C2H2 zinc finger proteins related with plant stress.
\r\n\t
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"abf31c9873fc2d88b8ee05c6adb53a29",bookSignature:"Dr. David Bienvenido-Huertas",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10104.jpg",keywords:"Sustainable Construction, Innovative Construction, Construction Processes, Sustainable Design, Design Optimization, Maintenance Minimization, Energy Efficiency, Energy Conservation Measures, Thermal Comfort, Socio-cultural Integration, Urban Environment, Visual Impact",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 26th 2020",dateEndSecondStepPublish:"September 23rd 2020",dateEndThirdStepPublish:"November 22nd 2020",dateEndFourthStepPublish:"February 10th 2021",dateEndFifthStepPublish:"April 11th 2021",remainingDaysToSecondStep:"5 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"David Bienvenido-Huertas has completed his Ph.D. as an Architect, currently, he is a researcher of the Building Construction II Department at Universidad de Sevilla, Spain",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"320815",title:"Dr.",name:"David",middleName:null,surname:"Bienvenido-Huertas",slug:"david-bienvenido-huertas",fullName:"David Bienvenido-Huertas",profilePictureURL:"https://mts.intechopen.com/storage/users/320815/images/system/320815.jpg",biography:"PhD Architect. Researcher of the Building Construction II Department at Universidad de Sevilla, Spain. Active member of the Research Group TEP970: Technological Innovation, 3d Modeling Systems and Energy Diagnosis in Heritage and Building at the Universidad de Sevilla. His area of expertise covers climate change in the building sector, adaptive thermal comfort, heat transfer, fuel poverty, energy conservation measures, and design of nearly zero energy buildings. He is an author of more than 25 manuscripts and frequently a reviewer of international peer-reviewed journals.",institutionString:"University of Seville",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"19873",title:"Role of Natural Antioxidants in Gastritis",doi:"10.5772/24336",slug:"role-of-natural-antioxidants-in-gastritis",body:'Gastritis represents an inflammation of the stomach lining in response to injury. It is either acute or chronic, and has many underlying causes which can be diagnosed and classified histologically where endoscopic appearances such as redness are often misleading. Gastritis is seldom if ever symptomatic, but usually have important clinical sequelae, principally duodenal and gastric ulceration, gastric adenocarcinoma and primary gastric lymphoma (El-Zimaity, 2007; Thirumurthi & Lanza 2010). The three most important causes of gastritis are categorized as Helicobacter pylori infection, prolonged use of aspirin, non-steroidal anti inflammatory drugs (NSAIDs) and autoimmunity (Dohil & Hassall, 2011).
Acute gastritis, is usually a diffuse and intense mucosal alteration, mostly is characterized by a sudden onset of symptoms and rapid resolution after the underlying aetiological mechanisms or agents (either chemical or physical) have been corrected. The patients can present with an acute gastroenteritis-like illness, or other symptoms which may be overshadowed by their general physical condition. Broadly speaking, acute gastritis arises when there is an acute imbalance between mucosal injury and repair mechanisms (Fig. 1) and can be organized in three groups based on the aetiologies: (i) infectious gastritis (ii) secondary to caustic injury; and (iii) ulcero-haemorrhagic (Srivastava & Lauwers, 2007).
Acute gastritis. Erosion and complete effacement of the epithelium is observed. The residual glands, on the left, display regenerative changes with basophilic epithelium.
No correlation may be exist between microscopic inflammation (histologic gastritis) and the presence of gastric symptoms (eg, abdominal pain, nausea, vomiting). In fact, most patients with histologic evidence of acute gastritis (inflammation) are asymptomatic. The diagnosis is usually obtained during endoscopy performed for other reasons. Acute gastritis may present with an array of symptoms, the most common being nondescript epigastric discomfort. Other symptoms include nausea, vomiting, loss of appetite, belching, and bloating. Fever, chills may be present. The diagnosis of acute gastritis may be clarified from the patient\'s history and can be confirmed histologically by biopsy specimens taken at endoscopy. Epidemiologic studies reflect the widespread incidence of gastritis (Ford et al., 2010).
Acute gastritis has a number of causes, including certain drugs; alcohol; bile; ischemia; bacterial, viral, and fungal infections; acute stress (shock); radiation; allergy food poisoning; and direct trauma. The common mechanism of injury is an imbalance between the aggressive and the defensive factors that maintain the integrity of the gastric mucosal lining (mucosa) (Kasper et al., 2006).
Acute erosive gastritis can result from the exposure to a variety of agents or factors, referred to as reactive gastritis. These agents/factors include nonsteroidal anti-inflammatory medications (NSAIDs), alcohol, cocaine, stress, radiation, bile reflux, and ischemia. The gastric mucosa exhibits hemorrhages, erosions, and ulcers. NSAIDs, such as aspirin, ibuprofen, and naproxen, are the most common agents associated with acute erosive gastritis, mostly attributed to therapeutic. Major injury is attributed to reduced prostaglandin synthesis. Prostaglandins are chemicals responsible for maintaining mechanisms that result in the protection of the mucosa from the injurious effects of the gastric acid.
Bacterial infection is another cause of acute gastritis. The corkscrew-shaped bacterium called H. pylori is the most common cause of gastritis. Complications result from a chronic infection rather than from an acute infection. The prevalence of H. pylori in otherwise healthy individuals varies depending on age, socioeconomic class, country of origin where the infection is usually acquired in childhood. In the Western world, the number of people infected with H pylori increases with age. Evidence of H. pylori infection can be found in 20% of individuals younger than 40 years and in 50% of individuals older than 60 years. Transmission is likely from person to person through the oral-fecal route or through the ingestion of contaminated water or food. This is why the prevalence is higher in lower socioeconomic classes and in developing countries. H pylori is associated with 60% of gastric ulcers and 80% of duodenalulcers (Andersen, 2007).
H. pylori gastritis typically starts as an acute gastritis in the antrum, causing intense inflammation, and over time, it may extend to involve the entire gastric mucosa resulting in chronic gastritis. The acute gastritis encountered with H. pylori is usually asymptomatic. The bacterium imbeds itself in the mucous layer, a protective layer that coats the gastric mucosa. It protects itself from the acidity of the stomach through the production of large amounts of urease, an enzyme that catalyzes the breakdown of urea to the alkaline ammonia and carbon dioxide. The alkaline ammonia neutralizes the gastric acid in the immediate vicinity of the bacterium conferring protection. H. pylori also has flagella that enable it to move and help it to penetrate the mucous layer so that it comes into contact with gastric epithelial cells. It also has several adhesions that help it to adhere to these cells. It produces inflammation by activating a number of toxins and enzymes that activate IL-8, which eventually attracts polymorphs and monocytes that cause acute gastritis (Fig. 2) (Das & Paul, 2007).
Proposed interaction between host, environment and H. pylori infection in the development of gastric and doudenal ulcers.
Antigen-presenting cells activate lymphocytes and other mononuclear cells that lead to chronic superficial gastritis. The infection is established within a few weeks after the primary exposure to H. pylori. The intense inflammation can result in the loss of gastric glands responsible for the production of acid and mostly referred to as atrophic gastritis consequently production of gastric acid drops. The virulence genotype of the microbe is an important determinant for the severity of the gastritis of intestinal metaplasia, transformation of gastric epithelium which can lead to gastric cancer (Soltermann et al., 2007).
Reactive gastropathy is the second most common diagnosis made on gastric biopsy specimens after H. pylori gastritis. It is now considered to represent a nonspecific response to a variety of other gastric irritants (Owen, 2003).
Tuberculosis is a rare cause of gastritis and generally associated with generally associated pulmonary or disseminated disease (Marshall, 1993) where secondary syphilis of the stomach is a rare cause of gastritis (Chen et al., 2006).
Phlegmonous gastritis is an uncommon form of gastritis (rare) caused by numerous bacterial agents, including streptococci, staphylococci, Proteus species, Clostridium species, and Escherichia coli. Phlegmonous gastritis usually occurs in individuals who are debilitated. It is associated with a recent large intake of alcohol, a concomitant upper respiratory tract infection, and AIDS. Phlegmonous means a diffuse spreading inflammation of or within connective tissue. In the stomach, it implies infection of the deeper layers of the stomach (submucosa and muscularis).
Viral infections can cause gastritis either localized or diffuse and cytomegalovirus (CMV) is a common viral cause. It is usually encountered in individuals who are immunocompromised, including those with cancer, immunosuppression, transplants, AIDS with a localized or diffuse involvement to the gastric tissuesand AIDS (Bonnet et al., 2001; Sepulveda & Patil, 2008).
Fungal infections that cause gastritis include Candida albicans and histoplasmosis. Gastric phycomycosis is another rare lethal fungal infection. The common predisposing factor is immunosuppression. C albicans rarely involves the gastric mucosa and when isolated in the stomach, the most common locations tend to be within a gastric ulcer or an erosion bed and it is generally of little consequence. Disseminated histoplasmosis can involve the stomach. The usual presenting clinical feature is bleeding from gastric ulcers or erosions on giant gastric folds (Lauwers et al., 2010).
Parasitic infections are rare causes of gastritis. Anisakidosis is caused by a nematode that embeds itself in the gastric mucosa along the greater curvature. Anisakidosis is acquired by eating contaminated sushi and other types of contaminated raw fish. It often causes severe abdominal pain that subsides within a few days and this nematode infection is associated with gastric fold swelling, erosions, and ulcers (Kim et al., 2003).
Ulcero-hemorrhagic gastritis is most commonly seen in patients who are critically ill. and it is believed to be secondary to ischemia related to hypotension and shock or to the release of vaso constrictive substances, but the etiology is often unknown. The gastric mucosa reveals multiple petechiae, mostly in the fundus and body, or exhibits a diffusely hemorrhagic pattern. The gross pathology may resemble that of NSAID- or other ingestion-induced gastritis, except that the location of injury is different. This form of gastritis can be life-threatening if the patient experiences hemorrhaging and may even require emergency gastrectomy (Chamberlain, 1993).
Microscopic evidence of acute gastritis can be seen in patients with Crohn disease, though clinical manifestations are rare (occurring in only about 2-7% of patients with Crohn disease). Focally enhancing gastritis is now recognized as a condition seen in both Crohn disease and ulcerative colitis (Xin & Greenson, 2004).
Eosinophilic gastritis is often seen in conjunction with eosinophilic gastroenteritis but can be associated with various disorders, including food allergies (eg, cow milk, soy protein), collagen vascular diseases, parasitic infections, gastric cancer, lymphoma, Crohn disease, vasculitis, drug allergies, and H. pylori infections. An eosinophilic infiltrate is seen involving the gastric wall or epithelium (Rothenberg, 2004).
Chronic gastritis is caused mainly by Helicobacter pylori infection, and nonatrophic gastritis progresses to atrophic gastritis for a long period. It is characterized by the presence of chronic inflammatory infiltrate in the gastric mucosa (Fig. 4). H. pylori-atrophic gastritis is strongly associated with gastric cancers, and its diagnosis is very important. It is diagnosed histologically according to the Updated Sydney System, which is now widely used in the world (Satoh et al., 2008). Chronic gastritis can be classified on the base of the underlying etiologic agent (eg, Helicobacter pylori, bile reflux, nonsteroidal anti-inflammatory drugs [NSAIDs], autoimmunity, allergic response) and the histopathologic pattern, which may suggest the etiologic agent and clinical course (eg, H pylori –associated multifocal atrophic gastritis). Other classifications are based on the endoscopic appearance of the gastric mucosa (eg, varioliform gastritis) (Rugge & Genta, 2005).
The pathophysiology of chronic gastritis complicating a systemic disease, such as hepatic cirrhosis, uremia, or another infection, is described in the relevant disease (Boulton et al., 2011). The pathogenesis of the most common forms of gastritis is described as follows.
Chronic gatritis showing inflammation of mucosa linning
The host response to H. pylori and bacterial products is composed of T- and B-cell lymphocytes, denoting chronic gastritis, followed by infiltration of the lamina propria and gastric epithelium by polymorphonuclear leukocytes that eventually phagocytize the bacteria. The presence of polymorphonuclear leukocytes in the gastric mucosa is diagnostic of active gastritis. The interaction of H pylori with the surface mucosa results in the release of proinflammatory cytokine interleukin (IL)-8, which leads to recruitment of polymorphonuclear cells and may begin the entire inflammatory process. Gastric epithelial cells express class II molecules, which may increase the inflammatory response by presenting H pylori antigens, leading to further cytokine release and more inflammation. High levels of cytokines, particularly tumor necrosis factor-a (TNF-α) and multiple interleukins (eg, IL-6, IL-8, IL-10), are detected in the gastric mucosa of patients with H. pylori gastritis (Zalewska-Ziob et al., 2009).
In subsequent or joining such inflammation pattern is an increase in oxidative damage due to high level of ROS and increased apoptosis level in human gastric mucosa (Obst et al., 2000; Cover et al., 2003). Infection also leads to the expression of inducible nitric oxide synthase ( iNOS) in host macrophage and polymorphnuclear leukocytes (Tari et al., 2003). NO produced by these cells infiltrating the gastric mucosa may damage DNA. Interaction between NO and superoxide anion can form peroxinitrite, potent nitrating agent leading to apoptosis in a variety of cell types (Yue et al., 2001).
Prostaglandins especially PGE2 in the stomach play an important role in the maintenance of gastric mucosal integrity via several mechanism including regulation of gastric mucosal blood flow, kinetic of epithelial cells, synthesis of mucous, inhibition of gastric acid secretion and referring to its protective potential to gastric mucosa (Takeeda et al., 2004).
Patients having Hpylori infection demonstrate significant gastremia which is mostly attributed to intragastric increase of H pylori inducing corpus atrophy and G cells damage in the antrum part. It may be also depends on alkalinization in G cells environment caused by H pylori urease (Walsh et al., 1976; Shacter et al., 2002).
Serum pepsinogens (1&11) are higher also and specifically in patient category having IgM positive as compared to others (IgM-ve). This may be attributed to a polypeptides secreted by HP during earlier infection which stimulates chief cells directly and promote pepsinogen synthesis (Takeeda et al., 2004; Kist, 1991; Elseweidy et al., 2010a;2010b).
This led certain study (Kekki et al., 1991) to consider serum pepsinogen level-as a non endoscopic blood test in the diagnosis of atrophic gastritis, HP eradication and, a screening tool for high risk subjects having atrophic gastritis rather than a test for cancer itself.
Generally known Hp infection is associated with special local and systemic immune response. Early after 18 days of infection IgM response is detectable while IgG, IgA response occurs later after 60 days of infection at which time IgG titers decline. IgG, IgA serology is widely used as an accurate test for the diagnosis of Hp infection but those 2 immunoglobulins remains detectable after eradication of HP and d\'not demonstrate the infection status (acute, chronic or previously treated infection). Therefore the use of IgM test would allow for direct screening of the sample and serve as a diagnostic tool for establishing active or recent infection (Alem et al., 2002, Elseweidy et al 2010).
Accordingly many authors concluded that diagnosis of atrophic gastritis using test panel of seum gastrin 17, pepsinogen 1, HP antibodies were in good agreement with endoscopic and biopsy findings, considering such panel a non endoscopic diagnostic and screening tool (Vaananen et al., 2003).
Histological section of human fundic gland of patient suffering from gastritis with anti H. pylori IgM positive group showing (a) x100 irregular short fundic gland (FG), wide gastric pit (GP), multiple inflammatory cells (arrows) and blood vessels (double arrows) filling lamina propria (LP), (b) x400 showing irregular simple columnar epithelium (E), small pyknotic nuclei (arrows) of cells lyning fundic gland (FG) and multiple inflammatory cells (double arrows) filling lamina propria (LP) (Elseweidy et al., 2010 a).
Phenolic compounds, which include tannins and flavonoids, are apparently related to the interesting anti-inflammatory, woundhealing, antioxidant and antiulcerogenic properties to several medicinal plants (Moleiro et al., 2009).
Tannins are potent scavengers of peroxyl radicals and can also interact with mucus proteins, improving their cytoprotective effect by forming a protein lining over the gastrointestinal mucosa (Okuda, 2005; Moleiro et al., 2009).
Fresh fruit and vegetables have been reported to exert multiple biological effects on the mucosa of the gastrointestinal tract due to their antioxidant contents (La Vecchia & Tavani, 1998). In particular, a diet rich in vegetable is associated with a lower incidence of gastric tumours (Roukos et al., 2003).
Apart from their action as radical scavengers, phenolic compounds also have several indirect effects; they can inhibit lipoxygenase (Laughton et al., 1991), reduce platelet aggregation (Ferro-Luzzi & Ghiselli, 1993) and reduce the bioavailability of food carcinogens (Stavric, 1994). Certain flavonoids or compounds with flavonoid-like properties have antiulcer activity and can prevent gastric mucosal lining lesions brought about by a number of ulcerogens (Alarcon de la Lastra et al., 2002).
Certain polyphenolics can exert a preventive action on gastric injury in rats. Research topics her have focussed on the antiulcer activity of polyphenol from grape seed (Saito et al., 1998), cacao liquor (Osakabe et al., 1998), curcuminoids and Black seed oil (Elseweidy et al., 2008) or from Opuntia ficus indica (Galati et al., 2003). This activity was mainly explained by the strong antioxidant power and/or by some other factors, such as strong protein-binding capacity (Saito et al., 1998), modulation of leukocyte function (Osakabe et al., 1998), mucus production and restoration (Galati et al., 2003). It is believed that the antioxidant activity of polyphenols is an important factor to combat the potential of free radicals.
Morinda citrifolia L. (Rubiaceae), commonly known worldwide as “Noni” or so called in Thai as “Yor” is regularly consumed as food, additionally as medicinal plants used in primary health care. The decoction or infusion of roasted mature unripe fruits is recommended to relieve the symptoms of nausea and vomiting, if it is not too severe. According to the claimed efficacies in Thai traditional textbooks, the fruit is also used for treatment of various gastrointestinal disorders as a carminative, appetite stimulant, and reliever of gum diseases, heartburn or stomachache. Nevertheless, experimental studies demonstrated the preventive activity of an ethyl acetate extract of the fruit against acute gastric lesions induced by ethanol, aspirin and pyloric ligation; and acute duodenal ulcer induced by cysteamine in rats (Muralidharan & Srikanth, 2009). This extract was claimed to exhibit potent antioxidant properties and the active components are thought to be non-polar lignans (Kamiya et al., 2004). Previous studies of the effect of an aqueous fruit extract on gastrointestinal motility reported controversial results with increase (Chuthaputti et al., 1996) and delay (Pu et al., 2004) gastric emptying action.
It has been claimed also that aqueous extract have anti-inflammatory (McKoy et al., 2002) and antioxidative activities (Ikeda et al., 2009) in several in vitro test systems. Among a number of major components identified in the aqueous fruit juice, scopoletin, a coumarin derivative, as one of the main compounds that has known pharmacological activities especially an ability to control the serotonin level in the body (Levand and Larson, 1979), together with anti-inflammatory (Deng et al., 2007; Moon et al., 2007) and antioxidative activities (Ikeda et al., 2009). Scopoletin is also recommended as a marker constituent for the quality control and pharmacokinetic study of Noni products (Samoylenko et al., 2006).
This aqueous fruit extract as well as its biomarker: scopoletin, may be beneficial as a potential preventive and therapeutic agent for gastro-esophageal inflammation. This is mainly through its antisecretory and prokinetic activities including its ability to enhance the mucosal defensive mechanisms. Their efficacy was compared with a standard potent antisecretory proton pump inhibitor (lansoprazole) and referring to its stronger prokinetic efficacy in accelerating gastric emptying and intestinal transit in rats. These observed beneficial effects of AFE may be accounted for by one of its major active biological components scopoletin (Mahattanadul et al., 2011).
It is well known that flavonoids which have anti-inflammatory, antioxidant, antiallergic, hepatoprotective, antithrombotic, antiviral, and anticarcinogenic activities. As reported before the anti-inflammatory activities of flavonoids demonstrate their candidacy as therapeutic agents (Lewis, 1989). The flavonoids are typical phenolic compounds that act as potent metal chelators, antioxidants and free radical scavengers, which modulate intracellular signaling caused by upstream binding partners, such as, regulatory kinases and receptors (Williams et al., 2004a).
Such flavonoid is a natural flavone with various bioactivities and was found to be highly efficient to scavenge free radicals in cell-free systems (Rice-Evans et al., 1996), as compared to traditional antioxidants like vitamin C and E (Geetha et al., 2005). Gerritsen et al., (1995) found that flavonoids, especially an apigenin, blocked the cytokine-induced expressions of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin on human endothelial cells.
Regarding gastric secretion, the oral administration of QGC reduced gastric content significantly, dose-dependently, and prevented the development of reflux esophagitis. These results suggest that QGC has inhibitory effects on reflux esophagitis and gastritis in rats. Furthermore, in feline esophageal epithelial cells, QGC was found to have a protective effect on ethanol induced cell damage by inhibiting ROS generation, activation downstream of ERK (Min et al., 2009), and downstream signal transduction induced by interleukin-1 beta (Lee et al., 2009a).
Mangifera indica L. (Anacardiaceae) is a large tree that grows in tropical and subtropical regions. The Caribbean population used aqueous decoction from M. indica flowers for the treatment of gastritis and gastric ulcer. Phytochemical research from different parts of M. indica has demonstrated the presence of phenolics, triterpenes, flavonoids, phytosterols and polyphenols (Selles et al., 2002; Singh et al., 2004).
Garrido et al., (2004) reported the antinociceptive and anti-inflammatory activities of Vimang®, an aqueous extract obtained from M. indica. They attributed these activities to their inhibitory influence on the prostaglandin synthesis through arachidonic acid metabolism additionally production of reactive oxygen species. Tordera et al., (1994) demonstrated the influence of several anti-inflammatory flavonoids present in M. indica on mast cell degranulation and arachidonic acid release in rats.
M. indica is also described as an antioxidant agent (Sanchez et al., 2003). Oxygen-derived free radicals have been postulated to play an important role in the pathogenesis of acute gastric mucosal injuries such as those induced by stress (Hariganesh & Prathiba, 2000), ethanol (Salim, 1990) and NSAIDs (Pihan et al., 1987) and scavenging of these radicals can stimulate the healing process. This was illustrated before in experimental model induced by acetic acid and attributed mainly to their high content of flavonoids (Naito et al., 1995).
Several medicinal plants including species of the Brazilian Cerrado biome as well as plants of the “Caatinga” biome contain phenolic compounds like tannins and flavonoids that have anti-inflammatory, antioxidant and antiulcerogenic properties (Almeida et al., 2005; Moleiro et al., 2009).
Catechins (flavan-3-ols) such as catechin, epicatechin, epigallocatechin, epicatechin gallate and epigallocatechin gallate, are particularly abundant in the bark of the species of Mimosaceae family (Santos et al., 2002). These compounds has anti-inflammatory and anti cholesterolemic effects additionally protective agent against cytotoxicity owing to their antioxidant properties (Williams et al., 2004b).
Araujo et al. (2008) studied plants with elevated levels of phenolic compounds within specific groups of plants for further therapeutic applications. They concluded that Caatinga medicinal plants, which are known and/or used for their wound-healing or anti-inflammatory properties, tend to have high tannin contents. Moreover, these compounds appear markedly elevated in some species, such as Abarema cochliacarpos, that are intensively used by the local communities (Monteiro et al., 2006).
Abarema cochliacarpos is a plant native to Brazil, occurring mainly in the Atlantic Forest and in the Caatinga biomes. It is a tree species of the legume family Mimosaceae (International Union for Conservation of Nature "IUCN", 2009), which is popularly known as “barbatimao”. In this community, the decoction of the bark is utilized to wash external ulcers while its tincture, (bark immersed in white wine) “cachaca”, or ingested form is used against inflammation and gastric ulcers, among other uses (Silva et al., 2006). Other authors also observed similar applications in different traditional communities (Agra et al., 2008).
As to pharmacologic effects, the hydroalcoholic extract from the bark of Abarema cochliacarpos showed antimicrobial activity. Both crude aqueous and methanol extracts also showed antinociceptive effects (Silva et al., 2009). Butanolic fraction of the methanolic extract was tested recently in a model of acute experimental trinitrobenzene sulfonic acid (TNBS)-induced colitis and showed anti-inflammatory effects (Silva et al., 2010a).
It has been suggested that Abarema cochliacarpos (Gomes) Barneby & Grimes extracts exerts gastroprotective effects and wound healing properties in the ethanol-induced ulcer model. The safety and efficacy in the healing of gastric ulcers is based on its ability to activate the expression of COX-2, vascular-endothelial growth factor (VEGF) and stimulate proliferative factors like HSP-70 that re-establish the gastric mucosa integrity (Silva et al., 2010b).
Eberhardt and colleagues (2000) illustrated the antiproliferative effect of apple extract in vitro using tumor cells and attributed such effect to the presence of phytochemicals (phenolic acids and flavonoids) other than ascorbic acid. Therefore, dietary antioxidants play a crucial role in the maintenance of gastric homeostasis by counteracting the potentially mucosal damage exerted by ROS. This may explain the role of dietary antioxidants as scavenger of oxygen, nitrogen free radicals and breaking lipid peroxisdation reactions. Phenolic compounds are one of the major classes of dietary antioxidants and apple phenolic compounds represent 22 percent of such total (Le Marchand et al., 2000).
In vitro and in vivo studies demonstrated the protective effect of apple juice regarding gastric mucosa of rat. This was markedly observed in gastric injury model induced by aspirin and independently of its inhibition to gastric acid. Therefore it might be of therapeutic benefit in prophylaxis of aspirin- related gastropathy (D\' argenio et al., 2008). Accordingly a diet rich in apple antioxidants might exert a beneficial effect in gastric diseases associated with generation of reactive oxygen species (Graziani et al., 2005).
Foeniculum vulgare (FVE) is a well-known umbelliferous plant. For centuries, FVE fruits have been used as traditional herbal medicine in Europe and China. It is native to southern Europe and the Mediterranean area. The seeds of this plant have been used to regulate menstruation, alleviate the symptoms of female climacteric syndrome, and increase libido (Albert-Puleo, 1980). FVE also possesses emnenagague, galactagogue and antispasmodic properties additionally in folk remedies for treatment of dysmenorrheal, also as diuretic and wound dressing in Turkish traditional medicine (Savino et al., 2005).
It contains 1%-3% of a volatile oil, which is composed of 50%-85% of anethole and about 20% of d-fenchone (Dadalioglu & Evrendilek, 2004). Other compunds present in FVE are d-a-pinene, d-a-phellandrene, dipentene, methyl chavicol, feniculun, anisaldehyde, and anisic acid (Mimica-Dukic et al., 2003).
Previous studies proved that anethole possesses significant antioxidant, anti-inflammatory and ulcer healing activity in experimental models (Freire et al., 2005). Additionally, flavonoids, sterols, tannins and coumarins of some plants are also known to possess antiulcer activity (Khalil, 2006). Therefore, the presence of flavonoids content and other bioactive compounds in FVE may be beneficial in ulcer therapy. Its gastro protective effect has been also observed before in certain gastric mucosal lesion induced by ethanol, attributed mostly to its antioxidant activity and reduction of lipid peroxidation cascade.
Therefore it may be a new alternative for clinical management of gastric ulcer diseases and/or an antioxidant against oxidative stress (Birdane et al., 2007).
The leaves of Piper carpunya Ruiz & Pav. (syn Piper lenticellosum C.D.C.) (Piperaceae), known with the popular name of “guaviduca” in Ecuador are widely used in folk medicine in tropical and subtropical countries of South America, as an anti-inflammatory, anti-ulcer, anti-diarrheal and anti-parasitical remedy as well as an ailment for skin irritations. The antiinflammatory activity has been confirmed in rat models like the carrageenan-induced paw edema and the results obtained can support its use in the traditional medicine of Ecuador (De las Heras et al., 1998). Recently, this plant has been shown to protect against gastric ulcers induced by non-steroidal anti-inflammatory drugs (NSAID) in rats (Trabadela et al., 2009).
Numerous plant remedies have shown to be active against Helicobacter pylori infection, such as the oil extract of Chamomilla recutita (Shikov et al., 2008), the ethanolic extract of Cuminum cyminum L., Propolis (Nostro et al., 2005) as well as the methanolic extract of Alchornea triplinervia (Spreng.) Mull. Arg., which exhibited anti-secretory, anti-Helicobacter pylori and gastroprotective effects (Lima et al., 2008).
Several mechanisms of action have been proposed to illustrate its anti-inflammatory effects. This may be explained through other properties such as anti-oxidant activity, inhibition of eicosanoid generating enzymes or as modulator for proinflammatory molecules. Recent studies have also shown that some flavonoids are modulators of proinflammatory gene expression (Garcia-Lafuente et al., 2009). Gastro protective activity of flavonoids may be through reducing gastric acid secretion and inhibition of gastric H+, K+-ATPase. One example is Baccharis illinita D.C., which is also used in folk medicine, and whose anti-secretory activity is attributable to the flavonoid luteolin (Freitas et al., 2008).
Furthermore, some flavonoids have also demonstrated inhibitory effects on Helicobacter pylori growth and vacuolation. Helicobacter pylori induces gastric epithelial cell apoptosis via secreted mediators such as the VacA cytotoxin and lipopolysacccharides which damage epithelial acid-secreting parietal cells (Neu et al., 2002). Several flavonoids have inhibitory influence on the apoptotic signaling induced by Helicobacter pylori VacA toxin (Xiao et al., 2007). Antimicrobial compounds from plants may inhibit bacterial growth by different mechanisms and could therefore be useful in case of resistance state to antibiotics. In this way, Castillo-Juarez et al., (2007) found that the petroleum ether fraction from Amphipterygium adstringens (Schltdl.) Standl. had significant anti-microbial activity against Helicobacter pylori. From this fraction, the authors isolated a mixture of anacardic acids and three known triterpenes: masticadienonic acid, 3-alpha-hydroxymasticadienonic acid, 3-epi-oleanolic as well as the sterol ß-sitosterol.
Previous study suggested that the flavonoids (vitexin, isovitexin, rhamnopyranosylvitexin and isoembigenin), nervogenic acid and geranylbenzoate isolated from the ethanolic extract of Piper carpunya may contribute to the anti-myeloperoxidase activity, as well as to their anti-Helicobacter pylori effect. These flavonoids may also be responsible for the important inhibition of H+, K+-ATPase pathway, additionally the obtained phytosterols and phytol could be involved in these gastroprotective activities (Quilez et al., 2010).
Quassia is a plant that grows typically in the American tropical regions (from Mexico to the Brazilian Amazona) below 500 m altitude, especially in the Caribbean side of Central America and the Pacific coast of Costa Rica and Panama. The plant prefers very humid environments, but it can be found in the dry forest next to a riverbank (López and Pérez, 2008).
Quassia amara L. is one of the most mentioned plants in ethnomedicine for the treatment of malaria, mainly in Surinam, Guyana and French Guyana, where tea cups are carved from the wood and the addition of hot water forms an infusion in them (Odonnea et al., 2007). There only exist a few studies on the gastrointestinal, digestive and secretagogue activity of Quassia amara L. extracts. The results point to an increase of bile secretion with a standardized extract, inhibition of ulcer induction with crude extracts, accompanied by a slight decrease in pH and peptic activity of gastric juice additionally an enhancement of cytoprotective factors like gastric mucus (Toma et al., 2002).
The biological activity of Quassia amara L. has been attributed mainly to its high content of quassinoids. These metabolites are oxygenated triterpenes derived from euphol and are exclusive to the Simaroubaceae family. The most important quassinoids in Quassia amara L. are quassin and neoquassin. Quassin is one of the most bitter substances known, it represents 0.1% of the dried weight of wood and bark, and it is present in larger quantities when the plant is grown in the shade (Guo et al., 2005).
Quassia amara L. bark standardized extracts, Lipro® and Ligas®, which were standardized to its quassinoid content, showed an important anti-ulcerogenic and gastroprotective potential in acute ulcer induction models. Their effect was related to an increase in gastric barrier mucus and non protein sulfhydril groups (Garcia-Barrantes & Badilla, 2011). Gastric barrier mucus is an important factor in gastroprotection (Kaunitz, 1999). Animals treated with Ligas® showed substantial mucus production. Prostaglandins I2, E2 and F2 are some of the main stimuli for the production of gastric and duodenal mucus (Dharmani et al., 2005). The increase in mucus could be a signal of the role of prostaglandins in the anti-ulcerogenic properties of the extracts.
Gardenia jasminoides Ellis (GJE), has been used in traditional oriental medicine for the treatment of jaundice, fever, hypertension, and ulcers of a skin (Tseng et al., 1995). It has been reported that the crude extract of GJE fruit has biological and pharmacological activities. In the phytochemical studies of GJE, genipin, chlorogenic acid, rutin, and ursolic acid were detected in GJE extracts (He et al., 2006). Genipin is an aglycone derived from an iridoid glycoside called geniposide present in fruit of GJE, and is an excellent natural cross-linker for proteins, collagen, gelatin, and chitosan cross-linking. It has been also used for pharmaceutical purposes, such as choleretic action for liver diseases control, and the relief of type 2 diabetes symptoms. Ursolic acid is a pentacyclic triterpene acid, used in cosmetics (Shishodia et al., 2003), and as inhibitor for various types of cancer cells by inhibiting the STAT3 activation pathway (Pathak et al., 2007) and human fibrosarcoma cells by reducing the expression of matrix metalloproteinase-9 by the glucocorticoid receptor.
Gastric cancer is the second commonest cause of death from malignant disease worldwide (Neugut et al., 1996). Antioxidant compounds, such as vitamin C and E, have a key role for prevention and termination of development of gastric cancer (Block, 1991). It has been recognized that chronic infections of the gastric mucosa by Helicobater pylori (H. pylori) plays a pivotal role in gastric carcinogenesis. Such infection usually causes acute and chronic inflammation cell infiltrate, leading to an increase of reactive oxygen species (ROS), which are highly reactive compounds. The latter may combine with DNA in a number of potentially genotoxic ways, subsequently accumulated in H. pylori gastritis. Therefore it may be possible to prevent carcinogenesis through reduction of ROS damage to cellular constituents, especially DNA, additionally the eradication of H. pylori can lead to a reduction in ROS activity in the gastric mucosa (Drake et al., 1998).
Lee et al., (2009b) in confirm indicated that the ethanolic extracts of GJE exerted protective activities against potential gastritic diseases like gastritis and gastric cancer. This action might be due to antioxidant activity, anti-H. pylori activity of ursolic acid and genipin that counteract free radicals exerting anti-ulcer activity.
Curcumin, the polyphenolic yellowish pigment of the rhizome Curcuma longa Linn, is known to possess anti-inflammatory, antioxidant, wound-healing, and antiallergic activities (Das& Das, 2002). Several investigators have also reported the antiulcerogenic activity of the ethanolic extract of the rhizome of C. longa in acute gastric mucosal lesion (Rafatullah et., 1990), but not in chronic ulcer models. More recently, it has been considered that curcumin exerts a variety of pharmacological actions through inhibition of inducible nitric oxide synthase (iNOS) as well as its potential as radical scavenger (Elseweidy et al., 2008) Thus, the previously proposed mechanisms for antiulcerogenic effect of curcumin (Yano et al., 2000), such as inhibitory effect on gastric secretion, cytoprotection, antioxidant activity and inhibition of mast-cell degranulation, need to be evaluated again.
Curcumin, exerted its preventive effect on gastric lesion formation, although it possesses anti-inflammatory activity resulting from a blockade of all branches of the arachidonic acid pathway (Ammon et al., 1993). This effect is consistent with the findings reported by several authors that the inhibition of prostaglandins synthesis is unlikely to be the mechanism responsible for the inflammatory ulceration formation. Curcumin therefore may exert this through its antioxidant activity and its inhibition of nuclear factor kappa B activation which up-regulates many genes involved in inflammation and immunity, including its potent suppressive effect on mast-cell degranulation (Jobin et al., 1999). Although there is a potential increase of gastric acid secretion with a high dose of curcumin, gastric acid secretion has been found to play little role in the pathogenesis of this model (Ohta et al., 1999).
Apparent healing – promoting effect of curcumin was also observed in gastric ulcer model, induced by acetic acid with an enhancement of mucosal layer regeneration. This effect was not seen in a dose-related fashion, presumably through some curative mechanisms differently modified by curcumin dosage. Accordingly, it is conceivable that the effect of curcumin occurs at least partly through its inhibition of the cytokine-mediated inflammatory mechanism, suppression of iNOS activity and antioxidant activity as mentioned above. In addition, the curative properties and ulcer healing might result from the elevation of epidermal growth factor and transforming growth factor-beta-1, as shown in acceleration of cutaneous wound healing in rats, guinea pigs and mice (Sidhu et al., 1998).
Another study attributed such preventive and curative effects of curcumin to an increase in the mucosal defensive mechanism through its antioxidant property, increase in mucin secretion and inhibition of NO or cytokine-mediated inflammation (Mahattanadul et al., 2006).
Artichoke (Cynara Scolymus L.) is a plant that is widely grown in Mediterranean countries, including southern France and California in the United States. In general, the dried extract consisting of leaves and not flowering heads of artichoke has been eluted with water in European countries and the main components are caffeoylquinic acid derivatives (cynarin and chlorogenic acid), flavonoids (luteolin and apigenin) and bitters (cynaropicrin) (Joy & Haber, 2007). Artichoke leaf extract has been used for hepatoprotective and cholesterol reducing (Aktay et al., 2000) purposes. Based on in vitro (Perez-Garcia et al., 2000) and in vivo (Speroni et al., 2003) studies, it is believed that artichoke leaf extract is very effective as an antioxidant and its leaf extract contains cynaropicrin and chlorogenic acid as the main components. It is currently used in Germany and Switzerland as a remedy for indigestion. And its better compounds such as cynariopicrin as inflammatory agents due to its inhibitory influence on inflammatory mediators (Holtmann et al., 2003).
Previous results indicated that artichoke leaf extract is effective against acute hemorrhagic gastritis and its beneficial effect is due to that of cynaropicrin. The gastric mucus-increasing action of artichoke leaf extract may be, at least in part, related to the anti-gastritic action of the extract (Ishida et al., 2010).
Some European pear (Pyrus communis L.) cultivars have been reported to contain significant amounts of polyphenols, such as chlorogenic acid, flavan-3-ols and arbutin. procyanidins are reported to have many beneficial properties, such as potent antioxidant activity (Zhu et al., 2002), free radical scavenging activity (Arteel & Sies, 1999), antiinflammatory activity and anti-influenza viral activity (Hamauzu et al., 2005).
It has been shown that procyanidins extracted from pear (Winter Nelis) fruit had a very high mean degree of polymerization (mDP), indicating that these compounds may interact with mucosa proteins. Accordingly the mechanism of mucosa protection by pear procyanidins may be both physical and chemical. By binding strongly to the mucosa, procyanidins build a protective layer against injury, reducing leukocyte migration, and then exerting its local antioxidant protection against free radicals (Hamauzu et al., 2007).
Sesamol (3,4-methylenedioxyphenol), the lignan of sesame oil, is a potent antioxidant and anti-inflammatory agent in various oxidative systems, including endotoxin and iron intoxication (Hsu et al., 2007). Recent study has confirmed its effect in gastric haemorrhage model and mucosal ulcer induced in rats by aspirin. Sesamol her significantly reduced gastric mucosal lipid peroxidation, nitric oxide production, gastric mucosal proinflammatory cytokines (tumor necrosis factor-a and interleukin 1-ß levels), and the activity of gastric mucosal myeloperoxidase. This was attributed to an inhibition of neutrophil infiltration, subsequent gastric mucosal inflammation and oxidative stress in rats (Hsu et al., 2009a). It seems likely that sesamol protective influence on gastric mucosal injury may be at least partially through an inhibition of mucosal reactive nitrogen species and subsequent lipid peroxidation.
Inhibition of neutrophils activation and their infiltration into gastric mucosa may be sesamol’s anti-inflammatory and antioxidative mechanism. Neutrophil activation and infiltration are crucial in the pathogenesis of NSAID-induced gastric inflammation and oxidative stress (Souza et al., 2008). Activating neutrophils results in the expression of proinflammatory genes and the overproduction of proinflammatory mediators, including TNF-α and IL-1ß, which initiates an inflammatory response (Jaeschke & Hasegawa, 2006). Overproduction of proinflammatory mediators can upregulate nitric oxide production leading to an increase of reactive nitrogen species, lipid peroxidation, and cell damage (Hayes and McLellan, 1999). Similar effect for Sesamol was also observed in the gastric mucosa of aspirin-treated rats preventing inturn gastric injury. This may be attributed to certain combination between sesamol and aspirin, inhibiting inturn neutrophil infiltration, mucosal inflammation and oxidative stress (Hsu et al., 2009a).
Daily consumption of sesame or sesame oil may be beneficial in protecting against gastric mucosal damage induced by long-term use of NSAID. Sesame lignan sesamol is one of the important antioxidative components in sesame in addition to some other antioxidants such as sesamin, sesamolin, and gamma-tocopheral (Tokusoglu et al., 2003). All of them could attenuate NSAID initiated gastric mucosal oxidative stress. Therefore, we suggested that daily consumption of sesame or sesame oil could protect against NSAID-induced gastric mucosal damage. However, more investigations will be needed to confirm this.
Also, pretreatment of sesame oil, significantly decreased acidified ethanol-induced mucosal ulcer formation and luminal hemorrhage. Sesame oil her reduced mucosal lipid peroxidation, as well as glutathione and nitric oxide production in experimental rats model attenuating in turn oxidative stress and gastric mucosal injury (Hsu et al., 2009b).
Gastritis represents an inflammation of the stomach lining in response to injury.It is either acute or chronic and has many underlying causes,however the most important of them are Helicobacter pylori (HP) infection, Autoimmunity additionally prolonged uptake of certain drugs,specifically aspirin and nonsteroidal antiinfilammatory drugs (NSAIDs).The common mechanism of an injury is an imbalance between the aggressive and defensive factors that maintain the integrity of the gastric lining (mucosa). In subsequent or joining such inflammation pattern an increase in oxidative damage due to high level of reactive oxygen species (ROS), higher gastrin, pepsinogen, expression of inducible nitric oxide synthase (iNOS) leading to corpus atrophy and G cells damage. Interaction of NO and can form peroxynitrite, leading finally to apoptosis in a variety of cell types.
Tannins and flavonoids (phenolic compounds) are commonly found in several medicinal plants. Certain therapeutic properties mainly anti-inflammatory, wound healing, antioxidant and anti ulcerogenic are mostly attributed to these plant constituents.
Tannins are potent scavengers of per oxi radicals and can interact with mucus proteins, improving their cytoprotective effect by forming a protein lining over the gastrointestinal mucosa, additionally involved in wounds treatment. Fresh fruits and vegetables have been reported to exert multiple biological effects on the mucosa of gastrointestinal tract due to their antioxidants content. Certain flavonoids or compounds with flavonoid-like properties have antiulcer activity, prevent gastric mucosal lesions brought about by a number of ulcerogens. This had been illustrated before on polyphenol from grape seed, aqueous fruit extract of morinda citrifolia, Quarcetin, apple extract, curcumin, black seed oil, quassin, artichoke and others. It is conceivable that some of these plant constituents exerted their effects through the inhibition of cytokine-mediated inflammatory mechanism, suppression of iNOS, antioxidant activities and healing of the produced ulcer.
We acknowledge the work of Dr. Hebatallah H. Atteia, and Dr. Mona M. Taha for their technical help and Assistance.
Cys2His2 zinc finger (ZF-Cys2His2) proteins have been found in a number of plants including Arabidopsis, cotton, rice and wheat. The ZF-Cys2His2 is built by two Cys and two His residues. This structure provides a conservative motif together with Zn2+. The core has an 𝛼-helix and an anti-parallel double-stranded 𝛽-sheet so that the ZF-Cys2His2 proteins have stable and relatively independent protein domains. ZF-Cys2His2 proteins form a relatively wide family of transcriptional factors in plants. Current studies have revealed that ZF-Cys2His2 proteins operate as important transcriptional regulators in plant responses to a large broad of stress conditions (like drought, excessive light, extreme temperatures, oxidative stress, salinity, and silique shattering) [1]. Over-expression of some ZF-Cys2His2 genes has led to an increased tolerance to various stresses and activation of some stress-related genes [2]. Abscisic acid (ABA) is an important phytohormone involved in regulating stress responses and plant growth and development. In addition, ABA is involved in many important processes of plants such as stomatal closure, leaf senescence, cuticle wax accumulation, bud dormancy, osmotic regulation, seed germination and growth inhibition. Since the ABA regulates downstream responses to biotic and abiotic environmental changes through both transcriptional and post-transcription mechanisms, the responses of ABA and ZF-Cys2His2 proteins to various stresses are also mentioned here [3].
The world population has exceeded 7.5 billion. To supply the nutritional needs of this population, it is important to know the proteins and genes related to the response of plants to stress conditions. In this context, to increase the durability and yield of plants, transgenic plant researches are carried out. And the most commonly focused proteins in these researches are ZF-Cys2His2 proteins. For this reason, in this chapter, the changes occurring in ZF-Cys2His2 proteins with transgenic methods and various stress conditions and what these changes bring to the plant have been discussed (Table 1).
The kind of C2H2 zinc finger proteins | The kind of stress | References |
---|---|---|
AtSIZ1 | Salt stress | [4] |
GmZAT4 | Salt stress | [5] |
ZAT7 | Salt stress | [6] |
AhZFP1 | Salt stress | [7] |
ZFP252 | Salt stress | [8] |
ZmZF1 | Salt stress | [9] |
DST | Salt stress | [10] |
GhZFP1 | Salt stress | [11] |
SIZF3 | Salt stress | [12, 13] |
ZFP179 | Salt stress | [14] |
ZjZFN1 | Salt and cold stress | [15] |
TaZNF | Salt stress | [16] |
SICZFP1 | Salt and cold stress | [17] |
TaDi19A | Salt osmotic and cold stress | [18] |
AtDi19-3 | Salt and drought stress | [19] |
AZF2 STZ | Salt, cold and drought stress | [20] |
GsZFP1 | Cold and drought stress | [21] |
ZFP245 | Cold and drought stress | [22] |
GbZF1 | Cold stress | [23] |
PeSTZ1 | Cold and oxidative stress | [24] |
SCOF-1 | Cold stress | [25] |
OsCTZFP8 | Cold stress | [26] |
ZAT12 ZAT7 | Oxidative stress | [27] [28] |
ZFP36 | Oxidative stress | [29] |
GsZFP1 | Cold stress | [21] |
ZAT18 | Oxidative and drought stress | [30] |
OsMSR15 | Drought stress | [31] |
VTA2 | Oxidative and fungal stress | [32] |
MtSTOP | pH and aluminum stress | [33] |
ART1 | Aluminum stress | [34] |
C2H2 zinc finger proteins related with plant stress.
One of the stress factors is salt. Plants are affected with development and yield from salt stress. Transgenic plant studies in combating salt stress have become one of the most important issues of our century and ZnF proteins attract a lot of attention in this context. Salt application has induced expression of AtSIZ1. The germination energy, index and rate, cotyledon growth rate and root length were found to be importantly higher than wild-type in lines where AtSIZ1 was over-expressed under various stress applications at the germination stage. However, these indicators decreased significantly in AtSIZ1 mutants. Higher proline, potassium and soluble sugar, lower sodium, malondialdehyde, sodium/potassium ratios were observed in the lines where over-expression occurred in the mature seedling stage compared to the wild-type. Stress-related marker genes such as AtGSTU5, AtP5CS1, COR15A, RD29A, RD29B and SOS1 have been found to be over-expressed in lines with an excessive expression than those of wild-type and mutant under salt application. Due to the results AtSIZ1 functions in maintaining both ionic homeostasis and osmotic balance to improve salt tolerance in Arabidopsis [4]. It has also been shown that GmZAT4 plays a significant role in both polyethylene glycol and sodium chloride stresses tolerance and ABA responses in both A. thaliana and soybean. Over-expression of GmZAT4 increased the tolerance of A. thaliana to 20% polyethylene glycol and 150 mM sodium chloride and increased the germination rate after 1 or 2 μM ABA administration [5]. The EAR motif for ZAT7 has a significant role of defense response to salt stress in Arabidopsis. Suppressing growth and being more tolerant to salt stress have observed in transgenic Arabidopsis plants expressing ZF-Cys2His2 protein ZAT7. Mutation or deletion of ZAT7’s EAR motif did not affect growth suppression, but eliminated salt tolerance. These results showed that ZAT7’s EAR motif is important in increasing salt stress tolerance of the transgenic plants. On the other hand, the EAR motif appears not to be involved in suppressing transgenic plants growth. Other analyzes of ZAT7 using RNAi lines suggested that ZAT7 functions as a suppressor of the defense response’s suppressor [6]. Semi-quantitative RT-PCR studies have revealed that AhZFP1 expression is stimulated by salt stress in the peanut root, stem and leaves [7]. Excessive expression of ZFP252 in rice increased the amount of free proline, soluble sugar, stress defense genes expression and improved the plant’s response to both salt and drought stress. This result showed that ZFP252 plays a significant role in both salt and drought stresses of rice plant. And it is also useful for genetically modified plants to increase both salt and drought stresses tolerance [8]. ZmZF1 transcripts are strongly stimulated by salt stress. It is also stimulated by drought stress and ABA. Over-expression of ZmZF1 under cauliflower mosaic virus 35S promoter control increased both salt and drought tolerance in young seedling phase of transgenic Arabidopsis [9]. Stomata control the absorption of carbon-dioxide and improve water use efficiency. Thus, it plays an important role in abiotic stress tolerance. H2O2, stimulates stomatal closure, is an important signaling molecule. Another ZFP, DST is directly organizing genes related to H2O2 homeostasis. Therefore, the stomatal closure is regulated negatively. The loss of DST function decreases stomatal density and increases stomatal closure. As a result, increased salt and drought tolerance appears in the rice plant. These findings provide a different perspective on the abiotic stress tolerance mechanism associated with stomata and also a significant genetic engineering approach in developing abiotic stress tolerance [10]. GhZFP1 over-expression in transgenic tobacco plant increased salt stress tolerance and Rhizoctonia solani resistance. This indicates that the plant can act as a significant regulator in responding to biotic and abiotic stress [11]. Ascorbic acid supports stress tolerance by breaking down reactive oxygen species (ROS). ROS degradation capacity of ascorbic acid is increased in plants that over-expressed SIZF3. This has increased the salt tolerance of plants. Findings in the studies showed that SIZF3 simultaneously supports both the collection of ascorbic acid and improves the plant salt tolerance response [12]. ZFP3 expression level was found to be highly suppressed by mannitol, sodium chloride and sucrose. The mutant Arabidopsis exhibited a reduced tolerance condition in terms of ZFP3. Excessive expression of ZFP3 reduced stress-related genes (such as AtP5CS1, KIN1, RD22 and RD29B) expression. These results showed that ZFP3 is important in osmotic and salt stress response [13]. Over-expression of ZFP179 increased salt tolerance in rice plant. And the transgenic seedlings showed hypersensitive activity to exogenic ABA. Increased amount of soluble sugars and free proline under salt stress have been observed in transgenic plants. In ZFP179 transgenic rice plant the oxidative stress tolerance, ability to break down ROS and expression level of stress-related genes such as OsDREB2A, OsLea3, OsP5CS and OsProT increased under salt stress. These findings showed that ZFP179 plays an important role in salt stress in plants and is useful for developing transgenic plants that are highly tolerant to salt stress [14]. Expression of ZjZFN1 was found to be increased by ABA, cold and salt. ZjZFN1 expression improved seed germination, plant adaptation to salt stress by growth under salt stress and increased green cotyledons in Arabidopsis thaliana. Physiological and transcriptional analyzes suggest that ZjZFN1 can affect the collection of ROS and regulate the transcription of genes associated with salt response. ZjZFN1 over-expressing plants RNA sequence analysis revealed that ZjZFN1 could function as a transcriptional activator in the regulation of stress response pathways such as alpha-linoleic acid metabolism, phenyl alanine metabolism and phenylpropanoid biosynthesis pathways. The results showed that ZjZFN1 plays an important role in the formation of salt stress response in plants [15]. In another study, it has been proven that TaZnF, a ZF-Cys2His2 protein, significantly improves salt tolerance of transgenic Arabidopsis. Various physiological indexes of transgenic plants showed improvement under salt stress compared to the control group. The noninvasive micro-test (NMT) technique showed the excretion of Na is significantly accomplished by the root end of the transgenic Arabidopsis. TaZnF is mainly found in the nucleus and has demonstrated transcriptional activity [16].
GsZFP1 was found to be stimulated by ABA (100 μM), cold (4°C) and salt (200 mM sodium chloride) in leaves and by ABA (100 μM), cold (4°C) and drought (30% PEG 6000) in root. It was found that over-expression of GsZFP1 in transgenic Arabidopsis resulted in higher tolerance in cold and drought stress and a reduced rate of water loss. Over-expression of GsZFP1 was found to increase the expression of CBF1, CBF2, CBF3, COR47, NCED3 and RD29A stress response genes in response to cold stress, and increased expression of NCED3, P5CS, RAB18, RD22 and RD29A in response to drought stress [17]. It was revealed by the semi-quantitative RT-PCR experiment that ZFP245 was strongly stimulated after 6 hours of cold and drought stress and then decreased to normal level. ZFP245 did not occur by the application of high salt or ABA [18]. High degree of aggregation of GmZF1 mRNAs stimulated by exogenic ABA suggested that GmZF1 was involved in the ABA-dependent signal transduction pathway. GmZF1 over-expression increased expression of the cold-induced cor6.6 gene by recognizing the likely protein DNA binding site. This suggests that GbZF1 of soybean can improve Arabidopsis cold stress tolerance by regulating cold regulatory genes expression in transgenic Arabidopsis [19]. PeSTZ1 increases freezing tolerance through organizing the breakdown of ROS by directly regulating PeAPX. PeSTZ1 is preferably expressed in young roots. This ZFP has been upregulated in cold applications. PeSTZ1 functions as a transcriptional activator to increase cold tolerance. PeSTZ1 upregulation decreases malondialdehyde and ROS aggregation by activating antioxidant systems. This is thought to be achieved through direct regulation of PeAPX2 expression [20]. SCOF-1 transcription is particularly stimulated by ABA and low temperature, but not neither with dehydration nor high salt. SCOF-1 over-expression stimulated the expression of genes regulated by cold and improved the cold tolerance of tobacco plants and non-acclimated transgenic Arabidopsis. SCOF-1 can function as a positive regulator of COR gene expression regulated by ABRE through protein-protein interaction and thus can improve the cold tolerance of plants [21]. SICZFP1 is strongly stimulated by cold stress, dehydration and salt stress, but not by ABA. SICZFP1 over-expression in transgenic rice and Arabidopsis plants increased expression of cold-response-related genes. This suggests that SICZFP1 plays an important role in the response of plants to cold stress [22]. TaDi19A has been found to be expressed in both leaves and roots of wheat seedlings grown under stress-free conditions, but is significantly upregulated in salt, osmotic and cold stress conditions, or in hormone applications such as stress-related ethylene and ABA. Heterologous over-expression of TaDi19A in Arabidopsis thaliana increased salinity, mannitol and ABA stress sensitivity during the germination of plants. Root elongation in these transgenic lines showed less salinity stress tolerance and less ethephon sensitivity. The expression of ABA signal path genes such as ABA1, ABF3, ERD15, RAB18 and SOS2 (SOS pathway) have changed in transgenic plants [23]. Transgenic rice expressing excessive OsCTZFP8 exhibited cold-tolerant phenotypes with significantly higher pollen fertility and seed placement rates than non-transgenic control plants. Yield of lines expressing OsCTZFP8 per plant was significantly higher (p < 0.01) than non-transgenic control plants under cold application. This result shows that OsCTZFP8 is a C2H2 zinc finger transcription factor that plays an important role in cold tolerance in rice [24].
Cytosolic Apx1, ascorbate peroxidase 1, is an important H2O2-removing enzyme in plants. Both WRKY transcription factor (WRKY25) and two ZnF proteins (ZAT12 and ZAT7) expressions have increased in Apx1 gene suppressed plants that grown under the controlled conditions. When cells were exposed to oxidative stress, heat shock, and injury, the WRKY25, ZAT7 and ZAT12 expressions increased together. However, light and osmotic stresses did not increase them. Transgenic plants expressing ZAT7 and ZAT12 were able to tolerate oxidative stress. WRKY25, ZAT7 or ZAT12 expression in transgenic plants did not increase Apx1 expression under controlled conditions. Plants without ZAT12 could not increase Apx1, WRKY25 and ZAT7 expressions in response to H2O2, so that plants without ZAT12 have become more sensitive to H2O2 applications than normal plants. It has been revealed that ZAT12 is an important component of oxidative stress signal transmission in Arabidopsis and needs Apx1, WRKY25 and ZAT7 during oxidative stress [25]. Transcription profiles of plants that are exposed to H2O2 stress, expressing excessive ZAT12 and normal have revealed that the basic expression of ZAT12 in Arabidopsis results in increased expression in oxidative and mild stress transcripts. Thus, ZAT12 has been shown to play a key role in reactive oxygen and abiotic stress signal in Arabidopsis [26]. ABA application stimulated the increase of both ascorbate peroxidase and superoxide dismutase activities and OsMPK1, OsMPK5 and ZFP182 expressions in rice plant leaves. It has been noted that ABA-induced antioxidant defense needs ZFP182. And the ZFP182 expression is regulated by rice MAPKs in ABA signaling [27]. ABA-activated mitogen active protein kinases (MAPKs) and ABA-induced H2O2 production have been shown to regulate ZFP36 expression in ABA signaling, on the other hand, NADPH oxidase genes expression regulated by ZFP36, H2O2 production and the expression of OsMPK genes in ABA signaling. It has been noted that rice plants requires to ZFP36 for tolerance of both water stress and oxidative stresses, for ABA-induced antioxidant defense and for cross-interaction between NADPH oxidase, H2O2 and MAPK in the ABA signal [28].
Over-expression of ZAT18 has increased drought tolerance in Arabidopsis while ZAT18 mutation reduced plant tolerance to drought stress. It was found that ZAT18 is expressed in stems and herbal rosette leaves. Sub-cellularly, it has been noted that ZAT18 protein is mainly localized in the nucleus. Overexpressed ZAT18 plants exhibited higher leaf water content, lower ROS content, higher antioxidant enzyme activity compared to wild-type after drought application. RNA sequencing analysis showed that the 423 and 561 genes were transcriptionally regulated by the ZAT18 transgene before and after drought application, respectively. Path enrichment analysis showed that hormone metabolism, stress and signal were over represented in ZAT18 overexpression lines. Various stress-sensitive genes (including COR47, ERD7, LEA6 and RAS1) and hormone signal transduction-related genes (including JAZ7 and PYL5) have been identified as target genes of ZAT18. Taken together, ZAT18 acts as a positive regulator and plays an important role in the plant’s response to drought stress [29]. Di19 family, protein 19 induced by drought, is a ZF-Cys2His2 protein. AtDi19-3 is a transcription activator. In plants, AtDi19-3 is significantly stimulated by ABA, mannitol and sodium chloride. Mutation of AtDi19-3 increased tolerance of plants against ABA, drought and high salinity. Excessive expression of AtDi19-3 caused drought, salt and ABA sensitivity. Seed germination and cotyledon greening rates were higher in the Atdi19-3 mutant under the condition of applying sodium chloride, mannitol or ABA. But this data in transgenic plants, in which AtDi19-3 was over-expressed, was lower than in normal plants. Although the roots of AtDi19-3 mutant seedings were longer, the roots of AtDi19-3 over-expressing transgenic seedlings were shorter than in normal plants. Although the chlorophyll and proline contents in the AtDi19-3 mutant were higher, these data of AtDi19-3 over-expressed seedlings were lower than that of normal plants. While the AtDi19-3 mutant tolerates more droughts, transgenic plants that over-express AtDi19-3 showed more susceptibility to drought than normal plants. In addition, ABA related genes expression signaling pathway varied in the Atdi19-3 mutant and in over-expressing plants of AtDi19-3 [30]. AZF2 and STZ expression has been shown to be strongly stimulated by ABA, cold and high salt stresses, and dehydration. Transgenic Arabidopsis, which over-expresses STZ, has become tolerant to growth delay and drought stress. In that study, it was suggested that STZ and AZF2 act as transcriptional suppressors on increased stress tolerance during the growth delay [31]. The expression of OsMSR15 in Arabidopsis provides it with drought resistance. Hypersensitive activity to exogenic ABA in this transgenic plant growth during sprouting and seed germination. Transgenic plants also showed less electrolyte leakage, high levels of free proline and increased expressions of a number of stress sensitive genes (such as LEA3, DREB1A, P5CS1 and RD29A) under drought stress. The results showed that OsMSR15 is a significant regulator that plays a role against plant drought stress [32]. In another study, over-expression of TaZFP34 has been shown to have a negative effect on yield performance and mimic the negative effect of drought stress on wheat productivity [33]. STF-2 is also a ZF-Cys2His2 protein. And its transgenically over-expression increased significantly drought tolerance in transgenic tobacco. The results showed that STF-2 plays a significant role in the response of soybean’s to drought stress [34].
VTA2 contains the ZF-Cys2His2 proteins. It controls H2O2 detoxification and host plant root infection. And it is an important regulator of fungal pathogenesis [35]. StZFP2 is a Q-type C2H2 zinc finger transcription factor induced by injury and invasion. Previous studies show that Q-type C2H2 TFs are involved in responding to stress and may be protective against drought, salinity, or pathogenic infections when overexpressed. The increase in StPIN2, a classic marker for insect defense in potatoes, was consistent with decreases in larval weight gain [36]. MtSTOP is also a C2H2 zinc finger protein and regulates Medicago’s response to H+ and Al3+ toxicity. MtSTOP is expressed in root, stem, nodule and other tissues. MtSTOP is upregulated with acidic pH and Al3+ stress or a combination of both. Growth or morphology in mtSTOP mutants did not change under normal conditions; however, mutant seedlings are characterized by significantly reduced root elongation and are sensitive to low pH (pH 4.3) and Al3+ stress. Compared to its control, more Al accumulated in the mutant roots and citric acid secreted from the mutant roots was significantly lower in both normal and Al stress conditions. This indicates that MtSTOP hair roots synthesize more citric and malic acids [37]. Regarding aluminum, Rice (Oryza sativa) is one of the aluminum tolerant species among small grain cereals. This type of aluminum tolerance occurs with many genes involved in the detoxification of Al at the cellular level. These findings emerged with ART1. ART1 is a C2H2 type zinc finger transcription factor and regulates the expression of 31 genes as down-stream [38].
The authors declare no conflict of interest.
This work was supported by the Selcuk University and Dicle University.
IntechOpen’s team of Scientific Advisors supports the publishing team by providing editorial and academic input and ensuring the highest quality output of free peer-reviewed articles. The Boards consist of independent external collaborators who assist us on a voluntary basis. Their input includes advising on new topics within their field, proposing potential expert collaborators and reviewing book publishing proposals if required. Board members are experts who cover major STEM and HSS fields. All are trusted IntechOpen collaborators and Academic Editors, ensuring that the needs of the scientific community are met.
",metaTitle:"STM Publishing and Free Peer Reviewed Articles | IntechOpen",metaDescription:"IntechOpen’s scientific advisors support the STM publishing team by offering their editorial input, ensuring a consistent output of free peer reviewed articles.",metaKeywords:null,canonicalURL:"scientific-advisors",contentRaw:'[{"type":"htmlEditorComponent","content":"\\n"}]'},components:[{type:"htmlEditorComponent",content:'
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"8"},books:[{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Calorimetry",subtitle:null,isOpenForSubmission:!0,hash:"bb239599406f0b731bbfd62c1c8dbf3f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10697",title:"Raman Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"6e2bfc19cc9f0b441890f24485b0de80",slug:null,bookSignature:"Dr. Marianna V. Kharlamova",coverURL:"https://cdn.intechopen.com/books/images_new/10697.jpg",editedByType:null,editors:[{id:"285875",title:"Dr.",name:"Marianna V.",surname:"Kharlamova",slug:"marianna-v.-kharlamova",fullName:"Marianna V. Kharlamova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10699",title:"Foams",subtitle:null,isOpenForSubmission:!0,hash:"9495e848f41431e0ffb3be12b4d80544",slug:null,bookSignature:"Dr. Marco Caniato",coverURL:"https://cdn.intechopen.com/books/images_new/10699.jpg",editedByType:null,editors:[{id:"312499",title:"Dr.",name:"Marco",surname:"Caniato",slug:"marco-caniato",fullName:"Marco Caniato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10700",title:"Titanium Dioxide",subtitle:null,isOpenForSubmission:!0,hash:"d9448d83caa34d90fd58464268c869a0",slug:null,bookSignature:"Dr. Hafiz Muhammad Ali",coverURL:"https://cdn.intechopen.com/books/images_new/10700.jpg",editedByType:null,editors:[{id:"187624",title:"Dr.",name:"Hafiz Muhammad",surname:"Ali",slug:"hafiz-muhammad-ali",fullName:"Hafiz Muhammad Ali"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10701",title:"Alkenes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f6dd394ef1ca2d6472220de6a79a0d9a",slug:null,bookSignature:"Dr. Reza Davarnejad",coverURL:"https://cdn.intechopen.com/books/images_new/10701.jpg",editedByType:null,editors:[{id:"88069",title:"Dr.",name:"Reza",surname:"Davarnejad",slug:"reza-davarnejad",fullName:"Reza Davarnejad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11072",title:"Modern Sample Preparation Techniques",subtitle:null,isOpenForSubmission:!0,hash:"38fecf7570774c29c22a0cbca58ba570",slug:null,bookSignature:"Dr. Massoud Kaykhaii",coverURL:"https://cdn.intechopen.com/books/images_new/11072.jpg",editedByType:null,editors:[{id:"348186",title:"Dr.",name:"Massoud",surname:"Kaykhaii",slug:"massoud-kaykhaii",fullName:"Massoud Kaykhaii"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:8},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1352",title:"Energy Engineering",slug:"technology-environmental-engineering-energy-engineering",parent:{title:"Environmental Engineering",slug:"technology-environmental-engineering"},numberOfBooks:5,numberOfAuthorsAndEditors:67,numberOfWosCitations:165,numberOfCrossrefCitations:39,numberOfDimensionsCitations:84,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"technology-environmental-engineering-energy-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7633",title:"Energy Policy",subtitle:null,isOpenForSubmission:!1,hash:"7b3214f2f9bbd4ca03ca927267b13cbf",slug:"energy-policy",bookSignature:"Tolga Taner",coverURL:"https://cdn.intechopen.com/books/images_new/7633.jpg",editedByType:"Edited by",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8496",title:"Zero and Net Zero Energy",subtitle:null,isOpenForSubmission:!1,hash:"55f42cf4f87acf2e1ade4a7b5e9835a4",slug:"zero-and-net-zero-energy",bookSignature:"Getu Hailu",coverURL:"https://cdn.intechopen.com/books/images_new/8496.jpg",editedByType:"Edited by",editors:[{id:"250634",title:"Ph.D.",name:"Getu",middleName:null,surname:"Hailu",slug:"getu-hailu",fullName:"Getu Hailu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6500",title:"Low Carbon Transition",subtitle:"Technical, Economic and Policy Assessment",isOpenForSubmission:!1,hash:"637de6ab7049f98e96b610f7b28a3d63",slug:"low-carbon-transition-technical-economic-and-policy-assessment",bookSignature:"Valter Silva, Matthew Hall and Inês Azevedo",coverURL:"https://cdn.intechopen.com/books/images_new/6500.jpg",editedByType:"Edited by",editors:[{id:"187136",title:"Dr.",name:"Valter",middleName:null,surname:"Silva",slug:"valter-silva",fullName:"Valter Silva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6525",title:"Energy Systems and Environment",subtitle:null,isOpenForSubmission:!1,hash:"bf60dee49589a07a71b7f43f338dd2fd",slug:"energy-systems-and-environment",bookSignature:"Pavel Tsvetkov",coverURL:"https://cdn.intechopen.com/books/images_new/6525.jpg",editedByType:"Edited by",editors:[{id:"10023",title:"Dr.",name:"Pavel",middleName:"V.",surname:"Tsvetkov",slug:"pavel-tsvetkov",fullName:"Pavel Tsvetkov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3704",title:"New Trends in Technologies",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"new-trends-in-technologies",bookSignature:"Blandna Ramov",coverURL:"https://cdn.intechopen.com/books/images_new/3704.jpg",editedByType:"Edited by",editors:[{id:"2518",title:"doc. PhD.",name:"Blandína",middleName:null,surname:"Šramová",slug:"blandina-sramova",fullName:"Blandína Šramová"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"9113",doi:"10.5772/7588",title:"Photocatalytic Processes on the Oxidation of Organic Compounds in Water",slug:"photocatalytic-processes-on-the-oxidation-of-organic-compounds-in-water",totalDownloads:5116,totalCrossrefCites:2,totalDimensionsCites:13,book:{slug:"new-trends-in-technologies",title:"New Trends in Technologies",fullTitle:"New Trends in Technologies"},signatures:"C. J. Philippopoulos and M. D Nikolaki",authors:null},{id:"61197",doi:"10.5772/intechopen.76023",title:"Diversifying Electricity Customer Choice: REVing Up the New York Energy Vision for Polycentric Innovation",slug:"diversifying-electricity-customer-choice-reving-up-the-new-york-energy-vision-for-polycentric-innova",totalDownloads:656,totalCrossrefCites:8,totalDimensionsCites:9,book:{slug:"energy-systems-and-environment",title:"Energy Systems and Environment",fullTitle:"Energy Systems and Environment"},signatures:"Joseph Nyangon and John Byrne",authors:[{id:"225597",title:"Dr.",name:"Joseph",middleName:null,surname:"Nyangon",slug:"joseph-nyangon",fullName:"Joseph Nyangon"},{id:"245796",title:"Prof.",name:"John",middleName:null,surname:"Byrne",slug:"john-byrne",fullName:"John Byrne"}]},{id:"59860",doi:"10.5772/intechopen.74039",title:"Bioelectrochemical Systems for Energy Valorization of Waste Streams",slug:"bioelectrochemical-systems-for-energy-valorization-of-waste-streams",totalDownloads:597,totalCrossrefCites:3,totalDimensionsCites:8,book:{slug:"energy-systems-and-environment",title:"Energy Systems and Environment",fullTitle:"Energy Systems and Environment"},signatures:"María Isabel San-Martín, Daniel David Leicester, Elizabeth Susan\nHeidrich, Raúl Marcos Alonso, Raúl Mateos and Adrián Escapa",authors:[{id:"228404",title:"Dr.",name:"Adrián",middleName:null,surname:"Escapa",slug:"adrian-escapa",fullName:"Adrián Escapa"},{id:"239957",title:"MSc.",name:"María Isabel",middleName:null,surname:"San Martín Becares",slug:"maria-isabel-san-martin-becares",fullName:"María Isabel San Martín Becares"},{id:"239958",title:"Dr.",name:"Elizabeth",middleName:null,surname:"Heidrich",slug:"elizabeth-heidrich",fullName:"Elizabeth Heidrich"},{id:"239959",title:"MSc.",name:"Raúl Marcos",middleName:null,surname:"Alonso García",slug:"raul-marcos-alonso-garcia",fullName:"Raúl Marcos Alonso García"},{id:"239960",title:"MSc.",name:"Raúl",middleName:null,surname:"Mateos González",slug:"raul-mateos-gonzalez",fullName:"Raúl Mateos González"},{id:"239987",title:"MSc.",name:"Daniel",middleName:null,surname:"Leicester",slug:"daniel-leicester",fullName:"Daniel Leicester"}]}],mostDownloadedChaptersLast30Days:[{id:"69228",title:"Advances in Passive Cooling Design: An Integrated Design Approach",slug:"advances-in-passive-cooling-design-an-integrated-design-approach",totalDownloads:1049,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"zero-and-net-zero-energy",title:"Zero and Net Zero Energy",fullTitle:"Zero and Net Zero Energy"},signatures:"Ahmed A.Y. Freewan",authors:[{id:"284866",title:"Dr.",name:"Ahmed A.Y.",middleName:null,surname:"Freewan",slug:"ahmed-a.y.-freewan",fullName:"Ahmed A.Y. Freewan"}]},{id:"65521",title:"Nuclear Energy Policy after the Fukushima Nuclear Accident: An Analysis of “Polarized Debate” in Japan",slug:"nuclear-energy-policy-after-the-fukushima-nuclear-accident-an-analysis-of-polarized-debate-in-japan",totalDownloads:1144,totalCrossrefCites:0,totalDimensionsCites:4,book:{slug:"energy-policy",title:"Energy Policy",fullTitle:"Energy Policy"},signatures:"Tatsujiro Suzuki",authors:[{id:"277612",title:"Prof.",name:"Tatsujiro",middleName:null,surname:"Suzuki",slug:"tatsujiro-suzuki",fullName:"Tatsujiro Suzuki"}]},{id:"58145",title:"A Value Chain Analysis for Bioenergy Production from Biomass and Biodegradable Waste: A Case Study in Northern Norway",slug:"a-value-chain-analysis-for-bioenergy-production-from-biomass-and-biodegradable-waste-a-case-study-in",totalDownloads:838,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"energy-systems-and-environment",title:"Energy Systems and Environment",fullTitle:"Energy Systems and Environment"},signatures:"Hao Yu, Elisabeth Román and Wei Deng Solvang",authors:[{id:"225415",title:"M.Sc.",name:"Hao",middleName:null,surname:"Yu",slug:"hao-yu",fullName:"Hao Yu"},{id:"225417",title:"Prof.",name:"Wei Deng",middleName:null,surname:"Solvang",slug:"wei-deng-solvang",fullName:"Wei Deng Solvang"},{id:"231044",title:"Prof.",name:"Elisabeth",middleName:null,surname:"Román",slug:"elisabeth-roman",fullName:"Elisabeth Román"}]},{id:"61197",title:"Diversifying Electricity Customer Choice: REVing Up the New York Energy Vision for Polycentric Innovation",slug:"diversifying-electricity-customer-choice-reving-up-the-new-york-energy-vision-for-polycentric-innova",totalDownloads:656,totalCrossrefCites:8,totalDimensionsCites:9,book:{slug:"energy-systems-and-environment",title:"Energy Systems and Environment",fullTitle:"Energy Systems and Environment"},signatures:"Joseph Nyangon and John Byrne",authors:[{id:"225597",title:"Dr.",name:"Joseph",middleName:null,surname:"Nyangon",slug:"joseph-nyangon",fullName:"Joseph Nyangon"},{id:"245796",title:"Prof.",name:"John",middleName:null,surname:"Byrne",slug:"john-byrne",fullName:"John Byrne"}]},{id:"9118",title:"Online Rotor Time Constant Estimator for Induction Machines with Optimum Flux",slug:"online-rotor-time-constant-estimator-for-induction-machines-with-optimum-flux",totalDownloads:4059,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"new-trends-in-technologies",title:"New Trends in Technologies",fullTitle:"New Trends in Technologies"},signatures:"Said Grouni, Rachid Ibtiouen, Madjid Kidouche and Omar Touhami",authors:null},{id:"59791",title:"Energy Resources in Agriculture and Forestry: How to be Prepared for the Internet of Things (IoT) Revolution",slug:"energy-resources-in-agriculture-and-forestry-how-to-be-prepared-for-the-internet-of-things-iot-revol",totalDownloads:481,totalCrossrefCites:4,totalDimensionsCites:6,book:{slug:"energy-systems-and-environment",title:"Energy Systems and Environment",fullTitle:"Energy Systems and Environment"},signatures:"Cleonilson Protasio de Souza and Orlando Baiocchi",authors:[{id:"228586",title:"Dr.",name:"Cleonilson",middleName:"Protasio",surname:"Souza",slug:"cleonilson-souza",fullName:"Cleonilson Souza"},{id:"228587",title:"Dr.",name:"Orlando",middleName:null,surname:"Baiocchi",slug:"orlando-baiocchi",fullName:"Orlando Baiocchi"}]},{id:"61655",title:"QGreen Low-Carbon Technology: Cooling Greenhouses and Barns Using Geothermal Energy and Seawater Bittern Desiccant",slug:"qgreen-low-carbon-technology-cooling-greenhouses-and-barns-using-geothermal-energy-and-seawater-bitt",totalDownloads:492,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"low-carbon-transition-technical-economic-and-policy-assessment",title:"Low Carbon Transition",fullTitle:"Low Carbon Transition - Technical, Economic and Policy Assessment"},signatures:"Esam Elsarrag and Yousef Alhorr",authors:[{id:"185960",title:"Dr.",name:"Esam",middleName:null,surname:"Elsarrag",slug:"esam-elsarrag",fullName:"Esam Elsarrag"},{id:"186304",title:"Prof.",name:"Yousef",middleName:null,surname:"Alhorr",slug:"yousef-alhorr",fullName:"Yousef Alhorr"}]},{id:"59590",title:"Biochar Derived from Agricultural Waste Biomass Act as a Clean and Alternative Energy Source of Fossil Fuel Inputs",slug:"biochar-derived-from-agricultural-waste-biomass-act-as-a-clean-and-alternative-energy-source-of-foss",totalDownloads:613,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"energy-systems-and-environment",title:"Energy Systems and Environment",fullTitle:"Energy Systems and Environment"},signatures:"Swapan Suman and Shalini Gautam",authors:[{id:"223329",title:"Dr.",name:"Swapan",middleName:null,surname:"Suman",slug:"swapan-suman",fullName:"Swapan Suman"}]},{id:"59638",title:"Impacts of Bio-Based Energy Generation Fuels on Water and Soil Resources",slug:"impacts-of-bio-based-energy-generation-fuels-on-water-and-soil-resources",totalDownloads:464,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"energy-systems-and-environment",title:"Energy Systems and Environment",fullTitle:"Energy Systems and Environment"},signatures:"Daniel G. Neary",authors:[{id:"40845",title:"Dr.",name:"Daniel",middleName:"George",surname:"Neary",slug:"daniel-neary",fullName:"Daniel Neary"}]},{id:"9110",title:"Toward Personalized Therapy Using Artificial Intelligence Tools to Understand and Control Drug Gene Networks",slug:"toward-personalized-therapy-using-artificial-intelligence-tools-to-understand-and-control-drug-gene-",totalDownloads:1756,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"new-trends-in-technologies",title:"New Trends in Technologies",fullTitle:"New Trends in Technologies"},signatures:"Alexandru G. Floares",authors:null}],onlineFirstChaptersFilter:{topicSlug:"technology-environmental-engineering-energy-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/102688/robert-schutzki",hash:"",query:{},params:{id:"102688",slug:"robert-schutzki"},fullPath:"/profiles/102688/robert-schutzki",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()