\r\n\t
",isbn:"978-1-83969-234-5",printIsbn:"978-1-83969-233-8",pdfIsbn:"978-1-83969-235-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"a5f5277a1c0616ce6b35f4b44a4cac7a",bookSignature:"Dr. Basel I. Ismail",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10013.jpg",keywords:"Thermodynamics, Heat Transfer Analyses, Geothermal Power Generation, Economics, Geothermal Systems, Geothermal Heat Pump, Green Energy Buildings, Exploration Methods, Geologic Fundamentals, Geotechnical, Geothermal System Materials, Sustainability",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 29th 2020",dateEndSecondStepPublish:"November 26th 2020",dateEndThirdStepPublish:"January 25th 2021",dateEndFourthStepPublish:"April 15th 2021",dateEndFifthStepPublish:"June 14th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Leading research investigator in a collaborative project (2007-2010) with Goldcorp-Musselwhite Canada Ltd. and Engineering of Lakehead University, owner of a Ph.D. degree in Mechanical Engineering from McMaster University, Hamilton, Ontario, Canada and postdoctoral researcher (2004 to 2005) at McMaster University.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"62122",title:"Dr.",name:"Basel",middleName:"I.",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail",profilePictureURL:"https://mts.intechopen.com/storage/users/62122/images/system/62122.jpg",biography:"Dr. B. Ismail is currently an Associate Professor and Chairman of the Department of Mechanical Engineering, Lakehead University, Thunder Bay, Ontario, Canada. In 2004, Prof. Ismail earned his Ph.D. degree in Mechanical Engineering from McMaster University, Hamilton, Ontario, Canada. From 2004 to 2005, he worked as a Postdoctoral researcher at McMaster University. His specialty is in engineering heat transfer, engineering thermodynamics, and energy conversion and storage engineering. Dr. Ismail’s research activities are theoretical and applied in nature. Currently, his research areas of interest are focused on green engineering technologies related to alternative and renewable energy systems for power generation, heating and cooling. Dr. Ismail was the leading research investigator in a collaborative project (2007-2010) with Goldcorp-Musselwhite Canada Ltd. and Engineering of Lakehead University. This innovative project was state-of-the-art in geothermal heat pump technology applied in Northwestern Ontario, Canada. Dr. Ismail has published many technical reports and articles related to his research areas in reputable International Journals and Conferences. During his research activities, Dr. Ismail has supervised and trained many graduate students and senior undergraduate students in Mechanical Engineering with projects and theses related to innovative renewable and alternative energy engineering, and technologies.",institutionString:"Lakehead University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Lakehead University",institutionURL:null,country:{name:"Canada"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"184402",firstName:"Romina",lastName:"Rovan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/184402/images/4747_n.jpg",email:"romina.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5084",title:"Advances in Geothermal Energy",subtitle:null,isOpenForSubmission:!1,hash:"d4647f1f9dae170acf327283d55abbf1",slug:"advances-in-geothermal-energy",bookSignature:"Basel I. Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/5084.jpg",editedByType:"Edited by",editors:[{id:"62122",title:"Dr.",name:"Basel",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5602",title:"Renewable Hydropower Technologies",subtitle:null,isOpenForSubmission:!1,hash:"15ea891d96b6c9f2d3f28d5a21c09203",slug:"renewable-hydropower-technologies",bookSignature:"Basel I. Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/5602.jpg",editedByType:"Edited by",editors:[{id:"62122",title:"Dr.",name:"Basel",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7504",title:"Renewable Geothermal Energy Explorations",subtitle:null,isOpenForSubmission:!1,hash:"d47d551b0fcf11a4328c8a38f2499844",slug:"renewable-geothermal-energy-explorations",bookSignature:"Basel I. Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/7504.jpg",editedByType:"Edited by",editors:[{id:"62122",title:"Dr.",name:"Basel",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"62945",title:"Dendritic Cell Subsets, Maturation and Function",doi:"10.5772/intechopen.79926",slug:"dendritic-cell-subsets-maturation-and-function",body:'\nDendritic cells (DCs) are rare, heterogeneous bone marrow (BM)-derived professional APCs that are disseminated ubiquitously in blood, lymphoid, and peripheral tissues, particularly at the gates of antigen entry. They originate from hematopoietic stem cells throughout specialized progenitor subsets and are essential in innate and adaptive immune capacity and in managing the balance between immunity and tolerance [1]. Under normal conditions, DCs are present throughout the body at low numbers representing ≈1–2% of white blood cells [2]. In the steady state, DCs reside in immature or semi-mature states in the periphery where they regularly take up and process self-Ags and maintain self-tolerance [3]. Immuno-stimulatory DCs have undergone maturation after recognition of exogenous and endogenous danger signals by Toll-like receptors (TLRs). These signals include pathogen-associated molecular patterns in the form of microbial products, such as products of damaged or dying cells [4].
\nDCs are matured by CD40 ligation and by pro-inflammatory cytokines that can produce DC maturation ex vivo, detached of CD40 ligation. Maturation is correlated with up-regulation of cell surface MHC gene products, co-stimulatory molecules (CD40, CD80, and CD86 and CD83), and relevant chemokine receptors that improve the ability of DCs to migrate to secondary lymphoid tissue, where they present Ag to Ag-specific T cells and induce T-cell activation and generation. Consequently, activated T cells drive DCs toward terminal maturation [5].
\nDCs produce from Hematopoietic stem cells (HSCs) in the BM and are originated from both myeloid and lymphoid progenitors, as illustrated in Figure 1. Both subsets, conventional DC (cDC) and plasmacytoid DC subsets (pDC), are derived from a common CD34+ progenitor [6]. The hematopoietic growth factor fms-like tyrosine kinase 3 ligand (Flt3L) represents a fundamental function in steady-state DC expansion; this is evidenced by the preponderance of DC precursors being Flt3+ (CD135+) and culture with Flt3L appearing in cDC and pDC subsets. GM-CSF is also crucial in DC hematopoiesis, as it provides DCs from monocytes and immature progenitors in the deficiency of intact Flt3L signaling and provides DCs under inflammatory conditions [1].
\nDendritic cell hematopoiesis.
DCs are divided into two principal cell populations, conventional DCs (cDCs) and plasmacytoid DCs (pDCs). In the steady state, cDCs present typical DC characteristics (e.g., cytoplasmic dendrites) and function (e.g., Ag uptake, processing, and exhibition). cDCs can be divided into migratory DCs, such as skin epidermal Langerhans cells (LCs), dermal DCs, which present Ag in lymph nodes following its uptake in peripheral tissue and resident DCs, which take up and process Ag within a lymphoid organ, such as splenic or thymic DCs [1]. Thymic DCs remove self-Ag-specific thymocytes and stimulate the expansion of immunoregulatory T cells (Treg). Thymic conventional DCs (cDC) readily received MHC class I and II from thymic epithelial cells (TEC), but plasmacytoid DCs (pDC) were less effective. Intercellular MHC shift was donor cell-specific; thymic DC readily gained MHC from TEC plus thymic or splenic DC, whereas thymic or splenic B cells were smaller donors [7].
\nPlasmacytoid DCs (pDCs) are a subset of precursor DCs which possess an immature phenotype in the steady-state and plasma cell morphology (e.g., lack dendrites). On activation, pDCs strictly match cDCs in form and function. Monocyte-derived DCs or inflammatory DCs are similar to cDCs in form and function and related to in vitro GM-CSF-generated DCs [3].
\nUnder steady-state conditions, human pDCs display lower levels of MHC and costimulatory molecules compared with conventional myeloid DCs (mDCs). pDCs are less efficient in Ag processing and loading ability to excite T cells than mDCs. After their activation via TLR, pDCs produce high levels of type 1 interferon (IFN) and incite CD4+ and CD8+ T cells. This is in opposition to activated mDCs, which secrete IL-12 and enhance T-helper type-1 (Th1) cell differentiation and CD8+ cytotoxic T lymphocyte (CTL) responses [8]. Plasmacytoid DCs (pDCs) are a subset of precursor DCs which have an immature phenotype in the steady-state and plasma cell morphology (e.g., lack dendrites). On activation, pDCs closely resemble cDCs in form and function. Monocyte-derived DCs or inflammatory DCs are similar to cDCs in form and function and correlate with in vitro GM-CSF-generated DCs [3].
\nUnder steady-state conditions, human pDCs display lower levels of MHC and costimulatory molecules compared with conventional myeloid DCs (mDCs). pDCs are less efficient in Ag processing and loading ability to stimulate T cells than mDCs. After their activation via TLR, pDCs secrete high levels of type 1 interferon (IFN) and stimulate CD4+ and CD8+ T cells. This is in contradiction to activated mDCs, which produce IL-12 and increase T-helper type-1 (Th1) cell differentiation and CD8+ cytotoxic T lymphocyte (CTL) responses [8].
\npDCs have intrinsic tolerogenic features; in the steady position, human thymic pDCs provoke Treg, whereas liver and airway pDCs control oral and mucosal tolerance, respectively. pDCs have also been involved in the management of disease activity in experimental models of autoimmunity and revealed to exert disease-suppressing capacity [9].
\nIt may be important after transplantation regarding donor engraftment (tolerance), which has clinical features that overlap with autoimmune disease. Epidermal LCs may be immunostimulatory or tolerogenic, depending on their state of maturity, inciting immunogen, and the cytokine environment [10].
\nDCs are characterized by high versatility, flexibility and multiple functional activities combined with their dual capacity to induce self-tolerance or trigger immune responses. The principal function of DCs is to scare the immune system toward heterogeneous and dangerous invasions and to defend self-tissues from destruction to keep self-tolerance [11]. The coordination of these supposedly multiple functions may open up new roads for stimulating or controlling immune responses and to promote defensive or therapeutic remedies for controlling inflammatory and autoimmune diseases or cancer, as well as designing unusual varieties of vaccines based on DCs biology [12].
\nA basic biological role of DCs relies on the constant sampling of their tissue environment, reacting to stress, risk signals and transducing the gathered molecular information to other cell classes of the immune system [13]. DCs are implemented with characteristics sets of pattern-recognition receptors, such as TLRs (Toll-like receptors), NLRs (NOD-like receptors), and RLRs (RIG-I-like receptors), which are specialized to recognize exogenous pathogen-associated molecular patterns (PAMPs) and endogenous danger signals, damage-associated molecular patterns (DAMPs) [14].
\nThe response of DCs to MAMPs and DAMPs is achieved by the activation of pausing DCs by microbial components, noxious or toxic abuses. Activation of DCs sequences in the expression of costimulatory molecules, the generation of cytokines, chemokines and additional soluble mediators. Both are resting and stimulated DCs can switch their tissue position and transfer through peripheral and lymphoid tissues. Activation of DCs by MAMPs and DAMPS appears in the prompt, chemokine-mediated translocation of DCs to peripheral lymph nodes where they have the possibility to communicate naive T-lymphocytes to induct adaptive immune responses [15]. This process assures the transformation of molecular message obtained in the periphery toward other cell varieties of both innate and adaptive immunity such as neutrophils, granulocytes, NKs, killer T cells, T- and B-lymphocytes [16].
\nThe response of DCs can be divided into the perception phase followed by phases of signal transduction pathways supported by adaptors and interfered by post-translational changes such as phosphorylation and ubiquitination reactions leading to the activation of transcription factors, and gene transcription followed by the secretions of soluble factors [17].
\nIn this cascade, few receptor complexes ligated by their specific ligands allow substantial signal amplification. It has also been shown that the generation of fully active and stable DCs requires the parallel activation of multiple signaling pathways [18]. Signs through a particular receptor may produce partial stimulation only, which may be regressed by signals which promote the differentiation of regulative DCs. Signals produced by Toll-like receptors (TLRs), cytokines, chemokines, eicosanoids, free oxygen radicals, and several inflammatory mediators provide a signaling matrix and determine the phenotype and functional activities of DCs [19].
\nFive types of PRRs have been recognized: (i) transmembrane TLRs, which are combined to cell surface or endosomal membranes of different cell types, (ii) membrane C-type lectin receptors (CLRs) identified by the appearance of a carbohydrate-binding domain, (iii) three further classes of intracellular sensors, which are confined to the cytosol of multiple cell types and include NOD-like receptors (NLRs), RIG-like receptors (RLRs), and the latterly expressed AIM2-like receptors (ALRs), all with nucleotide recognition capacities [20].
\nUpon binding of their specific ligands, TLRs activate the NF-κB/AP-1 and the interferon-regulatory factor 7/3 (IRF-7/3) pathways to coordinate innate and initiate adaptive immunity [21].
\nRLRs are crucial viral sensors in the cytoplasm and contain retinoic acid-inducible gene-I (RIG-I), melanoma differentiation-associated gene-5 (MDA5), and laboratory of genetics and physiology 2 (LGP2), sequentially. RIG-I and MDA5 have been recognized as receptors toward double-stranded RNA [22].
\nNucleotide-binding oligomerization domain (NOD)-like receptors mediate primarily antibacterial immunity through the activation of NF-κB or inflammasomes, whereas RIG-I-like helicases have a fundamental role in the induction of antiviral immune responses [23] (Figure 2).
\nTLR and RLR signaling.
The collaboration of PRRs and the resulting secretion of type I interferons and inflammatory cytokines can be extremely potent toward pathogens. Following infections, innate defense mechanisms are stimulated immediately and support the expansion of adaptive immune responses. DCs perform a crucial role in the orchestration of humoral and cellular immunity and the initiation and sustaining of long-term immunological memory [24]. Interaction of microbes with the innate immune system involves the induction of multiple PRR pathways triggered simultaneously by various PAMPs of the whole pathogen [25].
\nThe possible interaction of two or more signaling pathways in biochemical systems can either be potentiating or hampering. For example, in moDCs and monocyte-derived Langerhans cells (moLCs), co-ligation of TLR3/TLR7 and TLR3/Dectin-1 lead to increased Th1/Th17 responses, in contrast to TLR3 and Langerin ligation, which had an opposite effect [26]. Similarly, another group found that RLR/TLR co-activation caused decreased Th1/Th17 responses upon bacterial infection. This cross-interference of RLR and TLR signaling might have significant implications in the design of future vaccination strategies, and the possible spectrum may be expanded to other non-immune cell types as well [27].
\nIn vaccine construction, a primary purpose is to produce efficient, specific T-cell responses. This is accomplished by targeting antigen to cell surface molecules on DCs that efficiently direct the antigen into endocytic chambers for packing onto MHC molecules and stimulation of T-cell responses. Toll-like receptors (TLRs) expressed on DCs employed as intentions for antigen presentation for cancer and different disorders [28].
\nDepending on phenotypic and functional requirements, DCs may develop immunogenic or tolerogenic responses. Although several Toll-like receptors, such as TLR3, TLR4, TLR5, TLR7, and TLR8, provoke immune activation, others can quiet immune responses by tolerance initiation in DCs. Under certain conditions, TLR2 activation can lead to IL-10 production or Treg cell activation via repression of TLR7/TLR9 signaling and prevention of IFN-α and -β secretion from pDCs [29].
\nDespite the immunogenic capability of DCs in mounting immune responses, which has been assigned to the only target in the immune system, they have also been ascribed several roles in tolerance installation and silencing of immune responses. DCs express a fundamental role in the induction of several subsets of T cells, such as Th1, Th2, Th17 and regulatory T cells (Tregs). In the steady state, DCs play a critical role in the induction of tolerance against self-antigens. Complete ablation of DCs breaks self-tolerance of CD4+ T cells and results in fatal autoimmunity [30] (Figure 3).
\nDendritic cells in the choice between immunity and tolerance.
Although the general state of knowledge considers cDCs as inducers of immunity, while pDCs serve as the inducer of tolerance [31], their functions in the immune response to a diverse range of antigens are more complex.
\npDCs are believed to be the critical effector cells in the early antiviral innate immune response by providing large quantities of type I interferons upon viral infection. pDCs increase immune responses by cross-talking with cDCs by the secretion of IFN-α, through performing a crucial role in active stimulation of adaptive immunity as well. In the interest to IFN-α secretion, it has been described that pDCs also express CD40L, which stimulates cDCs to secrete IL-12 [32] (Figure 4).
\nCooperative action of different DC subsets to tackle both innate and adaptive immunity.
An association between the appearance and deficiency of multiple surface markers has been employed to identify DC subsets. These include the presence of significant expression of class II MHC antigens and the insufficiency of several progenitors’ markers such as CD3 (T cell marker), CD14 (monocyte marker), CD19 (B cell marker), CD56 (natural killer cell marker) and CD66b (granulocyte marker). DCs further express a modification of adhesion molecules including CD11a (LFA-1), CD11c, CD50 (ICAM-2), CD54 (ICAM-1), CD58 (LFA-3), and CD102 (ICAM-3). DCs also represent costimulatory molecules including CD80 (B7.1), and CD86 (B7.2), which are upregulated through DC activation. CD86 designates to be a marker of primary DC maturation, while CD80 only increases in mature DC. Two additional markers of mature DC in humans are CD83 and CMRF-44. CD83 also is exposed by stimulated B cells, and CMRF-44 will also be exposed by macrophages and monocytes [33].
\nThe identification of DCs by surface phenotyping may be accomplished by merely demonstrating a high level of MHC class II or a costimulatory molecule such as CD80 and the absence of lineage markers [34].
\nThe conventional or myeloid DCs (cDCs) are characterized by a high exhibit of the phenotype LIN-CD11c and low HLA-DR + CD123, while plasmacytoid DCs (pDCs), derived from a lymphoid precursor, manifest low expression of the phenotype LIN-CD11c and high HLA-DR + CD123 [35]. The maturation state of DCs can categorize DCs. Immature DCs are located mainly in peripheral tissues, where they capture antigens, initiate their maturation and migrate to lymphoid organs, where they become mature to present antigen and stimulate naive T lymphocytes [36].
\nBuckley et al. [37] revealed that macrophages and DCs are positioned in the same splenic anatomical sections and yield monocyte-macrophage markers, proposing that both cell classes are relevant and probably originated from a familiar precursor. Vandenabeele et al. [38] illustrated in human thymus main classes of DCs, showing the low of the phenotype CD11b-CD11 + CD45RO, great CD83, CD86, HLA-DR and fewer DCs with high CD11b + CD11c, CD45RO population. They also recorded the appearance of pDCs with great CD123 in the thymic cortex. The role of DCs is tightly correlated to their anatomical location. In secondary lymphoid tissues, mature DCs present antigens, caught in the periphery, to naive T cells and produce immunity, while in the thymus DCs present self-antigens, produce negative determination of autoreactive T cells and improve the positive selection of regulatory T cells [39].
\nDCs can be generated via culturing CD34+ cells in the presence of several cytokines. One procedure which has been developed includes depleting the CD34+ cells of differentiated ancestors and next culture the cells in the presence of GM-CSF and IL-4 ± TNF-α. CD34+ cells can be collected from bone marrow or cord blood. Further procedure is to generate DC-like cells by culturing CD14+ monocyte-enriched peripheral blood mononuclear cells [40]. In the presence of GM-CSF and IL-4, these cultures lead to large numbers of DC like cells. These monocyte-derived DCs require additional conditioning in vitro with either TNF-α or lipopolysaccharides added to culture media to enable adequately function as a DC accomplished of preparing antigen-specific T cell responses [41].
\nBecause of the established role of DCs in maintaining the balance between immunity and tolerance, tolerogenic (tol)DCs might be novel therapeutic targets to prevent undesirable (auto-)immune responses. The idea behind tolDC therapy is that it is a highly targeted, antigen-specific treatment that only affects the auto-reactive inflammatory response [42]. A tolerogenic state in DCs can be induced using several pharmacological agents, such as cyclosporine A, rapamycin, dexamethasone, vitamin A, vitamin D or other cytokines and growth factors [43].
\nIsolation and culture of leukocytes (buffy coats) obtained from heparinized human peripheral blood provide a valuable model for studies on DCs biology and may help uncover new means to manipulate DCs differentiation and function in therapeutic settings [44]. The buffy coat layer from human peripheral blood was cultured in the presence of GM-CSF and IL-4 to generate dendritic cell populations which were allowed to differentiate into mature DCs by TNF-α within 9 days [45] (Figure 5).
\nMorphological changes during generation and differentiation of DCs (40×), (a) adherent monocytes on day 0, (b) transforming monocytes on day 3, (c) generated DCs on day 7 and (d) mature DCs on day 9. The culture of buffy coat layer from human peripheral blood leads to generation of dendritic cell populations that in response to granulocyte-macrophage colony-stimulating factor (GM-CSF) plus interleukin-4 (IL-4) in 7 days and differentiate into mature DCs in response to maturation stimulus tumor necrosis factor-α (TNF-α). Morphological changes were examined under inverted microscope Carl Zeiss® using ZEN 2012® software, Germany.
The in vitro effect of dexamethasone (DEX) on generation and differentiation of DCs through microscopic and phenotypic analysis was studied. The addition of DEX to the culture on day 0 prevented the differentiation of DCs to be tolerogenic. On the other hand, addition of DEX to the culture on day 7 or 8, either preceded or followed by addition of TNF-α, resulted in significant increase of CD83 expressing DCs; the greatest percent of tolerogenic DCs was obtained in the culture media to which DEX (1 μM) was added on day 8 and TNF-α (10 ng mLG1) was added on day 7. Although the addition of TNF-α to the culture 1 day prior to addition of DEX enhanced the differentiation of DCs (high percent of CD83 expressing DCs), TNF-α did not affect the morphological changes of DCs which became mature even in the absence of TNF-α. Opposite studies were reported that TNF-α is a maturation factor essential for the appearance of the morphological characteristics of DCs [46].
\nCD83 is an important marker for activated/mature DCs. It was recorded that both stimulated DCs and B cells secrete soluble form of CD83 and so low concentration of soluble CD83 are present in normal human sera [47]. The CD83 seems to possess regulatory roles for immune response. The soluble form of CD83 can repress immune responses, while being strongly up-regulated during DCs maturation and activation [48].
\nFujimoto and Tedder (2006) revealed that CD83 has immunosuppressive roles such as the inhibition of surface molecules, such as MHC-II, reducing the dendritic cell-mediated T cell stimulation. The allogeneic stimulatory capacity of the DCs and immunosuppressant mechanisms of CD83 were illustrated significantly inhibiting anti-donor antibody responses [49]. The study of Ge et al. [50] reported that CD83 is capable of down-modulating expression of various DC [50]. The elevated CD83 expression suggests the possibility of DEX-generated cells to initiate a Th2-biased response where CD83 is able to inhibit DCs mediated T cells stimulation [51]. Furthermore, dexamethasone treated DCs possessed the capacity to convert CD4+ T cells into IL-10-secreting Treg potently suppressing the proliferation of responder T cells [52].
\nThe CD83 is a surface marker that distinguishes immature and mature human dendritic cell populations. The CD83 is type 1 glycoprotein belonging to the immunoglobulin superfamily and has been known to be one of the best markers. There is an outstanding deal of attention in how DCs might be developed as a manner of immunotherapy. DCs are being examined as adjuvants for vaccines or as a principal therapy to aggravate immunity against cancer. That DCs may show valuable in cancer has been most often studied in animal models. DCs burdened with tumor lysates, tumor antigen-derived peptides, MHC class I modified peptides, or whole protein have all been shown to yield anti-cancer immune responses and actions, including in some cases the ability to begin broad relapse of existing tumor [53] (Figure 6).
\nGeneration of immunogenic cancer cells fused to activated dendritic cells.
In conclusion, there is a pronounced hope to study these strategies and use tumor-antigen bearing DCs as a vaccine in humans. Human clinical investigations are continuing in numerous institutions to use DCs to initiate immunity to antigens against breast cancer, lung cancer, melanoma, prostate and renal cell cancers [54]. The study of immune-mediated mechanisms could be of value in avoiding and managing main immune disorders [45].
\nThe use of wireline and wireless communications is very common in a wide range of devices. The increased complexity of the core transmission systems is reflected in a set of advancements in data communications and specifically in Optical Communication [1]. The elastic Optical Network (EON) concept is an optical network architecture able to support the increased need for elasticity in allocating optical network resources. Flexible bandwidth allocation is performed to adapt to different transmission techniques, such as Orthogonal Frequency Division Multiplexing (OFDM), Nyquist WDM (NWDM), transponder types (BVT1, S-BVT), modulation formats (QPSK, QAM), and coding rates. This flexibility makes resource allocation much more challenging. Dynamic control, enables on-demand reconfiguration, virtualization, and reconfiguring the optical setup poses challenges in terms of network re-optimization, spectrum fragmentation, amplifier power settings, which requires strict integration between the control elements (controllers and orchestrators) and optical monitors working at the hardware level. EON is just an example of the recent expansion of the optical communication area. Hence, more information is presented in the rest of this chapter.
The chapter is organized as follows: Section 2 provides an overview of recent OC advancements in terms of capacity, speed, and error handling. Section 3 provides a brief overview of the security issues and corresponding solutions in the physical layer of OC. In Section 4 we describe new concepts and technologies in implementing advanced OC capabilities. Section 5 presents two examples of constraint situations where OC provides the best solution in terms of capacity, throughput, and security strength. In Section 6 we describe the use of OC for ultra-distance and ultra-secure free-space key exchange mechanisms and in Section 7 we describe in detail a unique use of OC for secured key exchange. Section 8 provides the summary and conclusions of this chapter.
In this section, we outline recent advancements in optical communications concerning capacity, speed, and security. Recent demands for high-speed optical transmission technology triggered the development of advanced modulation formats, such as dual polarization-1024-level-quadrature amplitude modulation, ultra-fast digital-to-analog converters at the transmitter terminal, and nonlinearity intolerance. A new technology called super-channel [2], provides a feasible solution that offers very high-speed, long-distance, spectral-efficient, and large data capacity links with reliable performance. It involves the use of multiple sub-carriers for data transmission over a single-channel using dual polarization-quadrature phase shift keying (DP-QPSK). These unique modulation formats have a capacity of more than 100 Gbps over a single channel. However, they suffer from multipath fading, nonlinearity loss, and phase distortion loss, and limitation of maximum supported links. These limitations are mitigated using coherent detection and digital signal processing (DSP) at the receiver terminal for enhanced performance. In Nyquist-WDM super-channel transmission, the spectral-efficiency of the link is improved by transmitting independent wavelength channels using lower-order advanced modulation formats with channel spacing equal to the baud rate of the system. Experiments demonstrated the transmission of 1 Tbps data over a 7200 km transoceanic link with 2.86 bits/s/Hz spectral efficiency using a digital Nyquist-WDM super-channel.
The transmission of 1.232 Tbps using DP-QPSK signals with a noise-suppressed Nyquist-WDM super-channel transmission over 2100 km single-mode fiber link with DSP at the receiver terminal for enhanced performance. The performance of dual polarized-binary phase shift keying, DP-QPSK, dual polarized-8-level-quadrature amplitude modulation, and DP-16-QAM based Nyquist-WDM super-channel transmission over pure silica-core fiber with Raman amplification. In high-speed optical fiber links, the main causes of signal deterioration are Kerr nonlinearities, polarization mode dispersion, chromatic dispersion, and optical fiber cable attenuation which limit the maximum link capacity. In contrast, in FSO links, signal attenuation offered by the external environmental condition is the main factor that determines the link performance.
Optical communication is sensitive to various environmental interference and noise, leading to transmission errors [3]. The main reasons are wind misalignment, beam divergence due to propagation, weather tempering losses due to fog, smoke, and snow, atmospheric turbulence, and background noise due to artificial lights, and in FSO the optical beam position may be missed due to misalignment between the transmitter and receiver structures.
To mitigate these effects new modulation schemes have developed such as on–off keying (OOK), forward error correction (FEC), pulse width modulation (PWM), pulse position modulation (PPM), multiple PPM, digital pulse interval modulation (DPIM), binary phase-shift keying (BPSK), concatenated RS codes, short hops systems leading to performance improvements, turbo codes, low-density parity-check codes, and spatial diversity.
Practical testing and simulations [4] of PPM show that the probability of error is minimum for the maximum likelihood estimate of the stationary beam position, and for the dynamically varying beam position, a filter with a large number of particles provides a close-to-optimal probability of error performance.
The continuous evolution of optical networks in terms of heterogeneity, flexibility, applications, data flow volume, bandwidth, and reliable performance, raises security issues which are unique to OC. Optical networks are vulnerable to several types of security breaches aiming to disrupt the service or gain unauthorized access to the system. The evolution of programmable and flexible node architecture software has resulted in new security vulnerabilities that need to be considered during network design and operation. This section provides an overview of potential security issues in current and future optical networks and identifies possible attacks that utilize the associated vulnerabilities. It includes privacy, authentication, integrity, denial of service, and confidentiality. An attacker can snoop by tapping into the optical fiber or by interference radiated from an adjacent spectrum of confidential signals and go undetected for quite some time. An overview of common security issues and attack methods targeting optical networks is presented below.
Eavesdropping is a major security attack in optical networks. Eavesdropping entails breaching the encryption key by removing the fiber coating and bending the fiber to cause the signal to leak out of the core into a photodetector that captures the information. To detect such intrusions, the network uses an intrusion detection alarm, triggered by insertion loss changes in fiber connections. Such detections require an active monitoring system that runs across the network.
Monitoring ports allow access to the channel, which is available in different network components, such as amplifiers, wavelength selective switches (WSSs), or multiplexers. The optical signal is mirrored by an optical splitter to allow the connection of monitoring devices without traffic interruption. By obtaining onsite access, an attacker can use these ports to capture the carried traffic. To protect the carried data from eavesdropping, encryption is implemented in the optical transponders. Encryption keys transferred over the network are isolated from the data load.
Insertion of harmful signals: service denial and quality degradation occur when harmful signals are inserted into the network, such as excessive power optical signals that exceed the signal level used in the network.
Jamming signals: Networks comprising Optical Add-Drop Multiplexers (OADMs) with variable optical silencers, high-power signals can damage the co-propagating user signals inside its optical fibers, amplifiers, and switches. Jamming signals can also affect normal signals by increasing the in-band crosstalk. Signals traversing common physical links with the jamming signal can suffer from out-of-band effects. Lead to out-of-band crosstalk by leaking to adjacent channels and increasing non-linear effects and gain competition, and instead of legitimate signals the stronger jamming signals are amplified, making the situation much worse.
Alien wavelength attacks: Alien wavelength [5] refers to the ability to share the same fiber-optic-line by multiple telecom-service-providers. It is possible by “dividing” the communication line into separated “colors” or wavelengths such that each “color” is considered as a separate communication channel. Each provider uses one “color” and can transmit its data concurrently with others using the same physical fiber line. This technology expands the utilization of the fiber line. The possibility of Alien Wave insertion without any impact to existing services has a big advantage to the telecom industry.
Alien wavelengths are implemented in the network to allow network upgrades and efficient transmission of high-capacity connections over the existing infrastructure. When there is no alien wavelength support, each connection is terminated and regenerated by a node at the edge of the domain, while alien wavelengths can pass through multiple domains without optical conversions, which create vulnerability in network security, especially due to the lack of control on the performance of the alien channels. In such systems, alien wavelengths can be subjugated to jamming risking the network. To overcome this security hazard, a control system is required to block any unauthorized messaging.
Mixed line rate (MLR) networks enable the coexistence of different modulation formats in the same infrastructure. A severe security vulnerability of MLR networks stems from nonlinear effects between high-speed and low-speed signals of adjacent channels. Amplitude-modulated on–off-keyed (OOK) 10G channels deteriorate the quality of the higher bitrate, due to cross-phase modulation (XPM). This entails an extra penalty for the higher speed channels, depending on the modulation format and channel launch power. A service degradation attack in MLR networks is caused by inserting an OOK channel nearby a high-speed channel, without allowing sufficient guard band. Thus, the attacking signal could significantly deteriorate the legitimate signals.
Software-defined networking (SDN) manages the interface between the hardware and the SDN applications, including traffic engineering and data collection applications. Malicious attackers who can gain access to the data potentially may hijack the network.
Architecture on Demand (AoD) uses an optical backplane to support interconnections among optical modules enabling the use of these modules, which are required for switching and processing. New modules are added to a node by plugging them into the optical backplane. This modularity exposes the network to security vulnerabilities.
Network Coding (NC) proposed to cope with physical OC security issues:
Network Coding (NC) is used in optical networks for protection against link failures, to improve spectral efficiency in multicasting, and protect confidential connections against eavesdropping attacks. The confidential signals are XOR-ed with other signals transmitted via different nodes in their path through the network. The signals are combined either at the source node or at intermediate nodes. To implement NC for confidential connections, a set of constraints for the NC and RSA are incorporated in the corresponding algorithms. The combination of signals through NC increases the security of confidential connections since an eavesdropper will receive a combination of signals from different connections, complicating the decryption of the confidential signal. Experiments show that NC provides comprehensive security envelop for confidential connections with minimum spectrum usage.
Using NC, connection data is merged with other connection data, generating a network-code that changes based on the connection’s transmitted data. Encrypted Transmission (ET) relates to all links of the selected path transmitting an encrypted version of their data with at least one XOR operation with other established connections. To satisfy the ET constraint, an established connection has at least two common nodes with a confidential connection. The Frequency Slot Matching (FSM), which is a subset of the frequency slots utilized by the confidential connection, must have the same id and frequency as the slots of the rest of the established connections used in the XOR operations. It is assumed that the signals used for the XOR operation are on the same frequency. Thus, an established connection with at least two common nodes with the confidential connection can either provide security for the entire path of the confidential demand (source and destination as common nodes), or it can provide security for part of the connection (source/intermediate node to intermediate/destination node). For a confidential connection to be considered secure, the selected established connections must collectively secure all links of that connection. The confidential connection is considered as secure even if only part of the signal is XOR-ed since the eavesdropper would still have to access all connections used in the encryption process to decrypt the transmitted data.
The demand for very large capacity and high-speed channels for heavy data transmission is growing increasing the demand for quick solutions. As a result, we are witness to a wide variety of proposed solutions using optical fiber and free-space wireless channels. Several solutions that have successfully coped with the transmission demand and the security challenges are presented below.
In this section, we outline recent advances in the use of Orbital Angular Momentum (OAM) to increase transmission capacity and speed [6]. It employs the orthogonality among OAM beams to enable efficient demultiplexing. Free-space communication links are widely used for data transfer applications, using optical communication or radiofrequency (RF) waves. The capacity of a communication system is increased by multiplexing and simultaneously transmitting multiple independent data streams. This is done by using the properties of the electromagnetic (EM) wave, such as time, wavelength, and polarization. Multiple data streams can be efficiently multiplexed and demultiplexed. To cope with the increasing demand for very high bandwidth, new forms of data channel multiplexing are used. One approach utilizes orthogonal spatially overlapping and copropagating spatial modes, where multiple channels, each identified by a different spatial mode, are multiplexed at the transmitter and separated at the receiver. The transmission capacity and spectral efficiency are increased by a factor equal to the number of transmitted spatial modes. Each data symbol is sequentially transmitted by a different OAM beam, within each time slot. A group of orthogonal OAM beams is used to spatially multiplex multiple data streams. Combining OAM multiplexing with polarization we can get very high xTpbs speed communications such as four OAM beams on each of the two orthogonal polarizations are combined resulting in multiplexed eight OAM modes. The received OAM beams are then de-multiplexed at the receiver and sequentially detected to recover the data streams. All eight OAM data channels are located on the same wavelength, providing spectral benefits. Then the experiment was expanded by adding the wavelength dimension, simultaneously using OAM, polarization, and wavelength for multiplexing. A total of 1008 data channels were carried by 12 OAM values, two polarizations, and 42 wavelengths. Each channel was encoded with 50GBd quadrature phase-shift keying, providing an aggregate capacity of 100.8 Tbps. An additional experiment described the multiplexing process where multiple independent data channels, each on a different OAM beam, are spatially combined, and the resulting multiplexed OAM beams are then transmitted via a single aperture towards the receiver. After coaxially propagating through the same free-space channel, the arriving beams are collected at the receiver by another slot, and subsequently demultiplexed and detected for data recovery.
Chaotic systems provide physical layer security in secure OC [7]. This began with a data rate of 2.4 Gbps for a distance of 120 km, and later was improved to 10-Gbps for a 100-km optical fiber link and even further to 30-Gbps secure transmission over 100 km using a chaotic carrier with a bandwidth of 10 GHz. The transmission capacity of chaos-based secure communication is limited by the bandwidth of the chaotic carrier. The wider the bandwidth of the chaotic carrier the higher the transmission rate it supports. To enhance the bandwidth of chaos, several methods have been proposed such as optical injection, mutual injection, fiber propagation, feedback with parallel-coupling ring resonators, heterodyning couplings, and self-phase-modulated feedback with microsphere resonator.
Following is a description of an enhanced wideband chaos generation scheme. To increase bandwidth, it is using an external-cavity semiconductor laser (ECSL) subject to optical-electronic hybrid feedback. The output is used to modulate the output of a continuous-wave laser by an electro-optical phase modulator. The constant-amplitude self-phase-modulated light is then inserted back into the ECSL. Experiments indicate that the effective bandwidth of the generated chaos is increased to over 20 GHz, and the spectrum flatness and the complexity of the generated chaos. The experiments demonstrated that high-quality synchronization between two wideband chaos signals with an effective bandwidth greater than 20 GHz is achieved, showing the valuable potential in chaos-based secure communication, such as enhancing the transmission capacity and improving the security. The experiments prove that the significant bandwidth and the complexity enhancement of chaos are achieved in the proposed chaos generation scheme. Results indicate that the proposed scheme can easily obtain a wideband chaotic signal with an effective bandwidth larger than 20 GHz.
The huge volume of data transmitted over optical networks requires the integration of a data protection mechanism adapted to the specific attributes of optical fiber communications. Y-00 [8] quantum-noise randomized stream cipher is built to prevent attackers from capturing the transmitted encrypted text. It merges the mathematical encryption of multi-level signaling and the physical randomness, thereby providing high performance and robust security. It uses extremely high-order modulation together with quantum and additive noises. The achieved secrecy level is high as the probability of the attackers guessing the encrypted data is very low. Experiments show that the Y-00 cipher transceiver on a 1000-km transmission range, with a data rate of 1.5-Gbps and using analytical high secrecy, performed successfully.
Y-00 cipher is a symmetric key encryption method combined with multi-level signaling of physical randomness to hide the transmitted ciphertext. A receiver recovers the original signal of plaintext from the cipher signal masked with noise using a shared key and mathematical signal processing. The light from a laser diode enables the cipher signal transmission to the receiver. The Quantum/ASE randomized noise cipher is dominant when the Y-00 cipher communication system is used in a long-haul link using optical amplifiers. Hence, masking the signal with an additive quantum noise is more robust against attackers and is a practical advantage compared to classical cryptography utilizing just mathematical encryption. The probability that an attacker will guess the correct encrypted text is considerably low under such assumptions.
The availability of 5G communications and the Internet of Things (IoT) exponentially increase the number of devices connected to the internet, generating a huge volume of transmitted data [9]. The main features of the 5G communication services include high capacity, low latency, high security, vast device connectivity, low energy consumption, and high quality of experience (QoE). OWC seems to satisfy the derived requirements by its unique attributes: wide spectrum, high-data-rate, low latency, high security, low cost, and low energy consumption. OWC contains visible light communication (VLC), light fidelity (LiFi), optical camera communication (OCC), and free-space optics (FSO). Its technologies may play the role of sensing, monitoring, and resource sharing in comprehensive device connectivity of IoT, and meet 5G and IoT high-security requirements. Hence, OWC is the right fit for 5GB and IoT.
The VLC uses light-emitting diodes (LEDs) or laser diodes (LDs) as transmitters and photodetectors (PDs) as receivers. Only visible light (VL) is used as the communication medium in the VLC. LiFi provides high-speed wireless connectivity along with illumination and uses LEDs or defuse LDs as transmitters and PDs as receivers. It uses VL for the forward path and infrared (IR) as the communication medium for the return path. The OCC uses a LED array as a transmitter and a camera as a receiver. FSO uses LD and PD as the transmitter and the receiver, respectively. It is normally operated using Appl. Sci. IR as the communication means but can also use VL and UV. There are several OWC technologies. The differences between these technologies are very specific. The unique characteristic of VLC is the use of visible light as a communication media. A LiFi system supports seamless mobility, bidirectional communication, and point-to-multipoint, as well as multipoint-to-point communications. The OCC system uses a camera or image sensor as a receiver among all the OWC technologies. The OCC uses an LED array or light as a transmitter and a camera or image sensor as a receiver. OCC normally uses VL or IR as the communication medium.
The transmission rate of the 5G mobile communication systems is expected to reach an average of 1 Gbps at a 10 Gbps peak rate. An external network hacker device cannot pick up the internal optical signal. The information can be exchanged in a highly secure manner. In summary, the OWC systems offer a higher level of security for the 5G/6G and IoT networks.
The incorporation and spread out of OC technologies are dictated by the benefits and impact it is expected to achieve. Hence, most of the efforts are towards the long-distance, high capacity, high bandwidth, and high data rate. However, some efforts are put towards local solutions and small-scale implementations. The following are two examples of such implementations.
Data-center networks have much shorter transmission distances but much higher transmitted data than common network topologies [10]. Therefore, traditional telecommunication components are redundant and costly. Consequently, VCSELs, active optical cables, and parallel fiber transmission are used by data centers. With the significant increase in traffic inside the data center, the required bandwidth is increasing dramatically. Broadband optical modulators such as electro-absorption modulators (EAMs) and Mach–Zehndermodulators (MZMs) in combination with colored distributed feedback laser arrays are combined to build and Ultra-high-bandwidth and low energy links based on WDM technology. To further increase to Tbps bandwidth, a large number of lasers are used.
Another improvement is gained by using Optical switches which are completely different from electronic packet switches but when combined they complement each other. Hence, optical switches and conventional electronic switches are combined in the same architecture generating improved performance. Optical switches are used to adapt the network to specific traffic patterns, such as pairs of nodes exchanging high traffic levels that can have more bandwidth when using optical networks. However, the reconfiguration of an optical switch requires phase-locking and modifications of the routing tables. To overcome this issue and improve performance, optical reconfigurations are fully automated. Improving the utilization of the resources by reconfiguration of disaggregated elements enables the reduction of components and energy consumption by putting underused components in a sleep mode. It is possible to mitigate network congestion resulting from intense communications between servers or rack pairs by overprovisioning the network.
Automotive: Until a few years ago, only minor improvements have been implemented in the data networks used in vehicles. The introduction of autonomous vehicles and smart cities has increased the demand for automation of vehicles and inter-vehicle communication [11]. This involves the reliable transmission of data with high rates in real-time and secured from interfering signals and security attacks. Existing and vehicle-bus-communications are insufficient, and a replacement of the vehicle communication infrastructure is inevitable. Optical data communication has been implemented as it transmits high amounts of data, can multiplex several signals into a single fiber, and is robust against external effects, with little attenuation. This confirms that optical busses are very useful for automotive applications. The solution is based on a central processing unit CPU connected to the optical hybrid data bus, which comprises several fibers. To improve reliability, safety, and security, separate fibers are used for different applications and functionalities such as multimedia and sensors. The CPU forwards messages to the different fibers. In automotive applications assigning priorities to messages is required for accurate functionality. Therefore, SCTP is used as it supports ordering messages and it provides redundant paths to increase reliability. SCTP uses heartbeats to check if a connection is still valid. If a node fails, the connection will find another path, if available. The SCTP protocol also has additional security features and adaptability, which will support new vehicle communication requirements in the future.
UAV: [12] In recent years the availability and common use of drones have increased, especially the grouping of drones to perform a common task, which requires ongoing precise synchronization of the engaged drones in real-time. This is achieved by a platform of high speed and high capacity communication channels that virtually connect these drones. A technology that benefits from both, optical data rates and the mobility of drones is required. Free-space optical (FSO) communication supports the optical wireless signal transmission from the infra-red band spectrum in outdoor environments. This combined with the mobility-based outdoor communication system is the correct direction that should be considered. Optical Wireless Communications (OWC) embedded in Unmanned Aerial Vehicles (UAV) is the compound technology used.
QKD uses light-paths via optical fibers to share encryption keys between two remote parties [13]. The key-updating process and the key adaptive routing have dedicated paths protected from link failures. Sharing quantum keys between satellites requires communication channels among microsatellites capable of transmitting keys within constellations of trusted satellites. Using optical links with 10-yard pointing accuracy allows QKD of an inter-satellite distance of 400 km. In entanglement based QKD, pairs of entangled photons are generated and sent to two separate parties, where each is sent one photon from each pair. The two parties independently make measurements on a preselected property of their polarization state. Once many such pairs have been distributed and measured, the two parties perform statistical tests and ask if the received photons were entangled. Provided the entanglement measured exceeds a predefined threshold and their hardware is free of vulnerabilities, they can be sure that the security of the protocol. Then they use their private knowledge of the quantum states as a common source of entropy to derive symmetric keying material for encryption schemes.
A Quantum Module (QM) is a polarization-entangled photon-pair source and single-photon detectors that can operate as a qubit transmitter or receiver. The transmitting QM locally measures and timestamps one of the photons in each pair and sends the other photon of each pair to the receiver, where it is detected and timestamped by a receiving QM. These timestamps and measurement outcomes are used to synchronize the detections and subsequently to create a symmetric encryption key. The QM contains a laser diode that initiates spontaneous-parametric-down-conversion in beta-barium-borate crystals generating pairs of photons with specific wavelengths. The photons in each pair are entangled such that their polarization states are undefined until a measurement is made, at which point they will have correlated polarizations. In the transmitter QM, “signal” photons are transmitted, and the “idler” photons are detected within the QM by silicon avalanche photodiodes. Both satellites have a QM and both can send and receive entangled signal photons. The two satellites use a beacon laser and a beacon detector to monitor the other satellite’s beacon and control the relative pointing between them. A beam pointing correction signal is provided to a two-axis fast steering mirror, which compensates for high-frequency beam misalignment between the two spacecraft and optimizes the optical link for the transmission of entangled photons. The optical bench provides thermal and mechanical isolations and it is attached to the spacecraft structure. The reaction wheels have been placed, so that their spin axes are as near as possible to the center of gravity to minimize jitter of the pointing stability of the telescope.
Key distribution is a growing concern for symmetric cryptography. Most of the current key-distribution mechanisms assume the use of the Internet and WAN public networks, which are exposed to security risks. Robust cryptographic mechanisms, such as Diffie-Helman (DH) and RSA algorithms are used along with Certificate Authority (CA), which generates certificates and distributes them simultaneously to the sender and receiver via alternate channels. These existing solutions are limited. DH and RSA are at threat since the introduction of Quantum computing and PKI/CA are effective in relatively local cases. Hence, new ideas are required. This section introduces a new approach for a safe key transmission using high-speed optical camera communication (OCC), Visible light communication (VLC) is a type of wireless communication. The data is transmitted through modulating the visible light spectrum. The key transfer is done using VLC with blinking LED lights in a specific sequence and frequency, following a coding system. The receiver decodes the received blinks to a bit string using a corresponding image processing application. Optical communication ensures secure transfer without the ability to quote it. Experiment results show that this method is feasible, robust, efficient, and implementable.
In symmetric cryptography, the same key is used for encrypting and decrypting the exchanged data. Sharing the same key requires a key transmission between the sender and the receiver. To avoid key discovery while transmitted, several protocols have been proposed, such as the Diffie-Hellman protocol and Asymmetric Cryptography such as RSA. The evolvement of Quantum Computing makes redundant any known cryptography. Using a reliable third-party able to generate certificates and encryption keys and simultaneously distributes it to the two parties who intend to exchange data. It is using alternate distributing channels different from the channel the two parties use for transferring the data. However, due to the growing globalization and growing distance among users and systems, and the introduction of cloud computing, this approach is complicated to manage and so became irrelevant over time. A secured key transition uses an optical communication platform.
Optical communication is simple, low cost and secured signal transmission. One of the technics is based on under-sampled differential phase shift on–off keying that can encode binary data. Arai et al. [14] define a new framing approach for high-speed optical signals transmission for road-to-vehicle communication. Luo et al. [15] use dual LED to triple the data rate transmission. Roberts [16] proposes encoding/decoding, using camera-subsampling synchronized with the camera frame rate. Leu et al. [17] introduce a new modulation scheme where the phase difference between two consecutive samples represents one-bit data.
The optical communication technique called Optical Camera Communications (OCC) is described in [18]. OCC allows the use of huge unregulated bandwidth in the optical domain spectrally located between microwave and X-ray wavelengths, as shown in Figure 1. In such a system, an image sensor and a camera are used to demodulate the transmitted signal which has been modulated according to on–off keying (OOK). Currently available devices are smart devices equipped with LED flash and cameras. This provides a pragmatic form of an Optical Wireless Communication (OWC) where LED projectors to provide the Visible Light spectrum (VLC) component and a camera as the receiving module, building a transceiver pair.
Electromagnetic spectrum range.
The OCC system uses commercial LED lighting sources that include, LED-based infrastructure lighting, LED flashes, LED tags, displays, laser diodes, image patterns, some current generation projectors. The major driving forces of OCC deployment are the widespread availability of visible light (VL) LEDs and the possibility of utilizing the camera in the smart devices to decode LED modulated data. Therefore, these LED infrastructures can be used for data transmissions using on–off keying (OOK).
A typical OCC system is shown in Figure 2, where a camera is used as a receiver, which consists of an imaging lens, image sensor, and readout circuit.
A schematic view of the OCC system.
Optical communication comprises a LED, Infra-Red, or Lazier projector and a high-speed camera embedded in a mobile phone. The projector projects a beam of light to the direction of the camera. The camera has an embedded CMOS image sensor capturing the projected beam. The beam on/off projection duration and frequency is according to an encoding pattern agreed with the receiving camera. The receiving camera records in a video the projection session and saves it in its internal storage. The recorded projection is decoded into bits, where for an “on” beam the corresponding decoding bit is set to “1”, otherwise it is decoded as “0”. The video in the camera can be further transmitted to the target receiver through a public network connection. The beam may be visible (normal lighting) or invisible (Infra-Red and Lazier). The illumination duration and frequency are so fast that a human eye is not able to follow and quote it. When the CMOS image sensor is operated, images are captured. These images are the source for extracting data by decoding it. Figure 3 depicts the three phases of the received signal processing. The left image is the originally recorded beam impact, the image to the right is the original image after it was crystallized, and the third image to the right describes the final stage of the process. The third image is the input for decoding the beam stream into a bit string.
Three phases of fringe signal processing.
Figure 4 depicts the encoding process, starting from processing the image and translating it into a sequence of a signal chart (the top chart). The bottom chart depicts the final bit sequence.
Optical camera communication architecture.
The objective of this work is to securely exchange keys utilizing optical communication, where the LED transmits, and the camera collects it. The idea is to modulate the information in a way that cannot be decoded only by processing the received signals. Figure 5 illustrates the basic idea of the optical-based communication approach. The source computer generates an encrypted key. The key is translated to optical signals, which are projected by the LED projector to the targeted camera, embedded into a mobile device. The camera captures the optical signals and records it as a video movie. For authentication and accuracy, the video movie is signed by a standard electronic signature and the signed video is encrypted and transmitted via VPN to the target mobile device, which then projects the original signed-video to the target computer. The target computer decrypts the received video signals into a sequence of bits and thus the encrypted key reaches the target computer. We may consider moving the mobile device itself towards the target computer avoiding the key transmission.
High level secured key transmission system.
Figure 6 outlines the 6 stage process. In stage 1, the key is generated and transformed into a LED code in stage 2, and then in stage 3, it is projected to the receiver camera. In stage 4, the received video is transferred to the target computer and in stage 5, the images are decoded into the encryption key. In step 6, the original key is discovered and forwarded for further use.
Optical-based key transmission stages.
Figure 7 depicts the messaging protocol between the mobile and the computer.
Provisioning message flow protocol.
This way of transmitting optical signals instead of a bit-string, adds to the key exchange security level comparing to other solutions. However, the transmitted content is much more than a bit string. The practical impact is reasonable based on a moderate frequency of key changes and the availability of high capacity and high-speed communication.
For the experiment we used a USB connected blinking LED device controlled by an Arduino code and an embedded Linkit ONE hardware. The encoding/decoding is simple, “1” bit is set when the LED blinks, and “0” otherwise. The key is transmitted to the USB device, the Serial.exe program receives it and converts it into an ASCII code. Before starting the key transmission, a unique bit string is sent. A developed application accepts the sequence of the blinking LED, processes it to produce a bit sequence, and converted into an ASCII code. A lit LED is processed by the OpenCV image processing such that each non-white pixel turns to 0 while white remains 255. Then, all pixels are summed up. If the sum is 0, the LED remains “off”, and the output is a “0” bit. Otherwise, the output is a “1” bit.
We ran the entire cycle. The key was generated in a secured environment, then transmitted a bit string to the USB blinking device. The mobile phone camera recorded the video of the blinking sequence. The mobile phone signed, encrypted, and transmitted the blinking LED video, the receiver mobile device in the target location, accepted the blinking video, and transformed it into a bit string. We experimented with the “a b c d” key transferred between a host with an optical USB device and a smartphone with a camera. Figure 8 depicts the output of the “abcd” transmission where lines 3, 6, 9, 12, and 15 represent the output “abcd” respectively.
Example of the key transmission.
Figure 9 depicts the key transmission example “abcd” used in the experiment. The four images have been taken during the live key transmission stages.
Captured images of the live key transmission stages.
In image a, the starting special bit string has been accepted by the mobile device connected to the sending computer. Image b shows the sender computer screenshot during the key transmission to its associated mobile device. Image c is the mobile-screen accepting the “abcd” key, and image d depict the acceptance of the transmitted key.
In this section, we introduced a complete cycle of secured key exchange using a form of optical communication. We described the hardware components and software of the conducted experiment. This demonstrates the applicability of an Optical Communication (OC) assisted method for secured key distribution [18].
In this chapter, we outlined advancements in the Optical Communications subject matter. We focused on OC main improvements, transmission channel, and method, bandwidth, speed, and security. We concluded the chapter with detailed unique use of OC for key transmission required for symmetric cryptography. OC technology is still at its development and growth stage. We expect it to continue its fast growth and be implemented in many more domains, transforming our lives to be much more convenient, safe, and automated.
Comment: Due to the comprehensiveness and wide-ranging scope, this chapter outlines just part of the advancements in OC leaving issues such as underwater OC [19] and Machine learning for OC [1] out of scope.
Book - collection of Works distributed in a book format, whose selection, coordination, preparation, and arrangement has been performed and published by IntechOpen, and in which the Work is included in its entirety in an unmodified form along with one or more other contributions, each constituting separate and independent sections, but together assembled into a collective whole.
",metaTitle:"Attribution Policy",metaDescription:"DEFINITION OF TERMS",metaKeywords:null,canonicalURL:"/page/attribution-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\\n\\nAttribution – appropriate credit for the used Work or book.
\\n\\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\\n\\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\\n\\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\\n\\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\\n\\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\\n\\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\\n\\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\\n\\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\\n\\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\\n\\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\\n\\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\\n\\nAll these rules apply to BOTH online and offline use.
\\n\\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\\n\\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Work - a book Chapter (as well as Conference Papers), including any and all content, graphics, images and/or other materials forming part of, or accompanying, the Chapter/Conference Paper.
\n\nAttribution – appropriate credit for the used Work or book.
\n\nCreative Commons licenses – enable licensors to retain copyright while allowing others to use their Works in an appropriate way.
\n\nWith the purpose of protecting Authors' copyright and the transparent reuse of OA (Open Access) content, IntechOpen has developed Rules of Attribution of Works licensed under Creative Commons licenses.
\n\nIn case you reuse or republish any of the Works licensed under CC licenses, you must abide by the guidelines outlined below:
\n\nAll rights to Books and other compilations published on the IntechOpen platform and in print are reserved by IntechOpen. The Copyright to Books and other compilations is subject to a separate Copyright from any that exists in the included Works.
\n\nA Book in its entirety or a significant part of a Book cannot be translated freely without specific written consent by the publisher. Further information can be obtained at permissions@intechopen.com.
\n\nIn instances where permission is obtained from the publisher for reusing or republishing the Book, or significant parts of the Book, all of the following conditions apply:
\n\nEvery single Work that is used has to be attributed in the way described. If you are unsure about proper attribution, please write to permissions@intechopen.com.
\n\nIndividual Works originally published in IntechOpen books are licensed under Creative Commons licenses and can be freely used under terms of the respective CC license, if properly attributed. In order to properly attribute the Work you must respect all the conditions outlined below:
\n\nEvery single Work that is used has to be attributed in the way as described. If you are unsure about proper attribution, please contact Us at permissions@intechopen.com.
\n\nIn the event that you use more than one of IntechOpen's Works published in one or more books (but not a significant part of the book that is under separate Copyright), each of these have to be properly attributed in the way described.
\n\nIntechOpen does not have any claims on newly created copyrighted Works, but the Works originally published by IntechOpen must be properly attributed.
\n\nAll these rules apply to BOTH online and offline use.
\n\nParts of the Rules of Attribution are based on Work Attributing Creative Commons Materials published by the Australian Research Council Centre of Excellence for Creative Industries and Innovation, in partnership with Creative Commons Australia, which can be found at creativecommons.org.au licensed under Creative Commons Attribution 2.5 Australia license, and Best practices for attribution published by Creative Commons, which can be found at wiki.creativecommons.org under the Creative Commons Attribution 4.0 license.
\n\nAll the above rules are subject to change, IntechOpen reserves the right to take appropriate action if any of the conditions outlined above are not met.
\n\nPolicy last updated: 2016-06-09
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117096},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:63},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Health",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-health",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1259",title:"Industrial Robot",slug:"psychology-artificial-intelligence-industrial-robot",parent:{title:"Artificial Intelligence",slug:"physical-sciences-engineering-and-technology-robotics-artificial-intelligence"},numberOfBooks:1,numberOfAuthorsAndEditors:1,numberOfWosCitations:47,numberOfCrossrefCitations:39,numberOfDimensionsCitations:60,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"psychology-artificial-intelligence-industrial-robot",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3687",title:"Advances in Service Robotics",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"advances_in_service_robotics",bookSignature:"Ho Seok Ahn",coverURL:"https://cdn.intechopen.com/books/images_new/3687.jpg",editedByType:"Edited by",editors:[{id:"3106",title:"Dr.",name:"Ho Seok",middleName:null,surname:"Ahn",slug:"ho-seok-ahn",fullName:"Ho Seok Ahn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"5424",doi:"10.5772/5950",title:"Urbano, an Interactive Mobile Tour-Guide Robot",slug:"urbano__an_interactive_mobile_tour-guide_robot",totalDownloads:3195,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Diego Rodriguez-Losada, Fernando Matia, Ramon Galan, Miguel Hernando, Juan Manuel Montero and Juan Manuel Lucas",authors:null},{id:"5425",doi:"10.5772/5948",title:"Deployment of Wireless Sensor Network Using Mobile Robots to Construct an Intelligent Environment in a Multi-Robot Sensor Network",slug:"deployment_of_wireless_sensor_network_using_mobile_robots_to_construct_an_intelligent_environment_in",totalDownloads:3589,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Tsuyoshi Suzuki, Kuniaki Kawabata, Yasushi Hada and Yoshito Tobe",authors:null},{id:"5422",doi:"10.5772/5951",title:"Development of Common Platform Technology for Next-Generation Robots",slug:"development_of_common_platform_technology_for_next-generation_robots",totalDownloads:2605,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Tomomasa Sato, Nobuto Matsuhira and Eimei Oyama",authors:null}],mostDownloadedChaptersLast30Days:[{id:"5425",title:"Deployment of Wireless Sensor Network Using Mobile Robots to Construct an Intelligent Environment in a Multi-Robot Sensor Network",slug:"deployment_of_wireless_sensor_network_using_mobile_robots_to_construct_an_intelligent_environment_in",totalDownloads:3589,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Tsuyoshi Suzuki, Kuniaki Kawabata, Yasushi Hada and Yoshito Tobe",authors:null},{id:"5431",title:"Intelligent Space for Human Centered Robotics",slug:"intelligent_space_for_human_centered_robotics",totalDownloads:2634,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Kazuyuki Morioka, Joo-Ho Lee and Hideki Hashimoto",authors:null},{id:"5414",title:"Intelligent Unmanned Store Service Robot "Part Timer"",slug:"intelligent_unmanned_store_service_robot_part_timer",totalDownloads:3249,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Ho Seok Ahn, In-Kyu Sa, Young Min Baek and Jin Young Choi",authors:null},{id:"5426",title:"UML-Based Service Robot Software Development: A Case Study",slug:"uml-based_service_robot_software_development__a_case_study",totalDownloads:3249,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Minseong Kim, Suntae Kim, Sooyong Park, Mun-Taek Choi, Munsang Kim and Hassan Gomaa",authors:null},{id:"5424",title:"Urbano, an Interactive Mobile Tour-Guide Robot",slug:"urbano__an_interactive_mobile_tour-guide_robot",totalDownloads:3195,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Diego Rodriguez-Losada, Fernando Matia, Ramon Galan, Miguel Hernando, Juan Manuel Montero and Juan Manuel Lucas",authors:null},{id:"5421",title:"Modularity in Service Robotics",slug:"modularity_in_service_robotics",totalDownloads:2428,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Sami Ylonen",authors:null},{id:"5415",title:"The Development of an Autonomous Library Assistant Service Robot",slug:"the_development_of_an_autonomous_library_assistant_service_robot",totalDownloads:3383,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Julie Behan",authors:null},{id:"5418",title:"Development of Intelligent Service Robotic System Based on Robot Technology Middleware",slug:"development_of_intelligent_service_robotic_system_based_on_robot_technology_middleware",totalDownloads:2517,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Songmin Jia, Yoshiro Hada, Takayuki Ohnishi, Harunori Gakuhari and Kunikatsu Takase",authors:null},{id:"5423",title:"An ITER Relevant Robot for Remote Handling: On the Road to Operation on Tore Supra",slug:"an_iter_relevant_robot_for_remote_handling__on_the_road_to_operation_on_tore_supra",totalDownloads:3008,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Keller Delphine, Friconneau Jean-Pierre and Perrot Yann",authors:null},{id:"5420",title:"Localization and Mapping for Service Robots: Bearing-Only SLAM with an Omnicam",slug:"localization_and_mapping_for_service_robots__bearing-only_slam_with_an_omnicam",totalDownloads:2374,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"advances_in_service_robotics",title:"Advances in Service Robotics",fullTitle:"Advances in Service Robotics"},signatures:"Christian Schlegel and Siegfried Hochdorfer",authors:null}],onlineFirstChaptersFilter:{topicSlug:"psychology-artificial-intelligence-industrial-robot",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/102793/jennie-rizopatron",hash:"",query:{},params:{id:"102793",slug:"jennie-rizopatron"},fullPath:"/profiles/102793/jennie-rizopatron",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()