Redox potential of Cu(II) and group 10 metal complexes
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"}]},book:{item:{type:"book",id:"7746",leadTitle:null,fullTitle:"Lagoon Environments Around the World - A Scientific Perspective",title:"Lagoon Environments Around the World",subtitle:"A Scientific Perspective",reviewType:"peer-reviewed",abstract:"Lagoon Environments Around the World - A Scientific Perspective covers a wide range of topics. Typically bordering between land and sea, lagoons are among the most diversely utilized waterways on the planet. Lagoons are extremely important environments socio-economically, and their usage places ever increasing stress on these very sensitive aquatic regions. The effective management of shallow aquatic environments requires a detailed scientific understanding of the various contributary natural processes. This has both environmental and economic implications, especially where there is any anthropogenic involvement. This book draws on international scientific research to examine the following lagoon related issues: classification, circulation hydrodynamics, ecosystems, sedimentation, anthropogenic stresses, and response to extreme events. The research was carried out by researchers who specialize in shallow water processes and related issues.",isbn:"978-1-78985-096-3",printIsbn:"978-1-78985-095-6",pdfIsbn:"978-1-78985-953-9",doi:"10.5772/intechopen.77559",price:119,priceEur:129,priceUsd:155,slug:"lagoon-environments-around-the-world-a-scientific-perspective",numberOfPages:246,isOpenForSubmission:!1,isInWos:null,hash:"372053f50e624aa8f1e2269abb0a246d",bookSignature:"Andrew J. Manning",publishedDate:"March 11th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/7746.jpg",numberOfDownloads:2507,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:2,hasAltmetrics:1,numberOfTotalCitations:3,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 8th 2019",dateEndSecondStepPublish:"February 26th 2019",dateEndThirdStepPublish:"April 27th 2019",dateEndFourthStepPublish:"July 16th 2019",dateEndFifthStepPublish:"September 14th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"23008",title:"Prof.",name:"Andrew James",middleName:null,surname:"Manning",slug:"andrew-james-manning",fullName:"Andrew James Manning",profilePictureURL:"https://mts.intechopen.com/storage/users/23008/images/system/23008.jpeg",biography:"Professor Andrew J. Manning is a Principal Scientist (Rank Grade 9) in the Coasts & Oceans Group at HR Wallingford (UK) and has over 23 years of scientific research experience (in both industry and academia) examining natural turbulent flow dynamics, fine-grained sediment transport processes, and assessing how these interact, (including both field studies and controlled laboratory flume simulations). Andrew also lectures in Coastal & Shelf Physical Oceanography at the University of Plymouth (UK). Internationally, Andrew has been appointed Visiting / Guest / Adjunct Professor at five Universities (Hull, UK; Delaware, USA; Florida, USA; Stanford, USA; TU Delft, Netherlands), and is a highly published and world-renowned scientist in the field of depositional sedimentary flocculation processes. Andrew has contributed to more than 100 peer-reviewed publications in marine science, of which more than 60 have been published in international scientific journals, plus over 180 articles in refereed international conference proceedings, and currently has an H-index of 24. He supervises graduates, postgraduates and doctoral students focusing on a range of research topics in marine science. Andrew has led numerous research projects investigating sediment dynamics in aquatic environments around the world with locations including: estuaries, tidal lagoons, river deltas, salt marshes, intertidal, coastal waters, and shelf seas.",institutionString:"HR Wallingford",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"HR Wallingford",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"659",title:"Aquatic Ecosystem",slug:"earth-and-planetary-sciences-marine-biology-aquatic-ecosystem"}],chapters:[{id:"67398",title:"Pollution Issues in Coastal Lagoons in the Gulf of Mexico",doi:"10.5772/intechopen.86537",slug:"pollution-issues-in-coastal-lagoons-in-the-gulf-of-mexico",totalDownloads:297,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Alfonso Vazquez Botello, Guadalupe de la Lanza Espino, Susana Villanueva Fragoso and Guadalupe Ponce Velez",downloadPdfUrl:"/chapter/pdf-download/67398",previewPdfUrl:"/chapter/pdf-preview/67398",authors:[{id:"265631",title:"Dr.",name:"Alfonso",surname:"V. Botello",slug:"alfonso-v.-botello",fullName:"Alfonso V. Botello"},{id:"265632",title:"Dr.",name:"Guadalupe",surname:"Ponce-Velez",slug:"guadalupe-ponce-velez",fullName:"Guadalupe Ponce-Velez"},{id:"295107",title:"Dr.",name:"Guadalupe",surname:"De La Lanza Espino",slug:"guadalupe-de-la-lanza-espino",fullName:"Guadalupe De La Lanza Espino"},{id:"301165",title:"M.Sc.",name:"Susana",surname:"Villanueva",slug:"susana-villanueva",fullName:"Susana Villanueva"}],corrections:null},{id:"68934",title:"Environmental Monitoring of Water Quality as a Planning and Management Tool: A Case Study of the Rodrigo de Freitas Lagoon, Rio de Janeiro, Brazil",doi:"10.5772/intechopen.88687",slug:"environmental-monitoring-of-water-quality-as-a-planning-and-management-tool-a-case-study-of-the-rodr",totalDownloads:245,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Giordano Gandhi, Obraczka Marcelo, de Souza Monica Medeiros, Mello Monique Alves Leite and e Marques Carine Ferreira",downloadPdfUrl:"/chapter/pdf-download/68934",previewPdfUrl:"/chapter/pdf-preview/68934",authors:[{id:"292598",title:"D.Sc.",name:"Marcelo",surname:"Obraczka",slug:"marcelo-obraczka",fullName:"Marcelo Obraczka"},{id:"294709",title:"Prof.",name:"Gandhi",surname:"Giordano",slug:"gandhi-giordano",fullName:"Gandhi Giordano"},{id:"307904",title:"MSc.",name:"Monique",surname:"Mello",slug:"monique-mello",fullName:"Monique Mello"},{id:"307905",title:"Mrs.",name:"Carine",surname:"Marques",slug:"carine-marques",fullName:"Carine Marques"},{id:"307906",title:"MSc.",name:"Monica",surname:"Souza",slug:"monica-souza",fullName:"Monica Souza"}],corrections:null},{id:"68510",title:"Hypersaline Lagoons from Chile, the Southern Edge of the World",doi:"10.5772/intechopen.88438",slug:"hypersaline-lagoons-from-chile-the-southern-edge-of-the-world",totalDownloads:302,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Gonzalo Gajardo and Stella Redón",downloadPdfUrl:"/chapter/pdf-download/68510",previewPdfUrl:"/chapter/pdf-preview/68510",authors:[{id:"272011",title:"Dr.",name:"Gonzalo",surname:"Gajardo",slug:"gonzalo-gajardo",fullName:"Gonzalo Gajardo"},{id:"302292",title:"Dr.",name:"Stella",surname:"Redón",slug:"stella-redon",fullName:"Stella Redón"}],corrections:null},{id:"70859",title:"Morphodynamics in a Tropical Shallow Lagoon: Observation and Inferences of Change",doi:"10.5772/intechopen.90189",slug:"morphodynamics-in-a-tropical-shallow-lagoon-observation-and-inferences-of-change",totalDownloads:254,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Alfred Sunday Alademomi, Andrew J. Manning, Victor J. Abbott and Richard J.S. Whitehouse",downloadPdfUrl:"/chapter/pdf-download/70859",previewPdfUrl:"/chapter/pdf-preview/70859",authors:[{id:"23008",title:"Prof.",name:"Andrew James",surname:"Manning",slug:"andrew-james-manning",fullName:"Andrew James Manning"},{id:"297810",title:"Dr.",name:"Alfred",surname:"Alademomi",slug:"alfred-alademomi",fullName:"Alfred Alademomi"}],corrections:null},{id:"67761",title:"A GIS-Based Approach for Determining Potential Runoff Coefficient and Runoff Depth for the Indian River Lagoon, Florida, USA",doi:"10.5772/intechopen.87163",slug:"a-gis-based-approach-for-determining-potential-runoff-coefficient-and-runoff-depth-for-the-indian-ri",totalDownloads:549,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Philip W. Bellamy and Hyun Jung Cho",downloadPdfUrl:"/chapter/pdf-download/67761",previewPdfUrl:"/chapter/pdf-preview/67761",authors:[{id:"103213",title:"Dr.",name:"Hyun Jung",surname:"Cho",slug:"hyun-jung-cho",fullName:"Hyun Jung Cho"},{id:"297575",title:"Mr.",name:"Philip",surname:"Bellamy",slug:"philip-bellamy",fullName:"Philip Bellamy"}],corrections:null},{id:"70654",title:"Autonomous Systems for the Environmental Characterization of Lagoons",doi:"10.5772/intechopen.90405",slug:"autonomous-systems-for-the-environmental-characterization-of-lagoons",totalDownloads:199,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Monica Rivas Casado, Marco Palma and Paul Leinster",downloadPdfUrl:"/chapter/pdf-download/70654",previewPdfUrl:"/chapter/pdf-preview/70654",authors:[{id:"297239",title:"Dr.",name:"Monica",surname:"Rivas Casado",slug:"monica-rivas-casado",fullName:"Monica Rivas Casado"},{id:"297838",title:"Prof.",name:"Paul",surname:"Leinster",slug:"paul-leinster",fullName:"Paul Leinster"},{id:"309718",title:"Dr.",name:"Marco",surname:"Palma",slug:"marco-palma",fullName:"Marco Palma"}],corrections:null},{id:"69785",title:"Process-Based Statistical Models Predict Dynamic Estuarine Salinity",doi:"10.5772/intechopen.89911",slug:"process-based-statistical-models-predict-dynamic-estuarine-salinity",totalDownloads:221,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Christina L. Durham, David B. Eggleston and Amy J. Nail",downloadPdfUrl:"/chapter/pdf-download/69785",previewPdfUrl:"/chapter/pdf-preview/69785",authors:[{id:"297322",title:"Prof.",name:"David",surname:"Eggleston",slug:"david-eggleston",fullName:"David Eggleston"},{id:"308450",title:"Dr.",name:"Amy",surname:"Nail",slug:"amy-nail",fullName:"Amy Nail"},{id:"308451",title:"MSc.",name:"Christina",surname:"Durham",slug:"christina-durham",fullName:"Christina Durham"}],corrections:null},{id:"68286",title:"Subtropical Coastal Lagoon from Southern Brazil: Environmental Conditions and Phytobenthic Community Structure",doi:"10.5772/intechopen.87776",slug:"subtropical-coastal-lagoon-from-southern-brazil-environmental-conditions-and-phytobenthic-community-",totalDownloads:220,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Leticia Donadel and Lezilda Torgan",downloadPdfUrl:"/chapter/pdf-download/68286",previewPdfUrl:"/chapter/pdf-preview/68286",authors:[{id:"300787",title:"Ph.D.",name:"Letícia",surname:"Donadel",slug:"leticia-donadel",fullName:"Letícia Donadel"},{id:"309877",title:"Dr.",name:"Lezilda",surname:"Torgan",slug:"lezilda-torgan",fullName:"Lezilda Torgan"}],corrections:null},{id:"68885",title:"Lagoons Reefs of Alacranes Reef and Chinchorro Bank: Ocean Reef of Mexican Atlantic",doi:"10.5772/intechopen.88662",slug:"lagoons-reefs-of-alacranes-reef-and-chinchorro-bank-ocean-reef-of-mexican-atlantic",totalDownloads:220,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Daniel Torruco, M. Alicia González-Solis and Ángel Daniel Torruco González",downloadPdfUrl:"/chapter/pdf-download/68885",previewPdfUrl:"/chapter/pdf-preview/68885",authors:[{id:"297580",title:"Dr.",name:"Daniel",surname:"Torruco",slug:"daniel-torruco",fullName:"Daniel Torruco"},{id:"297581",title:"Dr.",name:"Alicia",surname:"González",slug:"alicia-gonzalez",fullName:"Alicia González"},{id:"297582",title:"MSc.",name:"Angel Daniel",surname:"Torruco",slug:"angel-daniel-torruco",fullName:"Angel Daniel Torruco"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"304",title:"Sediment Transport in Aquatic Environments",subtitle:null,isOpenForSubmission:!1,hash:"0eb11af1d03ad494253c41e1d3c998e9",slug:"sediment-transport-in-aquatic-environments",bookSignature:"Andrew J. Manning",coverURL:"https://cdn.intechopen.com/books/images_new/304.jpg",editedByType:"Edited by",editors:[{id:"23008",title:"Prof.",name:"Andrew James",surname:"Manning",slug:"andrew-james-manning",fullName:"Andrew James Manning"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3100",title:"Sediment Transport",subtitle:"Processes and Their Modelling Applications",isOpenForSubmission:!1,hash:"a1aae9d236b0fa1150b6bc2a98fd0ce0",slug:"sediment-transport-processes-and-their-modelling-applications",bookSignature:"Andrew J. Manning",coverURL:"https://cdn.intechopen.com/books/images_new/3100.jpg",editedByType:"Edited by",editors:[{id:"23008",title:"Prof.",name:"Andrew James",surname:"Manning",slug:"andrew-james-manning",fullName:"Andrew James Manning"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5219",title:"Greenhouse Gases",subtitle:"Selected Case Studies",isOpenForSubmission:!1,hash:"edf0ad164729f5ce157c34f9978fcc61",slug:"greenhouse-gases-selected-case-studies",bookSignature:"Andrew J. Manning",coverURL:"https://cdn.intechopen.com/books/images_new/5219.jpg",editedByType:"Edited by",editors:[{id:"23008",title:"Prof.",name:"Andrew James",surname:"Manning",slug:"andrew-james-manning",fullName:"Andrew James Manning"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6344",title:"Biological Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"ca4f407275697c7cf547debc6b1e85a9",slug:"biological-resources-of-water",bookSignature:"Sajal Ray",coverURL:"https://cdn.intechopen.com/books/images_new/6344.jpg",editedByType:"Edited by",editors:[{id:"173697",title:"Prof.",name:"Sajal",surname:"Ray",slug:"sajal-ray",fullName:"Sajal Ray"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5765",title:"Corals in a Changing World",subtitle:null,isOpenForSubmission:!1,hash:"eed323f414d06a6bd994cc9d37ad24c4",slug:"corals-in-a-changing-world",bookSignature:"Carmenza Duque Beltran and Edisson Tello Camacho",coverURL:"https://cdn.intechopen.com/books/images_new/5765.jpg",editedByType:"Edited by",editors:[{id:"155319",title:"Emeritus Prof.",name:"Carmenza",surname:"Duque",slug:"carmenza-duque",fullName:"Carmenza Duque"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6266",title:"Marine Ecology",subtitle:"Biotic and Abiotic Interactions",isOpenForSubmission:!1,hash:"9d821ed950a497c8f50de67abf419259",slug:"marine-ecology-biotic-and-abiotic-interactions",bookSignature:"Muhammet Türkoğlu, Umur Önal and Ali Ismen",coverURL:"https://cdn.intechopen.com/books/images_new/6266.jpg",editedByType:"Edited by",editors:[{id:"99483",title:"Prof.",name:"Muhammet",surname:"Turkoglu",slug:"muhammet-turkoglu",fullName:"Muhammet Turkoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6411",title:"Mangrove Ecosystem Ecology and Function",subtitle:null,isOpenForSubmission:!1,hash:"5425ea4e90ed12b902f30186f807f8f5",slug:"mangrove-ecosystem-ecology-and-function",bookSignature:"Sahadev Sharma",coverURL:"https://cdn.intechopen.com/books/images_new/6411.jpg",editedByType:"Edited by",editors:[{id:"227169",title:"Ph.D.",name:"Sahadev",surname:"Sharma",slug:"sahadev-sharma",fullName:"Sahadev Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8882",title:"Advances in the Studies of the Benthic Zone",subtitle:null,isOpenForSubmission:!1,hash:"79f77db18a383e92371a06aa07937f90",slug:"advances-in-the-studies-of-the-benthic-zone",bookSignature:"Luis A. Soto",coverURL:"https://cdn.intechopen.com/books/images_new/8882.jpg",editedByType:"Edited by",editors:[{id:"256002",title:"Ph.D.",name:"Luis",surname:"Soto",slug:"luis-soto",fullName:"Luis Soto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8159",title:"Crustacea",subtitle:null,isOpenForSubmission:!1,hash:"a1d529af4d4f995de30137efc9a7b02e",slug:"crustacea",bookSignature:"Genaro Diarte-Plata and Ruth Escamilla-Montes",coverURL:"https://cdn.intechopen.com/books/images_new/8159.jpg",editedByType:"Edited by",editors:[{id:"198991",title:"Dr.",name:"Genaro",surname:"Diarte-Plata",slug:"genaro-diarte-plata",fullName:"Genaro Diarte-Plata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8421",title:"Invertebrates",subtitle:"Ecophysiology and Management",isOpenForSubmission:!1,hash:"524faf733c0ebf32b356f89b2148e6de",slug:"invertebrates-ecophysiology-and-management",bookSignature:"Sajal Ray, Genaro Diarte-Plata and Ruth Escamilla-Montes",coverURL:"https://cdn.intechopen.com/books/images_new/8421.jpg",editedByType:"Edited by",editors:[{id:"173697",title:"Prof.",name:"Sajal",surname:"Ray",slug:"sajal-ray",fullName:"Sajal Ray"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74026",slug:"corrigendum-to-calf-sex-influence-in-bovine-milk-production",title:"Corrigendum to: Calf-Sex Influence in Bovine Milk Production",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74026.pdf",downloadPdfUrl:"/chapter/pdf-download/74026",previewPdfUrl:"/chapter/pdf-preview/74026",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74026",risUrl:"/chapter/ris/74026",chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]}},chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]},book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7129",leadTitle:null,title:"Neutrophils",subtitle:null,reviewType:"peer-reviewed",abstract:"This book highlights the numerous important properties of neutrophils and their role in various diseases, and as a possible therapeutic target as well. The first chapter briefly discusses the main effector neutrophil functions, which is followed by two chapters discussing the importance of different neutrophil receptors (cannabinoid and Fc?R) and their role in various disease conditions. The fourth chapter discusses the differential expression profile of CD16+CD11b+ on the surface of neutrophils as a tool for the diagnosis of acute infections. The last chapter discusses the physics of the NADPH oxidase system and the use of different chemiluminigenic probes for the detection of various reactive oxygen intermediates of the circulating neutrophils.",isbn:"978-1-78985-286-8",printIsbn:"978-1-78985-285-1",pdfIsbn:"978-1-83962-005-8",doi:"10.5772/intechopen.73927",price:100,priceEur:109,priceUsd:129,slug:"neutrophils",numberOfPages:98,isOpenForSubmission:!1,hash:"4f71e75cb45249658d48e765d179ce9f",bookSignature:"Maitham Khajah",publishedDate:"February 6th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7129.jpg",keywords:null,numberOfDownloads:2460,numberOfWosCitations:0,numberOfCrossrefCitations:3,numberOfDimensionsCitations:4,numberOfTotalCitations:7,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 9th 2018",dateEndSecondStepPublish:"May 30th 2018",dateEndThirdStepPublish:"July 29th 2018",dateEndFourthStepPublish:"October 17th 2018",dateEndFifthStepPublish:"December 16th 2018",remainingDaysToSecondStep:"3 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah",profilePictureURL:"https://mts.intechopen.com/storage/users/173123/images/system/173123.jpeg",biography:"Dr. Maitham A. Khajah received his degree in Pharmacy from Faculty of Pharmacy, Kuwait University, in 2003 and obtained his PhD degree in December 2009 from the University of Calgary, Canada (Gastrointestinal Science and Immunology). Since January 2010 he has been assistant professor in Kuwait University, Faculty of Pharmacy, Department of Pharmacology and Therapeutics. His research interest are molecular targets for the treatment of inflammatory bowel disease (IBD) and the mechanisms responsible for immune cell chemotaxis. He cosupervised many students for the MSc Molecular Biology Program, College of Graduate Studies, Kuwait University. Ever since joining Kuwait University in 2010, he got various grants as PI and Co-I. He was awarded the Best Young Researcher Award by Kuwait University, Research Sector, for the Year 2013–2014. He was a member in the organizing committee for three conferences organized by Kuwait University, Faculty of Pharmacy, as cochair and a member in the scientific committee (the 3rd, 4th, and 5th Kuwait International Pharmacy Conference).",institutionString:"Kuwait University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"904",title:"Intravascular Immunity",slug:"pure-immunology-intravascular-immunity"}],chapters:[{id:"65212",title:"Introductory Chapter: Background Summary Regarding Neutrophils",slug:"introductory-chapter-background-summary-regarding-neutrophils",totalDownloads:419,totalCrossrefCites:0,authors:[{id:"173123",title:"Dr.",name:"Maitham",surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah"}]},{id:"64543",title:"Cannabinoid Receptors as Regulators of Neutrophil Activity in Inflammatory Diseases",slug:"cannabinoid-receptors-as-regulators-of-neutrophil-activity-in-inflammatory-diseases",totalDownloads:516,totalCrossrefCites:2,authors:[null]},{id:"63248",title:"Neutrophil Activation by Antibody Receptors",slug:"neutrophil-activation-by-antibody-receptors",totalDownloads:674,totalCrossrefCites:0,authors:[{id:"192432",title:"Dr.",name:"Carlos",surname:"Rosales",slug:"carlos-rosales",fullName:"Carlos Rosales"},{id:"198687",title:"Dr.",name:"Eileen",surname:"Uribe-Querol",slug:"eileen-uribe-querol",fullName:"Eileen Uribe-Querol"}]},{id:"64155",title:"Remodeling of Phenotype CD16 + CD11b + Neutrophilic Granulocytes in Acute Viral and Acute Bacterial Infections",slug:"remodeling-of-phenotype-cd16-cd11b-neutrophilic-granulocytes-in-acute-viral-and-acute-bacterial-infe",totalDownloads:405,totalCrossrefCites:0,authors:[null]},{id:"64123",title:"Essence of Reducing Equivalent Transfer Powering Neutrophil Oxidative Microbicidal Action and Chemiluminescence",slug:"essence-of-reducing-equivalent-transfer-powering-neutrophil-oxidative-microbicidal-action-and-chemil",totalDownloads:446,totalCrossrefCites:1,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"177730",firstName:"Edi",lastName:"Lipovic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/177730/images/4741_n.jpg",email:"edi@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5834",title:"Role of Neutrophils in Disease Pathogenesis",subtitle:null,isOpenForSubmission:!1,hash:"a626ce289341f74b7e3bba3bbcfb2aea",slug:"role-of-neutrophils-in-disease-pathogenesis",bookSignature:"Maitham Abbas Khajah",coverURL:"https://cdn.intechopen.com/books/images_new/5834.jpg",editedByType:"Edited by",editors:[{id:"173123",title:"Dr.",name:"Maitham",surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8590",title:"Macrophage Activation",subtitle:"Biology and Disease",isOpenForSubmission:!1,hash:"e15abd1b0e08f1b67d33592999c52c32",slug:"macrophage-activation-biology-and-disease",bookSignature:"Khalid Hussain Bhat",coverURL:"https://cdn.intechopen.com/books/images_new/8590.jpg",editedByType:"Edited by",editors:[{id:"162478",title:"Dr.",name:"Khalid Hussain",surname:"Bhat",slug:"khalid-hussain-bhat",fullName:"Khalid Hussain Bhat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"42959",title:"Oxidation Chemistry of Metal(II) Salen-Type Complexes",doi:"10.5772/48372",slug:"oxidation-chemistry-of-metal-ii-salen-type-complexes",body:'The oxidation chemistry of metal complexes has been widely developed in recent years, affording deep insights into the reaction mechanisms for many useful homogeneous catalytic reactions and enzymatic reactions at the active site of metalloenzymes [1]. In the course of the studies, a large number of novel complexes have been synthesized and wellcharacterized [2-18], and especially high valent metal complexes formed as a result of redox reactions have become important in catalytic and biological systems. In general high valent metal complexes have been meant to show thecomplexes oxidized at the metalcenter, and the formal oxidation state is identical with the oxidation state of the central metal ion reported in [19-23]. For example, one-electron oxidation of potassium hexacyanoferrate(II), K4[Fe(CN)6], gives potassium hexacyanoferrate(III), K3[Fe(CN)6], whose valence state of the central iron ion is +III andagrees with the experimental valence state of the ion. In contrast to this, the formal oxidation number of the central metal ion of the complexes of iminophenolate dianion, (LAP)2-is not always identical with the experimental valence state reported in references [24,25]. In the case of [Ni(LAP)2]0, the formal oxidation state of the central nickel ion is +IV, but the experimental valence state of nickel can be assigned to be +II, and two iminophenolate dianions are oxidized to iminosemiquinonate radical anions (LSQ)- (Figure 1).
Such a difference between the formal oxidation number and the experimental oxidation state is also observed in biological systems. Recently, it has been reported that various radicals can be generated at a proximal position of the metal center in metalloproteins, and the radical can sometimes interact with the central metal ion as shown in reference [21]. Galactose oxidase (GO) is a single copper oxidase, which catalyzes a two-electron oxidation of a primary alcohol to the corresponding aldehyde [21-24]. The active site structure of the inactive form of GO is shown in Figure 2, where two imidazole rings of histidine residues, two phenol moieties of tyrosine residues, and an acetate ion are coordinated to the copper(II) ion [24]. One of two phenol moieties is in the deprotonated form and is coordinated to the copper ion at an equatorial position, and another phenol moiety is protonated and located at an apical position.
An example showingthedifference between the experimental oxidation state andthe formal oxidation number in the Ni complexes of iminophenolate dianions, [Ni(LAP)2]0.
Active site structure of the inactive form of GO.
Conversion to the active form of GO occurs upon one-electron oxidation and deprotonation from the apical phenol moiety, which gives the structure with the two phenolate moieties coordinated to the copper center. This active form should act as a two-electron oxidant, causing the conversion from primary alcohol to aldehyde. Therefore, the formal oxidation state of the active form of GO can be described as a Cu(III)-phenolate species. Actually, the active form of GO had been considered to be a copper(III) species [25,26],but early in 1990’s, various spectroscopic studies of the active form of GO revealed the formation of the phenoxyl radical species and the Cu(II)–phenoxyl radical bond. The free phenoxyl radical is very unstable with half life estimated to be 2.4 ms at ambient conditions, while the Cu(II)–phenoxyl radical in the active form of GO has a long life; the radical is not quenched for more than one week at room temperature [22,23,27,28]. Thus, properties of the metal coordinated phenoxyl radical show a significant change from those of the free phenoxyl radical.
The proposed reaction mechanism of GO is that the primary alcohol is coordinated to the Cu(II)-phenoxyl radical species generated by molecular oxygen and oxidized by an intramolecular two-electron redox reaction with the hydrogen atom scission from the alcohol moiety to give the aldehyde and the Cu(I)–phenol species (Scheme 1) reported in [22,23]. The Cu(I)-phenol complex is oxidized by molecular oxygen to regenerate the Cu(II)-phenoxyl radical species.
Proposed mechanism of galactose oxidase (GO).
For understanding the detailed mechanism of GO and the properties of the metal complexes with the coordinated phenoxyl radical, many metal−phenolate complexes have been synthesized, and their oxidation behavior and properties of the oxidized forms have been characterized in [12,13, 29-36]. Salen (Salen = di(salicylidene)ethylenediamine) and its family are one of the most important and famous ligands having two phenol moieties (Figure 3) [37,38]. One of the characteristics of Salen is its preference for a square planar 2N2O coordination environment, while the distortion from the square plane can be introduced by changing the diamine backbone. A number of metal-Salen complexes have been reported to be the very important catalysts for oxidation and conversion of various organic substrates from early 1990’s [37]. While studies on oxidative reaction intermediates are in progress, the oxidation state of the metal ions in the active species hasnot been fully understood until now. Detailed descriptions of the oxidation state of the intermediate are sometimes complicated, because the oxidation locus on oxidized metal complexes is often different from the “formal” oxidation site [19,20]. Although “formal” and “experimental” oxidation numbers are identical in many cases, they are often used as synonyms, since the term of the physical or experimental oxidation state has not been accepted in some areas of chemistry.
The present argument is focused on recent advancesin the chemistry related with the synthesis, characterization, and reactivity of some of the one-electron oxidized metal(II)–salen type complexes, especially the complexes of group 10 metal(II) ions, Ni(II), Pd(II), and Pt(II) [39-43], and Cu(II) complexes [44-47] (Figure 3).
Abbreviations of salen-type complexes.
Various useful and interesting salen-type complexes have been synthesized and characterized until now [48], and detailed electronic structural studies have recently been reported fora dinuclear chelating salen-type ligand having a catechol and a tetra(amino)tri(hydroxy)phenyl moiety [49, 50]. In view of the interest in the redox properties of metal-phenolate complexes, detailed electronic structures of the one-electron oxidized complexes are discussed in order to understand the electronic structure difference between the metal-centered and ligand-centered oxidation products and its dependence on the properties of metal ions and substituents of the phenolate moiety. For this reason, this argument is described only for a few examples whose detailed electronic structures have been clarified.
One-electron oxidation of closed-shell organic molecules is generally difficult, and the one-electron oxidized products may be unstable. Oxidation of the free phenol similarly gives the unstable phenoxyl radical described in the introduction and references [21-23,27,28]. The potential of formation of the phenoxyl radical is predicted to be high, and actually the potential of a tri(tert-butyl)phenol was estimated to be +1.07 V as reported in [51]. On the other hand, the oxidation potential of the phenolate anion is much lower (-0.68 V) in comparison with that of phenol [52], suggesting that deprotonation from phenol is favorable for formation of the free radical.
The oxidation chemistry of metal phenolate complexes has shown that the oxidation potentials of phenolate complexes are intermediate between those of free phenolate and free phenol [53]. Such a trend is also applied to the salen-type complexes, and most of the Cu(II) and group 10 metal(II) salen-type complexes exhibited two reversible redox waves in the range of 0 to 1.5 V vs NHE, due to having two phenolate moieties [29-31, 39-47]. On the other hand, the metal centered one- and two-electron oxidized complexesmay possiblybe generated in the similar potential range. Some copper(III) [12,13] and nickel(III) [54,55] complexes have been reported, andtwo-electron oxidized species of the group 10 metal ions, especially some Pd(IV) and Pt(IV) complexes, have been reported.Some of the metal complexes such as K2PdCl6 and K2PtCl6are commercially available [56]. Therefore, the experimental oxidation state can not be determined from the oxidation potential only. The redox potentials of some salen-type complexes are listed in Table 1, and the voltammograms of two copper(II) complexes are shown as examples in Figure 4 [39-47].
complex | potential (E / V vs. Fc / Fc+ ) | complex | potential (E / V vs. Fc / Fc+ ) |
Ni(Salcn) | 0.46, 0.80 | Ni(Salphen) | 0.58, 0.80 |
Pd(Salcn) | 0.45, 0.80 | Cu(Salcn) | 0.45, 0.65 |
Pt(Salen) | 0.35, 0.94 | Cu(MeO-Salcn) | 0.28, 0.44 |
Ni(Salpn) | 0.43, 0.69 | Cu(Salphen) | 0.65, 0.83 |
Pd(Salpn) | 0.52, 088 | Cu(MeO-Salphen) | 0.38, 0.49 |
Pt(Salpn) | 0.44, 0.99 | Cu(Salphen-OMe) | 0.41, 0.70 |
Redox potential of Cu(II) and group 10 metal complexes
From the list of Table 1, the ranges of both first and second redox potentials are relatively narrow, especially the range of the first redox potentialsbeing from 0.28 to 0.65 V. Such a narrow range may be generally ascribed to the fact that the all the complexes have a similar oxidation locus.The small potential differences are due to the substitution of the phenolate moiety and the ligand structure. However, there are some different electronic structures among the one-electron oxidized forms of the complexes in Table 1, i.e., a MIII-phenolate ground state complex, a MII-phenoxyl radical where the radical electron is fully delocalized on two phenolate moieties, a relatively localized MII(phenolate)(phenoxyl) complex, and a MII(dinitrogen ligand radical)(phenolate)2 species [39-47]. The similarity of the potentials indicates that formation of all of the oxidized species is due to a simple electron transfer without significant structural changes. Thus, the experimental oxidation state of the oxidized complexes cannot be determined only from the redox potentials.
Cyclic voltammograms of Cu(II) complexes:Top, Cu(Salphen); bottom, Cu(Salcn).
One-electron oxidized complexes have been synthesized by reaction with a one-electron oxidant, such as CeIV, AgI, NO+, some organic reagents, and so on [57]. For most complexes shown in Figure 3, one-electron oxidized species were generated by addition of AgSbF6 to the CH2Cl2 solution of metal(II) salen-type complexes. AgI with a potential of 0.799 V vs. NHE can act as a one-electron oxidant for complexes [57,58]. The oxidation method using Ag ion is useful for generation of the relatively stable oxidized complexes, since Ag0is an easily removable product formed in the course of the oxidation. Some solutions of one-electron oxidized complexes were kept standing for a few days to give the products as crystals.
The X-ray crystal structure analyses of one-electron oxidized group 10 metal salen-type complexes are shown in Figure 5 [41-43]. The structures of all these complexes were foundto be similar to those of the corresponding complexes before oxidation, whichsupports the CV results that significant structure changes did not occur in the course of the oxidation.
Crystal structures of one-electron oxidized group 10 metal salen-type complexes
However, a close look into the details of the crystal structures reveals that there are subtle differences between them, and especially the oxidized Pd(II) complexes are different from the other complexes [42,43]. Comparison of the 5-membered dinitrogen chelate backbones of the Salcn and Salen complexes indicates that upon oxidation the Ni and Pt complexes exhibited a clear coordination sphere contraction due to shortening of the M–O and M–N bond lengths. On the other hand,the Pd complex showed an unsymmetrical contraction [42]: One of the Pd–O bonds (2.003 Å) is longer than the other (1.963 Å), and the C–O bond (1.263 Å) of the phenolate moiety with the longer Pd–O bond is shorter than the other C–O bond (1.317 Å). The phenolate moiety with a shorter C–O bond length has the lengthening of the ring ortho C–C bonds in comparison with those of the other one. These structural features of the phenolate moiety in the oxidized Pd complex are in good agreement with the characteristics of the phenoxyl radical, which showed the quinoid form due to delocalization of the radical electron on the phenolate moiety as shown in Scheme 2 and reference [53]. Such properties were also detected for the Pd complex with the 6-membered dinitrogen chelate back bone, [Pd(Salpn)]SbF6 [43]. In addition, the SbF6- counterion was positioned close to the quinoid moiety of this complex; the closest distance between the SbF6- and the C-O carbon atom of the phenoxyl ligand was 3.026 Å. Therefore, one-electron oxidized Pd(II) complexes can be assigned to relatively localized PdII(phenoxyl)(phenolate) complexes.
Canonical forms of the phenoxyl radical
The Ni and Pt 5-membered dinitrogen chelate complexes also exhibited a clear symmetrical coordination sphere contraction in both two M–O and two M–N bond lengths (ca. 0.02 Å) upon oxidation, and the C–O bond distances of these complexes are also shorter than the same bonds before oxidation [41,43]. These observations suggest that the complexes have the phenoxyl radical characteristics and that the radical electron is delocalized on the two phenolate moieties. Indeed, the XPS and K-edge XANES of an oxidized Ni complex showed the same binding energies and pre-edge peak of nickel ion as those of the complex before oxidation [40]. These results supported that the valence state of the nickel ion is +II. In the case of Pt complexes, the XPS of the oxidized complex was slightly different from that before oxidation.The binding energiesof the Pt ion in the oxidized complex were +0.2 eV higher, and LIII-edge XANES exhibited an increasing white line [59]. Such spectral features suggest that the oxidation state of the Pt ion in the oxidized complex is higher than +II but that the differences are rather small [40]. Therefore, [Pt(Salen)]SbF6 can be described mainly as the Pt(II)-phenoxyl radical species, but the radical electron is fully delocalized over the whole molecule including the central metal ion [40]. On the other hand, the six-membered NiII andPtII Salpn chelate complexes are slightly different from the 5-membered dinitrogenchelate Salcn and Salen complexes [43]. Crystal structures of both oxidized Salpn complexes exhibited two crystallographically independent molecules in the unit cells. The M–O and M–N bond lengths do not differ substantially between the two molecules in the unit cell. The bond lengths in the coordination plane are ca. 0.02 Å shorter than those of the neutral complexes, and this contraction upon oxidation is in good agreement with the 5-membered dinitrogen chelate complexes. However, the C–O bond lengths of the two phenolate moieties differed for the two independent molecules; one of the molecules showed very similar C–O bond lengths, while the bond lengths in the other molecule were slightly different, showing a similar tendency to that of the oxidized Pd complexes. Therefore, the 6-membered Ni and Pt chelate complexes can be considered to be closer to the localized phenoxyl radical metal(II) complexes in comparison with the 5-membered chelate complex, Salcn and Salpn due to the chelate effect of the dinitrogen backbone [43]. However, determination of the detailed electronic structure of oxidized salen-type complexes, especially 5-membered Ni and Pt chelate complexes, only from the X-ray crystal structure analysis may be difficult, since we can detect mainly the contraction of the coordination sphere, which is predicted to be also observed in high valent metal salen-type complexes.
On the other hand, the electronic structure determination of the Cu complexes are clearlymade by X-ray structure analyses. Structures of three one-electron oxidized CuII salen-type complexes are shown in Figure 6 [44,45,47]. X-ray analyses of all these complexes established that their structuresare similar to those before oxidation, indicating a simple one-electron transfer from these precursors. However, the three Cu complexes have different electronic structures.
Figure 6 shows that the oxidized Cu(II) complexes have the SbF6- counterion at different positions. The structures of the same dinitrogen backbone complexes, [Cu(Salcn)]SbF6 and [Cu(MeO-Salcn)]SbF6, indicate that a weak axial Cu-F interaction (2.76 Å) exists between the counterion and the metal center in [Cu(Salcn)]+ [45], whereas [Cu(MeO-Salcn)]+ has a weak F–C interaction betweenthe counterion and oneside of the phenolate moieties [44]. This difference suggests that the oxidation locus of these complexes are different; [Cu(Salcn)]SbF6 has a Cu(III) character, while [Cu(MeO-Salcn)]SbF6 is a Cu(II)-phenoxyl radical complex. [Cu(Salcn)]SbF6 showed contraction of the coordination sphere without shortening of the C–O bonds of both phenolate moieties and distortion of the coordination plane was substantially reduced from that in Cu(Salcn) [45]. Such structural features are in good agreement with those of the low-spin d8 Cu(III) complexes [12,13]. Indeed, the XAF and XPS studies of [Cu(Salcn)]SbF6 reported the Cu(III)-phenolate ground state, because the pre-edge of oxidized complex was more than 1 eV higher, and the binding energies of Cu ion in the oxidized complex was also 1 eV higher as compared with the neutral complex Cu(Salcn) [45]. These characteristics are in good agreement with the Cu(III) valence state [12,13]. On the other hand, the MeO-substituted complex [Cu(MeO-Salcn)]SbF6 exhibits that the C-O bond of one-side of the phenolate moieties is shortened and that the Cu–O bond with the shortened phenolate moiety becomes longer [44]. The counterion is close to the phenolate moiety of the shortened C-O bond. Such characteristics are in good agreement with those of the oxidized Pd(Salpn) having a relatively localized PdII(phenoxyl)(phenolate) structure. Therefore, [Cu(MeO-Salcn)]SbF6 can be described asa localized CuII(phenoxyl)(phenolate) complex [44].
Crystal structures of one-electron oxidized Cu(II) salen-type complexes
Another one-electron oxidized complex, [Cu(Salphen-OMe)]SbF6,hasa different electronic structure from the previous two Salcn complexes [47]. The C–C and C–O bond lengths within the phenolate rings do not differ significantly from those of the complex before oxidation, Cu(Salphen-OMe). Although there is only a slight contraction of the Cu-O and Cu-N bonds, the copper ion geometry is significantly distorted toward a tetrahedral geometry in our case (the dihedral angle of 22°between the O1-Cu-N1 and O2-Cu-N2 planes). These structural features indicate that the oxidation locus of [Cu(Salphen-OMe)]+ is neither the two phenolates nor the central copper ion. A striking feature upon oxidation is the change in the bond lengths within the phenyl ring. Further the counterion SbF6-is located close to the o-phenylenediamine moiety. Therefore, the oxidized complex, [Cu(Salphen-OMe)]SbF6,can be assigned to the Cu(II)-diiminobenzene radical species [47]. In this connection, the one-electron oxidized complex without any substitution on the o-phenylenmediamine moiety, [Cu(Salphen)]+,has a different electronic structure, which corresponds to the Cu(II)-phenoxyl radical species [46]. The methoxy substitution in the phenyl ring leads to a different electronic structure due to its electron donating property.
The behavior of the phenoxyl radical bound to metal ions with an open-shell configuration such as Cu(II) having the d9 configuration is different from that bound to Cu(III) ground state complex, [Cu(Salcn)]SbF6. In general, Cu(III) complexes have a square-planar geometry and are diamagnetic and EPR silent due to the low–spin d8 configuration [12,13]. The Cu(II)–phenoxyl radical complex, on the other hand, has two electron spins on different nuclei, and therefore the spin–spin interaction should be considered in [29-31]. In the case of the oxidized Cu(II) salen-type complexes, since correlation between ligand p-orbital and the copper dx2-y2 orbital having an unpaired electron is close to orthogonal, the d-electron spin of copper ion coupled with radical electron spin ferromagnetically [60].
Schematic view of the orthogonality between ligand p-orbital and the copper dx2-y2 orbital
Magnetic properties of [Cu(Salcn)]SbF6in the solid state have been reported to be a temperature independent diamagnetic species with the effective magnetic moment meff = 0.3 mB.M. at 300 K, which is in good agreement with the considerations from the crystal structure analysis25. On the other hand, the EPR spectra of the phenoxyl radical complex, [Cu(MeO-Salcn)]SbF6,were silent in the temperature range of 4–100 K, which may be due to the large ZFS parameters (D> 0.3 cm-1) reported in [44]. The expression “EPR silent” does not specify the detailed electronic structure of the oxidized Cu(II)–phenolate complex, since it could refer to any of the cases, antiferromagnetism, ferromagnetism, and diamagnetism [61]. However, DFT calculation revealed that the two SOMOs consist of the dx2-y2 orbital of copper ion and the ligand p-orbital, which are situated in the orthogonal positions. Therefore, magnetic properties of this complex can be assigned to the S = 1 ground state with ZFS parameters D = 0.722 cm-1 and E/D = 0.150 based on the ab initio calculation [44]. Cu(II)-diiminobenzene radical complex, [Cu(Salphen-OMe)]SbF6, is predicted to be ferromagnetic S = 1 ground state due to similar orthogonality between radical and copper d orbitals. Indeed, [Cu(Salphen-OMe)]SbF6 can be assigned to the ferromagnetic species with S = 1 ground state, based on the pulse EPR experiment [47].
On the other hand, ligand oxidation and metal oxidation can be distinguished in one-electron oxidation of the group 10 metal salen-type complexes. One–electron oxidized group 10 metalsalen-type complexes have an unpaired electron with S = 1/2. Metal-centered oxidation species show a large g value and large anisotropy due to coupling with the metal nuclear spin, while the radical species show a g value close to 1.998 for free electron. The EPR spectra of the oxidized Ni(II) salen-type complexes are shown in Figure 8, and those of the oxidized group 10 metal Salpn complexes are shown in Figure 9 and references [40,41,43]. In the general case of low-spin d7 Ni(III) complexes, the EPR spectrum shows the axial signals with giso = ca. 2.15 [54]. The spectrum of the one-electron oxidized Ni(Salcn) complex shows the signals at gav = 2.05, whichis different from the spectrum of the characteristic Ni(III) signals [39-41]. The g values of these oxidized Ni complexes supported formation of the Ni(II)-phenoxyl radical complex as the main species with some contribution from Ni(II) ion, which is in good agreement with the results of the solid state characterizations in [39,40]. Further, [Ni(Salpn)]+ showed the isotropic signal at g = 2.04. Lack of the hyperfine structures based on the nickel nuclear spin suggests that the contribution of the central nickel ion is rather small and that the radical electron is slightly localized on the ligand [43].
EPR spectra of oxidized Ni complexes in CH2Cl2 at 77 K ; (A) [Ni(Salcn)]+ and (B) [Ni(Salpn)]+.
Such a trend is also observed for the Pd and Pt complexes. The one-electron oxidized Pd complexes, [Pd(Salen)]+ and [Pd(Salpn)]+, have a similar characteristic; the band width of the signal is narrow, and the g value is close to the free electron value (g = 2.010 for [Pd(Salen)]+, and g = 2.007 for [Pd(Salpn)]+) in comparison with the other group 10 metal salen-type complexes. The results matches with the results of solid state characterization as relatively localized PdII(phenoxyl)(phenolate) complexes [40,43]. However, only [Pd(Salcn)]+ shows the EPR signals coupled with Pd ion nuclear spin, indicating that the 6-membered dinitrogen chelate complex has the spin more localized on the ligand [43]. On the other hand, one-electron oxidized Pt complexes, [Pt(Salen)]+ and [Pt(Salpn)]+, exhibited the g value similar to that of oxidized Ni complexes, while the band width is significantly large with rhombic component. Such the EPR spectral features are in good agreement with the considerations from the solidstate characterization that the oxidized Pt complexes are mainly PtII-phenoxyl radical species but have a large distribution of the radical electron spin at the Pt ion [40,43].
EPR spectra of oxidized group 10 metal Salpn complexes: (A) [Ni(Salpn)]+; (B) [Pd(Salpn)]+ and (C) [Pt(Salpn)]+. Black solid lines are measured spectra and red dashed lines are simulations of measurements.
The electronic structure of oxidized complexes in solution is sometimes different from that in the solid state, due to some additional factors such as interactions with solvent molecules and removal of restriction from the lattice energy. One of the important examples is shown for [Cu(Salcn)]SbF6 in [45]. This complex can be assigned to the Cu(III)-phenolate complex in the solid state described above, but in CH2Cl2 solution it is different. The absorption spectrum of [Cu(Salcn)]SbF6 exhibited two intense bands at 18600 and 5700 cm-1 in the visible and NIR region (Figure 10). These two bands were assigned by the time-dependent density functional theory calculation (TD-DFT) to the HOMO-4 to LUMO and the HOMO to LUMO transition, respectively[62]. The HOMOs mainly consist of the ligand molecular orbitals, while contribution of the copper d orbital to LUMO becomes higher. From the result, these two transitions are concluded to be the ligand-to-copper charge transfer (LMCT) bands [45]. However, the LMCT band intensity is temperature dependent, decreasing with increasing temperature (Figure 10, inset). Temperature dependent magnetic susceptibility change was also detected by NMR study, and the effective magnetic moment of the CD2Cl2 solution of [Cu(Salcn)]SbF6 increased with increasing temperature with 25 % triplet state at 178 K. These temperature dependent changes are reversible, and activation parameters can be estimated to beΔH° = 1.1 ± 0.1 kcal mol-1, ΔS° = 3.5 ± 0.1 cal K-1mol-1, respectively (Figure 11). Therefore, the CH2Cl2 solution of [Cu(Salcn)]SbF6 showed the valence tautomerism between Cu(III)-phenolate and Cu(II)-phenoxyl radical governed by temperature as reported in [45].
UV-vis-NIR spectra of 0.08 mM solutions of Cu(Salcn)(black) and [Cu(Salcn)]SbF6(red) in CH2Cl2, and the calculated spectrum for singlet [Cu(Salcn)]+ (blue). Inset: Temperature dependence (from 298 to 190 K) of the 18000-cm-1band.
Comparison of the temperature dependent solution susceptibility by 1H NMR (black circles, CD2Cl2) and 18000-cm-1band intensity (red squares, CH2Cl2) for [Cu(Salcn)]SbF6. Fitting the susceptibility values (solid line) to the equation indicated affords thermodynamic parameters for the equilibrium.
One-electron oxidized Ni(Salcn) complexes also exhibit a valence state change. The one-electron oxidation of Ni(Salcn) in DMF caused a color change to purple, exhibiting a new absorption band at 476 nm. In CH2Cl2, however, a different UV-vis absorption spectrum was detected with the bands at 1100, 900 and 415(shoulder) nm (Figure 12) [39]. The CH2Cl2 solution showed an EPR signal similar to that of the solid sample, indicating the Ni(II)-phenoxyl radical species, while the DMF solution of the oxidized species showed the characteristic Ni(III) signals. The resonance Raman spectra of both solutions are different, the CH2Cl2 solution showed the phenoxyl radical ν7a and ν 8a bands at 1504 and 1605 cm-1, respectively [28], while the DMF solution showed only small shifts (3 cm-1) of the phenolate ν 11a band at ca. 1530 cm-1 [39]. The valence state difference dependent on solvents can be considered to be due to coordination of DMF molecules to the nickel ion. Addition of exogenous ligands such as pyridine to the CH2Cl2 solution of [Ni(Salcn)]+ causes the color change from green to purple, and the solution showed the UV-vis absorption spectrum and EPR signals characteristic of Ni(III) complexes [63,64]. Further, the X-ray crystal structure of μ-oxo NiIII(salen) dimer has been reported to be synthesized by addition of excess O2 under basic conditions (Figure 13) [55]. Such a valence state change by coordination of an exogenous ligand is also observed for the 6-membered chelate [Ni(Salpn)]+but not detected for the other group 10 metal salen-type complexes [40,43].
Absorption spectra of solutions of [Ni(Salcn)]SbF6: (A) in DMF; (B) in CH2Cl2.
Crystal structure of [Ni(salen)]2O.
One of the important characteristics of the oxidized group 10 metal salen-type complexes, [MII(Salen)]+, [MII(Salcn)]+, and [MII(Salpn)]+, is the appearance ofan intense NIR band at ~5000 cm-1 [42,43]. The band is assigned to the phenolate to phenoxyl radical (ligand-to-ligand) charge transfer (LLCT) by TD-DFT calculation. The analyses of the low energy NIR LLCT band reveal the degree of the radical delocalization,which can be estimated by Robin-Day classification for understanding the mixed valence system. The classification is categorized in three systems as follows: (1) a fully localized system (class I), (2) a fully delocalized system (class III), and (3) a moderately coupled system (class II) [65]. In the case of the fully localized system, there is no characteristic LLCT band in the NIR region, while the fully delocalized system showsan intense NIR LLCT band. On the other hand, the moderate coupling system exhibits a less intense NIR band, which depends on small perturbations such as solvent polarity. UV-vis-NIR spectra of group 10 metal salen-type complexes are shown in Figure 14 and reference [43].
UV-vis-NIR spectra of the one-electron oxidized the group 10 metal salen-type complexes: Salpn complexes, black line; 5-membered chelate complexes, red line. (A) Ni complexes; (B) Pd complexes; (C) Pt complexes.
The NIR band intensity is in the order, Pt > Ni > Pd. The NIR spectrum of the oxidized Pd complex showed a less intense band in comparison to the bands of the oxidized Ni and Pt complexes, and the band wasthe most solvent dependent. From these results, the oxidized Pd complexesmay be slightly closer to the class II moderately coupled system among the oxidized group 10 metal-salen type complexes,that is, the oxidized Pd complex is a more localized system [42]. On the other hand, the NIR band of the Pt complexes was the highest in intensity and less solvent dependent. These results strongly support that the Pt complexes belong to the class III delocalization system, which isalso supported by all other experimental results in [42]. As compared with 5-membered and 6-membered chelate dinitrogen backbone complexes, intensity of all of the NIR bands of 6-membered complexes is decreased, indicating that the 6-membered dinitrogen chelate leads to radical localization on the ligand [43]. It is therefore obvious that there is a clear difference between the delocalized and localized systems of the phenoxyl radical species.
The oxidation chemistry of the group 10 metal(II) and copper(II) salen-type complexes is discussed in this chapter, to show that the oxidized salen-type complexes have a variety of the oxidation products. The CV of these salen-type complexes exhibited two reversible redox waves of one-electron process and the values of the first redox potential of complexes were in a narrow range. However, one-electron oxidized complexes have different electronic structures, which are dependent onthe central metal ion, aromatic ring substituents, and the chelate effect of the dinitrogen backbone.
The electronic structure of the one-electron oxidized group 10 metal salen-type complexes is mainly a metal(II)-radical species, but there is a subtle difference in the detailed electronic structures. The oxidized nickel complexes are the delocalized phenoxyl radical species, but the valence state changesupon addition of an exogenous ligand to form the Ni(III)-phenolate species. Such a valence state change could not be detected for Pd and Pt complexes. The oxidized Pd complexes are relatively localized phenoxyl radical species, which can be described as the Pd(phenoxyl)(phenolate) complexes. On the other hand, the oxidzed Pt(II) complexes are regarded as the fully delocalized phenoxyl radical species and have a large distribution of the radical electron spin on the central Pt ion. Among the group 10 metal complexes, the Pd complexes have the most localized electronic structure.The energy of the d-orbitals of group 10 M(II) ions increase in the order Pd < Ni < Pt, due to variation of the effective nuclear charge in combination with relativistic effects.
The one-electron oxidized complexes have different electronic structures showing at least three sorts of complexes described asM(III)-phenolate, M(II)-phenoxyl radical, and M(II)-ligand radical except the phenoxyl radical. These electronic structure differencesgive rise to the crystal structure differences, especially the position of the counterion in the proximity of the oxidation locus. The bond lengths and angles of oxidized complexes also revealthe electronic structure difference. The magnetic susceptibility, UV-vis-NIR measurements, and other physicochemical data substantiate the electronic structure difference and afford further insightsinto the novel properties, such as valence tautomerism between Cu(III)-phenolate and Cu(II)-phenoxyl radical in CH2Cl2 solution of oxidized Cu(Salcn) complex. It is now obvious that detailed electronic structures of one-electron oxidized complex should be concluded on the basis of the results of various physical measurements.
Many salen-type complexes have been reported also in organic chemistry as the catalysts for organic molecular conversion [17]. However, the detailed reaction mechanism has not been discussed, and especially the electronic structure of the catalyst has been unclear. Information on the detailed electronic structure of the metal ion in complexes may lead to construction of more efficient catalysts and discovery of further interesting phenomena.
The author is grateful to Prof. Dr. Osamu Yamauchi, Kansai University,for helpful comments and suggestions during preparation of this manuscript.
Forests represent perhaps the most complex terrestrial ecosystem, given their ecosystem role, as well as habitat and socioeconomic development. The increasing pressure exerted by the global economy and climate change leads to the degradation and shrinking of global forest areas [1, 2, 3, 4]. The reduction of the forest area and its degradation have negative repercussions on the environment, in general, but especially on the quality of the air, the soil, and the security of the water resources [5, 6, 7, 8, 9, 10, 11, 12]. Thus, a series of programs and researches were initiated aimed at evaluating, monitoring, and reporting the physical and biological states of the forest (Convention on Long-Range Transboundary Air Pollution (CLRTAP) [13]; UN Collaborative Programme on Reducing Emissions from Deforestation and Forest Degradation (REDD) [14]; International Long Term Ecological Research Network (ILTER) [15]; NASA’s Carbon Monitoring System (CMS) [16]; Climate Change Initiative (CCI) [17]).
The reduction of forest areas as well as the process of fragmentation of the forest is a ubiquitous problem worldwide. Haddad et al. estimated that half of the planet’s forests are less than 500 m from an inhabited area and most of the forested areas have an area of less than 10 hectares [18].
The satellite images offer an unprecedented perspective on the spatial evolution of the cover surfaces with forest vegetation, allowing the mapping of the compactness of the surfaces as well as their degree of fragmentation over time [19, 20, 21, 22].
Forest fragmentation assessments have been completed for many countries, such as Canada, China, the Democratic Republic of Congo, India, the UK, or the USA [23, 24, 25, 26]. Many of the researchers who developed these studies point out that fragmentation of forest areas has negative effects on the natural ecosystems by increasing the isolation, creating artificial margins, and reducing the basic areas of habitats.
In Romania, forests are under pressure due to climate changes (extreme temperatures, low rainfall, strong winds, and even tornadoes) and natural disturbances (insect outbreaks), but mainly due to anthropogenic causes (various forms of property, poor pest control, illegal logging, large demands on wood for export, etc.). Although Romania’s forest area is estimated at about 29% of the country’s total area, well below the EU average level of 40%, logging is still at a high rate [27].
A continuous, accurate, and reliable monitoring of the territorial evolution of forests as well as their state of sanogenesis is required both locally, in Romania, and regionally, Europe or worldwide. Such monitoring systems can be based on the information provided by the satellite monitoring networks correlated with on-site measurements and with accurate methods of quantification [28, 29, 30, 31, 32].
Establishing methods of continuous observation and accurate determination of long-term environmental changes is necessary to ensure the sustainability of the forest ecosystem and the efficiency of the planned ecological restoration [33].
The method proposed in this study wants to perform a fractal analysis regarding the deforestation of forests at the level of Romania.
In order to start the analyses for GIS and fractal methods used, we downloaded layer (a raster image in tiff format) corresponding to the granule with the top-left corner at 50°N, 20E (in which Romania is situated), containing the forest loss (loss year) data, for the 2001–2018 [34].
The images prepared for the fractal analyses followed a step-by-step algorithm, consisted on the extraction by mask procedure. The input feature mask was the vector limit of each relief unit of Romania, in our case 11 vector limits (the Carpathians, the Subcarpathians, the West Hills, the Danube Delta, Transylvania Depression, Dobrogea Plateau, Mehedinți Plateau, Getic Plateau, Moldova Plateau, Romania Plain, and West Plain). For each of the 11 input limits, 21 images in tiff format were exported providing pixels with useful informations. The first image exported contains the geographical limit for the relief unit, the other 18 images contain the yearly forest loss, from 2001 to 2018, and another image contains the cumulated forest loss for the entire period (2001–2018) and the last image the tree-cover information. We have to mention that for the best results, all the images exported were in black-and-white tones (the pixels corresponding to limits, to the forest loss, and to the tree cover were in white, while the background was in black color). Other important aspects were the scale and the image position: in order to avoid the information errors that might have appeared during the export processes, for each input feature mask (relief unit), the same scale and the same unmoved image position were kept.
The exported images provided useful informations that were extracted by using some specific softwares for the fractal and nonfractal analyses. We mentioned that, depending on the surfaces of the relief units, the images were exported to different scales and analyzed later fractal objects. Thus, for the Carpathians, the exported images kept the scale 1:1,750,000; for Subcarpathians, 1:1,300,000; the Transylvanian Depression, 1:1000,000; Moldova Plateau, 1:1,500,000; Dobrogea Plateau, 1:800,000; Getic Plateau, 1:650,000; Mehedinți Plateau, 1:200,000; the West Hills, 1:1,500,000; Romania Plain, 1:1,350,000; West Plain, 1:1,500,000; and the Danube Delta, 1:600,000. Even if the exported images were analyzed at different scales, the pixel sizes being the same for each exported image, there were no distortions or errors in their subsequent processing.
The applicability of fractal geometry is limited not only to static phenomena but also to the study of dynamic phenomena, in evolution, such as the phenomena of growth in biology or of development of urban populations [35].
A versatile possibility to determine the deforestation patterns but also their impact on forest compaction is the fractal fragmentation index (FFI). FFI is a recent indicator and describes fractal fragmentation and can also be interpreted as an index of compaction of the analyzed surfaces, being a dimensionless indicator [36].
The FFI is calculated using the equation (Eq. (1)):
where FFI is the fragmentation fractal index,
When the value of the indicator has
The analysis of the evolution of the analyzed parameter is carried out through a series of steps. In advance, IQM 3.50 software is downloaded from
Step 1: Import the images into the information quality metric (IQM - An Extensible and Portable Open Source Application for Image and Signal Analysis in Java) [File—Open Image(s)] (Figure 1).
Importing images to analyze.
Step 2: Convert RGB images into 8 bits [Process—Convert Image–extract G] (Figure 2).
Convert RGB images to 8 bits.
Step 3: Open the FFI plug-in [Plug-in—Image—FFI v2.0].
Method P-Dimension (Pyramid Dimension) is selected (because it is much faster than box counting and the results are similar), and the number of boxes is 9; then press Preview and the fractal analysis is done (Figure 3).
Using the FFI plug-in.
Step 4: This gives the FFI value on the last column of the displayed table (Figure 4).
Obtaining the results of the FFI index.
Romania is a state located in the Southeast of Central Europe, on the lower Danube, north of the Balkan Peninsula, and on the northwestern shore of the Black Sea. The population, at the level of 2019, is estimated at 19.4 million citizens. On its territory are the southern and central parts of the Carpathian Mountains and the lower Danube basin. It borders Bulgaria to the south, Serbia to the southwest, Hungary to the northwest, Ukraine to the northeast, the Republic of Moldova to the east, and the Black Sea to the southeast (Figure 5).
Romania—Study area.
According to the National Institute of Statistics, Romania’s forest fund covers an area of 6,529,000 hectares, representing 27.3% of the country’s territory. The total volume of forest stands is estimated at over 1340 million m3.
The multifunctional character of forests is given by their multiple roles: ecological, economic, and social. From a socioeconomic point of view, forest exploitation generates resources, especially wood, but it also plays an important role in the regeneration of water resources and air quality. Their use is multiple starting from the energy role (about half of the renewable energy consumed in the EU is produced from wood mass), for timber, paper industry, wood fiber panels, etc. The relationship between man and the forest is complex, and the dependence is obviously mutual.
The territory of Romania represents a point of intersection between different biogeographic regions: Arctic, Alpine, Western and Central European, Pannonian, Pontic, Balkan, sub-Mediterranean, and even Colchian and Turanic-Iranian. This high level of diversity of ecological conditions/systems also determines a great diversity of flora and fauna, estimated at 3700 species of plants and over 33,000 species of animals. A large number of these species (over 220 plants and over 1000 animals) are endemic species, adapted to local conditions and are found only in Romania.
Important areas of natural, virgin, and quasi-virgin forests are preserved in Romania. However, these areas are rapidly narrowing, currently occupying only about 280,000 hectares, that is, less than half of the existing area 20–25 years ago. These forests are located in a proportion of 99% in mountain regions (in karst areas, in hard-to-reach regions, on steep slopes and screes) and only in a proportion of 1% in the hill and plain regions (hard-to-reach areas of the Danube Delta or compact forest massifs located at a considerable distance from localities). Most of them are located in the area of beech and spruce and mixtures of spruce, fir, and beech. Currently, parts of the virgin and quasi-virgin forests of unique value, including for the biodiversity of natural ecosystems, are included in officially protected areas.
The division of the property regime of the national forestry fund after the 1990s, the great dynamics of the laws in the forestry field, the lack of a coherent policy in this field, and the desire for quick financial gains generated significant deforestation of the forests at the national level. The lack of precise statistics of the deforested surfaces and the quantities of wood exploited has generated at the level of some groups of researchers or environmental organizations of solutions for the prevention and quantification of the deforested areas.
Economic pressure and extreme environmental factors have led to the reduction of forest areas worldwide. Romania has also registered a marked dynamics of the national forestry fund in the last decades.
The division of forest fund ownership, inadequate or poorly applied legislation, poor monitoring of the way the wood is exploited, and the occurrence of natural phenomena that have affected the forest (wind blows, biological attacks, etc.) led to the reduction of forest areas and especially to a strong fragmentation of them.
Finding methods that determine the most precisely deforested areas, the density of the existing forest, and its territorial fragmentation is of great importance for sustainable management of the national forestry fund but also within a sustainable development of the environment (protection against landslides, floods, air quality, groundwater resources, etc.).
The analysis was performed according to the types of relief units and their degree of forest cover. Thus, it is found that socioeconomic and natural factors of the last decades have generated a decrease of the compaction of the forest areas (Figure 6). The most affected unit of relief is that of the Carpathian Mountains and of the Mehedinți Plateau. All the relief units have suffered over time decreases of the compaction of the forest surface following the deforestation.
Evolution of the compaction of the areas occupied by the forest, at the level of relief units, between 2001 and 2018, in Romania.
The tested and analyzed method may also indicate the technical way of extracting the wood from the logging. A selective extraction of valuable and mature trees or a “shaved” exploitation, regardless of the size and nature of the successive species within those plots. This can be determined by comparing the obtained values of the FFI at the level of any reference year in the analyzed period.
By performing the value difference of the FFI obtained at the level of 2018 and the one from 2001, it can be seen which relief unit was more intense and more fragmented and deforested (Figure 7).
The degree of fragmentation of forests, obtained by comparing the value of the FFI 2018–FFI 2000.
The area of the Carpathian Mountains, by the nature of the relief, leads to the clearing of surfaces arranged on different slopes and positions. This is also due to the access to the exploited plots and the shelving of the species. Instead, in the Romanian Plain or in the Danube Delta where the forest surfaces are composed of the same species, the exploitations are generally made from the marginal areas of the forest fund; thus, a decrease of the forested surface is recorded, but maintaining its degree of fragmentation, in general.
If the deforestation is done on small and isolated surfaces from year to year, the values of the FFI will be zero or very close to zero. The more the deforestation is done in continuation of the previous deforestation, expanding some deforested areas spatially, the more the value of the FFI will increase.
The Carpathian Mountains have reduced accessibility to the forest fund. In the absence of adequate exploitation technologies (funiculars, helicopters, etc.), the arrangements in the immediate vicinity of the roads are overexploited [38]. In the relief units where the forest fund is naturally fragmented and the access is much easier, we have forest exploitations on various locations (Figure 8).
Dynamics of cumulative deforestation.
It can be seen that the deforestation carried out within all the relief units varied from year to year. They are highlighted by the values of the annual FFI for each relief unit separately (Figure 9).
Annual dynamics of deforestation, by relief units, between 2001 and 2018.
Figure 10 shows the average FFI for all 18 years of analysis. The most compact deforestation, on average, took place in the Mehedinți Plateau, in the Carpathian Mountains, and in the Danube Delta. Instead, they were more fragmented in the plains and hills (Subcarpathians).
The average of the FFI deforestation index, between 2001 and 2018 (plateau, green color; plain, yellow color; mountain and premontane units, brown color).
Today, logging is one of the most important pressures on the natural environment, which causes major imbalances on all systemic components, the most important being the modification of microclimates [39, 40], floods, and landslides [41, 42]. In many specialized works, the need to develop methodologies for obtaining data on deforested surfaces and patterns in which they are made, especially for illegal cutting, is highlighted [43, 44, 45, 46]. Fractal analysis offers a considerable amount of information, regarding the spatial characteristics of some fractal objects, whether or not they are in dynamics. The proposed index quantifies these characteristics, being very useful in establishing patterns.
Fractal analysis has proven to be a versatile method for evaluating the dynamics of deforestation, as well as identifying deforestation patterns; thus, it can be used complementary to the classical analyses by which data are obtained. FFI is useful in quantifying the degree of fragmentation and implicitly fractal compaction of forest areas and also provides important information on the effect of deforestation on forests, identifying also the moments of agglutination (clustering) of cumulative deforestation.
Being a fractal index, the FFI analyses are invariant at scale, bringing a significant addition to the classical analyses, thus being relevant in the realization of strategies for forest management. The FFI was used in the analysis of deforestation in Romania and the effect of deforestation at the county level [19, 36], indicating in all cases that fragmentation of forests increases following deforestation, having negative consequences on the stability of the hydrographic network and on the habitats. Like any fractal analysis, FFI analysis has limitations. For a correct analysis, but also to be able to make comparisons, all images, which are analyzed, must be at the same resolution, scale, and position and equally binarized.
In this study, FFI analysis allowed a clear differentiation of some patterns regarding the degree of fragmentation of the forests, but also of the compaction of the cumulative deforestation from the relief units in Romania, highlighting different dynamics. Thus, we have shown that the fragmentation of the forest is also relevant for the complex methodologies for calculating the flood risk and offers new perspectives for understanding the way in which the economic pressure on the forests is manifested.
The research activities were financed by the projects “Spatial projection of the human pressure on forest ecosystems in Romania,” University of Bucharest, (UB/1365), and “Development of the Theory of the Dynamic Context by Analyzing the Role of the Aridization in Generating and Amplifying the Regressive Phenomena from the Territorial Systems,” Executive Agency for Higher Education, Research, Development and Innovation Funding, Romanian Ministry of Education Research Youth and Sport (UEFISCDI) (TE-2014-4-0835).
The authors declare no conflict of interest.
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"12"},books:[{type:"book",id:"10590",title:"Humic Substance",subtitle:null,isOpenForSubmission:!0,hash:"85786eb36b3e13979aae664a4e046625",slug:null,bookSignature:"Prof. Abdelhadi Makan",coverURL:"https://cdn.intechopen.com/books/images_new/10590.jpg",editedByType:null,editors:[{id:"247727",title:"Prof.",name:"Abdelhadi",surname:"Makan",slug:"abdelhadi-makan",fullName:"Abdelhadi Makan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10765",title:"Environmental Management",subtitle:null,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",slug:null,bookSignature:" John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:2},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"269",title:"Human Mobility",slug:"human-mobility",parent:{title:"Social Sciences",slug:"social-sciences"},numberOfBooks:1,numberOfAuthorsAndEditors:23,numberOfWosCitations:4,numberOfCrossrefCitations:19,numberOfDimensionsCitations:28,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"human-mobility",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6102",title:"Mobilities, Tourism and Travel Behavior",subtitle:"Contexts and Boundaries",isOpenForSubmission:!1,hash:"f46c2870a20d93d5c5b913e7370dabd6",slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",bookSignature:"Leszek Butowski",coverURL:"https://cdn.intechopen.com/books/images_new/6102.jpg",editedByType:"Edited by",editors:[{id:"114047",title:"Ph.D.",name:"Leszek",middleName:null,surname:"Butowski",slug:"leszek-butowski",fullName:"Leszek Butowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"56647",doi:"10.5772/intechopen.70370",title:"Muslim Travel Behavior in Halal Tourism",slug:"muslim-travel-behavior-in-halal-tourism",totalDownloads:2781,totalCrossrefCites:7,totalDimensionsCites:9,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Mohamed Battour",authors:[{id:"206480",title:"Prof.",name:"Mohamed",middleName:null,surname:"Battour",slug:"mohamed-battour",fullName:"Mohamed Battour"}]},{id:"58056",doi:"10.5772/intechopen.71459",title:"Cruise Tourism and Sustainability in the Mediterranean. Destination Venice",slug:"cruise-tourism-and-sustainability-in-the-mediterranean-destination-venice",totalDownloads:1220,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Vincenzo Asero and Stefania Skonieczny",authors:[{id:"207224",title:"Dr.",name:"Vincenzo",middleName:null,surname:"Asero",slug:"vincenzo-asero",fullName:"Vincenzo Asero"},{id:"208063",title:"Dr.",name:"Stefania",middleName:null,surname:"Skonieczny",slug:"stefania-skonieczny",fullName:"Stefania Skonieczny"}]},{id:"58259",doi:"10.5772/intechopen.71597",title:"Air Transport Economic Footprint in Remote Tourist Regions",slug:"air-transport-economic-footprint-in-remote-tourist-regions",totalDownloads:800,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Dimitrios Dimitriou",authors:[{id:"207943",title:"Prof.",name:"Dimitrios",middleName:null,surname:"Dimitriou",slug:"dimitrios-dimitriou",fullName:"Dimitrios Dimitriou"}]}],mostDownloadedChaptersLast30Days:[{id:"56647",title:"Muslim Travel Behavior in Halal Tourism",slug:"muslim-travel-behavior-in-halal-tourism",totalDownloads:2781,totalCrossrefCites:7,totalDimensionsCites:9,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Mohamed Battour",authors:[{id:"206480",title:"Prof.",name:"Mohamed",middleName:null,surname:"Battour",slug:"mohamed-battour",fullName:"Mohamed Battour"}]},{id:"58056",title:"Cruise Tourism and Sustainability in the Mediterranean. Destination Venice",slug:"cruise-tourism-and-sustainability-in-the-mediterranean-destination-venice",totalDownloads:1220,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Vincenzo Asero and Stefania Skonieczny",authors:[{id:"207224",title:"Dr.",name:"Vincenzo",middleName:null,surname:"Asero",slug:"vincenzo-asero",fullName:"Vincenzo Asero"},{id:"208063",title:"Dr.",name:"Stefania",middleName:null,surname:"Skonieczny",slug:"stefania-skonieczny",fullName:"Stefania Skonieczny"}]},{id:"56679",title:"Determinants of Satisfaction with the Tourist Destination",slug:"determinants-of-satisfaction-with-the-tourist-destination",totalDownloads:1408,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Enrique Marinao",authors:[{id:"207589",title:"Dr.",name:"Enrique",middleName:null,surname:"Marinao",slug:"enrique-marinao",fullName:"Enrique Marinao"}]},{id:"56695",title:"Analysis of Online Conversations for Giving Sense to Sustainable Tourism in the Adriatic-Ionian Region",slug:"analysis-of-online-conversations-for-giving-sense-to-sustainable-tourism-in-the-adriatic-ionian-regi",totalDownloads:705,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Gian Luigi Corinto and Fabio Curzi",authors:[{id:"207340",title:"Dr.",name:"Gian Luigi",middleName:null,surname:"Corinto",slug:"gian-luigi-corinto",fullName:"Gian Luigi Corinto"},{id:"207365",title:"Prof.",name:"Fabio",middleName:null,surname:"Curzi",slug:"fabio-curzi",fullName:"Fabio Curzi"}]},{id:"58176",title:"Long-Haul Travel Motivation by International Tourist to Penang",slug:"long-haul-travel-motivation-by-international-tourist-to-penang",totalDownloads:1104,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Norkamaliah Shahrin and Azizan Marzuki",authors:[{id:"111261",title:"Associate Prof.",name:"Azizan",middleName:null,surname:"Marzuki",slug:"azizan-marzuki",fullName:"Azizan Marzuki"}]},{id:"56583",title:"The International Decision-Making and Travel Behavior of Graduates Participating in Working Holiday",slug:"the-international-decision-making-and-travel-behavior-of-graduates-participating-in-working-holiday",totalDownloads:792,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Chin-cheng Ni, Chien-yu Tsao and Ying-hsiang Wang",authors:[{id:"207813",title:"Prof.",name:"Chin-Cheng",middleName:null,surname:"Ni",slug:"chin-cheng-ni",fullName:"Chin-Cheng Ni"},{id:"207814",title:"Dr.",name:"Chien-Yu",middleName:null,surname:"Tsao",slug:"chien-yu-tsao",fullName:"Chien-Yu Tsao"},{id:"207820",title:"MSc.",name:"Ying-Hsiang",middleName:null,surname:"Wang",slug:"ying-hsiang-wang",fullName:"Ying-Hsiang Wang"}]},{id:"57364",title:"Music Event as a Tourist Product: Specifics, Issues, Challenges",slug:"music-event-as-a-tourist-product-specifics-issues-challenges",totalDownloads:813,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Aleksandra Krajnović and Ivana Paula Gortan-Carlin",authors:[{id:"213765",title:"Dr.",name:"Aleksandra",middleName:null,surname:"Krajnovic",slug:"aleksandra-krajnovic",fullName:"Aleksandra Krajnovic"},{id:"214029",title:"Dr.",name:"Ivana",middleName:null,surname:"Gortan-Carlin",slug:"ivana-gortan-carlin",fullName:"Ivana Gortan-Carlin"}]},{id:"56858",title:"A Comprehensive Review of the Quality Approach in Tourism",slug:"a-comprehensive-review-of-the-quality-approach-in-tourism",totalDownloads:1281,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Diana Foris, Maria Popescu and Tiberiu Foris",authors:[{id:"206947",title:"Dr.",name:"Diana",middleName:null,surname:"Foris",slug:"diana-foris",fullName:"Diana Foris"},{id:"207967",title:"Prof.",name:"Maria",middleName:null,surname:"Popescu",slug:"maria-popescu",fullName:"Maria Popescu"},{id:"207968",title:"Prof.",name:"Tiberiu",middleName:null,surname:"Foris",slug:"tiberiu-foris",fullName:"Tiberiu Foris"}]},{id:"58085",title:"Energy-Efficient Architecture and Sustainable Urban Tourism: Context, Challenges and Solution",slug:"energy-efficient-architecture-and-sustainable-urban-tourism-context-challenges-and-solution",totalDownloads:705,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Ksenija (Née Jovović) Štahan",authors:[{id:"207037",title:"Dr.",name:"Ksenija",middleName:null,surname:"Stahan",slug:"ksenija-stahan",fullName:"Ksenija Stahan"}]},{id:"58259",title:"Air Transport Economic Footprint in Remote Tourist Regions",slug:"air-transport-economic-footprint-in-remote-tourist-regions",totalDownloads:800,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"mobilities-tourism-and-travel-behavior-contexts-and-boundaries",title:"Mobilities, Tourism and Travel Behavior",fullTitle:"Mobilities, Tourism and Travel Behavior - Contexts and Boundaries"},signatures:"Dimitrios Dimitriou",authors:[{id:"207943",title:"Prof.",name:"Dimitrios",middleName:null,surname:"Dimitriou",slug:"dimitrios-dimitriou",fullName:"Dimitrios Dimitriou"}]}],onlineFirstChaptersFilter:{topicSlug:"human-mobility",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/106761/mariusz-ozimek",hash:"",query:{},params:{id:"106761",slug:"mariusz-ozimek"},fullPath:"/profiles/106761/mariusz-ozimek",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()