The comparison between desiccant system and conventional systems.
\r\n\tTSC involves mutations in chromosomes 9 and 16 encoding for the proteins hamartin and tuberin, respectively. Mutations in these genes cause upregulation of the mTOR pathway and inhibitors of this pathway, such as rapamycin and everolimus, have been shown to be effective in controlling the growth of unresectable tumors. Due to involvement of multiple organ systems, a multidisciplinary treatment plan is necessary and genetic counseling is often part of the management of TSC. Treatment options are quite variable and depended upon symptoms and organ involvement.
\r\n\r\n\tThe aim of this book is to provide the reader with an overview of the tuberous sclerosis complex including its genetic causes, clinical manifestations, and management of its most serious signs and symptoms.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"763892736c7dfc107dc82453265142ad",bookSignature:"Dr. Scott Turner",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10438.jpg",keywords:"Hypomelanotic Macules, Shagreen Patches, Cardiac Rhabdomyoma, Pulmonary Lymphangioleiomyomatosis, Renal Angiomyolipoma, Genetic Testing, Hamartin, Tuberin, Tubers, Subependymal Nodule, Subependymal Giant Cell Astrocytoma, Rapamycin",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 2nd 2020",dateEndSecondStepPublish:"July 23rd 2020",dateEndThirdStepPublish:"September 21st 2020",dateEndFourthStepPublish:"December 10th 2020",dateEndFifthStepPublish:"February 8th 2021",remainingDaysToSecondStep:"7 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Dr. Turner received his medical degree from the Medical College of Wisconsin. He completed a neurology residency at the State University of New York in Stony Brook and a neuro-oncology fellowship at Duke University. He specializes in the treatment of primary and metastatic tumors of the brain and spine. Dr. Turner's undergraduate and master's degree in molecular biology and biochemistry is critical in understanding the complex mechanisms involved with tumor biology.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"181611",title:"Dr.",name:"Scott",middleName:null,surname:"Turner",slug:"scott-turner",fullName:"Scott Turner",profilePictureURL:"https://mts.intechopen.com/storage/users/181611/images/system/181611.png",biography:"Dr. Scott Turner is a clinical Neuro-oncologist and Associate Professor of Neurology at the University of California, Irvine. He attended graduate school at Cornell University and received his medical degree from the Medical College of Wisconsin in 2003. He completed a Neurology residency at SUNY Stony Brook followed by a Neuro-oncology fellowship at Duke University in 2010. He has served as an Assistant Professor of Neurology at both Temple University and the University of Missouri - Kansas City School of Medicine. He has participated in many clinical trials in the field and is interested in the mechanism of glioma cell invasion.",institutionString:"University of California, Irvine",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of California, Irvine",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"63593",title:"Urban Development in Bogotá: The Metro Case of Study",doi:"10.5772/intechopen.79829",slug:"urban-development-in-bogot-the-metro-case-of-study",body:'“Every landscape is a product of small or major engineering actions and, therefore, the practice of engineering is a political practice per excellence. And, of course, from the perspective of our approaches, it is an ideological practice that reflects in the landscape a vision of society and an imprint of the image that society has of itself and of the universe.”—Gerardo A. Engineering and territory: An indissoluble political relationship. Magazine Palimpsesto. 2006;5:60-67. National University of Colombia.
Urban planning in Bogotá has been marked by policies that emphasize social, economic, and spatial segregation, allowing the market to freely determine the growth of the city, its relationship with the market and global trends, and even the concepts of beauty, value, ethics, and esthetics in the city, as well as deciding who will enjoy the privileges of the development of the city [1].1
This last one is a problematic issue because the development of the city, including its infrastructure, is part of the general good that prevails over the particular, which is the base of the social and ecological function of property in Colombian land law. But to fulfill the social and ecological function of the property, it is necessary to reflect on who will be benefited or privileged to enjoy these urban developments and greater value of the land and how.
The last two periods of government in the city of Bogotá have been making a great effort to build a Metro as the main project of their government proposals. Although the legal framework for infrastructure development in Bogotá is the same, there is a different political approach that can be distinguished in both governments.
In the period of government between 2012 and 2016, led by Gustavo Petro, despite the tradition of privileging the private sector of construction, he proposed a subway system linked to integrated urban plans allowing people to take part in the development of the city, through their participation in specific projects with opportunities for this population to remain in the affected area. The permanence became a central argument that leads us to the question that underlies the problems around city planning, about how to build a model of integral planning where we fit all and where the land of conservation and urban land are the platform for the construction of the social weave?
The Metro, as a subway system in Gustavo Petro proposals, was integrated to the concept of expanded center of the city, a regional approach that includes the long-term planning connected with the first ring of towns around Bogotá and the intention of creating policies and legislation to develop the city in this way. This transport model came from the integral vision of the city that involves the delimitation of land uses as well as dispositions around the heights, types of development, housing, and collective equipping, all this tending to build integration and connectivity (Figure 1).
Delimitation of the extended center of the city [2].
The revitalization strategy of the expanded center emphasizes on the identification and intervention of zones due to their proximity and accessibility to existing employment zones and the offer of social, cultural, and financial services in the first ring around the urban center. Identifying the potential for reconversion of uses, the responsible densification with the urban habitat, the generation of new public space, and the offer of lands enabled for social housing, therefore, to allow the inclusion and social and economic integration.
According with the City Plan2 in Gustavo Petro period of government, the revitalization of the expanded center strategy included actions such as the updating and expansion of the aqueduct and sewerage networks; the construction of conduction, drainage, and water reuse systems; the generation of green public spaces that make visible and generate new urban meanings around water; the promotion of densification processes through integrated urban projects; and the use of greater buildings and uses to finance urban redevelopment through low-cost housing projects and high-quality construction and space, strengthening the role of the communities to recognize and reconstruct the territory based on the promotion of creative practices, the enjoyment of cultural diversity, and the care of the environment.
The Metro was not the only concern but the integrated transport system, including the adequation of the tram and its rails strengthening regional connectivity, the footpaths and the bicycle paths, and the actualization of the current transport network “integrated public transport system (SITP)”3 as it can be seen in the Figures 2 and 3.
Conceptual design of the first subway line in Bogotá 2012 [4].
First subway line in Bogotá 2012 [5].
On the other hand, the current government from 2016 to 2020, led by Enrique Peñaloza, stopped the project and proposed a transport system above the current system called TransMilenio. In this project, there is neither concept of integrated urban plans nor the possibility of link up the affected people in a scheme that allows them to remain in their territories through renovation and revitalization instruments, and the line is shorter covering only almost the central areas of the city which concentrate the greatest houses and services (Figure 4).
Bogotá Metro 2016. Bogotá Subway 2016. (http://www.vanguardia.com/politica/410725-la-nacion-solo-aportara-909-billones-para-el-metro-de-bogota). Image that shows that the line is shorter and there is only connectivity of the Metro with the lines of TransMilenio projected to be developed also in the current period of government.
The Metro proposed by Enrique Peñaloza is cheaper and faster to build because it just requires adequation and rehabilitation of the public space around the stations. It does not need a recollection water system, the investment on other systems of the infrastructure like energy, expansion of the aqueduct and sewerage networks, the participation of the people, nor plans to integrate city systems and the city with the towns around the first ring. The model proposed in a private-public association consists in creating the financial conditions to build the Metro, which is going to be financed by the private recourses, allowing these investors to grow in altitude their buildings, choosing the best locations and getting the benefits of the greatest value involved in the urban interventions.
Both conceive the transport infrastructure as a key to the development of the city, but as we explained earlier, both approaches underlie different conceptions of development. Today, it seems that the projects that link up people in the development of the city are still utopian and with less possibilities of concretion, as well as the idea, around integrated urban plans for the social integration, economic development, and environment protection.
On the other hand, there are also issues such as the layout and areas where the stations of the system will be located and problems related to the design of the system. Both the layout and its design are fundamental to the extent that it depends on who will access both the transport system and the benefits it brings in the surrounding areas and how.
When talking about the transportation system, there is a procedure to purchase the properties needed for the infrastructure. In any case, people have to sell their properties, but the approach is different in the case of projects that link up people as opposed to projects that expel people. And there is also a big difference in the layout, location of the stations, and in the financing and land management schemes.
It is desirable, a city planning approach based on the direct provision of housing, education, and food security, where the transport infrastructure system can be an articulating axis. Likewise, land policies are desirable that tend to create a market system to guarantee goods according to people’s ability to pay. Policies that seek to prevent accumulation as a path to social power, where the right to common goods such as knowledge and land, are the main assets to which people must have access. It is desirable that these goods be created, administered, and protected by popular associations with the aim of satisfying common social needs, following the approach of Harvey [6].
From this reflection, it can be concluded that the approaches that license the private investments on the city create more fragmentation. “The notion of fragmentation emphasizes the complexity of the socio-spatial dynamics related to metropolization (outbreak, separation, secession) resulting from the aggravation of social inequalities, the rise of poverty and the brutal impoverishment of middle classes,” following Marie-France Prévôt Schapira [1]. The approach concludes in pollution, shortage of accommodation, insufficient coverage of urban services, etc.
This discussion leads to the following question: Beyond the differences, is it possible to identify the emergence of a new model, more dispersed, less hierarchical, that replaces fragmented city to organic city, integrating population into the city through the development of the salaried sector and a planned urbanism?
Urban Marxist structuralist sociology (Castells, [7]) devoted itself to understanding how the processes of domination and dependence generate immense peripheries or” urbanizations,” but the spatialization of new forms of urban poverty has not been studied, as if they had remained in the simple equation of the past: misery neighborhood equals poverty equals illegality. The observation of the widening forms of poverty in the city shows, on the contrary, that its extension is not accompanied by homogenization. And the conclusion is that these forms of exacerbated territoriality and restricted identity are further accentuated by the reduction of mobility in the city.
In 1981, the Sofretu Ineco CS Consortium was contracted to design the first Metro line for the Colombian capital [8, 9, 10].4 The study, advanced in the presidency of Julio César Turbay Ayala and Hernando Durán Dussán, proposed a subway system with three lines and a total of 75.8 km. The project supposed a future population in the year 2000 of 7.5 million people that will be reached within the perimeter of the capital city, in the year 2011. If we consider the towns of the first ring, we have already overcome this population.
As the results, the Bogotá subway entered to compete for national resources against the Medellin Metro project. Finally, the priority was given to the Antioquia capital project, postponing the decision on the Bogotá Metro.
In 1987, the national government, headed by the President Virgilio Barco, proposed the development of a Metro system again. This project foresaw the construction of three lines of 46 km, on the existing layout of the railway network. Twenty-six countries were invited to submit proposals for the development of the project, giving special importance to the financing offered in the award. Eight offers were received, and finally, the Italian firm Intermetro SpA was selected for the execution of the project.
The proposed Metro was developed in unconsolidated areas of the city, low demand, taking advantage of the low cost that would imply the availability of public land. The study did not propose a scenario of urban development that was articulated with the Metro. Finally, it was decided to include an additional section that accesses the center, outside the lines.
At the end, the proposal of the Italian consortium was not clear in technical terms and its financing. International studies and local specialists hired by the national government concluded that the project was not convenient, in the administration of Cesar Gaviria.
Again in 1996 a subway project was proposed by the Japan International Cooperation Agency (JICA) as a Transport Master Plan. The study was a donation from the Japanese government to the city of Bogotá and was developed in the government period of Antanas Mockus, as major of the capital. The JICA Transport Master Plan was developed in parallel with the integrated mass transportation system study (SITM). This is maybe the first moment in which it is possible to identify in the institutional discourse the appearance of the term “integrated system.”
The objective of the JICA study was not to determine the layout of the subway nor its technical characteristics but to propose an integral scheme of development for the future of the city, which included the development of an integrated transport network contemplating several modes (trunk, transport collective, ferrous modes) that would be developed according with the growth of travel demand, as well as proposals to improve the flow of private transport and traffic management. The first line of the JICA had a length of 32 km.
The JICA foresaw the start of the construction of the Metro line in 2006 and the start of the operation in 2016. Shortly after the JICA study was completed, the Capital District proposed a land management plan (POT) that visualized a different territorial implementation scheme, limiting the possibility of development in the north of the city that was a priority in that plan. As a result, the POT and the projects related to mobility in the city did not adopt the main proposals of the JICA Transport Master Plan. Some of the plans for the development of north of the city had the problem of proposing urbanization projects in wetlands.5
In 1997, the Systra Bechtel Ingetec (SITM) consortium proposed a scheme of three Metro lines, similar to the one proposed in 1981, complemented by a bus trunk scheme. This study was developed by the national government, with Ernesto Samper as president. The majors of the period were Antanas Mockus and Enrique Peñalosa. According to this study, the first Metro line was going to cover a length of 29.3 km. The SITM studies, similar to what happened with the JICA studies, did not have an official view of what the development of the city should be, since the POT is subsequent to the results of the study. It was assumed then a development loaded toward the west of the city, considering in this occasion the important development that was being generated in the north–south axis.
The period in which the study was conducted was quite critical in fiscal terms. One of the conditions to be able to carry out the project was to achieve an adequate scheme of public-private participation for which an investment bank was hired. As a result, the city implements a mass transit system type bus rapid transit (BRT).
As it can be observed, there are several projects that have been raised in a preliminary way by economic associations, private companies, academics, and promoters of Metro systems, among others. It is important to underline in the projects presented that the Metro is not unique and that the variations in terms of capacity, type of structure, and therefore cost can be significant. In general, Metro studies have failed to integrate the vision of the city with its transport system. The demand projections and the assumptions of development of the city that have assumed in the studies have not been fulfilled.
The same happened with the trunk networks that were not linked in an adequate way to the integral urban project vision. The first interventions that were made, such as the Caracas Avenue, did not include the recovery of public space parallel to the corridor. Subsequently, in the intersections of the Medellin Avenue (80 Street) and the Americas Avenue, the intervention was not adequately coordinated in terms of mitigation of the impact of the layout and design in the surrounding areas. As a consequence, there are urban scars associated with abandonment that were generated and progressive deterioration without recovery, due to the lack of management in leftover lots and lack of an appropriate standard for these cases of intervention on road infrastructure.
The Metro project has been defined as a project for the contribution to the improvement of mobility in the urban level, since it implies an infrastructure different from the conventional transport systems, which will require a wider action that goes beyond the segmented vision of mobility and directly impacts the urban weave; the economic, cultural, and social activities of the environment; and the behavior of the citizens in the face of the implementation of a new system.6 The project prioritized mass and collective transportation to reduce the costs and times associated with the mobility of people and proposed the implementation of a multimodal system that combined mass transportation, metro, trams, collective metrocable, and bicycle lanes as is referred in the City Plan “Development Plan, economic and social and public works for Bogotá Capital District 2012–2016.”
The definition of the layout of the first Metro line (PLM) was trusted to the SENER Consulting Group, by the district administration, who carried out the studies for the conceptual design of the Metro mass transit network and operational design, legal, and financial scheme, within the framework of the integrated public transport system SITP for the city of Bogotá. Line 01 was designed with a total length of 29 km, 31 stations along its route. Starting at 127 Street, then through the 11th to Lourdes (in Chapinero), continuing along the 13th Street to San Victorino (in the center), continuing until the station of the Savana, it crosses the iron corridor until the avenue Primero de Mayo, in the south, and finishes in the sector of Tintalito, in the southwest. The central station will be located on 26 Street with 13 Avenue where the passengers will be exchanged between the Metro and TransMilenio. The central control station (PCC) of the Metro system will be located at 13th Street with 18.
In the words of Blanco and Apaolaza [11], “One of the main challenges that geographers and urban planners face when thinking about mobility in Latin American cities is how to accurately assess the effect produced by severe social and territorial inequality.” In an attempt to explore this question, they identify three key issues related to the inequality-mobility relationship: “(a) mobility as a facilitator in the access to goods, services, and opportunities at different urban scales and its direct effects on poverty and social exclusion; (b) socially and territorially conditioned assets and competences among individuals when managing mobility needs and territorial control; and (c) the uneven appropriation and use of the city, both in terms of proximity and connection to metropolitan networks.”
The subway as a possibility for integrated urban projects in the Gustavo Petro government was focused on transport and mobility at the metropolitan scale according to income level and territorial location of households, highlighting the importance of territorial features when addressing mobility patterns of particular socioeconomically vulnerable groups, including mobility of informal settlers in urban peripheries; mobility of domestic workers in gated communities; and mobility of residents at risk of displacement in gentrifying neighborhoods. The key findings stress on how the particular territorial conditions can intensify or attenuate the preexisting socioeconomic inequality. And this is how his policies fulfill the three key issues related to the inequality-mobility relationship proposed above.
One of the main problems that public authorities face when undertaking programs and projects of public utility or social interest has to do with the acquisition mechanisms of the properties required and specifically with the use of the instrument of expropriation. The main tension that underlies the use of the expropriatory instrument is the definition of the value of the expropriated property.
It must be remembered that often such projects are carried out on central areas of the cities occupied by low- and middle-class population and that usually involve the intervention of private real estate capitals in search of locations capable of generating intense and rapid processes of valorization. In this context, the application of a price control instrument may end up reinforcing a very generalized characteristic of this type of process: expulsion of the resident population or what is the same gentrification as is known in the specialized literature. In this way, they can be completed by facilitating the capture of capital gains by private real estate agents who can be beneficiaries of the expropriation processes undertaken by the public power to facilitate and promote such processes.
On the contrary, to allow the original owners of such areas, where programs and projects of urban renovation or revitalization are developed, and to participate in the real estate valuation that the project itself can produce can be a way to facilitate its permanence in the area or at least a good opportunity to increase their assets, giving them greater ability to pay, in case you choose to go to a new location. At the end, “facilitating” the capture of part of the real estate valuation by the original owners can be, in a context of broader analysis, a more equitable measure of distribution of charges and benefits among the different actors. This explanation given, by Juan Felipe Pinilla [12], reflects very well the spirit of the revitalization of Gustavo Petro City Plan which emphasis the Metro as an axis to articulate plans and programs allowing the affordability of housing, social services, and infrastructure, promoting accessibility, connectivity, and social integration. In this sense, an effort to build a discourse and proposals on the base of social integration, connectivity and sustainability, connecting social dimensions with spatial components and the land policies, can be observed.
However, even in spite of the efforts to develop a city model consistent with the discourse of social integration, Bogotá has been dominated by the development model. This can be observed in the resistance of people toward concepts such as social mix and forms of political and territorial integration, through persistence in very discriminatory representations of the places of poverty and their inhabitants.7 And it is also almost evident that the private capital has a lot of strength because it has controlled throughout the history of the city its development, a planned development that only benefits a small portion of the population, different than the other large percentage of neighborhoods developed through community action and self-construction, many of them developed illegally.
It is known around the world the concept of “urban crisis” to refer to the problems of the growing cities around transport system, housing, infrastructure, and problems related with the nonrenewable resources, among others. Therefore, the notion of “urban crisis” does not analyze the dysfunctionalities that for many are not new (pollution, shortage of accommodation, insufficient coverage of urban services, etc.), but it underlines the blockade of the model of national-popular integration. The creation of territories for “themselves,” linked to related residential strategies, on the one hand, and the sedimentation of poverty in the areas of exclusion, on the other, are really the extreme and symmetrical forms of that process.
Because of this, it is very important to keep thinking if is it possible that an emergent new model, which is more dispersed and less hierarchical, is built to replace fragmented city to organic city, and keep thinking about how to build an integrated city, under the prevailing models of metropolization and globalization, capable of fighting what seems to be the inevitable process of fragmentation and the creation of urban borders and that accentuate poverty and inequality.
The construction of the elevated Bogotá Metro or viaduct is an idea that emerged in the value engineering exercise carried out by the national government in 2015, by SENER for Bogotá. The result of this study, as well as the construction of the project by sections, was accepted by the district administration in January 2016, to make viable a Metro that was designed. In fact, by this time, the administration had already carried out the socioeconomic studies of the affected properties and had even offered some of them. But as a result of the change of government, the project was stopped. The main arguments are the devaluation of the peso against the dollar could not go beyond of 53rd Street, the total uncertainty due to the quality of the soils, the time of work under ground, the cost of transporting kilometers of public services networks, and the risks and the cost overruns that are still to be analyzed.
In 2016, the national and district government promoted a study of alternatives, typologies, and costs by the SYSTRA [13], a subsidiary of the Paris Metro. In the analysis exercise, using as reference the existing studies, SYSTRA evaluated and compared 8 path length options, with high and underground sections, through 31 indicators (environmental, urban, constructive, social, financial, and risk). In this exercise, the greatest relative weight was found in the economic component, where it was found that:
With the recourses designated to build a kilometer of underground subway, it could be built 1.48 km of elevated Metro. The cost of operating the elevated Metro is 28% less than the underground because it does not require mechanized ventilation, or pumping for water extraction and only night lighting. The elevated meter can be built faster because the grins can be prefabricated in a workshop and then quickly installed on the columns, including the stations. The elevated subway work presents lower construction risks in Bogotá; the assessed risks of the underground solution are related to the excavation under bodies of water and the desiccation of the soil, which in Bogotá would produce settlements in the buildings up to several blocks away. Operational risks were also considered, and underground trains are more complex to handle emergencies such as fires, attacks, or accidents and stranded trains.
The sum of the analysis, and the conclusion of the government of all these criteria, concluded that the viaduct or elevated typology was the most convenient for Bogotá. Was highlighted that the thanks to the geological studies to be carried out represented a serious risk in the process of building an underground and with high costs and risks of destabilization of buildings, drying, and interruption of public service networks.
As it can be observed, there is an emphasis in the financial matters than the long-term vision of the city that could result in a faster project to build to show immediate results to the city but far from the integrate the systems of the city in a scheme involving social, economic, and spatial integration and connectivity.
The new motilities are accentuating preexisting inequalities. Where there was local urban poverty, a new urban poverty emerges that reveals different ways of inhabiting conflicts between those who dispute the land, power conflicts between territorial agents, among others. The causes and responsibilities of urban inequality and the lack of territorial opportunities of households are questioned. But to some extent, territorial conflicts emerge as the search for equilibrium of classes, forms, or mechanisms of improve social mobility.
Socio-spatial conflicts are assumed as forms in which different collectives make their interests representative. Therefore, the conflict between agents and territories arises not as antagonistic positions but rather as the search to reconcile interests. There is a need to reduce inequities as the responsibility of different agents who are in conflict but who require a new citizenship to claim the right to land, to housing, and to citizenship, ensuring a mobility and the social construction of territory and territoriality.
A socio-spatial model is needed as a space of rights of access and circulation that denote public freedom, in terms of Henri Lefebvre [14]. In terms of professor Ricky Burdett [16] for the Quito Papers conference, toward the open cities, there is three concepts that should be taken into account: (1) Porosity: notion of open places to a variety of people, instead of closed to specific groups. Planners have the tools to create open spaces where interact the diversity of people, communities, and groups that inhabit the city, which have different social, economic, and cultural conditions. (2) Synchronicity: a concept to exemplify the mix of uses, all in the same place. The author explains that it is not a mixture in the traditional sense, but a phenomenon of many types of activities happening at the same time. (3) Informality: as incomplete forms of the city.
The general design criteria contemplated for the implementation of the Metro in the government of Enrique Peñalosa as well as building the most significant system of public transport in the city consisted of integrating the users as the most important determinant of the project. As a contribution to the urban space, elements such as trees, furniture, and squares were studied, generating a large number of square meters of public space of different hierarchy.
These proposals had previously been implemented for the TransMilenio system resulting in areas without collective use and without appropriation by users. In most accesses to pedestrian bridges, there is no linkage of urban uses (commercial and services mainly), which degrades the character of these sectors and contributes to the loss of land value.9 Consequently, there is a crisis of public space in two main dimensions: as a multipurpose element, as a place of exchange and collective life, and as an element of continuity, articulation of different parts of the city, community expression,and citizen identity in terms of Jordi Borja [15].
Another problem with this system is the property impediment to advance architectural and landscape improvements in trunk lines. This is due to the fact that in some cases the leftover properties along these urban infrastructures do not comply with the minimum area required to generate real estate or any other type of development. These properties over time reproduce the deterioration associated with factors such as the fragmentation of the wall, the inability of the properties to generate facades in the corridors and to join others of greater area and to modify morphologically, and typologically the predial sections adjoining them. This phenomenon is multiplied even more after the absence of specific urban norm for such interventions or sufficient incentives so that these actions (promoted by private initiatives) are realized.
This is how urban transformations in Colombia have not been accompanied by a parallel urban action aimed at recovering and generating new public space, updating public networks and services to new densities, improving accessibility, etc. Therefore, although urban renewal has been conceived in the POT as the fundamental tool for consolidation, the lack of an integral vision of the city means that not only there are few executions but that many of the projects presented are considered as isolated urban interventions, with the dubious objective of achieving a dense and compact city.
Likewise, public interventions linked to neighborhood improvement or the implementation of urban-scale infrastructures such as the TransMilenio lead to an increase in the stratum, without improving the population’s ability to pay. The effects can be expulsion of the population due to higher payments of taxes and public services, which would contribute to the elitization of space but, above all, a negative balance effect in terms of urban integration objectives, because the improvement of the spatial conditions of the environment have a cost for the inhabitants of the popular districts that is not necessarily easy to assume, especially in a conjuncture of constant increases of tariffs and reduction of the subsidies. It would be taking for granted that the quality of the environment is proportional to the income of the inhabitants of an area, denying the possibility of favorable environments for the poorest.
The conception of infrastructure and transport projects is usually promoted, from the sectoral agendas, by squandering the potential and synergy that can be obtained by coordinating integrated actions on the territory, where investment in roads and transport lines are the most important catalyst for new urban forms. As a result of this unfortunate approach, isolated actions have generated adverse consequences for urban matters, which translate into the physical appearance of stock, urban voids, and spaces of anomie. In terms of functionality, the creation of barriers for pedestrian mobility, which economically cause a reduction in value in the assets of the city, promoting insecurity and the loss of ownership of the different places.
This reflection makes it necessary to advance in the approach of instruments that allow to orient in a synergic and coordinated way, the actions on the territory, seeking to break the traditional way as the road infrastructure projects have been understood in the city, which mostly only address road technical aspects and do not generate a comprehensive strategic approach.
Revitalization, as a strategic integral approach, means generating stable socioeconomic conditions so that the inhabitants and in general the population, living in the central areas, are not displaced by new “more profitable” activities that are implemented, or by the qualification of an urban space that later cannot be paid, since in both cases the revitalization processes must provide mechanisms for the previously settled population to remain and be beneficiary of the actions.
Associated management as an instrument to participate in land rents can be used to achieve public-private partnerships and effectively involve landowners in the transformation of the city, to avoid gentrification and rejection of land renewal processes.
Bogotá needs to expand the technical, political, social, economic, and spatial vision of urban problems; this induces to debate more on the problems of the city in general and its urban transport. To avoid stagnation in discussions about mobility and the advantages and disadvantages of certain types of infrastructures or projects in progress, it is a priority to have a city project that synthesizes the type of city desired, in which the road network and public transport can be considered as one of the bases of structuring and balance. And finally, to conclude the reflection, Bogotá needs the Metro that has not been built yet.
The text reflects on aspects of mobility in Bogotá, through the case study of the Metro, as well as analyzing phenomena such as spatial social segregation and the fragmentation of the city, taking as reference the literature produced during Gustavo Petro’s government, who is currently a presidential candidate, and to whom we owe the possibility of thinking about an inclusive, integrative, and connected city development.
I declare that I am facing a situation of conflict of interests because I belong to the institution that designs and executes the transport infrastructure plans, the Urban Development Institute (IDU).
Today, the increase of requirements for indoor cooling demands improves thermal human comfort inside residential buildings, reduces the divergence between the energy supply and energy demand by the use of low-grade heat sources such as solar energy and industrial waste heat, lowers the CO2 emissions in the building sector due to the use of air condition systems, and finally reduces the peak of energy consumption of air conditioning processes generated by the use of conventional vapor compression system especially during summer period for the buildings and spaces that have high latent loads. All above reasons make the solar cooling that has been received much more attention as innovative, promising, efficient, and environmentally friendly air conditioning systems as alternative options for conventional air conditioning systems [1, 2]. The building sector is considered as a major contributor to energy consumption in the world. Numerically, 41.1% of the total energy in the United States in 2011 was consumed in the building sector, and this state is expected to increase to 42.1% in 2035 [3]. In Europe, buildings consumed for 39% of total energy consumption, which 26% is for residential buildings and 13% for commercial architectures [4]. In China, 25–30% of the total energy is consumed by civil and industrial buildings [5]. A same scenario in Australia which the building industry consumes 40% of the total energy produced [6]. According to the report issued by EU strategy on heating and cooling 2016, the energy consumption for cooling and heating in buildings demonstrated about 80%. Although less than 20% is presently exploited for cooling purposes, the domestic cooling building still has a high potential for growth. Moreover, the use of the innovative low-energy cooling technologies for heating and cooling will bring fuel savings of 5 Mtoe per year in 2030, corresponding to 9 million ton of CO2 [7]. Therefore, the annual energy for air-conditioning purposes for a room was increased considerably, which was 1.7 GWh in 1990 and it reached 44 GWh in 2010 [8]. The Mediterranean countries have saved 40–50% of their energy consumed for refrigeration and air-conditioning by using solar-driven air-conditioning system techniques [9, 10]. It is stated that the solar system was able to contribute up to 70% of total energy consumption for heating and air-conditioning for domestic buildings. Many solar cooling technologies such as solar absorption, solar adsorption, desiccant, and ejector systems have been studied by researchers. Among these technologies, solar absorption is the most widely used technology with 59% of the installed systems in Europe against 11% for solar adsorption and 23% for desiccant cooling [11]. Many investigations have been done on solar thermal-driven absorption refrigeration machines in the small range of refrigeration capacity (5–30 kW). Some of the investigation results have been published in [12, 13, 14]. A design guide for solar cooling systems is presented in [15].
\nSolar cooling systems can be classified into two main categories according to the energy used to drive them: solar thermal cooling systems and solar electric cooling systems. In solar thermal cooling systems, the cooling process is driven by solar collectors collecting solar energy and converting it into thermal energy, and uses this energy to drive thermal cooling systems such as absorption, adsorption, and desiccant cycles; whereas in solar electric cooling systems, electrical energy that is provided by solar photovoltaic (PV) panels is used to drive a conventional electric vapor compressor air-conditioning system. Both types of solar cooling can be used in industrial and domestic refrigeration and air-conditioning processes, with up to 95% saving in electricity [16].
\nIn general, the solar electrical cooling system consists of two parts: photovoltaic panel and electrical refrigeration device. Photovoltaic cells transform light into electricity through photoelectric effect. The power generated by solar photovoltaic panel is supplied either to the vapor compression systems, thermoelectrical system, or Stirling cycle.
\nPhotovoltaic powered refrigerators are an alternative option to produce cooling in remote areas of developing countries. Photovoltaic cell converts the incident solar radiation to DC power which can drive the compressor of vapor compression system. This system as depicted in Figure 1 consists of a DC compression refrigerator connected to controller, a battery to supply and store energy, and a photovoltaic (PV) generator which supplies the refrigerator and charges the battery with excess energy. The main advantage of this system compared to the other air-conditioning systems is that it does not require an outside fuel supply. In order to run the system at highest efficiency, the voltage should be close to the voltage produced at the maximum possible power.
\nA configuration of a PV solar-powered vapor compression systems.
Thermoelectric device utilizes the Peltier effect to make a temperature gradient by creating heat flux between two different types of semiconductors materials. Riffat and Qiu [17] defined the Peltier effect as presence of cooling or heating effect at junction of two different conductors due to electricity flow. The main principle of working thermoelectric cooling systems is shown in Figure 2 and follows these steps: an electric current flows across the joint of n- and p-type semiconductor materials by applying a voltage. When the current passes through the junctions of the two conductors, heat is removed at one junction and absorbs the heat from its surrounding space to create a cooling effect. Heat is deposited at the other junction. When a direction of the current is reversed, the air-conditioning system operates in the heating manner due to reverse of the heat flow direction. The main advantages of using thermoelectric cooling compared to vapor compression cycle are as follows: (a) compact and lightweight due to no bulky compressor units needed; (b) no moving parts; (c) environment friendly due to no hazardous gases; (d) silent operation; (e) high reliability in which a mean time between failures (MTBF) is more than 100,000 h; (f) precise temperature stability in which a tolerance of better than +/−0.1°C; and (g) finally cooling/heating mode option, which is fully reversible with switch in polarity and supports rapid temperature cycling. But on the other side, high cost and low efficiency are the main disadvantages.
\nThermoelectric cooling configuration.
The cooling cycle is split into four steps as depicted in Figure 3. The cycle starts when the two pistons are in their most left positions:
Process (a\n
Process (b\n
Process (c\n
Process (d\n
The gas temperature rises from TL to Ta so heat is taken up from the regenerator material. This completes the cycle.
(a) Schematic diagram of a Stirling cooler; (b) four states in the Stirling cycle; and (c) PV-diagram of the ideal Stirling cycle.
The absorption refrigeration cycle is one of the oldest refrigeration technologies. Absorption refrigeration cycle operates under the same principle as the conventional vapor compression refrigeration cycle in the refrigerant side. The mechanical compressor in the conventional vapor compression refrigeration cycle is replaced by the thermal compressor in the absorption refrigeration cycle. The thermal compressor consists of absorber and generator. Figure 4 shows the general schematic of a single effect absorption cycle [18]. The absorption chiller cycle consists of the following steps:
The rich solution (rich on coolant) will be pumped from the absorber to the generator passing the solution heat exchanger (economizer).
Through the heat supply in the generator from a driving heat source (solar collectors), a part of the coolant will be driven out from the rich solution and flows to the condenser. After that, the remaining poor solution (poor on coolant) flows back to the absorber.
In the condenser, the refrigerant vapor from the generator condenses in the condenser. The heat of condensation must be rejected at an intermediate temperature level by the use of the cooling water supplied from a cooling tower.
The refrigerant condensate flows back to the evaporator at low pressure through an expansion device. The cycle of the coolant then repeats.
In the evaporator, the refrigerant is vaporized at very low pressure to produce the cooling power by extracting heat from the low-temperature medium. The coolant vapor flows to the absorber.
In the absorber, refrigerant vapor is absorbed by the poor solution, which flows back from the generator passing the economizer and the throttle. Then, the heat of absorption and mixing is rejected by the cooling water stream supplied from a cooling tower. After that, the cycle of the solution will repeat again.
Schematic of the absorption chilling cycle [18].
The two main pairs of refrigerant/absorbent that are widely used are water/lithium bromide (H2O/LiBr) and ammonia/water pair (NH3/H2O), where water is the refrigerant (coolant) and LiBr is the absorbent; while for the second pair, ammonia and water are the refrigerant and absorbent, respectively.
\nList of advantages of using water/LiBr pair, which is the most common for solar air-conditioning application, is as follows:
uses nontoxic substances;
low working pressures; and
nonvolatile absorbent, i.e., there is no need of rectification of the refrigerant.
However, there are disadvantages associated with the water/LiBr pair and are as follows:
Water cooling is required, which is commonly accomplished by a cooling tower. Cooling towers have the risk of legionella;
Systems have bigger sizes which are due to the large volume of the water vapor;
Risk of corrosion of the components; and
Risk of the crystallization of the solution at very low cooling temperatures.
Adsorption refrigeration cycle is similar to absorption refrigeration cycle. The main difference in the former is that the refrigerant is adsorbed on the internal surface of highly porous solid material instead of the refrigerant being absorbed by a liquid solution. In the adsorption refrigeration cycle, the solid sorbent and the refrigerant form the adsorption pairs such as activated carbon-ammonia, activated carbon-methanol, activated carbon-ethanol, silica gel-water, and zeolite-water.
\nAdsorption is a physical or chemical process that is different from absorption, which is a chemical process. Just as there is an attraction between a liquid and a solid at a surface, there is also an attraction between a gas and a solid at a surface. Adsorption is a surface phenomenon which can be divided into physical adsorption (physisorption) and chemical adsorption (chemisorption). Physical adsorption generally resulted by the Van der Waals forces through physical process, and chemical adsorption usually achieved by valency forces through chemical process. The heat of adsorption is usually large in chemical adsorption and small in physical adsorption. Adsorbent substances can be retained to original properties by a desorption process under the application of heat.
\nThe adsorption refrigeration cycle consists of two sorption chambers, a condenser, and an evaporator, as illustrated in Figure 5. The adsorption cycle achieves a COP of 0.3–0.7, depending upon the driving heat temperature of 55–90°C.
\nSchematic of adsorption cycle solar cooling system.
The working cycle of 5–7 min consists of the following four steps [19]:
In the first step, the adsorbed water is desorbed after the application of thermal energy (as example from solar energy). The collector becomes the generator (1).
In the second step, the desorbed refrigerant (water) is cooled and condensed to liquid in the condenser by rejecting the heat through the cooling water supplied from a cooling tower.
In the third step, the condensed water flows through the expansion valve to the evaporator, where it vaporizes under low partial pressure and low temperature in the evaporator while the useful cooling is produced, then heat is taken away from the chilled water.
In the fourth and final step, the vaporized water is adsorbed in the collector (2) until the silica gel is saturated, then it is switched to the second adsorber chamber.
The circuit is completed as the condensed water is fed back into the evaporator through a valve.
The functions of two sorption chambers are reversed by alternating the opening of the butterfly valves and the direction of the heating and cooling refrigerants. In this way, the chilling refrigerant is obtained continuously. The cycle then repeats.
Advantages of adsorption chiller systems compared to absorption chiller systems [20, 21] are as follows:
The operating temperatures can be lower, e.g., 55–90°C as compared to 70–120°C for absorption chillers.
There is no low limit to the temperature reservoir.
There is no limitation for the low cooling water temperature, because there is no risk of crystallization problem as in the case of absorption chillers.
No risk of corrosion problem as in the case of absorption chillers, because there are heat sources with temperature close to 500°C that can be used directly.
The adsorption systems have flexibility in regeneration temperature and do not require frequent replacement of adsorbent.
The adsorption systems do not need a rectifier for the refrigerant or solution pump in comparison with absorption systems.
The disadvantages of adsorption chiller systems include [22]:
Adsorption technology is more expensive than absorption technology.
The average COP of adsorption chillers is lower than the absorption chillers.
The adsorption chillers are both heavy weight and larger than the absorption chillers.
Heat recovery is very complex, because the adsorption system is intermittent system.
Advantages of absorption and adsorption chiller systems compared to vapor compression systems:
Absorption and adsorption systems are environmentally friendly. The equipment uses completely harmless working fluids.
The maximum cooling load can be achieved with the maximum available solar radiation and hence potential of the refrigeration system.
Maintenance costs are lower due to fewer moving parts like solenoid valves and vacuum pumps. It is almost noiseless system, where there are not many moving parts, other than the solution pump in the absorption refrigeration systems.
Taking advantage of solar thermal plants in the sorption refrigeration technology even when there is no heat demand.
Operation costs are lower due to low electricity consumption in comparison with vapor compression systems.
The desiccant air-conditioning system utilizes the capability of desiccant materials in removing the air moisture content by sorption process. All materials that attract moisture at different capacities are called desiccant [4]. The desiccant cooling system can be a suitable selection for thermal comfort especially in climates with high humidity. Moreover, this technique allows us to utilize renewable energy or low-temperature gains from solar energy, waste heat, and cogeneration to drive the cooling cycle. The comparison between desiccant system and conventional systems is listed in Table 1. There are many required properties for any desiccant materials selected in open-cycle cooling based on [23]: (i) mechanical and chemical stability; (ii) large moisture capacity per unit weight; (iii) low heat of adsorption/absorption to regenerate; (iv) sorption rate; (v) large adsorption/absorption capacity at low water vapor pressures; (vi) cheap cost; (vii) sorption at low relative humidity; and (viii) finally ideal isotherm shape.
\nParameter | \nConventional system | \nDesiccant system | \n
---|---|---|
Operation cost | \nHigh | \nLow | \n
Performance | \nHigh | \nLow | \n
Energy source | \nMainly electricity | \nLow-grade energy | \n
Environmental safety | \nLess | \nHigh | \n
System care | \nLess | \nHigh | \n
Control over humidity | \nAverage | \nAccurate | \n
Indoor air quality | \nLess | \nMore | \n
System installation | \nSimple | \nMore complicate | \n
Energy storage capacity | \nMainly not applicable | \nApplicable | \n
Installation cost | \nHigh | \nLow | \n
System control | \nAverage | \nComplicate | \n
The comparison between desiccant system and conventional systems.
Two configurations were described in detail below: ventilation and recirculation modes. The schematic of the ventilation mode representation is demonstrated in Figure 6a. On the conditioning side of the system (air processing side), warm and humid air enters the slowly rotating desiccant wheel and is dehumidified by adsorption of water (1–2). Since the air is heated up by the adsorption heat, a heat recovery wheel is passed (2–3), resulting in a significant precooling of the supply air stream. Subsequently, the air is humidified and thus further cooled by a controlled humidifier (3–4) according to the set-values of supply air temperature and humidity. In order to control the sensible heat factor, the remix air is introduced by the mix evaporatively cooled room air with the cooled and dried room make-up air (5–6). On the regeneration side of the system, the exhaust air stream of the rooms is humidified (6–7) close to the saturation point to exploit the full cooling potential in order to allow an effective heat recovery (7–8). After that, the sorption wheel has to be regenerated (8–9) by applying heat in a comparatively low temperature range from 50 to 75°C and to allow a continuous operation of the dehumidification process. Finally, the cold and humid air is exhausted to the atmosphere (9–10) and the cooling cycle is completed.
\nSchematic of desiccant cooling system in (a) ventilation mode and (b) recirculation mode.
The recirculation mode representation is depicted in Figure 6b. It uses the same components as the ventilation mode except the process air side in the recirculation mode is a closed loop, whereas the regeneration air side is an open cycle where the outdoor air is used for regeneration.
\nA solar-driven ejector cooling system consists of an ejector cooling cycle and a collector circuit. The main components of the system are collector array, generator, ejector, condenser, expansion valve, evaporator, and cycle pump. A schematic diagram of the solar ejector cooling system and its component is presented in Figure 7. The working principle of the ejector systems follows the below states [24, 25]:
\nSchematic presentation of the solar ejector cooling configuration.
In the generator, the refrigerant is vaporized as a primary steam by utilizing the solar energy coming from the solar collector. This primary steam leaves the generator at a relatively high pressure and enters the supersonic nozzle of the ejector to accelerate it at supersonic velocity and creating low pressure at the nozzle exit section. This low pressure draws the secondary flow coming from the evaporator into the chamber. The primary and secondary streams are mixed in the mixing chamber. These mixing steams enter into diffuses where increases its pressure to the condensing pressure. The mixing stream discharges from the ejector to the condenser, where the stream is converted into liquid refrigerant by rejection heat to the surrounding. Some part of the liquid refrigerant pumps to the generator and the remaining liquid part leaves the condenser and enters the evaporator through expansion value.
\nIn expansion value, the refrigerant pressure is dropped and this refrigerant enters the evaporator to absorb heat from space that required to cool and the refrigerant is converted into vapor and enters to the ejector.
\nOne of the promising methods that utilize solar heat to produce mechanical work and then use it to drive a conventional vapor compression cycle is solar Rankine cooling systems. Two different configurations of solar Rankine cooling systems were suggested by different scholars [26]. One arrangement is using separate power and cooling system where the compressor of the vapor compression cycle is mechanically coupled with the expander of organic Rankine cycle. Another arrangement is an integrated system by the use of one joint condenser for both cycle coupled with the expander-compressor.
\nThe main advantages of a second configuration are the use of a same working fluid in both loops to remove a leakage and mixing problems. Moreover, the integrated design is simpler but on the other side reduces the system flexibility.
\nFigure 8 depicts a schematic for two widely solar Rankine cooling system arrangements. In the first loop of organic Rankine cycle, high-pressure liquid coming from the pump is vaporized inside the boiler (state 1) that absorbs the heat from solar collector. The vapor (state 2) enters the expander and produces a useful work which is used to drive a compressor of a conventional refrigeration cycle. The working fluid pressure from the expander outlet is same to the condenser pressure (state 3). After that, a rejection heat to the surrounding inside the condenser converts the working fluid to saturated fluid. Subsequently, a pressure of the working fluid is increased by using pump to enter a boiler as subcooled liquid (state 1).
\nRepresentation of a Rankine solar cooling system as (a) separate configuration for power and refrigeration cycles and (b) integrated configuration for power and refrigeration cycle.
The executed investigations on the field of solar thermal-driven cooling systems and the gained results can be concluded as follows:
The investigations on solar thermal-driven systems show that solar thermal refrigeration systems are promised technologies, especially in the small and middle cooling capacity ranges.
The work temperatures have a big impact on the refrigeration capacity of the chiller.
The higher is the required chilled water temperature, the higher are the refrigeration capacity and the coefficient of performance (COP) of the absorption refrigeration machine.
The lower is the cooling water temperature; the higher are the refrigeration capacity and the COP of the absorption refrigeration machine.
There are a big potential for further research at this field to optimize the system operation and to reduce the specific costs (€/kW cooling capacity).
Authors are listed below with their open access chapters linked via author name:
",metaTitle:"IntechOpen authors on the Global Highly Cited Researchers 2018 list",metaDescription:null,metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"New for 2018 (alphabetically by surname).
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJocelyn Chanussot (chapter to be published soon...)
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nYuekun Lai
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPrevious years (alphabetically by surname)
\\n\\nAbdul Latif Ahmad 2016-18
\\n\\nKhalil Amine 2017, 2018
\\n\\nEwan Birney 2015-18
\\n\\nFrede Blaabjerg 2015-18
\\n\\nGang Chen 2016-18
\\n\\nJunhong Chen 2017, 2018
\\n\\nZhigang Chen 2016, 2018
\\n\\nMyung-Haing Cho 2016, 2018
\\n\\nMark Connors 2015-18
\\n\\nCyrus Cooper 2017, 2018
\\n\\nLiming Dai 2015-18
\\n\\nWeihua Deng 2017, 2018
\\n\\nVincenzo Fogliano 2017, 2018
\\n\\nRon de Graaf 2014-18
\\n\\nHarald Haas 2017, 2018
\\n\\nFrancisco Herrera 2017, 2018
\\n\\nJaakko Kangasjärvi 2015-18
\\n\\nHamid Reza Karimi 2016-18
\\n\\nJunji Kido 2014-18
\\n\\nJose Luiszamorano 2015-18
\\n\\nYiqi Luo 2016-18
\\n\\nJoachim Maier 2014-18
\\n\\nAndrea Natale 2017, 2018
\\n\\nAlberto Mantovani 2014-18
\\n\\nMarjan Mernik 2017, 2018
\\n\\nSandra Orchard 2014, 2016-18
\\n\\nMohamed Oukka 2016-18
\\n\\nBiswajeet Pradhan 2016-18
\\n\\nDirk Raes 2017, 2018
\\n\\nUlrike Ravens-Sieberer 2016-18
\\n\\nYexiang Tong 2017, 2018
\\n\\nJim Van Os 2015-18
\\n\\nLong Wang 2017, 2018
\\n\\nFei Wei 2016-18
\\n\\nIoannis Xenarios 2017, 2018
\\n\\nQi Xie 2016-18
\\n\\nXin-She Yang 2017, 2018
\\n\\nYulong Yin 2015, 2017, 2018
\\n"}]'},components:[{type:"htmlEditorComponent",content:'New for 2018 (alphabetically by surname).
\n\n\n\n\n\n\n\n\n\nJocelyn Chanussot (chapter to be published soon...)
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nYuekun Lai
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nPrevious years (alphabetically by surname)
\n\nAbdul Latif Ahmad 2016-18
\n\nKhalil Amine 2017, 2018
\n\nEwan Birney 2015-18
\n\nFrede Blaabjerg 2015-18
\n\nGang Chen 2016-18
\n\nJunhong Chen 2017, 2018
\n\nZhigang Chen 2016, 2018
\n\nMyung-Haing Cho 2016, 2018
\n\nMark Connors 2015-18
\n\nCyrus Cooper 2017, 2018
\n\nLiming Dai 2015-18
\n\nWeihua Deng 2017, 2018
\n\nVincenzo Fogliano 2017, 2018
\n\nRon de Graaf 2014-18
\n\nHarald Haas 2017, 2018
\n\nFrancisco Herrera 2017, 2018
\n\nJaakko Kangasjärvi 2015-18
\n\nHamid Reza Karimi 2016-18
\n\nJunji Kido 2014-18
\n\nJose Luiszamorano 2015-18
\n\nYiqi Luo 2016-18
\n\nJoachim Maier 2014-18
\n\nAndrea Natale 2017, 2018
\n\nAlberto Mantovani 2014-18
\n\nMarjan Mernik 2017, 2018
\n\nSandra Orchard 2014, 2016-18
\n\nMohamed Oukka 2016-18
\n\nBiswajeet Pradhan 2016-18
\n\nDirk Raes 2017, 2018
\n\nUlrike Ravens-Sieberer 2016-18
\n\nYexiang Tong 2017, 2018
\n\nJim Van Os 2015-18
\n\nLong Wang 2017, 2018
\n\nFei Wei 2016-18
\n\nIoannis Xenarios 2017, 2018
\n\nQi Xie 2016-18
\n\nXin-She Yang 2017, 2018
\n\nYulong Yin 2015, 2017, 2018
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118372},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"23"},books:[{type:"book",id:"10656",title:"Intellectual Property",subtitle:null,isOpenForSubmission:!0,hash:"135df9b403b125a6458eba971faab3f6",slug:null,bookSignature:"Dr. Sakthivel Lakshmana Prabu and Dr. Suriyaprakash TNK",coverURL:"https://cdn.intechopen.com/books/images_new/10656.jpg",editedByType:null,editors:[{id:"91590",title:"Dr.",name:"Sakthivel",surname:"Lakshmana Prabu",slug:"sakthivel-lakshmana-prabu",fullName:"Sakthivel Lakshmana Prabu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10658",title:"Multilingualism",subtitle:null,isOpenForSubmission:!0,hash:"a6bf171e05831c00f8687891ab1b10b5",slug:null,bookSignature:"Prof. Xiaoming Jiang",coverURL:"https://cdn.intechopen.com/books/images_new/10658.jpg",editedByType:null,editors:[{id:"189844",title:"Prof.",name:"Xiaoming",surname:"Jiang",slug:"xiaoming-jiang",fullName:"Xiaoming Jiang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10660",title:"Heritage - New Paradigm",subtitle:null,isOpenForSubmission:!0,hash:"d0b747909f95bd54d009ed0838c38f84",slug:null,bookSignature:"Prof. Daniela Turcanu-Carutiu",coverURL:"https://cdn.intechopen.com/books/images_new/10660.jpg",editedByType:null,editors:[{id:"176482",title:"Prof.",name:"Daniela",surname:"Turcanu-Carutiu",slug:"daniela-turcanu-carutiu",fullName:"Daniela Turcanu-Carutiu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:18},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"69",title:"Globalization",slug:"globalization",parent:{title:"Business, Management and Economics",slug:"business-management-and-economics"},numberOfBooks:6,numberOfAuthorsAndEditors:133,numberOfWosCitations:66,numberOfCrossrefCitations:47,numberOfDimensionsCitations:83,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"globalization",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6605",title:"Globalization",subtitle:null,isOpenForSubmission:!1,hash:"668508e80e1d73c5292bc19eeeb12c0b",slug:"globalization",bookSignature:"George Yungchih Wang",coverURL:"https://cdn.intechopen.com/books/images_new/6605.jpg",editedByType:"Edited by",editors:[{id:"202778",title:"Prof.",name:"George Yungchih",middleName:null,surname:"Wang",slug:"george-yungchih-wang",fullName:"George Yungchih Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3009",title:"Globalization",subtitle:"Approaches to Diversity",isOpenForSubmission:!1,hash:"3a0b441ba233f7f6e07afb92c30833d6",slug:"globalization-approaches-to-diversity",bookSignature:"Hector Cuadra-Montiel",coverURL:"https://cdn.intechopen.com/books/images_new/3009.jpg",editedByType:"Edited by",editors:[{id:"31673",title:"Dr.",name:"Hector",middleName:null,surname:"Cuadra-Montiel",slug:"hector-cuadra-montiel",fullName:"Hector Cuadra-Montiel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2922",title:"Globalization",subtitle:"Education and Management Agendas",isOpenForSubmission:!1,hash:"68cb740dac25a7b8096685d2aa71943d",slug:"globalization-education-and-management-agendas",bookSignature:"Hector Cuadra-Montiel",coverURL:"https://cdn.intechopen.com/books/images_new/2922.jpg",editedByType:"Edited by",editors:[{id:"31673",title:"Dr.",name:"Hector",middleName:null,surname:"Cuadra-Montiel",slug:"hector-cuadra-montiel",fullName:"Hector Cuadra-Montiel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"470",title:"New Knowledge in a New Era of Globalization",subtitle:null,isOpenForSubmission:!1,hash:"08e011d059a55b7a904787039b394b29",slug:"new-knowledge-in-a-new-era-of-globalization",bookSignature:"Piotr Pachura",coverURL:"https://cdn.intechopen.com/books/images_new/470.jpg",editedByType:"Edited by",editors:[{id:"33832",title:"Prof.",name:"Piotr",middleName:null,surname:"Pachura",slug:"piotr-pachura",fullName:"Piotr Pachura"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"207",title:"The Systemic Dimension of Globalization",subtitle:null,isOpenForSubmission:!1,hash:"66505d156fe5c137eb7aba3c41c3f71a",slug:"the-systemic-dimension-of-globalization",bookSignature:"Piotr Pachura",coverURL:"https://cdn.intechopen.com/books/images_new/207.jpg",editedByType:"Edited by",editors:[{id:"33832",title:"Prof.",name:"Piotr",middleName:null,surname:"Pachura",slug:"piotr-pachura",fullName:"Piotr Pachura"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3590",title:"Globalization",subtitle:"Today, Tomorrow",isOpenForSubmission:!1,hash:"63d2eefe753f6b341adc052fbca3d766",slug:"globalization--today--tomorrow",bookSignature:"Kent G. Deng",coverURL:"https://cdn.intechopen.com/books/images_new/3590.jpg",editedByType:"Edited by",editors:[{id:"125761",title:"Dr.",name:"Kent",middleName:null,surname:"Deng",slug:"kent-deng",fullName:"Kent Deng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,mostCitedChapters:[{id:"38348",doi:"10.5772/45655",title:"Globalization and Culture: The Three H Scenarios",slug:"globalization-and-culture-the-three-h-scenarios",totalDownloads:15022,totalCrossrefCites:3,totalDimensionsCites:8,book:{slug:"globalization-approaches-to-diversity",title:"Globalization",fullTitle:"Globalization - Approaches to Diversity"},signatures:"Abderrahman Hassi and Giovanna Storti",authors:[{id:"148330",title:"Dr.",name:"Abderrahman",middleName:null,surname:"Hassi",slug:"abderrahman-hassi",fullName:"Abderrahman Hassi"},{id:"152537",title:"Prof.",name:"Giovanna",middleName:null,surname:"Storti",slug:"giovanna-storti",fullName:"Giovanna Storti"}]},{id:"38271",doi:"10.5772/47800",title:"Human Resource Management and Performance: From Practices Towards Sustainable Competitive Advantage",slug:"human-resource-management-and-performance-from-practices-towards-sustainable-competitive-advantage",totalDownloads:19308,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"globalization-education-and-management-agendas",title:"Globalization",fullTitle:"Globalization - Education and Management Agendas"},signatures:"Asta Savaneviciene and Zivile Stankeviciute",authors:[{id:"146659",title:"Prof.",name:"Asta",middleName:null,surname:"Savaneviciene",slug:"asta-savaneviciene",fullName:"Asta Savaneviciene"},{id:"148268",title:"MSc.",name:"Zivile",middleName:null,surname:"Stankeviciute",slug:"zivile-stankeviciute",fullName:"Zivile Stankeviciute"}]},{id:"17529",doi:"10.5772/21231",title:"Sport in Asia: Globalization, Glocalization, Asianization",slug:"sport-in-asia-globalization-glocalization-asianization",totalDownloads:5301,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"new-knowledge-in-a-new-era-of-globalization",title:"New Knowledge in a New Era of Globalization",fullTitle:"New Knowledge in a New Era of Globalization"},signatures:"Peter Horton",authors:[{id:"42366",title:"Prof.",name:"Peter",middleName:null,surname:"Horton",slug:"peter-horton",fullName:"Peter Horton"}]}],mostDownloadedChaptersLast30Days:[{id:"38348",title:"Globalization and Culture: The Three H Scenarios",slug:"globalization-and-culture-the-three-h-scenarios",totalDownloads:15020,totalCrossrefCites:3,totalDimensionsCites:8,book:{slug:"globalization-approaches-to-diversity",title:"Globalization",fullTitle:"Globalization - Approaches to Diversity"},signatures:"Abderrahman Hassi and Giovanna Storti",authors:[{id:"148330",title:"Dr.",name:"Abderrahman",middleName:null,surname:"Hassi",slug:"abderrahman-hassi",fullName:"Abderrahman Hassi"},{id:"152537",title:"Prof.",name:"Giovanna",middleName:null,surname:"Storti",slug:"giovanna-storti",fullName:"Giovanna Storti"}]},{id:"38371",title:"The Role of the International Organisms in the Globalization Process",slug:"the-role-of-the-international-organisms-in-the-globalization-process",totalDownloads:3501,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"globalization-approaches-to-diversity",title:"Globalization",fullTitle:"Globalization - Approaches to Diversity"},signatures:"Dorina Tănăsescu, Felicia Dumitru and Georgiana Dincă",authors:[{id:"146791",title:"Prof.",name:"Georgiana",middleName:null,surname:"Dinca",slug:"georgiana-dinca",fullName:"Georgiana Dinca"},{id:"148338",title:"Prof.",name:"Dorina",middleName:null,surname:"Tănăsecu",slug:"dorina-tanasecu",fullName:"Dorina Tănăsecu"},{id:"148340",title:"Dr.",name:"Felicia",middleName:null,surname:"Dumitru",slug:"felicia-dumitru",fullName:"Felicia Dumitru"}]},{id:"17523",title:"The Importance of Globalization in Higher Education",slug:"the-importance-of-globalization-in-higher-education",totalDownloads:9051,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"new-knowledge-in-a-new-era-of-globalization",title:"New Knowledge in a New Era of Globalization",fullTitle:"New Knowledge in a New Era of Globalization"},signatures:"Patricia Fox and Stephen Hundley",authors:[{id:"29989",title:"Prof.",name:"Patricia",middleName:"Lynn",surname:"Fox",slug:"patricia-fox",fullName:"Patricia Fox"},{id:"45640",title:"Dr.",name:"Stephen",middleName:null,surname:"Hundley",slug:"stephen-hundley",fullName:"Stephen Hundley"}]},{id:"60620",title:"The Moral Dilemmas of Global Business",slug:"the-moral-dilemmas-of-global-business",totalDownloads:1393,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"globalization",title:"Globalization",fullTitle:"Globalization"},signatures:"Federico Ast",authors:[{id:"230355",title:"Dr.",name:"Federico",middleName:null,surname:"Ast",slug:"federico-ast",fullName:"Federico Ast"}]},{id:"17421",title:"Cultural Globalization and Transnational Flows of Things American",slug:"cultural-globalization-and-transnational-flows-of-things-american",totalDownloads:4831,totalCrossrefCites:1,totalDimensionsCites:0,book:{slug:"the-systemic-dimension-of-globalization",title:"The Systemic Dimension of Globalization",fullTitle:"The Systemic Dimension of Globalization"},signatures:"Mel van Elteren",authors:[{id:"31042",title:"Prof.",name:"Mel",middleName:null,surname:"Van Elteren",slug:"mel-van-elteren",fullName:"Mel Van Elteren"}]},{id:"17540",title:"The Impact of Globalization Determinants and the Health of the World’s Population",slug:"the-impact-of-globalization-determinants-and-the-health-of-the-world-s-population",totalDownloads:12025,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"new-knowledge-in-a-new-era-of-globalization",title:"New Knowledge in a New Era of Globalization",fullTitle:"New Knowledge in a New Era of Globalization"},signatures:"Mario J. Azevedo and Barbara H. Johnson",authors:[{id:"31127",title:"Dr.",name:"Mario",middleName:null,surname:"Azevedo",slug:"mario-azevedo",fullName:"Mario Azevedo"},{id:"45668",title:"Dr",name:"Barbara",middleName:"H.",surname:"Johnson",slug:"barbara-johnson",fullName:"Barbara Johnson"}]},{id:"17417",title:"Globalization and Global Innovations",slug:"globalization-and-global-innovations",totalDownloads:6240,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"the-systemic-dimension-of-globalization",title:"The Systemic Dimension of Globalization",fullTitle:"The Systemic Dimension of Globalization"},signatures:"Hassan Danaeefard and Tayebeh Abbasi",authors:[{id:"27849",title:"Dr.",name:"Hassan",middleName:null,surname:"Danaeefard",slug:"hassan-danaeefard",fullName:"Hassan Danaeefard"},{id:"110750",title:"Dr.",name:"Tayebeh",middleName:null,surname:"Abbasi",slug:"tayebeh-abbasi",fullName:"Tayebeh Abbasi"}]},{id:"38267",title:"The Impact of Globalization on Cross-Cultural Communication",slug:"the-impact-of-globalization-on-cross-cultural-communication",totalDownloads:24554,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"globalization-education-and-management-agendas",title:"Globalization",fullTitle:"Globalization - Education and Management Agendas"},signatures:"Lowell C. Matthews and Bharat Thakkar",authors:[{id:"148763",title:"Dr.",name:"Bharat",middleName:"S.",surname:"Thakkar",slug:"bharat-thakkar",fullName:"Bharat Thakkar"},{id:"149061",title:"Dr.",name:"Lowell",middleName:"Christopher",surname:"Matthews",slug:"lowell-matthews",fullName:"Lowell Matthews"}]},{id:"17423",title:"Biodiversity, Ecosystem and Commodities in Amazonia",slug:"biodiversity-ecosystem-and-commodities-in-amazonia",totalDownloads:1882,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"the-systemic-dimension-of-globalization",title:"The Systemic Dimension of Globalization",fullTitle:"The Systemic Dimension of Globalization"},signatures:"Peter Mann de Toledo, Ima Célia Guimarães Vieira, Gilberto Câmara, Roberto Araújo, Andrea Coelho and Sergio Gomes",authors:[{id:"30959",title:"Dr.",name:"Ima",middleName:null,surname:"Vieira",slug:"ima-vieira",fullName:"Ima Vieira"},{id:"46575",title:"Dr.",name:"Peter",middleName:"Mann",surname:"Toledo",slug:"peter-toledo",fullName:"Peter Toledo"},{id:"87444",title:"Prof.",name:"Gilberto",middleName:null,surname:"Câmara",slug:"gilberto-camara",fullName:"Gilberto Câmara"},{id:"87446",title:"Dr.",name:"Roberto",middleName:null,surname:"Araújo",slug:"roberto-araujo",fullName:"Roberto Araújo"},{id:"87447",title:"MSc.",name:"Andrea",middleName:null,surname:"Coelho",slug:"andrea-coelho",fullName:"Andrea Coelho"},{id:"87453",title:"Dr.",name:"Sergio",middleName:null,surname:"Gomes",slug:"sergio-gomes",fullName:"Sergio Gomes"}]},{id:"17418",title:"Demistifying Globalization and the State: Preliminary Comments on Re-Commodification, Institutions and Innovation",slug:"demistifying-globalization-and-the-state-preliminary-comments-on-re-commodification-institutions-and",totalDownloads:1448,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"the-systemic-dimension-of-globalization",title:"The Systemic Dimension of Globalization",fullTitle:"The Systemic Dimension of Globalization"},signatures:"Hector Cuadra-Montiel",authors:[{id:"31673",title:"Dr.",name:"Hector",middleName:null,surname:"Cuadra-Montiel",slug:"hector-cuadra-montiel",fullName:"Hector Cuadra-Montiel"}]}],onlineFirstChaptersFilter:{topicSlug:"globalization",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/104754/geoffrey-poitras",hash:"",query:{},params:{id:"104754",slug:"geoffrey-poitras"},fullPath:"/profiles/104754/geoffrey-poitras",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()