterdam consensus, Androgen Excess, and PCO Society, but there has been a constant difference over the mandatory criteria for PCOS [1]. An important starting point in the diagnosis was to exclude diseases of other endocrine glands (pituitary gland, thyroid, and adrenal gland), which give a similar clinical picture and can be confused with PCOS.
Ovulation disorder in the general population of women is estimated at 15% (12–18%) [2]. Regular menstrual cycles are not the exclusive evidence of ovulation, since in some women there is a “subclinical disorder” of ovulation that is proven only by serum values of progesterone in the middle lutein phase of the cycle (21–24.d.c. which must be >5 ng/mL). In the case of PCOS, almost 80% of patients have ovulation disorder [3].
Hyperandrogenism (hyperandrogenemia) implies clinical and/or biochemical evidence of elevated serum androgens, but the incidence in the general population of women is unknown. Hirsutism, androgenic alopecia, and acne are clinical manifestations of hyperandrogenism. The intensity of hirsutism differs ethnically and geographically, and it is desirable to develop population-specific criteria for hirsutism. Almost 70% of women with hirsutism have PCOS, 40% have severely expressed acne, and only 22% have androgenic alopecia [4]. Hyperandogenemia (biochemical hyperandrogenism) is determined by free testosterone and free androgen index (FAI—free androgen index) [5]. A total of 78% of patients with PCOS have hyperandrogenism and 40% in an unselected population of patients with BMI >25 [6].
Polycystic ovary morphology (PCOM) is evaluated by ultrasound examination based on the number of antral follicles (> of 20 per ovary) and/or on the basis of total ovarian volume (> 10 mL), where the frequency of the ultrasonic probe is an extremely important parameter. Based on these international criteria, the prevalence of PCOM in the population is 12.5% [7, 8]. Ultrasonic examination of nonselective population, based only on PCOM, significantly increase the incidence of PCOS and vice versa.
Thus, on the basis of the described criteria, four PCOS phenotypes with different prevalence in the general and separate population are defined, which are as follows [5]:
Phenotype A (hyperandrogenism, anovulation, PCOM).
Phenotype B (hyperandrogenism, anovulation).
Phenotype C (hyperandrogenism, PCOM), ovulatory PCOS.
Phenotype D (anovulation, PCOM), non-hyperandrogenemic PCOS.
Compared to phenotype C and D, patients with phenotype A and B (classical phenotype) are more often obese, with hirsutism, more likely to have insulin resistance, dyslipidemia, fatty liver, and metabolic syndrome in later life. The frequency of individual phenotype differs significantly in different populations with symptoms of PCOS and also in the general population [9]. Each of the PCOS phenotypes has its own specifics in the treatment of impaired fertility.
The first line of treatment of patients with PCOS is the induction of ovulation with clomiphene citrate or letrozole.
Gonadotropin stimulation in patients with PCOS is associated with the development of a significantly higher number of follicles in the ovaries, as well as oocytes, a significantly higher number of developed embryos and embryos in excess for cryopreservation. Ovarian stimulation in these patients lasts longer and higher doses of gonadotropin are often required, which is associated with disorders of folliculogenesis caused by hyperandrogenism. Estimating the right dose of gonadotropin is the biggest challenge in the phase of ovarian stimulation and is often insufficient. The follicles do not grow, due to hyperandrogenism, and by increasing the dose, the ovary enters in hyperstimulation, which is an extreme of the ovarian response. A newer approach to ovarian stimulation with follitropin delta, based on the patient’s body mass and AMH value, proved to be the best, especially in the PCOS patient population and has a significant reduction in the risk of ovary hyperstimulation. Patients with hyperandrogenism and polycystic ovarian morphology (phenotype A and C) have the highest risk of ovary hyperstimulation [11].
Ovarian hyperstimulation syndrome (OHSS) is an iatrogenic complication of ovarian stimulation, and PCOS patients have the highest risk for complications during the IVF (
The protocol of choice for ovarian stimulation in patients with PCOS and risk for OHSS is an antagonistic protocol that can be fixed or flexible. In this stimulation, it is possible to achieve the final maturation of oocyte with GnRH (gonadotropin-releasing hormone) agonists, thereby avoiding the administration of hCG (human chorionic gonadotropin) injection, which is the basic molecule in the mechanism of development of OHSS in at-risk patients. In this way, the basic mechanism of vascular permeability and compromising circulation by leaking plasma from the vascular system into extracellular spaces are avoided. Those are signs of a more severe form of OHSS. Likewise, the stimulation cycle is abruptly “extinguished.” Menstrual bleeding occurs within a few days after the application of the GnRH agonist. Harvested oocytes are fertilized by IVF/ICSI procedure and developed embryos are cryopreserved, most often in the blastocyst stage, which represents the so-called “freeze-all” strategy that gives safety to the treatment of patients with PCOS. Embryo transfer is planned in the next cycle in which signs of hyperstimulation do not exist. Hormonal preparation of the endometrium, and ovarian stimulation, in this case, is not required.
Additional treatment of PCOS patients involves the use of various medications that have metabolic effects and that could significantly improve the treatment of these patients in IVF procedures by individualizing therapy. The fact is that within the PCOS population with the same PCOS phenotype, an individual woman may have a significantly different response to different types of treatments with respect to the unique hormonal/metabolic status associated with the PCOS phenotype as well. There is a large gap in the literature that indicates the need for new research and the need for an individual approach in the treatment of infertility of these patients.
Spontaneous abortions in patients with PCOS are more common compared to the general population and they are associated with insulin resistance, hyperandrogenism, and obesity. These conditions are very often associated with PCOS, but they are also separate risks for the spontaneous loss of pregnancy. Studies link spontaneous abortion to impaired endometrial receptivity and to more frequent embryo aneuploidy of patients with PCOS. In the Asian population of women with PCOS phenotypes who have hyperandrogenism (A, B, C types), a higher risk for spontaneous miscarriage after IVF procedures was observed than in phenotype D [12]. Impaired glucose and insulin metabolism at the endometrial level and excessive expression of androgen receptors in the endometrium are associated with a signal transduction disorder during the implantation process in patients with PCOS [13]. The causes of more frequent embryo aneuploidy in PCOS patients have not yet been clarified. There are assumptions that impaired glucose metabolism and steroidogenesis lead to DNA molecule instability [14].
During the stimulated IVF cycle, various indicators of quality and success of treatment are monitored. Among other things, these are the total dose of gonadotropin used for stimulation, the number of aspirated oocytes, the number of oocytes in metaphase II, the percentage of fertilization, the number of developed embryos on the 3rd day, the number of developed blastocysts on the 5th day, the number of cryopreserved embryos, the proportion of conceived pregnancies, the number of born children, etc. Since PCOS phenotypes imply hormonal and metabolic differences, the question arises whether the indicators of the course of treatment are different in patients with different PCOS phenotypes.
The results of the studies so far indicate significant differences in treatment between PCOS patients and women who do not have this syndrome and who in studies represent the usual control group. Studies most often follow PCOS patients as a single group. Different criteria for defining PCOS phenotype are associated with problems of analysis and comparison of parameters that monitor the course and outcome of the IVF procedures in different studies [15]. There are two fundamental factors that are most often analyzed and compared in patients with PCOS—hyperandrogenism and PCO morphology of the ovaries, which are clinically very important factors in decision-making during the treatment of infertility by medically assisted fertilization procedures. The role of androgens in folliculogenesis is still unclear and there are conflicting results of studies dealing with this problem. The results of studies analyzing differences in treatment outcomes among defined PCOS phenotypes indicate a negative effect of hyperandrogenism in IVF procedures, and a higher incidence of complications later in pregnancy [16]. In patients with phenotype A and B, for every 1 pg./ml increase in free testosterone concentration, the proportion of clinically confirmed pregnancies decreases by 50–60% as well as the proportion of live births [17]. According to recent findings, the differences between PCOS phenotypes refer only to the number of good embryos for transfer, which is significantly higher in patients with hyperandrogenism and ovulation disorder, but without the typical PCO morphology of the ovaries (phenotype B). The proportion of biochemical and clinically confirmed pregnancies, as well as the number of couples with born children, do not differ significantly among phenotypically different PCOS patients [17, 18]. In addition, studies indicate that the proportion of clinically confirmed pregnancies, is significantly lower in women with PCOS phenotypes A, B and C compared to control patients [17]. The number of children born does not differ in different PCOS phenotypes. In some areas of the world, certain PCOS phenotypes have not been found at all, for example, there are no phenotypes B and C among Vietnamese women with PCOS [19]. Since the anti-Müller hormone (AMH) is often elevated in patients with PCOS, it has become a powerful factor that should have prognostic value in clinically assessing the outcome of treatment with medically assisted fertilization, however, it has been proven useful only in the group of patients with phenotype B. The proportion of clinically confirmed pregnancies and the proportion of babies born increases by 1.3 times for each 1 ng/ml serum AMH concentration increase [17].
PCOS patients’ oocytes quality can be associated with the hormonal and metabolic conditions, and therefore, consequently with the quality of the embryo. Poorer oocyte quality is part of the problem of subfertility in patients with PCOS. There is evidence that oocyte quality depends on PCOS phenotype and accompanying diseases and conditions that are more common in PCOS patients. Oocyte quality is defined by the morphology and morphology of associated structures, such as zona pellucida, cumulus oophorus, and corona radiata. An ovarian microenvironment in which follicles and oocytes grow and mature is exposed to multiple hormonal abnormalities in patients with PCOS. Well-known disruptive mechanisms include elevated concentrations of LH (luteinizing hormone) and FSH (follicle-stimulating hormone), impaired ratio of these hormones, elevated AMH values, impaired insulin-like growth factor secretion, and enzymes involved in the conversion of androgens to estrogens.
Hyperandrogenism interferes with the normal feedback loop between the ovaries, pituitary gland, and hypothalamus, which leads to an increased frequency of excretion of the releasing hormone for gonadotropins, and consecutively results in premature luteinization of granulose cells and abnormal maturation of the oocytes. There is also a direct effect of hyperandrogenism on the oocyte by activating its proapoptotic mechanism [20]. Hyperandogenic ovarium microenvironment interferes with the oocyte in the continuation of meiosis, promotes mitochondrial abnormalities and oxidative stress, and interferes with lipid metabolism in the oocyte [21].
High concentrations of AMH synthesized by granulosa cells, inhibit the recruitment of follicles, and therefore, the selection of follicles that will ovulate, leading to a vicious cycle of anovulation and hyperandrogenism. In addition, by blocking the action of FSH on follicle growth and blocking the action of aromatase in charge of converting androgens synthesized in theca cells to estrogens in granulosa cells, the chronic state of hyperandrogenism is again supported. There is evidence that in patients with PCOS an increased concentration of AMH in follicular fluid exists along with oocytes of low quality. Molecular mechanisms that lead to disruption in the growth and maturation of oocytes are not known [22]. Significantly lower follicular fluid AMH levels were observed in follicles of fertilized MII oocytes than in non-fertilized non-PCOS patients [23]. Also in our non-PCOS patients with sterility and impaired fertility, gene for the AMH and androgen receptor in human cumulus cells surrounding morphologically highly graded oocytes are underexpressed [24].
Hyperinsulinemia, insulin resistance, and obesity are metabolic disorders associated with PCOS that intertwine with hormonal disorders and further worsen the conditions of oocyte microenvironments. Hyperinsulinemia reduces the synthesis of binding globulin for sex hormones (SHBG), and insulin also competes with androgens for binding sites on this carrier, which means that it promotes hyperandrogenism and all its negative effects. The direct effect of hyperinsulinemia on oocytes has been proven to disrupt the expression of genes associated with the dynamics of the division spindle and the function of centrosomes. In the case of insulin resistance, there is a change in gene expression for glucose carriers in granulose cells, and therefore, a possible decrease in energy sources for the metabolism of the oocyte itself and the processes of meiosis [25].
Based on PCOS phenotype in the population of women being treated with medically assisted reproduction procedures, no difference has been found so far in the proportion of oocytes in metaphase II, percentage of fertilization, or the evaluation of quality embryos for transfer [17, 26]. According to available data to date, patients who have a classic PCOS phenotype (A and B) associated with insulin resistance and obesity also have the highest risk for low-quality oocytes [27].
Besides poor quality oocytes, PCOS patients can have larger numbers of germinal vesicle stages – metaphase I oocyte collected from IVF, due to their elevated antral follicles count. Those are commonly maturated with unsatisfactory results. When optimized maturation procedure will serve, not only for PCOS and infertile patients but also in cancer patients for the preservation of fertility and as a more patient-friendly alternative than standard controlled ovarian stimulation. PCOS patients are not the only ones that could benefit from
The definition of phenotypes of polycystic ovarian syndrome stemmed from a diverse and complex clinical picture of this endocrine disorder. Diagnostic criteria of individual phenotype, contribute to new concepts of research into the effects of obesity, hyperandrogenism, and metabolic disorders on reproduction in humans. According to the outcomes of the treatment of infertility of patients with this disorder, significant differences in the chances of conception compared to the population of infertile women who do not have polycystic ovary syndrome have been clearly proven. Less clear is the difference in infertility treatment outcomes between women with a defined polycystic ovarian syndrome phenotype, which is the area of new research. In cases of classical phenotype polycystic ovarian syndrome (A and B) associated with obesity and insulin resistance, negative effects of this disease on gametes and embryos are possible due to cellular process disorders related to glucose and androgen metabolism.
The publication is supported by H2020: MESOC – measuring the social dimension of culture; under Grant agreement no. 870935. Uniri-biomed-18-161 project: Extracellular vesicles in human follicular fluid: content and role in oocyte maturation and embryo quality.
Authors have no conflict of interest.
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13388},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33638}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11889",title:"Sexual Disorders and Dysfunctions",subtitle:null,isOpenForSubmission:!0,hash:"b988fda30a4e2364ee9d47e417bd0ba9",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11867",title:"Echocardiography",subtitle:null,isOpenForSubmission:!0,hash:"d9159ce31733bf78cc2a79b18c225994",slug:null,bookSignature:"Dr. Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/11867.jpg",editedByType:null,editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11798",title:"Listeria monocytogenes - Recent Developments and Advances",subtitle:null,isOpenForSubmission:!0,hash:"678ca4185133438014939804bf8a05e6",slug:null,bookSignature:"Prof. Cristina Saraiva, Dr. Sónia Saraiva and Prof. Alexandra Esteves",coverURL:"https://cdn.intechopen.com/books/images_new/11798.jpg",editedByType:null,editors:[{id:"226197",title:"Prof.",name:"Cristina",surname:"Saraiva",slug:"cristina-saraiva",fullName:"Cristina Saraiva"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11876",title:"Esophageal Surgery - Current Principles and Advances",subtitle:null,isOpenForSubmission:!0,hash:"9592bd7a6a3809cdc6a66f6100233aaa",slug:null,bookSignature:"M.D. Andrea Sanna",coverURL:"https://cdn.intechopen.com/books/images_new/11876.jpg",editedByType:null,editors:[{id:"327116",title:"M.D.",name:"Andrea",surname:"Sanna",slug:"andrea-sanna",fullName:"Andrea Sanna"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11909",title:"Recent Advances in Gas Chromatography",subtitle:null,isOpenForSubmission:!0,hash:"73aa61a2aa0d9fb663280189a51e7fde",slug:null,bookSignature:"Dr. Serban Moldoveanu and Prof. Victor David",coverURL:"https://cdn.intechopen.com/books/images_new/11909.jpg",editedByType:null,editors:[{id:"91597",title:"Dr.",name:"Serban",surname:"Moldoveanu",slug:"serban-moldoveanu",fullName:"Serban Moldoveanu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11437",title:"Social Media - Risks and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"000e31f2e2f7295805e9a3864158ad63",slug:null,bookSignature:"Dr. Shafizan Mohamed and Dr. Shazleen Mohamed",coverURL:"https://cdn.intechopen.com/books/images_new/11437.jpg",editedByType:null,editors:[{id:"302450",title:"Associate Prof.",name:"Shafizan",surname:"Mohamed",slug:"shafizan-mohamed",fullName:"Shafizan Mohamed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:45},{group:"topic",caption:"Environmental Sciences",value:12,count:6},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:74},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:6},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:280},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4805},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"159",title:"Semiconductor",slug:"semiconductor",parent:{id:"14",title:"Materials Science",slug:"materials-science"},numberOfBooks:16,numberOfSeries:0,numberOfAuthorsAndEditors:431,numberOfWosCitations:727,numberOfCrossrefCitations:349,numberOfDimensionsCitations:741,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"159",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7671",title:"Concepts of Semiconductor Photocatalysis",subtitle:null,isOpenForSubmission:!1,hash:"549e8caa1b260cea0dd3fe688cd126f5",slug:"concepts-of-semiconductor-photocatalysis",bookSignature:"Mohammed Rahman, Anish Khan, Abdullah Asiri and Inamuddin Inamuddin",coverURL:"https://cdn.intechopen.com/books/images_new/7671.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6845",title:"Graphene and Its Derivatives",subtitle:"Synthesis and Applications",isOpenForSubmission:!1,hash:"63a9783e678fc42ce981efb35be02096",slug:"graphene-and-its-derivatives-synthesis-and-applications",bookSignature:"Ishaq Ahmad and Fabian I. Ezema",coverURL:"https://cdn.intechopen.com/books/images_new/6845.jpg",editedByType:"Edited by",editors:[{id:"25524",title:"Prof.",name:"Ishaq",middleName:null,surname:"Ahmad",slug:"ishaq-ahmad",fullName:"Ishaq Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8866",title:"Silicon Materials",subtitle:null,isOpenForSubmission:!1,hash:"c7cfb39af7a429ef119b71a2e1f221e7",slug:"silicon-materials",bookSignature:"Beddiaf Zaidi and Slimen Belghit",coverURL:"https://cdn.intechopen.com/books/images_new/8866.jpg",editedByType:"Edited by",editors:[{id:"230574",title:"Dr.",name:"Beddiaf",middleName:null,surname:"Zaidi",slug:"beddiaf-zaidi",fullName:"Beddiaf Zaidi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6815",title:"Advanced Material and Device Applications with Germanium",subtitle:null,isOpenForSubmission:!1,hash:"cbf335cca2531b56745bac330be2a47c",slug:"advanced-material-and-device-applications-with-germanium",bookSignature:"Sanghyun Lee",coverURL:"https://cdn.intechopen.com/books/images_new/6815.jpg",editedByType:"Edited by",editors:[{id:"195331",title:"Prof.",name:"Sanghyun",middleName:null,surname:"Lee",slug:"sanghyun-lee",fullName:"Sanghyun Lee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6625",title:"Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications",subtitle:null,isOpenForSubmission:!1,hash:"daf5c4f40f80aca648eaed4f4310c2b7",slug:"disruptive-wide-bandgap-semiconductors-related-technologies-and-their-applications",bookSignature:"Yogesh Kumar Sharma",coverURL:"https://cdn.intechopen.com/books/images_new/6625.jpg",editedByType:"Edited by",editors:[{id:"198130",title:"Dr.",name:"Yogesh Kumar",middleName:null,surname:"Sharma",slug:"yogesh-kumar-sharma",fullName:"Yogesh Kumar Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6524",title:"Heterojunctions and Nanostructures",subtitle:null,isOpenForSubmission:!1,hash:"fefc5b353d60c5125f1783fc4208194b",slug:"heterojunctions-and-nanostructures",bookSignature:"Vasilios N. Stavrou",coverURL:"https://cdn.intechopen.com/books/images_new/6524.jpg",editedByType:"Edited by",editors:[{id:"99725",title:"Dr.",name:"Vasilios N.",middleName:null,surname:"Stavrou",slug:"vasilios-n.-stavrou",fullName:"Vasilios N. Stavrou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6695",title:"Design, Simulation and Construction of Field Effect Transistors",subtitle:null,isOpenForSubmission:!1,hash:"304929bc541d961dff8977432a49075e",slug:"design-simulation-and-construction-of-field-effect-transistors",bookSignature:"Dhanasekaran Vikraman and Hyun-Seok Kim",coverURL:"https://cdn.intechopen.com/books/images_new/6695.jpg",editedByType:"Edited by",editors:[{id:"199404",title:"Prof.",name:"Dhanasekaran",middleName:null,surname:"Vikraman",slug:"dhanasekaran-vikraman",fullName:"Dhanasekaran Vikraman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6100",title:"Nonmagnetic and Magnetic Quantum Dots",subtitle:null,isOpenForSubmission:!1,hash:"78673eed1e24eaecb8331eb0efcae2de",slug:"nonmagnetic-and-magnetic-quantum-dots",bookSignature:"Vasilios N. Stavrou",coverURL:"https://cdn.intechopen.com/books/images_new/6100.jpg",editedByType:"Edited by",editors:[{id:"99725",title:"Dr.",name:"Vasilios N.",middleName:null,surname:"Stavrou",slug:"vasilios-n.-stavrou",fullName:"Vasilios N. Stavrou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6083",title:"Semiconductors",subtitle:"Growth and Characterization",isOpenForSubmission:!1,hash:"53bed47ef5d839f8d10d5f1a3b050c49",slug:"semiconductors-growth-and-characterization",bookSignature:"Rosalinda Inguanta and Carmelo Sunseri",coverURL:"https://cdn.intechopen.com/books/images_new/6083.jpg",editedByType:"Edited by",editors:[{id:"174858",title:"Prof.",name:"Rosalinda",middleName:null,surname:"Inguanta",slug:"rosalinda-inguanta",fullName:"Rosalinda Inguanta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5597",title:"Field",subtitle:"Programmable Gate Array",isOpenForSubmission:!1,hash:"ee9b6139297123dec4d906c950913c0d",slug:"field-programmable-gate-array",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/5597.jpg",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5699",title:"Thin Film Processes",subtitle:"Artifacts on Surface Phenomena and Technological Facets",isOpenForSubmission:!1,hash:"164177fc1e3eca542ebad5fd34a79d1e",slug:"thin-film-processes-artifacts-on-surface-phenomena-and-technological-facets",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/5699.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5541",title:"Modern Technologies for Creating the Thin-film Systems and Coatings",subtitle:null,isOpenForSubmission:!1,hash:"076a9d5440634eb52d02bd45a8ce7cfd",slug:"modern-technologies-for-creating-the-thin-film-systems-and-coatings",bookSignature:"Nikolay N. Nikitenkov",coverURL:"https://cdn.intechopen.com/books/images_new/5541.jpg",editedByType:"Edited by",editors:[{id:"16402",title:"Prof.",name:"Nikolay",middleName:"N.",surname:"Nikitenkov",slug:"nikolay-nikitenkov",fullName:"Nikolay Nikitenkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:16,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"17728",doi:"10.5772/22607",title:"Defect Related Luminescence in Silicon Dioxide Network: A Review",slug:"defect-related-luminescence-in-silicon-dioxide-network-a-review",totalDownloads:9504,totalCrossrefCites:46,totalDimensionsCites:97,abstract:null,book:{id:"332",slug:"crystalline-silicon-properties-and-uses",title:"Crystalline Silicon",fullTitle:"Crystalline Silicon - Properties and Uses"},signatures:"Roushdey Salh",authors:[{id:"48391",title:"Dr.",name:"Roushdey",middleName:null,surname:"Salh",slug:"roushdey-salh",fullName:"Roushdey Salh"}]},{id:"52684",doi:"10.5772/65702",title:"Advance Deposition Techniques for Thin Film and Coating",slug:"advance-deposition-techniques-for-thin-film-and-coating",totalDownloads:7716,totalCrossrefCites:32,totalDimensionsCites:61,abstract:"Thin films have a great impact on the modern era of technology. Thin films are considered as backbone for advanced applications in the various fields such as optical devices, environmental applications, telecommunications devices, energy storage devices, and so on . The crucial issue for all applications of thin films depends on their morphology and the stability. The morphology of the thin films strongly hinges on deposition techniques. Thin films can be deposited by the physical and chemical routes. In this chapter, we discuss some advance techniques and principles of thin-film depositions. The vacuum thermal evaporation technique, electron beam evaporation, pulsed-layer deposition, direct current/radio frequency magnetron sputtering, and chemical route deposition systems will be discussed in detail.",book:{id:"5541",slug:"modern-technologies-for-creating-the-thin-film-systems-and-coatings",title:"Modern Technologies for Creating the Thin-film Systems and Coatings",fullTitle:"Modern Technologies for Creating the Thin-film Systems and Coatings"},signatures:"Asim Jilani, Mohamed Shaaban Abdel-wahab and Ahmed Hosny\nHammad",authors:[{id:"192377",title:"Dr.",name:"Asim",middleName:null,surname:"Jilani",slug:"asim-jilani",fullName:"Asim Jilani"},{id:"192972",title:"Dr.",name:"M.Sh",middleName:null,surname:"Abdel-Wahab",slug:"m.sh-abdel-wahab",fullName:"M.Sh Abdel-Wahab"},{id:"192973",title:"Dr.",name:"Ahmed",middleName:"H",surname:"Hammad",slug:"ahmed-hammad",fullName:"Ahmed Hammad"}]},{id:"17722",doi:"10.5772/23174",title:"Study of SiO2/Si Interface by Surface Techniques",slug:"study-of-sio2-si-interface-by-surface-techniques",totalDownloads:14157,totalCrossrefCites:13,totalDimensionsCites:35,abstract:null,book:{id:"332",slug:"crystalline-silicon-properties-and-uses",title:"Crystalline Silicon",fullTitle:"Crystalline Silicon - Properties and Uses"},signatures:"Rodica Ghita, Constantin Logofatu, Catalin-Constantin Negrila, Florica Ungureanu, Costel Cotirlan, Adrian-Stefan Manea, Mihail-Florin Lazarescu and Corneliu Ghica",authors:[{id:"50919",title:"Dr.",name:"Rodica V.",middleName:null,surname:"Ghita",slug:"rodica-v.-ghita",fullName:"Rodica V. Ghita"},{id:"57132",title:"Dr.",name:"Constantin",middleName:null,surname:"Logofatu",slug:"constantin-logofatu",fullName:"Constantin Logofatu"},{id:"57133",title:"Dr.",name:"Catalin-Constantin",middleName:null,surname:"Negrila",slug:"catalin-constantin-negrila",fullName:"Catalin-Constantin Negrila"},{id:"57134",title:"Mrs.",name:"Florica",middleName:null,surname:"Ungureanu",slug:"florica-ungureanu",fullName:"Florica Ungureanu"},{id:"57135",title:"Dr.",name:"Costel",middleName:null,surname:"Cotirlan",slug:"costel-cotirlan",fullName:"Costel Cotirlan"},{id:"57136",title:"Dr.",name:"Adrian-Stefan",middleName:null,surname:"Manea",slug:"adrian-stefan-manea",fullName:"Adrian-Stefan Manea"},{id:"57137",title:"Dr.",name:"Mihail-Florin",middleName:null,surname:"Lazarescu",slug:"mihail-florin-lazarescu",fullName:"Mihail-Florin Lazarescu"},{id:"101735",title:"Dr.",name:"Corneliu",middleName:null,surname:"Ghica",slug:"corneliu-ghica",fullName:"Corneliu Ghica"}]},{id:"53225",doi:"10.5772/66396",title:"Radio Frequency Magnetron Sputter Deposition as a Tool for Surface Modification of Medical Implants",slug:"radio-frequency-magnetron-sputter-deposition-as-a-tool-for-surface-modification-of-medical-implants",totalDownloads:2294,totalCrossrefCites:8,totalDimensionsCites:28,abstract:"The resent advances in radio frequency (RF)‐magnetron sputtering of hydroxyapatite films are reviewed and challenges posed. The principles underlying RF‐magnetron sputtering used to prepare calcium phosphate‐based, mainly hydroxyapatite coatings, are discussed in this chapter. The fundamental characteristic of the RF‐magnetron sputtering is an energy input into the growing film. In order to tailor the film properties, one has to adjust the energy input into the substrate depending on the desired film properties. The effect of different deposition control parameters, such as deposition time, substrate temperature, and substrate biasing on the hydroxyapatite (HA) film properties is discussed.",book:{id:"5541",slug:"modern-technologies-for-creating-the-thin-film-systems-and-coatings",title:"Modern Technologies for Creating the Thin-film Systems and Coatings",fullTitle:"Modern Technologies for Creating the Thin-film Systems and Coatings"},signatures:"Roman Surmenev, Alina Vladescu, Maria Surmeneva, Anna Ivanova,\nMariana Braic, Irina Grubova and Cosmin Mihai Cotrut",authors:[{id:"193921",title:"Dr.",name:"Alina",middleName:null,surname:"Vladescu",slug:"alina-vladescu",fullName:"Alina Vladescu"},{id:"193922",title:"Prof.",name:"Roman",middleName:null,surname:"Surmenev",slug:"roman-surmenev",fullName:"Roman Surmenev"},{id:"193923",title:"Dr.",name:"Maria",middleName:null,surname:"Surmeneva",slug:"maria-surmeneva",fullName:"Maria Surmeneva"},{id:"193948",title:"Dr.",name:"Mariana",middleName:null,surname:"Braic",slug:"mariana-braic",fullName:"Mariana Braic"},{id:"194047",title:"Ms.",name:"Anna",middleName:null,surname:"Ivanova",slug:"anna-ivanova",fullName:"Anna Ivanova"},{id:"194048",title:"BSc.",name:"Irina",middleName:null,surname:"Grubova",slug:"irina-grubova",fullName:"Irina Grubova"},{id:"196398",title:"Prof.",name:"Cosmin Mihai",middleName:null,surname:"Cotrut",slug:"cosmin-mihai-cotrut",fullName:"Cosmin Mihai Cotrut"}]},{id:"21157",doi:"10.5772/24330",title:"Compilation on Synthesis, Characterization and Properties of Silicon and Boron Carbonitride Films",slug:"compilation-on-synthesis-characterization-and-properties-of-silicon-and-boron-carbonitride-films",totalDownloads:5215,totalCrossrefCites:6,totalDimensionsCites:19,abstract:null,book:{id:"326",slug:"silicon-carbide-materials-processing-and-applications-in-electronic-devices",title:"Silicon Carbide",fullTitle:"Silicon Carbide - Materials, Processing and Applications in Electronic Devices"},signatures:"P. Hoffmann, N. Fainer, M. Kosinova, O. Baake and W. Ensinger",authors:[{id:"56722",title:"Dr.",name:"Peter",middleName:null,surname:"Hoffmann",slug:"peter-hoffmann",fullName:"Peter Hoffmann"},{id:"56726",title:"Dr.",name:"Marina",middleName:null,surname:"Kosinova",slug:"marina-kosinova",fullName:"Marina Kosinova"},{id:"56727",title:"Prof.",name:"Wolfgang",middleName:null,surname:"Ensinger",slug:"wolfgang-ensinger",fullName:"Wolfgang Ensinger"}]}],mostDownloadedChaptersLast30Days:[{id:"52684",title:"Advance Deposition Techniques for Thin Film and Coating",slug:"advance-deposition-techniques-for-thin-film-and-coating",totalDownloads:7715,totalCrossrefCites:32,totalDimensionsCites:61,abstract:"Thin films have a great impact on the modern era of technology. Thin films are considered as backbone for advanced applications in the various fields such as optical devices, environmental applications, telecommunications devices, energy storage devices, and so on . The crucial issue for all applications of thin films depends on their morphology and the stability. The morphology of the thin films strongly hinges on deposition techniques. Thin films can be deposited by the physical and chemical routes. In this chapter, we discuss some advance techniques and principles of thin-film depositions. The vacuum thermal evaporation technique, electron beam evaporation, pulsed-layer deposition, direct current/radio frequency magnetron sputtering, and chemical route deposition systems will be discussed in detail.",book:{id:"5541",slug:"modern-technologies-for-creating-the-thin-film-systems-and-coatings",title:"Modern Technologies for Creating the Thin-film Systems and Coatings",fullTitle:"Modern Technologies for Creating the Thin-film Systems and Coatings"},signatures:"Asim Jilani, Mohamed Shaaban Abdel-wahab and Ahmed Hosny\nHammad",authors:[{id:"192377",title:"Dr.",name:"Asim",middleName:null,surname:"Jilani",slug:"asim-jilani",fullName:"Asim Jilani"},{id:"192972",title:"Dr.",name:"M.Sh",middleName:null,surname:"Abdel-Wahab",slug:"m.sh-abdel-wahab",fullName:"M.Sh Abdel-Wahab"},{id:"192973",title:"Dr.",name:"Ahmed",middleName:"H",surname:"Hammad",slug:"ahmed-hammad",fullName:"Ahmed Hammad"}]},{id:"68467",title:"Semiconductor Nanocomposites for Visible Light Photocatalysis of Water Pollutants",slug:"semiconductor-nanocomposites-for-visible-light-photocatalysis-of-water-pollutants",totalDownloads:1821,totalCrossrefCites:7,totalDimensionsCites:12,abstract:"Semiconductor photocatalysis gained reputation in the early 1970s when Fujishima and Honda revealed the potential of TiO2 to split water in to hydrogen and oxygen in a photoelectrochemical cell. Their work provided the base for the development of semiconductor photocatalysis for the environmental remediation and energy applications. Photoactivity of some semiconductors was found to be low due to larger band gap energy and higher electron-hole pair recombination rate. To avoid these problems, the development of visible light responsive photocatalytic materials by different approaches, such as metal and/or non-metal doping, co-doping, coupling of semiconductors, composites and heterojunctions materials synthesis has been widely investigated and explored in systematic manner. This chapter emphasizes on the different type of tailored photocatalyst materials having the enhanced visible light absorption properties, lower band gap energy and recombination rate of electron-hole pairs and production of reactive radical species. Visible light active semiconductors for the environmental remediation purposes, particularly for water treatment and disinfection are also discussed in detail. Studies on the photocatalytic degradation of emerging organic compounds like cyanotoxins, VOCs, phenols, pharmaceuticals, etc., by employing variety of modified semiconductors, are summarized, and a mechanistic aspects of the photocatalysis has been discussed.",book:{id:"7671",slug:"concepts-of-semiconductor-photocatalysis",title:"Concepts of Semiconductor Photocatalysis",fullTitle:"Concepts of Semiconductor Photocatalysis"},signatures:"Fatima Imtiaz, Jamshaid Rashid and Ming Xu",authors:[{id:"292882",title:"Dr.",name:"Jamshaid",middleName:null,surname:"Rashid",slug:"jamshaid-rashid",fullName:"Jamshaid Rashid"},{id:"302498",title:"Ms.",name:"Fatima",middleName:null,surname:"Imtiaz",slug:"fatima-imtiaz",fullName:"Fatima Imtiaz"},{id:"308434",title:"Prof.",name:"Ming",middleName:null,surname:"Xu",slug:"ming-xu",fullName:"Ming Xu"}]},{id:"17728",title:"Defect Related Luminescence in Silicon Dioxide Network: A Review",slug:"defect-related-luminescence-in-silicon-dioxide-network-a-review",totalDownloads:9504,totalCrossrefCites:46,totalDimensionsCites:97,abstract:null,book:{id:"332",slug:"crystalline-silicon-properties-and-uses",title:"Crystalline Silicon",fullTitle:"Crystalline Silicon - Properties and Uses"},signatures:"Roushdey Salh",authors:[{id:"48391",title:"Dr.",name:"Roushdey",middleName:null,surname:"Salh",slug:"roushdey-salh",fullName:"Roushdey Salh"}]},{id:"58469",title:"The Electrochemical Performance of Deposited Manganese Oxide-Based Film as Electrode Material for Electrochemical Capacitor Application",slug:"the-electrochemical-performance-of-deposited-manganese-oxide-based-film-as-electrode-material-for-el",totalDownloads:1746,totalCrossrefCites:4,totalDimensionsCites:8,abstract:"The transition metal oxide has been recognized as one of the promising electrode materials for electrochemical capacitor application. Due to the participation of charge transfer reactions, the capacitance offered by transition metal oxide can be higher compared to double layer capacitance. The investigation on hydrous ruthenium oxide has revealed the surface redox reactions that contributed to the wide potential window shown on cyclic voltammetry curve. Although the performance of ruthenium oxide is impressive, its toxicity has limited itself from commercial application. Manganese oxide is a pseudocapacitive material behaves similar to ruthenium oxide. It consists of various oxidation states which allow the occurrence of redox reactions. It is also environmental friendly, low cost, and natural abundant. The charge storage of manganese oxide film takes into account of the redox reactions between Mn3+ and Mn4+ and can be accounted to two mechanisms. The first one involves the intercalation/deintercalation of electrolyte ions and/or protons upon reduction/oxidation processes. The second contributor for the charge storage is due to the surface adsorption of electrolyte ions on the electrode surface.",book:{id:"6083",slug:"semiconductors-growth-and-characterization",title:"Semiconductors",fullTitle:"Semiconductors - Growth and Characterization"},signatures:"Chan Pei Yi and Siti Rohana Majid",authors:[{id:"197956",title:"Associate Prof.",name:"S.R.",middleName:null,surname:"Majid",slug:"s.r.-majid",fullName:"S.R. Majid"},{id:"216449",title:"Ms.",name:"Pei Yi",middleName:null,surname:"Chan",slug:"pei-yi-chan",fullName:"Pei Yi Chan"}]},{id:"60792",title:"TCAD Device Modelling and Simulation of Wide Bandgap Power Semiconductors",slug:"tcad-device-modelling-and-simulation-of-wide-bandgap-power-semiconductors",totalDownloads:2142,totalCrossrefCites:15,totalDimensionsCites:16,abstract:"Technology computer-aided Design (TCAD) is essential for devices technology development, including wide bandgap power semiconductors. However, most TCAD tools were originally developed for silicon and their performance and accuracy for wide bandgap semiconductors is contentious. This chapter will deal with TCAD device modelling of wide bandgap power semiconductors. In particular, modelling and simulating 3C- and 4H-Silicon Carbide (SiC), Gallium Nitride (GaN) and Diamond devices are examined. The challenges associated with modelling the material and device physics are analyzed in detail. It also includes convergence issues and accuracy of predicted performance. Modelling and simulating defects, traps and the effect of these traps on the characteristics are also discussed.",book:{id:"6625",slug:"disruptive-wide-bandgap-semiconductors-related-technologies-and-their-applications",title:"Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications",fullTitle:"Disruptive Wide Bandgap Semiconductors, Related Technologies, and Their Applications"},signatures:"Neophytos Lophitis, Anastasios Arvanitopoulos, Samuel Perkins and\nMarina Antoniou",authors:[{id:"236488",title:"Dr.",name:"Neophytos",middleName:null,surname:"Lophitis",slug:"neophytos-lophitis",fullName:"Neophytos Lophitis"},{id:"247344",title:"Dr.",name:"Marina",middleName:null,surname:"Antoniou",slug:"marina-antoniou",fullName:"Marina Antoniou"},{id:"247347",title:"Mr.",name:"Anastasios",middleName:null,surname:"Arvanitopoulos",slug:"anastasios-arvanitopoulos",fullName:"Anastasios Arvanitopoulos"},{id:"247349",title:"Mr.",name:"Samuel",middleName:null,surname:"Perkins",slug:"samuel-perkins",fullName:"Samuel Perkins"}]}],onlineFirstChaptersFilter:{topicId:"159",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"3",title:"Dentistry",doi:"10.5772/intechopen.71199",issn:"2631-6218",scope:"
\r\n\tThis book series will offer a comprehensive overview of recent research trends as well as clinical applications within different specialties of dentistry. Topics will include overviews of the health of the oral cavity, from prevention and care to different treatments for the rehabilitation of problems that may affect the organs and/or tissues present. The different areas of dentistry will be explored, with the aim of disseminating knowledge and providing readers with new tools for the comprehensive treatment of their patients with greater safety and with current techniques. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This series of books will focus on various aspects of the properties and results obtained by the various treatments available, whether preventive or curative.
",coverUrl:"https://cdn.intechopen.com/series/covers/3.jpg",latestPublicationDate:"August 4th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"91",title:"Sustainable Economy and Fair Society",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",isOpenForSubmission:!0,annualVolume:11975,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo, Ph.D., is a professor in the Department of Engineering, University of Naples “Parthenope,” Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino and Southern Lazio, Italy. Her research interests include multi-criteria decision analysis, industrial plants, logistics, manufacturing, and safety. She serves as an associate editor for the International Journal of the Analytic Hierarchy Process and is an editorial board member for several other journals. She is also a member of the Analytic Hierarchy Process (AHP) Academy.",institutionString:"Parthenope University of Naples",institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null},{id:"92",title:"Health and Wellbeing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",isOpenForSubmission:!0,annualVolume:11976,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"93",title:"Inclusivity and Social Equity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/93.jpg",isOpenForSubmission:!0,annualVolume:11977,editor:{id:"210060",title:"Prof. Dr.",name:"Ebba",middleName:null,surname:"Ossiannilsson",slug:"ebba-ossiannilsson",fullName:"Ebba Ossiannilsson",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6LkBQAU/Profile_Picture_2022-02-28T13:31:48.png",biography:"Professor Dr. Ebba Ossiannilsson is an independent researcher, expert, consultant, quality auditor and influencer in the fields of open, flexible online and distance learning (OFDL) and the 'new normal'. Her focus is on quality, innovation, leadership, and personalised learning. She works primarily at the strategic and policy levels, both nationally and internationally, and with key international organisations. She is committed to promoting and improving OFDL in the context of SDG4 and the future of education. Ossiannilsson has more than 20 years of experience in her current field, but more than 40 years in the education sector. She works as a reviewer and expert for the European Commission and collaborates with the Joint Research Centre for Quality in Open Education. Ossiannilsson also collaborates with ITCILO and ICoBC (International Council on Badges and Credentials). She is a member of the ICDE Board of Directors and has previously served on the boards of EDEN and EUCEN. Ossiannilsson is a quality expert and reviewer for ICDE, EDEN and the EADTU. She chairs the ICDE OER Advocacy Committee and is a member of the ICDE Quality Network. She is regularly invited as a keynote speaker at conferences. She is a guest editor for several special issues and a member of the editorial board of several scientific journals. She has published more than 200 articles and is currently working on book projects in the field of OFDL. Ossiannilsson is a visiting professor at several international universities and was recently appointed Professor and Research Fellow at Victoria University of Wellington, NZ. Ossiannilsson has been awarded the following fellowships: EDEN Fellows, EDEN Council of Fellows, and Open Education Europe. She is a ICDE OER Ambassador, Open Education Europe Ambassador, GIZ Ambassador for Quality in Digital Learning, and part of the Globe-Community of Digital Learning and Champion of SPARC Europe. On a national level, she is a quality developer at the Swedish Institute for Standards (SIS) and for ISO. She is a member of the Digital Skills and Jobs Coalition Sweden and Vice President of the Swedish Association for Distance Education. She is currently working on a government initiative on quality in distance education at the National Council for Higher Education. She holds a Ph.D. from the University of Oulu, Finland.",institutionString:"Swedish Association for Distance Education, Sweden",institution:null},editorTwo:null,editorThree:null},{id:"94",title:"Climate Change and Environmental Sustainability",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",isOpenForSubmission:!0,annualVolume:11978,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYWJgQAO/Profile_Picture_2022-06-09T11:36:35.jpg",biography:"Professor Yixin Zhang is an aquatic ecologist with over 30 years of research and teaching experience in three continents (Asia, Europe, and North America) in Stream Ecology, Riparian Ecology, Urban Ecology, and Ecosystem Restoration and Aquatic Conservation, Human-Nature Interactions and Sustainability, Urbanization Impact on Aquatic Ecosystems. He got his Ph.D. in Animal Ecology at Umeå University in Sweden in 1998. He conducted postdoc research in stream ecology at the University of California at Santa Barbara in the USA. After that, he was a postdoc research fellow at the University of British Columbia in Canada to do research on large-scale stream experimental manipulation and watershed ecological survey in temperate rainforests of BC. He was a faculty member at the University of Hong Kong to run ecological research projects on aquatic insects, fishes, and newts in Tropical Asian streams. He also conducted research in streams, rivers, and caves in Texas, USA, to study the ecology of macroinvertebrates, big-claw river shrimp, fish, turtles, and bats. Current research interests include trophic flows across ecosystems; watershed impacts of land-use change on biodiversity and ecosystem functioning; ecological civilization and water resource management; urban ecology and urban/rural sustainable development.",institutionString:null,institution:{name:"Soochow University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"95",title:"Urban Planning and Environmental Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",isOpenForSubmission:!0,annualVolume:11979,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:{name:"Swiss Federal Institute of Aquatic Science and Technology",institutionURL:null,country:{name:"Switzerland"}}},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"82526",title:"Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge",doi:"10.5772/intechopen.105627",signatures:"Theocharis Kravaris and George A. Vouros",slug:"deep-multiagent-reinforcement-learning-methods-addressing-the-scalability-challenge",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",subseries:{id:"27",title:"Multi-Agent Systems"}}},{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:26,paginationItems:[{id:"82800",title:"Repurposing Drugs as Potential Therapeutics for the SARS-Cov-2 Viral Infection: Automatizing a Blind Molecular Docking High-throughput Pipeline",doi:"10.5772/intechopen.105792",signatures:"Aldo Herrera-Rodulfo, Mariana Andrade-Medina and Mauricio Carrillo-Tripp",slug:"repurposing-drugs-as-potential-therapeutics-for-the-sars-cov-2-viral-infection-automatizing-a-blind-",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82582",title:"Protecting Bioelectric Signals from Electromagnetic Interference in a Wireless World",doi:"10.5772/intechopen.105951",signatures:"David Marcarian",slug:"protecting-bioelectric-signals-from-electromagnetic-interference-in-a-wireless-world",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82586",title:"Fundamentals of Molecular Docking and Comparative Analysis of Protein–Small-Molecule Docking Approaches",doi:"10.5772/intechopen.105815",signatures:"Maden Sefika Feyza, Sezer Selin and Acuner Saliha Ece",slug:"fundamentals-of-molecular-docking-and-comparative-analysis-of-protein-small-molecule-docking-approac",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Molecular Docking - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82005",title:"Non-Invasive Approach for Glucose Detection in Urine Quality using Its Image Analysis",doi:"10.5772/intechopen.104791",signatures:"Anton Yudhana, Liya Yusrina Sabila, Arsyad Cahya Subrata, Hendriana Helda Pratama and Muhammad Syahrul Akbar",slug:"non-invasive-approach-for-glucose-detection-in-urine-quality-using-its-image-analysis",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:2,group:"subseries"},{caption:"Bioinformatics and Medical Informatics",value:7,count:20,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",publishedDate:"July 27th 2022",editedByType:"Edited by",bookSignature:"Dragana Gabrić and Marko Vuletić",hash:"4af8830e463f89c57515c2da2b9777b0",volumeInSeries:11,fullTitle:"Current Concepts in Dental Implantology - From Science to Clinical Research",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić",profilePictureURL:"https://mts.intechopen.com/storage/users/26946/images/system/26946.png",institutionString:"University of Zagreb",institution:{name:"University of Zagreb",institutionURL:null,country:{name:"Croatia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Prosthodontics and Implant Dentistry",value:2,count:3},{group:"subseries",caption:"Oral Health",value:1,count:6}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:30,paginationItems:[{id:"425474",title:"Mr.",name:"Jasper",middleName:"Okoro Godwin",surname:"Okoro Godwin Elechi",slug:"jasper-okoro-godwin-elechi",fullName:"Jasper Okoro Godwin Elechi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/425474/images/19990_n.jpg",biography:"Mr. Elechi is an innovative and passionate food professional and educator who can collaborate across boundaries with an integrated aspiration of innovation to provide good, sustainable, and healthy food solutions that promote human health and conserve planetary health. He has a special interest in innovative food product development, nutrition, indigenous food products, biotechnology, bioeconmy, sustainable global food systems transformation, food safety Nanotechnology, and Nanomaterials. He has carried out independent research and publications in these areas. He possesses comprehensive knowledge and technical know-how on nutritional formulation and production of healthy and sustainable foods from locally available underutilized Cereal-Legume crops for combating food security and malnutrition in developing communities.",institutionString:null,institution:null},{id:"307387",title:"Dr.",name:"Cecilia",middleName:null,surname:"Camporeale",slug:"cecilia-camporeale",fullName:"Cecilia Camporeale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Agency For New Technologies, Energy and Sustainable Economic Development",country:{name:"Italy"}}},{id:"296882",title:"Dr.",name:"Mario",middleName:null,surname:"Jorizzo",slug:"mario-jorizzo",fullName:"Mario Jorizzo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Agency For New Technologies, Energy and Sustainable Economic Development",country:{name:"Italy"}}},{id:"307388",title:"Dr.",name:"ROBERTO",middleName:null,surname:"DEL CIELLO",slug:"roberto-del-ciello",fullName:"ROBERTO DEL CIELLO",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Agency For New Technologies, Energy and Sustainable Economic Development",country:{name:"Italy"}}},{id:"437647",title:"M.Sc.",name:"Fernando",middleName:null,surname:"Teixeira",slug:"fernando-teixeira",fullName:"Fernando Teixeira",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Évora",country:{name:"Portugal"}}},{id:"423338",title:"Dr.",name:"Harjeet",middleName:null,surname:"Singh",slug:"harjeet-singh",fullName:"Harjeet Singh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Chitkara University",country:{name:"India"}}},{id:"443635",title:"Dr.",name:"Suruchi",middleName:null,surname:"Jindal",slug:"suruchi-jindal",fullName:"Suruchi Jindal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Punjab Agricultural University",country:{name:"India"}}},{id:"426265",title:"Mrs.",name:"Inonge",middleName:null,surname:"Chibua",slug:"inonge-chibua",fullName:"Inonge Chibua",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Botswana",country:{name:"Botswana"}}},{id:"426266",title:"Ms.",name:"Mesha",middleName:null,surname:"Mbisana",slug:"mesha-mbisana",fullName:"Mesha Mbisana",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Botswana",country:{name:"Botswana"}}},{id:"426264",title:"Mr.",name:"Samuel",middleName:null,surname:"Raditloko",slug:"samuel-raditloko",fullName:"Samuel Raditloko",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Botswana",country:{name:"Botswana"}}},{id:"426394",title:"Dr.",name:"Mags",middleName:null,surname:"Adams",slug:"mags-adams",fullName:"Mags Adams",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Central Lancashire",country:{name:"United Kingdom"}}},{id:"441182",title:"Dr.",name:"Neil",middleName:null,surname:"Wilson",slug:"neil-wilson",fullName:"Neil Wilson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Central Lancashire",country:{name:"United Kingdom"}}},{id:"425171",title:"Ph.D. Student",name:"Tanya",middleName:null,surname:"Zerbian",slug:"tanya-zerbian",fullName:"Tanya Zerbian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Central Lancashire",country:{name:"Cyprus"}}},{id:"424714",title:"Prof.",name:"Elke",middleName:null,surname:"Stedefeldt",slug:"elke-stedefeldt",fullName:"Elke Stedefeldt",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Sao Paulo",country:{name:"Brazil"}}},{id:"425244",title:"Dr.",name:"Rayane",middleName:"Stephanie Gomes",surname:"Stephanie Gomes De Freitas",slug:"rayane-stephanie-gomes-de-freitas",fullName:"Rayane Stephanie Gomes De Freitas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Sao Paulo",country:{name:"Brazil"}}},{id:"424688",title:"Dr.",name:"Bart",middleName:null,surname:"de Steenhuijsen Piters",slug:"bart-de-steenhuijsen-piters",fullName:"Bart de Steenhuijsen Piters",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"429404",title:"Dr.",name:"Emma",middleName:null,surname:"Termeer",slug:"emma-termeer",fullName:"Emma Termeer",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"429407",title:"Dr.",name:"Herman",middleName:null,surname:"Brouwer",slug:"herman-brouwer",fullName:"Herman Brouwer",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"429406",title:"Dr.",name:"Hubert",middleName:null,surname:"Fonteijn",slug:"hubert-fonteijn",fullName:"Hubert Fonteijn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Wageningen University & Research",country:{name:"Netherlands"}}},{id:"427504",title:"Dr.",name:"Kriengsak",middleName:null,surname:"Chareonwongsak",slug:"kriengsak-chareonwongsak",fullName:"Kriengsak Chareonwongsak",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"423333",title:"Ph.D. Student",name:"Shivani",middleName:null,surname:"Sood",slug:"shivani-sood",fullName:"Shivani Sood",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"452297",title:"Mr.",name:"Cornelius",middleName:null,surname:"Smah Adamu",slug:"cornelius-smah-adamu",fullName:"Cornelius Smah Adamu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"452296",title:"Mr.",name:"Ikechukwu",middleName:null,surname:"U. Nwiyi",slug:"ikechukwu-u.-nwiyi",fullName:"Ikechukwu U. Nwiyi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"423395",title:"Assistant Prof.",name:"Adane",middleName:null,surname:"Atara Debessa",slug:"adane-atara-debessa",fullName:"Adane Atara Debessa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"426267",title:"Mr.",name:"Banyaladzi",middleName:null,surname:"Paphane",slug:"banyaladzi-paphane",fullName:"Banyaladzi Paphane",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"483388",title:"Dr.",name:"Berhanu",middleName:null,surname:"Denu",slug:"berhanu-denu",fullName:"Berhanu Denu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"483387",title:"Dr.",name:"Degefa",middleName:null,surname:"Tolossa",slug:"degefa-tolossa",fullName:"Degefa Tolossa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"426059",title:"Dr.",name:"Dikabo",middleName:null,surname:"Mogopodi",slug:"dikabo-mogopodi",fullName:"Dikabo Mogopodi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"422909",title:"Dr.",name:"Dorcas Stella",middleName:null,surname:"Shumba",slug:"dorcas-stella-shumba",fullName:"Dorcas Stella Shumba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"429405",title:"Dr.",name:"Deborah",middleName:null,surname:"Bakker",slug:"deborah-bakker",fullName:"Deborah Bakker",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"27",type:"subseries",title:"Multi-Agent Systems",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11423,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"275140",title:"Dr.",name:"Dinh Hoa",middleName:null,surname:"Nguyen",slug:"dinh-hoa-nguyen",fullName:"Dinh Hoa Nguyen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRbnKQAS/Profile_Picture_1622204093453",institutionString:null,institution:{name:"Kyushu University",institutionURL:null,country:{name:"Japan"}}},{id:"20259",title:"Dr.",name:"Hongbin",middleName:null,surname:"Ma",slug:"hongbin-ma",fullName:"Hongbin Ma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhDJQA0/Profile_Picture_2022-05-02T08:25:21.jpg",institutionString:null,institution:{name:"Beijing Institute of Technology",institutionURL:null,country:{name:"China"}}},{id:"28640",title:"Prof.",name:"Yasushi",middleName:null,surname:"Kambayashi",slug:"yasushi-kambayashi",fullName:"Yasushi Kambayashi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOQxQAO/Profile_Picture_1625660525470",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"82526",title:"Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge",doi:"10.5772/intechopen.105627",signatures:"Theocharis Kravaris and George A. Vouros",slug:"deep-multiagent-reinforcement-learning-methods-addressing-the-scalability-challenge",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",subseries:{id:"27",title:"Multi-Agent Systems"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"3",title:"Dentistry",doi:"10.5772/intechopen.71199",issn:"2631-6218",scope:"\r\n\tThis book series will offer a comprehensive overview of recent research trends as well as clinical applications within different specialties of dentistry. Topics will include overviews of the health of the oral cavity, from prevention and care to different treatments for the rehabilitation of problems that may affect the organs and/or tissues present. The different areas of dentistry will be explored, with the aim of disseminating knowledge and providing readers with new tools for the comprehensive treatment of their patients with greater safety and with current techniques. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This series of books will focus on various aspects of the properties and results obtained by the various treatments available, whether preventive or curative.
",coverUrl:"https://cdn.intechopen.com/series/covers/3.jpg",latestPublicationDate:"August 4th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:2,numberOfPublishedChapters:139,numberOfPublishedBooks:9,editor:{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",fullName:"Sergio Gehrke",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",institutionURL:null,country:{name:"Spain"}}},subseries:[{id:"1",title:"Oral Health",keywords:"Oral Health, Dental Care, Diagnosis, Diagnostic Imaging, Early Diagnosis, Oral Cancer, Conservative Treatment, Epidemiology, Comprehensive Dental Care, Complementary Therapies, Holistic Health",scope:"\r\n\tThis topic aims to provide a comprehensive overview of the latest trends in Oral Health based on recent scientific evidence. Subjects will include an overview of oral diseases and infections, systemic diseases affecting the oral cavity, prevention, diagnosis, treatment, epidemiology, as well as current clinical recommendations for the management of oral, dental, and periodontal diseases.
",annualVolume:11397,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/1.jpg",editor:{id:"173955",title:"Prof.",name:"Sandra",middleName:null,surname:"Marinho",fullName:"Sandra Marinho",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGYMQA4/Profile_Picture_2022-06-01T13:22:41.png",institutionString:null,institution:{name:"State University of Paraíba",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"267724",title:"Prof.",name:"Febronia",middleName:null,surname:"Kahabuka",fullName:"Febronia Kahabuka",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZpJQAW/Profile_Picture_2022-06-27T12:00:42.JPG",institutionString:"Muhimbili University of Health and Allied Sciences, Tanzania",institution:{name:"Muhimbili University of Health and Allied Sciences",institutionURL:null,country:{name:"Tanzania"}}},{id:"70530",title:"Dr.",name:"Márcio",middleName:"Campos",surname:"Oliveira",fullName:"Márcio Oliveira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRm0AQAS/Profile_Picture_2022-08-01T12:34:46.jpg",institutionString:null,institution:{name:"State University of Feira de Santana",institutionURL:null,country:{name:"Brazil"}}}]},{id:"2",title:"Prosthodontics and Implant Dentistry",keywords:"Osseointegration, Hard Tissue, Peri-implant Soft Tissue, Restorative Materials, Prosthesis Design, Prosthesis, Patient Satisfaction, Rehabilitation",scope:"