\r\n\tOne basic topic is that of expression manipulation: combining, expanding etc, and the applications of this scholar topic needs focusing on.
\r\n\r\n\tThe general topic of "polynomials" is very large, and here the focus is both on scholar/student basics of it, and on applications of some special polynomials in science and research.
\r\n\r\n\tAn important topic of the book is "algebraic curve". Here the approaches are multiple: basic/scholar on one hand, and applications on the other hand. It must be noticed the use of algebraic curves properties in the field of differential equations, for example for finding the singularities.
\r\n\r\n\tGrobner basis is a very modern and applied topic of algebra. Here we must outline the great importance of Grobner basis and polynomial ideals manipulation, in the differential equations field, an example being in fast finding normal forms of differential systems.
\r\n\r\n\tRelated to this last topic of the book, but applying to all specified topics, it must be noticed the importance of numeric algorithms. The importance of software algorithms in all fields of science is continuously increasing. Therefore, computational approach of the specified algebraic topics is very useful, with applications in other mathematical and scientific fields.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"2a81efb05ce334905cc672188033b15d",bookSignature:"Dr. Adela Ionescu",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9907.jpg",keywords:"expand, factoring, combining, simplifying, random polynomials, special polynomials, orthogonal polynomials, polynomial factorization, two variables polynomials, homogenization, parameterization, singularity, monomial order, polynomial ideal, leading monomial, normal form",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 26th 2019",dateEndSecondStepPublish:"December 17th 2019",dateEndThirdStepPublish:"February 15th 2020",dateEndFourthStepPublish:"May 5th 2020",dateEndFifthStepPublish:"July 4th 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"146822",title:"Dr.",name:"Adela",middleName:null,surname:"Ionescu",slug:"adela-ionescu",fullName:"Adela Ionescu",profilePictureURL:"https://mts.intechopen.com/storage/users/146822/images/system/146822.jpg",biography:"Dr. Adela Ionescu is a lecturer at the University of Craiova, Romania. She received her PhD degree from the Polytechnic University of Bucharest, Romania. Her research focuses on development and implementation of new methods in the qualitative and computational analysis of differential equations and their applications. This includes constructing adequate models for approaching the study of different industrial phenomena from a dynamical system standpoint and also from a computational fluid dynamics standpoint. By its optimizing techniques, the aim of the modeling is to facilitate the high understanding of the experimental phenomena and to implement new methods, techniques, and processes. Currently, Dr. Ionescu is working in developing new analytical techniques for linearizing nonlinear dynamical systems, with subsequent applications in experimental cases. The bifurcation theory and its applications in related fields is also a domain of interest for her. She has published six monographs and few scientific papers in high-impact journals. She is also a member of few scientific international associations and has attended more than 45 international conferences.",institutionString:"University of Craiova",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Craiova",institutionURL:null,country:{name:"Romania"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"287827",firstName:"Gordan",lastName:"Tot",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/287827/images/8493_n.png",email:"gordan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6217",title:"Computational Fluid Dynamics",subtitle:"Basic Instruments and Applications in Science",isOpenForSubmission:!1,hash:"0fb7b242fd063d519b361e5c2c99187b",slug:"computational-fluid-dynamics-basic-instruments-and-applications-in-science",bookSignature:"Adela Ionescu",coverURL:"https://cdn.intechopen.com/books/images_new/6217.jpg",editedByType:"Edited by",editors:[{id:"146822",title:"Dr.",name:"Adela",surname:"Ionescu",slug:"adela-ionescu",fullName:"Adela Ionescu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"46539",title:"Nutrition, Sleep and Sleep Disorders – Relations of Some Food Constituents and Sleep",doi:"10.5772/58345",slug:"nutrition-sleep-and-sleep-disorders-relations-of-some-food-constituents-and-sleep",body:'Many people suffer from excessive sleepiness during the afternoon hours. In all human individuals the alertness level decreases after the noon peak. This afternoon dip or "postprandial dip" is physiological. The alertness level rises again later in the afternoon and early evening, reaching another peak at about 7 to 8 p.m. Obesity is a recognized public health problem. It is a strong risk factor for type 2 diabetes and cardiovascular disease. Obesity is also the strongest risk factor of obstructive sleep apnea. Nutritional factors are important also in many other sleep disorders. Many patients with restless legs syndrome have low blood ferritin levels. [1] Sleepy patients with hypersomnias should avoid rapidly absorbing carbohydrates at daytime to minimize afternoon sleepiness. Adenosine is accumulating in the brain, notably in the basal forebrain, during wake, increasing the sleep pressure. [2] Caffeine, the most commonly used stimulant, is an adenosine receptor antagonist. During deep slow wave sleep glucose is stored in the glial cells. [3, 4] The brain-gut relationship is important also in the sleep-wake regulation, although well-done studies on that topic are still scarce.
Sleep disorders are a large and under-recognised problem in many parts of the world. The international classification of sleep disorders (ICSD), the most frequent and often the most severe are obstructive sleep apnoea (OSA), narcolepsy, restless legs syndrome (RLS), periodic limb movement disorder, insomnia, parasomnias, circadian rhythm disorders including jet lag and shift work, and sudden infant death syndrome. However, the major research focuses on OSA, insomnia and RLS since they are among the most highly prevalent sleep disorders and there are established links between them and other health conditions, which is the area where the majority of costs are incurred. The health system costs of sleep disorders comprise the cost of the sleep disorders themselves and the share of health costs from other conditions attributed to sleep disorders. The total European cost of brain disorders in 2010 was €798 billion [5], headaches and sleep disorders, meanwhile, only cost 285 and 348 euros respectively [6]. “The human brain is not only the site of our personality, thoughts, feelings and other human characteristics; it is also the seat of many chronic disabling diseases. These diseases have not received the attention that has been devoted to heart disease, cancer or AIDS, but in recent years there has been a growing awareness of their importance” [5]. A growing body of evidence indicates that free radical formation is a mediator of the excessive lipid peroxidation and cell damage seen in neurological disorders [7]. Antioxidant vitamins and trace elements have been shown to have biological activity in acting as scavengers for free radical’s delays the onset of defined milestones in the development of a disease. Therefore, micronutrients such as vitamins, minerals or trace elements are supported by evidence that it can delay deterioration of the disease.
Different nutritional factors, and eating, can have an effect on the CNS by different mechanisms: direct nervous connections through the vagus nerve and nucleus tractus solitarius, humoral effects, affecting absorption of different molecules, emotional and cognitive processes.
Many different neurotransmitters, neuromodulators and hormones have an important role in regulation of sleep and wakefulness, and in eating behaviour. These substances include (in alphabetical order): acetylcholine, adenosine, alpha-MSH (alpha melanocyte-stimulating hormone), cholecystokinin, dopamine, GABA, ghrelin, glutamate, glycine, insulin, histamine, hypocretin (orexin), leptin, MCH (melanin-concentrating hormone), melatonin, norepinephrine, NPY (neuropeptide Y), prostaglandins, serotonin, somatotrophin and thyrotropin. Little is known about the effect of vitamins and minerals on sleep. They will be discussed shortly later in this review.
The enteric nervous system (ENS) can be considered the body’s second brain with more than 100 million neurons of different types. Neural signals may be transmitted from gut to the CNS by neural connection and by humoral mechanisms. The afferent fibers of the gut-brain neural are vagal (parasympathetic) and (ortho)sympathetic. Different sensors respond also to distension of stomach and contractions of the intestine. Chemical stimuli (e.g. spices), gut hormones, neurotransmitters, neuromodulators, cytokines and inflammatory mediators produced by the bacterial flora in the gut-are all important. In the brainstem most afferent vagal fibers terminate on the nucleus tractus solitarius (NTS). There is a viscerotopic representation of different parts of the enteric system in the NTS. The NTS is in connection with hypothalamus and amygdala, which also plays a role in regulation of hunger and satiety. We should not forget the emotional aspects of eating (smell, taste, and situational factors during eating).
Cholecystokinin is secreted by duodenal and jejunal cells after eating food. CCK acts on vagal neurons projecting to the brainstem, giving a signal of satiety inhibiting further need for eating.
Ghrelin is secreted when a person is hungry and it increases appetite. It acts on the hypothalamus stimulating feeding, counteracting the inhibitory effects of leptin.
Leptin is manufactured mainly in fat cells in adipose tissue. Leptin counteracts the effects of neuropeptide Y and inhibits secretion of alpha-MSH (alpha melanocyte-stimulating hormone). Leptin decreases appetite and inhibits food intake contrary to ghrelin.
Alpha-MSH is in the arcuate nucleus in the brain where it acts to suppress appetite. Alpha-MSH may have also some function in the sleep-wake regulation.
Serotonin is an important neurotransmitter in the central nervous system (CNS) with important effects on sleep-wake regulation. Serotonin also has an important role in regulation of the gastrointestinal (GI) function through an interaction with the ENS. Up to 60-90 % of the total body amount of serotonin is in the GI tract, and 2-20% of all enteric neurons express serotonin. Stimulatory receptors include β-adrenoceptors, muscarinic and nicotinic Ach receptors and 5-HT3 receptors. Inhibitory receptors include alpha2-adrenceptors, histamine H3, GABA-B, adenosine A2, and 5-HT4 receptors. In the GI tract 5-HT is eliminated mainly by monoamine oxidase metabolism. [8]
Hypocretin (orexin) was originally considered to be important especially in central control of food intake [9, 10] but it is essential also in control of sleep and wakefulness. There are about 70 000 hypocretin neurons in the lateral hypothalamus. Narcolepsy, a central hypersomnia with excessive daytime sleepiness and cataplexy, is characterized by destruction of the hypocretin neurons. [11, 12] Hypocretin is involved also in energy homeostasis, nociception, reward seeking behavior, and drug addiction. [13-19] In addition to brain, hypocretins are also widely present in the gastrointestinal tract12 where they have a role in regulation of peristaltic GI motility, and in gastric, intestinal and pancreatic secretions. The hypothalamic hypocretin cells are intermingled with MCH neurons. Both hypocretin-and MCH-cells are glucose-sensing neurons. Decrease of glucose increases activity of hypocretin neurons and decreases activity of the MCH cells, producing wakefulness. Respectively, increase of glucose decreases activity of hypocretin and increases activity of MCH, producing sleepiness. These interactions explain at least partly the alerting effects of fasting and the observations that eating rapidly absorbing carbohydrates, provoking fast increase of blood glucose, increase sleepiness.
Coffee is the world’s most common psychoactive drug. Coffee includes caffeine, which is also present in coffee, tea, cola and chocolate. The stimulant and wake-producing properties of caffeine depend on its ability to reduce adenosine transmission in the brain. Caffeine acts as an antagonist to adenosine A1 and especially to adenosine A2 receptors. [20, 13]
In experimental studies the concentration of adenosine is higher during wakefulness than during sleep, it accumulates in the brain during prolonged wakefulness, and local perfusions as well as systemic administration of adenosine and its agonists induce sleep and decrease wakefulness.2, 18 Supportive findings have been observed in humans. The longer the previous wakefulness period is, the longer and deeper is the following sleep. [22] The increase in extracellular adenosine concentration decreases the activity of the wakefulness-promoting cell groups, especially the cholinergic cells in the basal forebrain. [2, 22]
In addition to coffee caffeine is found in tea (20-100 mg per 3.5 dl cup of tea), Cola-drinks (30-50 mg per 3.3 dl bottle), energy drinks and chocolate. In chocolate also theobromine is present in large quantities. Dark chocolate is stimulating and 100 grams of 70% chocolate corresponds to 1-2 cups of coffee depending on strength of the coffee and size of the cup.
One small cup (30 ml) of espresso contains 30-50 mg of caffeine, and one large cup (2-4 dl) of ordinary coffee contains 75-150 mg of caffeine. Caffeine is absorbed rapidly and the peak of action occurs in 30 to 60 minutes. The duration of action is usually 4 to 6 hours, but in elderly subjects with slower metabolism the duration may last up to more than 16 hours. A large amount of caffeine, usually over 300-500 mg, i.e. more than 4 to 8 cups of coffee, depending on individual sensitivity, causes restlessness, anxiety, trembling, tinnitus and feelings of euphoria / delirium. Everyday use of more than 500 mg caffeine leads to caffeinism with insomnia, fatigue, and different psychosomatic symptoms. Some chronic coffee drinkers have developed tolerance to caffeine, and may drink more than 10 cups of coffee daily. They have withdrawal symptoms if they do not have their coffee.
Coffee is a well-known factor disturbing sleep. [23-31]Two or three cups (or in sensitive persons just one cup of coffee) in the evening is followed by difficulty falling asleep and restless sleep. Insomniacs are usually advised to avoid coffee after 6 p.m. but in some sensitive persons with insomnia coffee at noon or early afternoon may disturb falling asleep in the evening. It is important to recognize that energy drinks such as Battery and Red Bull contain large amounts of caffeine, which is a known cause for insomnia in adolescents. [31] Paradoxically, in some persons one or two cups of coffee may ameliorate quality of sleep. The reason can be behavioral conditioning, but it is also known that caffeine is inotropic and it stimulates respiratory functions.
Mediterranean diets rich in fibres, vegetables, fruits and olive oils are associated with reduced risk of cardiovascular disease and many neurological diseases. [32-34]Some effects are explained by antioxidative effects of different phytochemicals, but there is also evidence that some effects may be due to subtoxic effects of some neurotoxic molecules in the gut.
Hormesis is the paradoxical, stimulatory or beneficial action of toxins. Hormetic effects explain why, sometimes, low doses of a given toxic substance, or radiation, may induce beneficial effects while larger doses of the same substance or radiation are toxic to cells and organisms. [35, 36] Examples of endogenous molecules with neurohormetic actions are nitric oxide, carbon monoxide, glutamate and calcium. Examples of neuroprotective substances include alpha-tocopherol, lycopene, resveratrol (red grapes, red wine, peanuts and soy), sul-foraphanes (broccoli), catechins (green tea), allicin and allium (garlic), curcumin (turmeric) and hypericin (St John’s Wort).
Hot spices may disturb sleep. Tabasco and mustard in the evening may reduce slow wave and reduce total time awake and increase time to fall asleep. The spicy food in the evening elevated body temperature during the first sleep cycle, which explains probably some of the effects of capsaicin on sleep. [37]
Increasing evidence associates sleep deprivation and sleep-related disorders with oxidative stress. Oxidative metabolism and energy production in the body generate free radicals and nonradical derivatives of oxygen and of nitrogen [38]. Normally, the mitochondrial respiratory chain generates a low level of free radicals during the process of making ATP. These free radicals, in turn, may cause further damage to the mtDNA creating a vicious cycle of damage and free radical production. It\'s unclear exactly how large a role the generation of free radicals plays in causing or worsening the symptoms of mitochondrial disease. Antioxidants, usually in the form of vitamins or trace elements, help neutralize free radicals. Although these products are involved in normal cell regulation and signal transduction, an imbalance between their generation and the antioxidant defense system results in oxidative stress. At the cellular level, the stress response can be initiated by external environmental factors that cause damage to biological macromolecules including lipids, proteins, and nucleic acids [39]. Oxidative stress in sleep apnea is thought to be produced by hypoxic events and by hypoxia-reperfusion injury, and in this way it contributes to cardiovascular complications and inflammatory processes [40, 41]. A role for disrupted sleep itself in the metabolic complications of sleep apnea has been implied by some of the evidence but not fully explored [42]. Ramanathan et al. [43] reported a significant decrease in superoxide dismutase (SOD) activity in the hippocampus and brain stem, but not in the cerebral cortex, hypothalamus, or cerebellum in rats sleep deprived for 5–11 days.
Prostaglandins (PGs) are synthesized from arachidonic acid by activated cyclo-oxygenase (COX) in response to various stimuli in various types of cells. When synthesized, PGs are immediately released and exert their actions on cells in the vicinity of their synthesis [44]. PGs act in many parts of the body, including the reproductive system, the nervous system, the cardiovascular system, the immune system and gastrointestinal system [45]. Due to their diverse biological activity, there is potential for prostaglandin analogs (prostanoids) to function as effective therapeutic agents.
Sleep, a complex phenomenon, is not merely the result of physical fatigue or decrease in activity; instead it is a complicated behavioural state requiring the integration of several neuronal processes. Prostaglandins (PGs) are ubiquitously distributed in mammalian tissues, exerting a variety of physiological and pathological effects such as disaggregation of blood platelets [46], relaxation of smooth muscle [47] and pain and inflammation [48]. It is generally accepted that PGD2 is one of the major PGs unique to the CNS, when compared to the relatively low concentrations present in peripheral tissue [49]. Studies have revealed a variety of endogenous substances that convincingly induce sleep. Among the multitude of sleep-promoting substances, PGD2 has been described as a somnolence promoting substance in the adult rat by acting on the traditional sleep centres of the VLPO area. PGD2 is produced from PGH2 precursor by enzyme PGDS that is predominately synthesised in the leptomeningeal layers and CP of the brain.
Prostaglandin D2 (PGD2) is a biologically active primary prostaglandin and a common product of arachidonic metabolism in mammals. As a major eicosanoid product of mast cells PGD2 is released in large quantities during allergic and asthmatic anaphylaxis. Several studies have reported a crucial role for the prostaglandin D system in sleep regulation. This PGD2 accumulates in the cerebrospinal fluid (CSF), where it induces physiologic sleep in rats and humans. PGD2 and PGE2 are found in high concentrations in the hypothalamus compared to other regional areas of the brain [50, 51]. In addition, marked elevations of endogenous PGD2 concentrations in CSF occur in patients who suffer African sleeping sickness [52]. Continuous infusion of PGD, into the lateral cerebral ventricle of monkeys during the diurnal period induced a sleep pattern similar to physiological night sleep [53]. It is involved in the regulation of reducing body temperature in sleep [54]. It is also produced in the brain via an alternative pathway involving a soluble, secreted PGD-synthase also known as β-trace [55]. PGD2 acts in the central nervous system in sleep induction and lowering of body temperature [51].Further pharmacological actions include inhibition of platelet aggregation and relaxation of vascular smooth muscle [56].
Glutathione is a tripeptide (gamma-glutamylcysteinylglycine) that performs many vital functions in every cell of the body [57]. It is present in two forms in the body; in a “reduced (GSH)” or an “oxidized (GSSG)” form. The majority of glutathione in the body is present in its reduced form because this is the only way it can perform its critical role. Certain tissues are more susceptible to GSH depletion than others. The reduced form of glutathione is the most active form and is found in healthy cells. GSH plays an important role in the protection of cells against damage from free radicals and other electrophiles. Several steps in the metabolism of arachidonic acid may be normally regulated by GSH-enzymes [58]. It was an early observation that GSH may function as a chemical cofactor or coenzyme in the formation of some PGs, particularly PGEs [59]. Measuring glutathione levels in specific areas of the brain of sleep-deprived animals reveals that the thalamus and hypothalamus are particularly susceptible [60]. It is essential for detoxifying cells and this process is more active during sleep [61]. The vulnerability of these tissues may contribute to some of the functional effects of sleep deprivation. The relationship between Glutathione (GSH) and sleep has been shown that it defends the cells from destructive agents such as free radicals, chemical toxins, and heavy metals that constantly assault the cells and inhibit their optimum function, causing disease and accelerating the aging process. Studies have shown that sleep deprived animals have lower glutathione levels in certain parts of the brain. The two brain areas involved in sleep are the thalamus and hypothalamus. These areas are particularly vulnerable to glutathione depletion and can lead to sleeping problems [60]. It has been reported that GSH is the only antioxidant that does not become a free radical itself after donating a free electron [62]. Further research suggested that high blood GSH concentrations correlates with long lifespan both in animals and humans [63]. Mancuso et al [64] observed that GSH levels were lower in patients with OSAS than in controls and suggests that antioxidant defences are impaired in patients with Obstructive sleep apnea syndrome (OSAS). Recently, Ntalapascha et al (2012) reported that overnight changes (%) in plasma biomarkers were significantly different between OSAS and controls for GSH/GSSG, controls had increased GSH levels overnight whereas OSAS did not.
In a recent large survey on more than 4500 people the association of many different nutrients to sleep were studied. [66] The nutrients associated with difficulty falling asleep in order of importance were lack of alpha carotene, lack of selenium, lack of dodecanoic acid, lack of calcium and increased hexadecanoic acid. [66]Difficulty maintaining sleep was associated with increased use of salt, less butanoic acid, less carbohydrates, less dodecanoic acid, less vitamin D, less lycopene, more hexanoic acid and more moisture. Non-restorative sleep was associated with more butaneoic acid less calcium, less vitamin C, less plain water, more moisture and more cholesterol. In the same survey increased daytime sleepiness was associated more moisture, more theobromine (see above for caffeine), less potassium and less plain water. [66]
Management of sleep disturbances combines nonpharmacologic and pharmacologic approaches individualized for the patient. According to the International Classification of Sleep Disorders (ICSD-2, 2005) [67] there are around 90 distinct sleep disorders. The cumulative effects of sleep loss and sleep disorders have been associated with a wide range of deleterious health consequences including an increased risk of hypertension, diabetes, obesity, depression, heart attack, stroke and nutritional status of an individual could play a major role on sleep quality. Observational studies have shown a link between sleep [68] and vitamins and minerals, whether taken in combination or individually, are the most frequently consumed dietary supplements among people today. Unlike other dietary supplement ingredients, vitamins and certain minerals are considered essential nutrients for which standards of adequacy are needed.
B vitamins are essential micronutrients and have many important functions in the body. The B vitamins generally are coenzymes in the energy metabolism in the body. They are needed for the syntheses and release of certain neurotransmitters and neurohormones that are involved in the regulation of sleep and the circadian cycle. B vitamins have been advanced as a preventive for insomnia based on research that suggests deficiencies in vitamin B6 promote psychological distress and ensuing sleep disturbance [69]. Folic acid and vitamin B12 are both B vitamins. Folic acid is often used in combination with other B vitamins [70]. Although the direct link between vitamins and insomnia is unclear, there are studies that show an association between vitamins and sleep disorders.
Vitamin B12 deficiency has been linked to various neuropsychiatric disorders including slow cerebration; confusion; memory changes; delirium, with or without hallucinations and/or delusions; depression; acute psychotic states; sleep, and reversible manic and schizophreniform states affective illness [71, 72]. It has been shown that depressed subjects have low serum vitamin B12 levels [73]. It has been reported that high levels of vitamin B12 are associated with good treatment outcome in patients with MDD [74]. However, others did not found any association [75]. It has been reported that both folate and vitamin B12 are essential in several metabolic pathways in the central nervous system, and their metabolism is intimately connected [76]. A deficiency of either vitamin causes impaired methylation in the central nervous system and may result in neurological and psychiatric disease that becomes irreversible if not treated properly [71]. Furthermore, vitamin B12 has been shown to modulate human melatonin secretion [77]. Vitamin B6 is involved in the same metabolic pathways in the central nervous system as vitamin B12 and folate. Earlier studies found a low level of plasma vitamin B6 associated with symptoms of depression [78]. Other reported that vitamin B6 supplementation has positive effects on memory performance, but not on mood [79].
Vitamin D is a group of fat-soluble prohormones synthesised in response to sunlight. The major source of vitamin D in humans is exposure to UV radiation. The active form of vitamin D in the body is 1,25-dihydroxyvitamin D, or calcitriol. Vitamin D has received a great deal of attention recently. It has long been recognized as primarily a regulator of calcium and phosphorus, helping to protect bone density. In recent years, however, our understanding of the functions of Vitamin D in the body has expanded with numerous health outcomes. Vitamin D is now understood to play an important role in metabolic and immune system functions. Vitamin D deficiency has been linked to a number of illnesses and chronic conditions, including high blood pressure, diabetes; metabolic syndrome, pulmonary disease, and chronic pain. Vitamin D supplementation during winter improve mood in healthy volunteers [80]. One possible mechanism of action is that serum 1,25-dihydroxyvitamin D levels affect the levels of serotonin in the hypothalamus [81] and thereby enhance the synthesis and transmission of serotonin, leading to improvement in mood. Novel associations between sleep symptoms and vitamin D have been reported [82, 83, 84]. Further evidence suggest that low vitamin D levels increase the risk for autoimmune disease, chronic rhinitis, tonsillar hypertrophy, cardiovascular disease, and diabetes [85]. McCarty et al. [86] reported that persistent inadequacy of vitamin D may also increase the risk for obstructive sleep apnea via promotion of adenotonsillar hypertrophy, airway muscle myopathy, and/or chronic rhinitis.
Vitamin A is the parent compound of retinoid, which regulate gene transcription by binding to nuclear retinoid receptors. It is involved in immune function, vision, reproduction, and cellular communication. Vitamin A is very important for the mucous membranes as it is needed for the proper production of mucopolysaccharides, which help to protect against infections. Barceló et al. [87], reported that patients with obstructive sleep apnoea syndrome have a decreased antioxidant capacity of vitamin A and E levels. Study of sleep in mouse models of ageing, Ransom et al [88] showed further clues as to the involvement of vitamin A in the regulation of delta oscillations. It has been suggested that retinoid signalling pathways are important for adult neural function in health and disease [89]. A definitive role for vitamin A signalling however is evident in the regulation of delta oscillations. This was first proposed by Maret et al. [90], who observed that the relative contribution of the delta wave to slow move sleep (SWS) is determined by the RA receptor RARb1. Moreover, vitamin A deficiency is known to significantly reduce the power of the delta oscillation in mice [91].
Vitamin C prevents some oxidative damage brought on by endurance exercise to the fat and muscle tissue. It is required for the transformation of dopamine into noradrenalin [92], and the function of this vitamin has been suggested to extend to neuromodulation of dopamine, regulation of acetylcholine and catecholamine release, and glutamate and GABA mediated neurotransmission [93]. Sleep symptoms are associated with weight gain and cardio metabolic disease. The potential role of diet including vitamin C that was associated independently with non-restorative sleep has been reported [82, 94], they suggest a novel associations between sleep symptoms and diet/metabolism, potentially explaining associations between sleep and cardiometabolic disease. Singh et al. [95], supplementing OSA patients with vitamins E and C concluded that that antioxidant treatment (oral vitamin E and C) reduced oxidative stress in OSA patients. Furthermore, decreased levels of antioxidants (superoxide dismutase, catalase, glutathione and homocysteine, as well as vitamins E, C, B11 and B12) and lower performance on the neuropsychological tasks were observed in patients with obstructive sleep apnea [96]. The authors suggest that an imbalance between antioxidants and pro-oxidants may contribute to neuropsychological alterations in this patient population. In restless leg syndrome (RLS), vitamins C and E and their combination are used as safe and effective treatments for reducing the severity of RLS in hemodialysis patients [97]. Ascorbic acid and sodium-dependent vitamin C transporters (SVCT) have been shown to have important functions in the peripheral nervous system (PNS) [98].
Vitamin E has active ingredients of tocopherols and tocotrienols. It exists in eight different natural forms, all of which have antioxidant properties When supplemented it may reduce damage to cell DNA and cell and it has neuroprotective effect on the brain. Vitamin E may stabilize peripheral blood circulation, suppressing abrupt deformation of vessels [99], acceleration of blood flow in vessels would increase the pressure of blood on the vessel walls, and subtle changes in vessel tension or shape might stimulate nerve fibres that are in anatomical proximity to the vessels [99]. Vitamin E normalized chronic sleep deprivation-induced reduction in the hippocampus GSH/GSSG ratio, and activity of catalase, super oxide dismutase (SOD), and glutathione peroxidase (GPx) [100]. Decreased levels of antioxidants and lower performance on the neuropsychological tasks were observed in patients with obstructive sleep apnea [10]1. This study suggests that an imbalance between antioxidants and pro-oxidants may contribute to neuropsychological alterations in this patient population.During eight-year follow-up study to investigate the link between vitamin E, namely α-tocopherol, and memory disorders, it was found that higher total serum levels of vitamin E, and higher levels of γ-tocopherol, β-tocotrienol and total tocotrienols in particular, seemed to protect against memory disorders [102]. Their results show that the entire vitamin E family plays a role in memory processes. Accordingly, measuring the levels of vitamin E from serum is the most reliable way to determine whether they are sufficiently high. Limited research indicates that supplemental vitamin E may reduce symptom occurrence in restless leg syndrome [103].
Acetyl-L-carnitine (ALC) is a naturally occurring compound that facilitates the transport of fatty acids into mitochondria for β-oxidation [104]. Acetyl-L-carnitine can enter the brain, and the acetyl group helps form acetylcholine, an important neurotransmitter. L-carnitine enhances resistance to oxidative stress by reducing DNA damage in Ataxia telangiectasia cells [105]. Positive results were seen in carnitine supplementation in depression, dysthymia, mental and physical energy, with less fatigue, muscle pain, and sleep problems [106,107,108]. Muscle weakness and hepatic dysfunction can also been noted [109]. Supplementation of carnitine has also been shown to be a mood elevator in the elderly [110]. Acetyl L-Carnitine helps the brain form acetylcholine, a neurotransmitter needed for memory and thinking [111].
Evidence for the effectiveness of L-carnitine in attention deficit and hyperactivity disorder (ADHD) has been studied [112]. Other studies in animals and human have shown that a combination of acetyl-L-carnitine and alpha-lipoic acid reversed many of the signs of aging and restored both physical and mental vigor. Low levels of carnitine are associated with a higher frequency of fragmented wakefulness [113].
L-Carnitine has been demonstrated to be therapeutic for individuals with narcolepsy. A recent study investigated the contribution of a gene polymorphism found in narcolepsy called CPT1B, which is important in fatty acid oxidation [114]. They found that individuals with narcolepsy had very low levels of serum acylcarnitine [115]. L-carnitine was given (510 mg/day) to patients with narcolepsy it was revealed that total time for dozing off during daytime in narcolepsy patients, the primary endpoint, was significantly decreased by L-carnitine supplementation compared with placebo [114]. Although narcolepsy is a rather rare disorder, daytime sleepiness is not. It is possible that low levels of carnitine could be a cause of fatigue and daytime sleepiness. For example, low serum carnitine levels have been observed in patients with chronic fatigue syndrome (CFS) – a clinically defined condition characterized by severe disabling fatigue and a combination of symptoms, such as musculoskeletal pain, difficulty in concentration and sleep disturbances.
L-carnitine supplementation also increased serum carnitine levels and reduced serum triglycerides concentration indicating improvement in the burning of fat as energy. Other researchers found that ALC treatment reduced symptoms of depression in older people [116]. It also improved dysthymia, a milder form of depression, about as well as a common medication. Several studies show that ALC may help improve certain behaviours in boys with fragile X syndrome (FXS), such as their social skills and hyperactivity. The study has linked ALC with less pain or less-intense pain in people with nerve problems from these causes. ALC is a compound of great interest in various neurological disorders such as in treating Alzheimer’s dementia, HIV-infection, diabetic neuropathies and aging [117,118,119,120]. A decrease of sleep disorders, a muscle discomfort, and of the prolonged fatigue after exercise has also been shown [121]. Carnitine supplementation could be helpful in mitochondrial disorders as the sleep problems are commonly reported in patients with mitochondrial myopathies [122,123].
There is a growing consensus that omega-3 fatty acids are essential nutrients for humans. Much of the evidence is based on physiological measurements such as neurological development and visual acuity. To better understand why this class of polyunsaturated fatty acids is required, we must determine the biochemical basis for the essentiality. Of the eight fatty acids that comprise the omega-3 metabolic pathway, the two that are most likely to have essential biochemical functions are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).
EPA can be converted to prostaglandins, thromboxanes and lipoxygenase products [124]. However, no essential role for these EPA-metabolites has been reported, and it seems unlikely that the formation of these products is the reason that omega-3 fatty acids are essential. When elevated amounts of EPA are available, the incorporation of arachidonic acid (AA) into cell phospholipids and its conversion to eicosanoid mediators is reduced. Thus, EPA acts as a competitive inhibitor of AA, and this probably accounts for some of the beneficial effects of omega-3 fatty acids in the treatment of cardiovascular and inflammatory diseases. While the possibility that EPA is essential in order to modulate the effects of AA cannot be ruled out, the amounts ordinarily present in the plasma and tissues probably are too low to competitively inhibit the actions of AA. Therefore, modulation of AA metabolism is more likely to be a pharmacological effect of omega-3 fatty acid supplements rather than an essential physiological function.
The basis for considering DHA as the biochemically essential omega-3 component is much more compelling. DHA is the most abundant omega-3 fatty acid in most tissues, and it is present in large amounts in the brain and retina. DHA is the omega-3 fatty acid required for normal development of the nervous system and optimum visual acuity. Furthermore, when an omega-3 fatty acid deficiency exists, the body compensates by replacing it with the corresponding fatty acid of the omega-6 series, omega-6 docosapentaenoic acid (DPAn-6). These findings strongly suggest that DHA has an essential biochemical function. The most likely possibility is a membrane structural effect involving the packing of phospholipid head groups or the interaction of the lipid domains with membrane proteins. The lipids that contain the highest percentages of DHA are ethanolamine plasmalogen, phosphatidylethanolamine and phosphatidylserine. Therefore, it is likely that the function of DHA involves the metabolism, trafficking or physical properties of these phospholipids. Other possibilities that must be considered include the conversion of DHA to a lipid mediator, binding of DHA to a nuclear receptor that regulates gene expression, or formation of a DHA-centered free radical. It is thought that omega-3 fatty acids in fish oils may reduce inflammation of the brain and play a part in brain development and nerve cell regeneration [125]. However, there has been mixed evidence as to the benefits of omega-3 fish oils on the brain and whether they may protect against memory decline and dementia [126,127]. A combination of omega-3 fatty acid and vitamin B12 enriched diet may exert beneficial effects on synaptic plasticity and cognition, which may prove beneficial for mental health, particularly in preventing neurocognitive disorders [128].
A central question concerning the essentiality of omega-3 fatty acids is why DHA rather than the corresponding member of the omega-6 series, DPAn-6, fulfils this purpose. The usual Western diet contains 10-to 20-times more omega-6 fatty acid, and the same metabolic pathway is utilized by both fatty acid classes. One possibility is that DHA is utilized more efficiently than DPAn-6.
However, studies with neural cells in culture indicate that there is no appreciable difference in the uptake, retention or incorporation into phospholipids of DHA as compared with DPAn-6. While more detailed measurements may reveal a functional difference between DHA and DPAn-6, no such evidence is currently available. This suggests that DHA is utilized rather than DPAn-6 because it is more available to the tissues. Although the absolute amounts of these fatty acids in the plasma lipids are very small, there ordinarily is about five-times more DHA than DPAn-6. Furthermore, the main product formed by cultured astrocytes from omega-3 fatty acid precursors is DHA, whereas the main omega-6 product is AA. Astrocytes are the site where most of the polyunsaturated fatty acid precursors are elongated and desaturated in the brain. Thus, much more DHA than DPAn-6 appears to be available in the central nervous system [129].
Polyunsaturated fatty acids (PUFA) are essential fatty acids in many mammals including humans. Both docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are omega-3 acids and they may also be obtained by eating fish oils. There is some evidence showing that a reduced amount of ingested omega-3 fatty acids is associated with fatigue, depression and problems of attention. [130-136] A sufficient amount of PUFA from food is necessary for health and well-being. Fatty fish is the best source of omga-3 acids. One hundred grams of salmon contains about 1000 mg of omega-3 acids and 100 grams of herring contains about 2000 mg. White fish meat contains much less of these essential fatty acids than fish with fatty meat. Omega-3 acids have been tested in the treatment of subjects with attention deficit disorder and in subjects with depression, female subjects with borderline personality, fatigue in multiple sclerosis, memory disturbances, dementia and some other neuropsychiatric diseases. Some randomized controlled studies have shown that omega-3 fatty acids may ameliorate mental functions, but they are also conflicting results. [130 – 137]
There is only little evidence showing that essential fatty acids may modulate sleep. In a small studied eight children. They were fed by total parenteral nutrition without essential lipids and seven other children who received a daily supplement of essential lipids in their parenteral nutrition. Slow wave sleep was significantly decreased in the group of children who did not receive fatty acids as compared to those who did. [138]No randomized clinical trials have been done in primary insomnia or in central hypersomnias.
Certain nutritional imbalances appear to influence sleep quality and play an important role in the maintenance of redox homeostasis:
Zinc is an important cofactor for metabolism relevant to neurotransmitters, prostaglandins, and melatonin, and indirectly affects dopamine metabolism [139]. The role of zinc is thought to transduce oxidative stress and other signals converging at the production of nitric oxide into an specific intracellular response, suggesting an intriguing task of "signal transducer" [140]. It contributes to structure and function of brain [141], and low levels of zinc can cause a range of symptoms including hyperactivity and jitters [142]. Epidemiological studies on the influence of zinc/diet and lifestyle implications on degenerative disease and in particular on autism has been documented. Interestingly, antioxidant and micronutrients in the diet, such as zinc, influence the development and function of immune cells, the activity of stress-related proteins and antioxidant enzymes and help to maintain genomic integrity and stability [143, 144]. Zinc is included in many enzymatic processes. [145, 146] In CNS zinc is abundant in the so-called “zinc containing” synapses of glutamatergic neurons. Such neurons are located mainly in the prefrontal lobe. Frontal dysfunction may follow lack of zinc. On the other hand, bivalent zinc may cause excitotoxic damage. Also other minerals (e.g., magnesium, manganese) are important for proper functioning of the CNS. [145, 147, 148]
Zinc was shown to play a role in inducing the synthesis of metallothionein that acts as a scavenger of metals and free radicals [149]. It is necessary for 100 different metalloenzymes and metal–enzyme complexes [150], many of them in the central nervous system. Zinc supplementation of young children in low income countries improves their neurophysiological performance [151], also in combination with iron supplements [152]. Some behavioural abnormalities in adults also seem to respond favourably to zinc supplementation, such as mood changes, emotional lability, anorexia, irritability and depression [153]. All these physiological functions occur through the action of proteins involved in the regulation of zinc homeostasis, such as metallothioneins, which bind zinc with high affinity but, at the same time, release free zinc ions in response to oxidative/nitrosative stress to modulate the expression of zinc-dependent genes and to activate antioxidant enzymes and impact immune response [154].
Zinc deficiency is difficult to evaluate due to the lack of sensitive and specific biomarkers [155]. Studies observed improved neurophysiologic performance, positive growth response, and significantly reduced mortality and morbidity with zinc supplementation in Chinese children [156]. Zinc effect on immune/inflammation responses has been reported [157]. It has been suggested that the bioavailability of zinc ion regulates the expression of pro-inflammatory cytokines and heat shock proteins such as IL-6, TNF-α and Hsp70 [158], and affects TH1/TH2 balance [159]. Several mechanisms could be involved in antioxidant function of zinc. One, zinc may protect protein sulfhydryl groups from oxidative modification by influencing the conformation and reducing potential of thiol groups. Since the sulfhydryl groups are required for the catalytic activities of several enzymes, zinc protects the enzyme’s activity from oxidative inactivation.
Second, zinc may antagonize the activity of transition metals such as iron and copper. A number of studies have linked RLS to deficiencies of dopamine and iron. The disorder may result from inefficient processing of iron in certain brain cells [160]. A decrease in iron levels in the substantia nigra and, to a lesser degree, in idiopathic RLS patients was reported [161]. Ferritin levels were lower in cerebrospinal fluid, whereas transferrin levels were higher in patients with RLS compared to controls [162]. Connor et al. [163] found that receptors which help cells absorb iron are abnormally regulated in cells that produce the nerve-signaling chemical dopamine. Zago and Oteiza [164] showed that zinc may compete with copper and iron ions and prevent transition metal mediated oxidative modifications, and third mechanism for the antioxidant property of zinc is that zinc may reduce oxidative damage indirectly by modulating antioxidant defence including (a) enzymes which catalytically remove free radicals and reactive species, like superoxide dismutase, catalase, and glutathione peroxidase; (b) proteins which minimize the availability of pro-oxidants, like transferrins, ceruloplasmin and metallothioneins; (c) low-molecular-mass ROS and RNS scavengers, like glutathione, ascorbic acid, uric acid and alpha-tocopherol.
Antioxidant enzymes such as CuZn superoxide dismutase (CuZnSOD), glutathione peroxidase (GPX) and catalase are located in different cellular compartments and have different functions. Mice defective in CuZnSOD develop neurological damage and cancer at an accelerated rate as they age [165]. GPX-1 knockout mice are much more sensitive to paraquat toxicity than the wide type mice [166]. One human study done in a European population observed that the erythrocyte SOD activities were negatively associated with the plasma zinc concentrations, and positively associated with age. They also observed that the plasma catalase and GPX activities were similar among groups having different plasma zinc concentrations [158].
Zinc is one of the micronutrients involved in behavior, learning and mental functions. Zinc is necessary for proper immune function, and to create protein and DNA. The administration of nightly melatonin, magnesium, and zinc appears to improve the quality of sleep and the quality of life in long-term care facility residents with primary insomnia [167]. micronutrients such as zinc and magnesium may play a role in facilitating sleep. Zinc exhibits an antidepressant-like activity, as stated in a preclinical model of depression [168]. Significant clinical correlates were shown by Sowa-Kućma et al. [169] related to its action as an antagonist of the glutamate/N-methyl-D-aspartate receptor. Magnesium has beneficial effects on mood and is crucial, together with zinc, in the endogenous synthesis of melatonin [170].
Zinc is an essential bio-element, which plays a fundamental role in a wide range of biochemical processes. This metal is a major component of various proteins and is an important modulator of the mammalian immune and nervous systems [171]. Zinc is one of the mineral that has such a wide application in human health. A deficiency may result in sleep disturbances. Most sleeping pills, especially when taken over long periods of time, can have multiple side effects. Alterations of blood zinc homeostasis may accompany mood disturbances as well as affect functions of the immune system [172]. Recent data indicate that alterations in zinc (a natural modulator of amino-acidergic neurotransmission) homeostasis may contribute to mood disorders and may be involved in antidepressant-like actions in laboratory models [171].
Iron has an important role in many enzymatic processes. Sufficient iron in the CNS is necessary for normal functioning of the dopamine system. Iron has an effect on functioning of the dopamine receptors. Tyrosine hydroxlase regulates dopamine synthesis. Iron and tetrahydrobiopterin are cofactors of tyrosinehydroxylase. Iron is also linked to functions of GABA, serotonin and opidiod-peptides. In experimental cell cultures dopaminergic cells of the substantia nigra can be destroyed by chelation of iron by desferoxamine. Adding opioids in these cell cultures is protective. Iron also has a catalytic effect in oxidative mechanisms of the CNS and epilepsy [173]. Measuring serum ferritin and soluble transferring receptor from a venous blood sample allows estimation of tissue iron levels. In restless legs syndrome S-ferritin is often low, in which case, giving iron per os, or intravenously in more severe cases, should be part of the treatment.
In patients with RLS 45 μg/L is usually used as a limit when one should consider giving iron supplement even if hemoglobin is normal. Usually the soluble transferrin receptor values are also low. Iron should be gioven as Fe2+(bivalent iron) together with vitamin C to increase absorption of iron from the gut. If ferritin levels do not rise and the symptoms are bothersome one might consider IV iron. Iron dextrane should be avoided because of potential risks but safe formulations exist, such as Venofer®. Several studies have already shown the benefits of IV iron starting from the early experiences from Sweden in the 1950’s. [174, 175]
Yehuda has noted that in young children sleep disturbances, fatigue and possible learning disturbances may be related to iron deficiency early in life. These findings require further studies. [176] To determine if there is a relationship between low serum ferritin and sleep disturbance in children with autism spectrum disorder, an eight-week open-label treatment trial on 33 children with oral iron supplementation has been done. Seventy-seven percent had restless sleep at baseline, which improved significantly with iron therapy, suggesting a relationship between sleep disturbance and iron deficiency in children with autism spectrum disorder. Sixty-nine percent of preschoolers and 35% of school-aged children had insufficient dietary iron intake. Mean ferritin increased significantly (16 μg/L to 29 μg/L). It may be that children with autism spectrum disorder should be screened for iron deficiency. [177]
Kuhn et al. studied the effects of five days of sleep deprivation on the circadian rhythm of serum iron in a group of six healthy male volunteers. The results were compared with a control group of five individuals, whose normal sleep cycle was preserved, but whose daily regimen was otherwise identical with the sleep deprivation group. Their biorhythm was analyzed using cosinor analysis. Sleep deprivation markedly reduced the mean level of iron, diminished the absolute and relative amplitude of oscillations, disturbed the shape of the daily course of serum iron and gradually decreased the computative acrophase, i.e., shortened the period of rhythm. Forty-eight hours of recovery resulted in only a partial normalization of all the observed changes. The potential mechanisms of the observed changes are discussed. [178]
Copper acts as a cofactor in many enzymatic processes including ceruloplasmin, monoaminexidases, cytochromoxidase, and superoxide dismutase. The largest part of copper (96%) is binded into cerluloplasmin and ferro-oxidase, which is needed in many phases of iron metabolism. [179] Lack of copper can manifest as neutropenia, microcytic anemia, growth disturbances or slowing of erythropoiesis. Large amount of vitamine C, zinc, iron and cysteine worsen the absorption of copper from the gut. Menkes syndrome is an example of a genetic disturbance of copper metabolism causing deficiency of copper. Wilson’s disease is an autosomal recessive disease that causes accumulation of copper in the liver and brain [180]. It is practically impossible to have too much copper from a normal diet. Lack of copper may follow poor diet or excessive consumption of zinc tablets.
Selenium (Se) is a natural antioxidant which delays the oxidation of polyunsaturated fatty acids and preserves the elasticity of tissue [181, 182]. Se is an essential component of thioredoxinreductase and glutathione peroxidases, with strong antioxidative and antiinflammatory properties, and there is particular interest in the potential of Se to modulate oxidative stress and induce anticancer activity [183, 184]. Selenium is required for the production of certain prostaglandins which decrease platelet aggregation [185]. Selenium deficiency has been linked to adverse mood states [183]. Several lines of evidence have shown that selenium is crucially important in the maintenance and modulation of different brain functions. [186-189] Selenium may have some role in regulation of sleep and in development of insomnia as lack of selenium was statistically significantly associated with difficulty falling asleep in a recent large survey. [130]
Selenium supplementation together with other vitamins has been found beneficial in the treatment of mood lability [190, 191].In synergy with vitamin E, selenium promotes normal growth and fertility, and improves the function of certain energy producing cells [192, 193]. Also, selenium also plays a role in your immune system and thyroid function and may contribute to sleeping abnormalities. Infusion of selective inhibitors of PGDS, e.g., tetravalent selenium compounds, reversibly, time-and dose-dependently inhibited both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep during the daytime [194], which shows that PGDS plays a crucial role in the regulation of physiological sleep. Selenium deficit may result in severe disorders [195, 196], including mood disorders. Gosney et al [197] reported the effects of micronutrient supplementation on mood in nursing home residents; selenium supplementation was directly correlated with decreases in depression scores and increases in serum levels. Supplementation with selenium resulted in reduced serum thyroid hormone T4 and increased serum thyroid hormone T3, suggesting that the additional selenium helped the rather boring T4 become the metabolically active T3. Effects of sleep deprivation (SD) and selenium (Se) on wound healing were studied [198], the number of fibroblasts and capillary vessels were higher in control and Se groups than in sleep deprivation groups, and the number of PNLs and the radiolabeled polyvalent IgG levels were higher in SD groups than in control and Se groups. OSA patients had lower concentrations of plasma Zn and erythrocyte Se [199]. Furthermore, the effect of selenium on restless leg syndrome treatment was studied [200, 201], selenium supplementation would be an alternative treatment in improvement of RLS symptoms.
Little is still known about the effects of different constituents of meals on sleep. There is evidence that a heavy lunch and rapidly absorbing carbohydrates enhance sleepiness in the afternoon. This may add to daytime sleepiness and for that reason they should be avoided when one wants to avoid fatigue. On the contrary, a light evening meal which is rich in carbohydrates may help one to fall asleep in the evening. The relationships between the enteric nervous system and CNS, and different roles of dietary nutrients and CNS need to be studied much more in the future.
Modern automobiles have made a significant contribution to the growth of society and humankind. Automobile vehicles and power train technology refined over the century of focused hard work by automobile engineering and scientist. Modern internal combustion engine propelled automobiles have satisfied multiple needs humankind in everyday life. It is difficult to imagine a world without automobiles in the present time [1]. The contribution of bearing to enhance the performance of automobiles is also immense. Bearings play’s a critical role in the enhancement of any rotating systems performance by bearing loads and facilitating the load transfer with minimum friction in addition to other functions. All rotating components of automobile systems require bearings to do its functions appropriately. Bearings improve the performance of the automobiles by supporting heavy loads and reducing friction. Major automobile sub-systems where bearings are implemented are internal combustion engines, transmissions, wheels, steering, pumps, and other electrical systems.
\nHowever, the popularity of automobiles, population density in the urban areas as well as rapidly growing urbanization has negatively impacted the environment. It raised health-related concerns to humans as well as other habitats. Internal combustion engines played the critical role of being prime mover for automobiles however, it is also a major source of pollution in urban areas due to the burning of fossil fuels and its by-products like CO2, NOx, etc. In recent times focus on emission control from regularity bodies, country specific laws are increasing which is pushing researchers to look for solutions beyond internal combustion engines. In recent times electric powertrains, hybrid powertrains have already proven to be the strong alternatives to conventional engines.
\nPresent time, the global automobile industry is focusing on clean transportation solutions including hybrid and battery electric drives. Automobiles are typically considered person-driven, personal transportation internal combustion engine (fossil fuel) propelled and independently operated transportation medium. In present times automobiles (passenger vehicles) are majorly part of personal transportation, however, incoming times the way automobiles are being utilized in practice is transforming toward shared mobility, autonomous vehicles.
\nThe automobile industry is experiencing a major technology shift. Connected, Autonomous, Shared, and Electrified (CASE) are major technology trends in the automobile utilization and technology development (Figure 1).
\nMega trends in automobile industry.
Shared mobility is more of productive utilization of vehicle and related technology which connects vehicle or operator via internet-based communication for sharing the vehicle. Basically, vehicle ownership and utilization are extended for more productive utilization vehicle. Modern information technology, internet, and availability of electronic hardware making it feasible to ensure vehicle to vehicle, vehicle to device communication, and improve vehicle utilization to improve the uptime of vehicles. Modern automobiles are expected to utilize to its maximum potential, so it is becoming imperative to monitor the health of the system in real-time.
\nThe electrification of the powertrain is another megatrend in the automobile industry. The electric vehicle powertrain is a major shift from fossil fuel-based prime mover (engine) to battery operated electric motors as a prime mover. Electrified vehicles are more efficient, less polluting making it a more transportation friendly solution. Electrification of powertrains is a major technology shift in which the propulsion of vehicles needs a lesser number of rotating parts as well as it simplifies the complete powertrain. Electric powertrains operate at lower cost as well.
\nIn the present time, commuting to work in dense traffic is putting additional stress on vehicle operators and waste of precious productive time. Autonomous operation is the solution to these new challenges. Automobiles are using more electronics hardware than ever before due to these added functionalities. Driver assisted operation as well as complete autonomous drive powertrains are implemented in practice in modern automobiles. Real-time health monitoring of vehicle is important for the trouble-free operation as well as the safety of passengers in modern era vehicles.
\nAs the automobile powertrain technologies are changing it is also percolating to critical components/subsystems like bearing. Modern vehicle bearings are far refined and technologically superior compare to traditional automobiles bearings. They are having multiple additional functionalities over the primary bearing functions. This chapter is about understanding the role of bearings in modern automobiles vehicles to achieve the mega technology shift in the automobile industry. The subsequent text introduces bearing technology research focus areas like reliability improvement, power-dense solutions, integrated functions, friction optimization, sealing/lubrication solutions [2], adoption of sensors, and also special application-specific eMotors bearings.
\nModern automobile powertrains are working on the same engineering principles however, they are having far superior performance compare former powertrains. Modern powertrains are an integrated mechanical, electrical and electronics system to achieve the objective of lesser emission, better fuel efficiency, and higher overall efficiency. The modern powertrain can be classified into two major categories: Hybrid powertrain and battery electric powertrain.
\nHybrid powertrains are having dual power sources like internal combustion engine and motor + battery arranged in multiple layouts like parallel, series, balanced, etc.
\n\nFigure 2 is a typical layout of a hybrid powertrain. It can be observed in the figure that the complete powertrain is having all the systems of a conventional powertrain including an internal combustion engine, transmissions and additionally it is also having a battery and motor to support the vehicle propulsion.
\nTypical hybrid powertrain layout [
In a hybrid powertrain number of bearings are more compare to the conventional powertrain. The bearings are used in the engine, transmission, motors, and transfer case. The hybrid powertrains are having more rotating parts however, this powertrain runs efficiently as all special events in operations like peak power requirements are fulfilled by the battery powered electric motor.
\nFull battery-electric vehicle powertrains are simpler in construction and having lesser rotating components. Battery electric vehicle powertrains are also having multiple configurations like traction motor + transmission, independent in-wheel motors for each wheel, etc.
\n\nFigure 3 is a typical layout of a battery-electric powertrain, in which it is having a floor-mounted battery pack and traction motor drive for driving the wheels. Compare to conventional ICE vehicles this layout is simple and efficient. A lesser number of rotating parts means there are lesser possibilities of parts damage due to wear and tear and hence the system life is higher. This is one of the reasons Battery Electric vehicles are claimed to have higher life as well as OEMs offers longer warranty period. However, electric vehicles are having other challenges like higher speed, higher operating temperatures of parts, and risk of fire due electric system. It is important to mention here that batteries used in electric vehicles need proper cooling to operate at prescribed temperature limit to have extending time for battery discharge as well as minimizing other risks.
\nTypical full battery electric powertrain layout [
Refer Figure 4, which is indicating the battery packs construction in battery electric vehicles and its stacking, connection to electric motors.
\nTypical battery pack in battery-electric powertrain [
In the previous section, two main types of the modern powertrain are discussed i.e. hybrid power train and full battery-electric powertrains.
\nIn this section, a comparison of different types of powertrains is presented (refer Figures 5–7).
\nBattery electric vehicle powertrain.
Multiple parameters influence the selection of the powertrains types to implement in the vehicle such as vehicle operating range, power requirements, charging time, cost, availability of access to charging infrastructure, etc.
\nBattery electric vehicles powertrains (refer Figure 5) are comparatively simples in the structure. These vehicles operate very efficiently. However, they need significant time for the recharging so the vehicle will be down until it recharges. It is expensive to increase vehicle travel distance range mainly due to battery prices.
\nA hybrid power train (refer Figure 6) utilizes the current powertrain configuration and adds the battery/emotors to enhance the performance of the powertrain as well as extend the operating range by improving the fuel efficiency of the internal combustions’ engine. It does not require an exclusive charging infrastructure as it primarily runs on fossil fuels. However, this powertrain does have emission-related concerns and having more number of rotating parts makes the powertrain complex due to effective management of dual power sources is essential optimum performance.
\nHybrid electric powertrains (HEV).
Practically, environmental impact due to fuel should be considered from well to tailpipe or from the source of raw material to conversion into power for vehicle propulsion. Considering this criterion battery vehicles are not completely emission-free vehicles. In a true sense, fuel cell vehicles (refer Figure 7) are practically green vehicles as they are not emitting any emission to the environment. Fuel cell powertrain uses hydrogen as prime energy source and utilizes chemical reactions process to charge the battery. Post electric energy conversion hydrogen atoms react with oxygen and forms water (H2O) which gets emitted from the tailpipe. Battery electric vehicles and fuel cell vehicles are having similar configurations except in addition to battery storage the fuel cell vehicles also require hydrogen fuel storage.
\nFuel cell vehicle powertrain.
Conventional ICE automatic transmission [
All the modern powertrains are available commercially, however, its penetration is driven by multiple commercial factors including acquisition cost, operation cost, and ease of re-charging (refueling). All these modern powertrain configurations uses multiple types of bearings in the powertrain including deep groove ball bearings, needle roller bearings, special ceramic rolling element bearings with many other features to provide intended functions in the vehicles which are discussed in the following sections.
\nIn modern powertrain, bearings are utilized not only for primary functions i.e. supporting the load and reducing the friction but also bearings are used with multiple other integrated functions like signal transmitting device on the motor, rotor positioning sensing bearings, etc.
\nIn conventional powertrain bearings, functions are limited to its primary functions to support operating load on the shaft and facilitate the torque transfer smoothly.
\nAdditional functions like lower the noise, the vibration of the system, and providing stiffness to the shaft system are few of the expected functions of bearing in the powertrain.
\nHowever, modern powertrains are having different requirements from the bearing considering constrains like lower weight, space as well as demanding operating conditions includes higher temperatures, speeds, inability to lubrication as well as longer service intervals, or no service for the design life of the system. The role of bearing is changing in modern automobiles. This demanding operating requirements putting immense pressure on bearing performance and achieving the desired specifications of the bearings. The role of bearing is moving from shaft support component to system solution to achieve multiple performance parameters in the intended aggregates. Bearing plays the role of catapult for the system health monitoring utilizing the vibration signature on bearing for identifying, predicting, and proactively preventing the potential breakdown of the system. The modern electronics hardware and miniaturization of the sensors facilitate integration pf the same with bearing to achieve many other intended functionalities.
\nBattery electric powertrains run at higher rotational speed and having a higher operating temperature. Being an electric system ensuring the lubrication to rotating parts is one of the major challenges. Hence, maintenance-free silent operation is one of the critical technical requirements for the bearings. The bearing design must fulfill the criteria of high-speed operation, lower NVH characteristics, high-performance lubrication, and robust sealing to retain the lubrication inside the bearing as well as protecting the bearing raceways from foreign contaminations.
\nModern powertrains, particularly motors operates at a higher rate of acceleration as well as decelerations and to facilitate the same bearing design should be capable to handle the acceleration requirements. Inappropriately design of bearings can experience the functional as well as reliability issues in the system which may leads to system breakdown or reduced life the powertrain or also invite unwanted services of the system.
\nBearing load carrying capacity is required to be higher considering the higher power of the prime movers and availability of less space due to lower weight expected from the system. The design of bearing from geometry, material selection, and manufacturing process plays a critical role to achieve higher load carrying capacities in smaller envelope dimensions. The reduced the size of bearings facilitate lower overall system weight.
\nBearings are playing a mission-critical functions in modern automotive powertrains. A deeper understanding of applications and expected functionalities play a crucial role to design of appropriate bearing for the modern automobile systems.
\n\nFigure 8 illustrates the internal combustion engine vehicles’ conventional transmission. It can be observed that bearings in this transmission are having comparatively different technical requirements. The bearings are well lubricated, having comparatively lower speeds of operation.
\n\nFigure 9 is one of the EV power train configuration of modern electric vehicle transmission. Compare to conventional IC Engine vehicles the transmission layout is simpler in modern electric automotive vehicles. However, technical specifications and performance requirements of bearings are demanding.
\nTraction motor EV powertrain.
Application and intended function in the aggregate is having an influence on the selection of bearings as well as on the performance of bearing. It is important to understand the bearing working environment, technical requirements, and application details for optimizing the performance [7]. Different aggregate applications are having different technical requirements that need to be fulfilled by bearing for optimum performance of the system. In this section, different aggregate and technical requirements of bearing in these aggregates are discussed,
\nAutomobile transmission facilitates speed and torque variation as per vehicle requirements and support engine to run in optimum performance range. The transmission system is having gears, shafts, shift system, and bearings arranged in the housing which perform speed and torque variation function together in coordination with the control system.
\nTransmission bearings are having multiple requirements to achieve the desired functions, some of them are mentioned below,
\nTransmission bearings experience combined axial and radial loads during the operation based on types of gears as well as shaft arrangement. The magnitude of the load depending upon the bearing position, gear arrangement, and torque transmission. The transmission bearings must be capable of handling these varying speeds and loads.
\nVehicle powertrains are becoming compact due to the availability of space and emphasize on the reduction of the overall weight of vehicles. Power dense bearings that are capable to carry higher loads in a smaller size are the key selection criteria of bearings for modern transmission. Power density for the bearing is achieved with the usage of better material cleanliness from commonly used bearing materials like 100Cr6, 52100 with stringent specification of nonmetallic inclusions, oxygen content etc., optimized geometry, and precise manufacturing of bearings. It is worth mentioning here that each bearing manufacturer are having its own material specifications customized based on common bearing material chemistry. Most common bearing materials are SAE 52100, DIN 100Cr6, SUJ1, SUJ2 and many more.
\nSystem efficiency is largely influenced by friction. Bearing contributes to the transmission system largely. Generally, Sealed bearings are having more friction compared to open bearings. Transmission bearings selection must have consideration of the friction.
\nModern automobiles particularly battery electric vehicles operate quietly. In the case of ICE, the engine noise suppresses some of the bearing noise, however, in modern automobiles bearings, noise is one of the major concerns. It is expected bearings with lower noise are implemented in the transmission system. In addition to noise, vibration and harshness are also to be given due consideration for the transmission bearings.
\nAutomobile manufacturers specify the system level NVH requirements and typically bearing noise requirements are derived from system level requirements. However, very few manufacturers are having clearly defined NVH specifications for bearing. It is common practice in bearing industry to specify the bearing vibration level and measure at the end of the bearing assembly line. Each bearing manufacturer is having its specification for noise quality level of bearing. Low dB, Gen C, Q44 and other bearing manufacturer internal nomenclature of bearings quality classes have been developed and specified accordingly [8]. Low-frequency noise is barely audible while high-frequency vibration does not audible to human ear. Hence noise problems at low frequency are categorized as “vibration problems” and at high frequency vibration are as “noise problems”. As a rule of thumb, the arbitrary border separating vibration problems from noise problems is 1000 Hz. In other words, below 1000 Hz is vibration and above 1000 Hz is considered as sound or noise [8].
\nModern automobile transmissions are expected to be assembly and disassembly friendly considering the automation of the manufacturing process. Complex adjustment during bearing assemblies also calls for a complex assembly process, higher assembly time which increases the overall manufacturing process complexity as well as capacities.
\nIt is expected the bearings implemented in the transmission systems are assembly as well as disassembly friendly. Most suitable bearings need to have a minimum or no adjustment during the assembly.
\nLower viscosity lubricants with multiple other additives and chemicals are used as lubricants of the transmission for the reasons like reducing the churning losses in the system etc. However, lubricants in the system having influence on the bearing selection and bearing must be suitable to operate and compatible with lubricants in the transmission. Additionally, the sealed bearing application is also common in modern transmissions, so compatible seal material should be selected to avoid damage or performance issues.
\nBearing field issues analysis over the years suggests that external contamination, poor lubrication, and abusive operating conditions are major reasons for premature bearing failure. However, in modern powertrains, it is expected that bearing manufacturers should consider these conditions and develop bearing suitable to operate or having better capabilities to handle these operating conditions.
\nA hybrid powertrain utilizes dual power sources and one of the prominent power sources is the internal combustion engine. The importance of engine is prominent even though electric battery-powered vehicles are penetrating its presence. Engine is one of the great innovations of our time and will be around for many reasons. It is expected that more than half of the vehicles will be transformed into electric, but still majority will be hybrid vehicles. Engine bearings are having some typical requirements and some of them are mentioned below,
\nThe engine converts chemical energy into thermal/mechanical energy via the fuel-burning process. The engine operates at elevated temperatures due to fuel burning. Engine bearings must have dimensional stability at elevated temperature in addition to other performance parameters. Bearing mounting and operating clearances are largely affected due to different materials and their expansion rates.
\nEngine loads and speeds are varying during the operation. Bearing kinetic should be considered for varying speeds and loads. Rolling bearings use on crankshaft and camshaft is increased in recent time. However, at the connecting rod end, needle bearings or journal bearing are commonly used in an engine for multiple reasons including varying load and speeds.
\nCrankshaft bearings are positioned bottom of the crankcase in the engine. The engine piston is reciprocating (sliding motion), so the wear of the engine part is not uncommon. However, wear particles are mixed in the oil contaminate the oil. Engine oil is the primary source of lubrication to bearings. The contaminated oil is having a negative influence on bearing operation and due consideration should be given to have good performance of bearing in this condition. Special heat treatment can be considered on the bearings rolling elements and raceways in such demanding operating conditions. Optimum ball pass frequencies selection is also important to ensure the hunting of rolling elements is not affecting the raceways or rolling element.
\nEngine bearing mounting and dismounting is one of the important considerations, not only from a service, assembly perspective but also from the operational performance perspective. Appropriate fits must be applied to the bearing to ensure bearing is loaded and operates in favorable clearance zone. Wrong selection of fits can lead to catastrophic damages to bearing with prolonged use.
\nBattery electric vehicles are using motors as prime mover of the vehicle. Hybrid powertrain vehicles are also uses motors to propel the vehicle. Traction motors used in vehicles are having many special technical requirements that are different from conventional motors.
\nSome typical requirements are discussed in the following session,
\nTraction motors bearing arrangement plays an important role in bearing selection. In most of the traction motors application two bearing arrangement (drive and non-drive end) is preferred. However, integration of transmission and motors is also common practice in electric powertrain due to which three inline bearings arrangement is also implemented.
\nThe bearing arrangement adds complexity to the overall bearing system and the need for the appropriate distribution of bearing loads. Comparatively, two bearing arrangement is simple compare to three bearings arrangements.
\nThe traction motors that drive vehicles are required to run at very high speeds – up to 30,000 rpm, or almost three times the speed of the typical industrial motor. This high-speed operation places enormous strain on the bearings in the system. High-speed operation of bearing calls for special raceway geometry as well as separator designs to handle the additional centrifugal forces.
\nIn the conventional system, lubrication oil dissipates the heat from the system and ensure the specific operating temperature. However, in electric motors heat dissipation is done via a cooling fan. Additionally, bearings are running at high speed, so the heat generation rate is higher hence the operating temperature. Motor bearing with seals and grease must have the ability to retain the lubricant inside the bearing at elevated temperature.
\nMotor bearings are expected to operate at lower noise and lower vibrations. This is one of the key requirements for the motor bearings considering the high speed of operation, varying loads, and acceleration.
\nMotor bearings are expected to be maintenance free so the grease selection, seal selection plays a major role in bearings performance and life.
\nElectric motors are very responsive to vehicle operating conditions. Motors accelerate as well as decelerate faster compare to ICE. The bearings must be designed to handling this rapid acceleration as well as deceleration. Rolling element separators, raceways geometry should be designed appropriately. Rapid acceleration and deceleration generate sliding motion in the bearing which can lead to damage to bearing raceways or other surfaces. In extreme acceleration and deceleration conditions, may result in catastrophic bearing damage or malfunction of bearing.
\nPresent bearings are made up of bearing steel material which is good conductor of electric current. In electric motor current passed though the bearing for any reason is detrimental to bearing function. However, motor feature that can affect conventional steel bearings is the high-frequency voltage switching of the inverter that produces current leakage, particularly at high motor speeds. This current leakage can pass through the bearing and causes, surface damage like surface pitting also called fluting. The initial stage of surface damage generates bearing noise, but the advance stage of surface damage can be catastrophic.
\nFront End Accessories Drive (FEAD) system is a combination of multiple subsystem drives in the vehicle for the purpose like air condition compressor drive or alternator drive etc. The system requires basic requirements like axial and radial loads, static load carrying capacity, dynamic load-carrying capacity, speed, or rpm. However, the FEAD system requirement range beyond basic load-carrying capacities. Modern automobiles are expected to provide more comfort, steering pumps and air conditioner compressors have been added to the FEAD system in addition to alternator or BSG system. Modern automobiles are using comparatively more electronics parts/system operates using electricity which are rising the battery charging capacity. The charging capacity of alternators has increased its size, accordingly, leading to a rise in the amount of torque to be transferred to alternators. The increased torque transfer demands from higher load capacities for the FEAD system bearings.
\nBelow are few technical requirements of FEAD system bearings,
\nFEAD systems are running at higher speeds like alternators are running in excess of 20000 rpm, the bearing must-have capability to handle the system increased speed. Additionally, the tendency of the engine running at a slower idle speed is also implying bearing selection due to extended time slower speed operations.
\nAcceleration and deceleration handling requirements coming from higher system speed, variation in loads.
\nLower friction is a common requirement for all the modern automobile system bearings that are also applicable for FEAD system bearings.
\nHigher emphasis on the compact and lower weight of the system demands for lower size of the bearing with a higher load-carrying capacity.
\nHigher operating temperature due to proximity to the engine as well as higher operating speed requires bearings seals, lubrication as well as dimensional stability at the higher operating temperature. The alternator bearings are expected to work at 180 to 200 Deg C temperature.
\nMaintenance-free operation is predominantly driven from no lubrication to bearing for life and sealing performance. The seals should be capable of running for the life of the vehicle and retain the lubricant inside the bearing.
\nThe wheel bearings enable low-resistance rotations of the wheels by transferring axial and radial forces and support for wheel hub, wheel, and brake disc or brake drum. In modern automobiles, the wheel bearings are equipped with sensors that send rotational speed signals to driver assistance systems like ABS, ESP, etc. [9]. The wheel bearings perform multiple functions, some of them are listed below,
\nWheel bearing provides support to wheels, so rotation accuracy of bearing facilitates the guidance to the wheel. It is an important function for vehicle stability and control during operation.
\nWheel bearings are expected to have a lower weight. However, higher stiffness or rigidity requirement is an important consideration for wheel guidance and vehicle stability. As modern automobiles are having higher road speeds achieving safety of vehicle wheel bearings plays an important role.
\nUnbalanced wheel bearing adds the unsprung mass to the system which affects the vehicle driving dynamics. As the speed of the vehicle increases the unsprung mass becomes more detrimental from the driving dynamics perspectives.
\nWheel bearings are subjected to many unknown forces due to constant changing road conditions and speeds, corners, and other conditions. The wheel bearings must be capable of absorbing the external loads without affecting the performance.
\nIn operation, the wheel bearing is subjected to many unusual conditions like contact with mud, dirt, undulations, etc. However, in modern automobiles wheel bearing is expected to sustain all the working conditions without or with minimal need for maintenance. In addition to bearing design, lubricant and seal performance is an important parameter for long service life.
\nBearing should be stable in all aspects with all operating temperature ranges and perform as per the intended level. Temperatures can affect the preload of the bearing which can be detrimental for bearing performance.
\nAs mentioned in the transmission system section, modern manufacturing considerations like automatic assembly, less complex mounting to reduce the complexity in the assembly process as well as at service time (Figures 10 and 11).
\nThe steering system controls the direction of the vehicle, so the steering system bearings are having typical requirements to receive the feedback as well as facilitate the execution the operators’ intended command to operate the vehicle with minimum lag in the system.
\nSteering system bearing must have lower frictional torque for the system to be responsive.
\nHigher frictional torque adds operator fatigue as well as a slow response from the steering system which can influence the effective functioning of the vehicle control system.
\nSteering system bearing must have higher rigidity to enhance the system integrity as well as to achieve the system responsiveness and removing any sluggishness in the system.
\nAll the bearings should have a lower wear rate, however, the steering system bearing it is critical requirements. The higher wear rate of bearings calls for frequent system adjustments or malfunctioning of the system operation.
\nSuspension system bearing relates to comfort and vehicle stability. Suspension system bearing have some unique requirements are mentioned below considering other requirements are common with other bearings as well.
\nSuspension system bearings are connecting vehicle chassis with suspension/shock absorbers, so movement in response to road conditions should smooth.
\nSuspension bearing requires a self-aligning function considering the movement. It is expected that bearing should self-align without requirements of any additional external force for smooth operation.
\nSuspension bearings support and locate to shock absorbers so it should function to provide the full deflection of the shock absorber.
\nSuspension bearing connects the suspension system with the vehicle body so any noise or undulation coming from the system results in noise. The bearing should be capable to isolate such noise from the vehicle body. A non-metallic bearing body is one of the ways to achieve this function.
\nIn general, bearings play a significant role in vital aggregates to achieve the intended objective of modern automobiles. A deeper understanding of technical requirements and intended functions help bearing engineering to provide the most appropriate solutions which optimizes vehicle performance.
\n\nFigure 12 summarizes the requirements of bearings in modern automobiles and available options to achieve the same.
\nElectric vehicle transmission.
Refer to the discussions of the last section it can be observed that bearings requirements are driving trouble-free operations, longer service life, the lower total cost of ownership, compact construction, lower friction, noise, better sealing performance as well as integrated functions.
\nBearing engineers achieve these requirements in the right proportionately blending and integrating engineering know-how of different bearing materials, manufacturing processes like heat treatment, surface finishes, and geometries. Long service life functions are achieved with lubricants, better sealing in addition to optimized geometries and design parameters. Integrated functions and application-specific solutions make bearing versatile with few additional features to be used for multiple applications.
\nModern automobiles are improved by challenging the status quo as well as by adopting the technology changes to current level of performance. The modern automobiles are also empowering and enforcing bearings innovations and technological limits to further enhance the performance of the vehicles.
\nPatent filing data provide great insights about the innovation areas in the industry. In order to understand the bearing technology development focus areas patent analysis is performed on last 10 years of global patents filing in bearing area, modern automobiles. Figure 13 is a word cloud plot of 11,300 patents titles in bearing, modern automobiles areas filed in different global patent offices. The word cloud analysis provides quick insights into the analysis areas based on the frequency of keywords in the analysis data. It does not provide in-depth analysis; however, it is a good way of understanding the focus areas in technology development and the direction industry’s research is leading.
\nElectric vehicle transmission.
Rolling bearing and bearing assembly is an obvious appearing word in the patent title hence not considered for further analysis discussion (Figure 13).
\nBearing requirements and means to achieve in bearings.
Word cloud analysis pointing more research is being focused on electric motor bearings, bearing cage, sealing, anti-friction, fluid dynamics, lubrication (areas generally connected with the higher speed of operation), bearing steel, sintered bearing (areas indicating the material related research), motor control, sensors, active hub, load detection, level adjustment, abnormality detection (areas indicates the focus on bearing plus integrated functions like sensorization), camshaft, crankshaft, magnetic bearing, sealing devices, axial bearings (indicates areas of special bearing development, application-specific solutions development), special bearings in the current family of bearings also is the areas of technological research. Patent filing analysis is good indicator of the technology areas and direction.
\nInteractions with the automobile industry players are also summarized for connecting the technology focus areas with customer mandate or request for solutions. These areas can also be considered customer challenges, pain areas, or directions for the modern automobile development.
\nModern automobile powertrain and system customer’s voice is captured in two fundamental buckets i.e. must-have requirements (highly desirable) and good to have (differentiating) requirements.
\nHigh-speed bearings, high operating temperature, current insulations or conduction, lower friction bearings, power-dense solutions, and lower noise, vibration, and harshness (NVH) solutions are highly desired by automotive customers. However, long life, maintenance-free, better reliability, integrated functions, condition monitoring, sensor bearings, lower weight bearings are considered as differentiating features.
\nPatent analysis and modern automobile customer’s voices are having a high level of similitude to interpret that bearing technology development customer requirements are indicating future development trends for the bearing. The above analysis also indicates that bearings are playing a vital role in automobiles and will also play a vital role in modern automobiles in the future.
\nIn the previous section, it is mentioned that haptic requirements from bearings are fulfilled with blending the bearing constituents in different proportions. In this section, some of the key influencers are discussed which facilitate the bearing technology development as well as achieving the modern automobiles bearing requirements.
\n\nFigure 15 is a summary of different constituents of bearings is its influence on bearing requirement achievement.
\nBearing technology focus word cloud plot of patent analysis.
Typically, bearing materials are the backbones to achieve the bearings’ fundamental functions. Different grades of materials can be implemented based on the intended requirements of the application. Bearing materials also facilitate next processes like heat treatment, machining, and many other parameters.
\nHeat treatment of bearing is very important to achieve the next level requirements of bearing. Standard heat treatment also called through hardening is commonly used to all-purpose bearings. However, if the bearings are required to operate in the demanding operating conditions, appropriate special heat treatment can be considered to enhance the bearing utility to application.
\nBearing geometry plays a role in bearing friction, NVH, and different load handing areas. Bearings geometries need to be applied based on expected application requirements. Accuracy and functional requirement need to be well balanced to achieve economics.
\nLarge number lubricants are available based on application requirements. The right selection of lubricants and seals increases the bearing utility in the application. Many times, multiple application requirements can be achieved by applying suitable sealing/lubricant on the fundamentally same bearings (Figures 14 and 15).
\nModern automobile “Voice of Customers” for bearings requirements.
Means of achieving intended bearing functions for modern automobiles.
The left side of Figure 15, summarizes the special or application-specific functional requirement fulfilling means of bearings. Customization of bearings is addressing the exact application needs however, customized solutions make bearing special and expensive.
\nReliability improvement of bearing relates to bearing performance and service life in the actual application. Reliability improvement of bearing means increasing the mean time between failure of bearing.
\nBearing reliability can be improved by implementing special consideration to demanding operating conditions with special heat treatment, better materials, lesser intervention from the operator by unitized bearings, increasing wear resistance, implementing the better lubricants, tighter manufacturing tolerances.
\nBearing life can be increased by multifold by right selection of heat treatment like compare to through hardening heat treatment, case hardening heat treatment (CN) can give 2 to 5 times more life to bearing in contaminated working environment. In addition to base material bearings can be coated to increase resistance of bearing in specific working condition. Carbide based coatings are popular in some application, alumina material coatings are used for electrical insulations.
\nPower dense solutions related to more load carrying capacity per unit bearing size. As mentioned in the last sections, the bearings are catalysts to achieve a lower weight of the aggregate. Weight is the enemy for vehicle performance particularly in electric vehicles as it directly influences range as well as battery capacity. Lower size of bearings accumulates lesser space as well is makes the aggregate system compact. An additional advantage of power-dense bearing it utilizes lesser material, so it is also another means of achieving environmentally friendly solutions.
\nCurrent bearing material development and steel cleanliness is increase material mechanical properties. Additionally, manufacturing technologies increased control over the tolerances are enabling the power dense solution. Typically, 20 to 30% higher load carrying capacity can be improved within same envelope of bearings with right selection of material, geometries and manufacturing process including heat treatment.
\nIn recent times, frugal engineering is typically connected with terms like “more for less”. In this text, integrated functions can relate to frugal engineering and can be termed as “more functions per bearing”. Bearings can be attached with sensors and utilize for the position, speed as well as direction signals. Bearings are integrated with multiple functions like in new generation wheel bearings brake and wheel mountings are combined with bearings. Integrated bearing functions support compactness, reliability improvement, however, in some cases also adds complexity.
\nFriction optimization solutions are intended to achieve better efficiency, lower losses in the bearing. Type of bearing and depending upon the application requirements bearing friction level can be achieved with the manufacturing process and tighter specification controls. Generally, bearing friction is a function of multiple factors like internal geometry, type of seals, material, lubricant, and the rolling element grade. Kinetics of bearing also plays a role in achieving the optimum friction of bearing. Adjustment in assembly, preload requirements, and assembly process influence final friction behavior of bearing in the application.
\nLower friction of bearings directly contributes to wear performance as well as the efficiency of the system.
\n\nFigure 16 depicts the typical wheel bearing friction rate. Conventionally, vehicle manufacturers were assembling different parts together including bearings into wheel hubs. However, this arrangement is not effective considering the performance parameters. Hub 1 bearing is integration of two bearing into one, so it provides 10 to 15% better friction rate, Hub 2 is further improvement having integration of out race of bearing into housing and it provided 10 to 15% friction reduction compare Hub 1. Currently most of the modern automobiles are using Hub3 which are complete integration of bearing and wheel mounting.
\nTypical wheel bearing friction rate.
This arrangement provides 50 to 60% friction reduction compare to conventional arrangements and additional 10 to 12% improvement compare to hub 2 arrangement.
\nModern automobiles are targeting maintenance-free or maintenance less and fit for life reliable systems. Bearing sealing and lubrication solutions play a vital role in the achieving maintenance and reliability target of the system. Type of sealing (seal material, geometry, type of contacts, etc.) and lubrication selection for the bearing directly affect the bearing performance in operating conditions like temperature, speed, and friction. Good sealing on the bearings also increases bearing resistance to operating condition likes keeping the contaminations out of bearing raceways. Sealed bearings are not only maintenance-friendly but also environmentally friendly too.
\n\nFigure 17 depict the importance of capping (sealing) type in the bearing. Non-contact type of capping is good when bearing need to contain the lubricant like grease into the bearing with fair protection against exclusions, however, contact types of seals gives excellent protection against exclusions as well as retention of lubricants. Low contact capping compromise based on application requirements. However, all these capping is having impact on power loss or additional friction in the system. Non-contact type of capping gives lowest power lost among the all the capping types. Contact type capping is having highest power loss compare to both the non-contact and contact type capping. Typically, low contact type seals are having 30 to 40% higher power lost compare to non-contact type. Contact type capping is having 35 to 45% higher power lost compare to low contact type capping and about 70 to 80% higher power loss compare to non-contact type capping.
\nComparison of different type of capping and power loss.
Modern automotive uses of electronics are increasing for vehicle control as well as operator comfort purposes. Vehicle control systems primarily need feedback from various systems which required sensor. Sensors are typically mounted on or around the critical rotating parts, hence sensors integrated bearings are a natural good choice for reliable signals. It is already proven that in rotating system’s generate unique vibration signatures on the support bearing. These unique vibration signals can be processed electronically for multiple vehicle systems health monitoring via sensors. Sensor bearings provides better location as well as the accuracy of the signal for different feedbacks like speed, load, temperatures, etc. for effective vehicle monitoring. The miniaturization of sensor technology is an opportunity for the integration of bearings and sensors for modern automobile sensing needs.
\nAbove bearing technology focus areas are covering major areas of eMotor bearings as well. However, some special requirements like current leakage and performance of bearing need special mention in this section (Figure 18).
\nModern automotive eMotor challenges.
High-frequency current passing through the bearing is detrimental for the bearing performance and there is a high probability of current leakage in eMotor bearings. If the current passed through the bearing generally results in “fluting” or micro pitting on the bearing races and start generating noise. The continued running of the bearing in this condition may encounter catastrophic damage. Bearing with special electric insulation coating, special materials for the rolling element (e.g. Ceramic) are developed and also under development for mass vehicle adoption by lowering cost. In addition to electric current insulations, technology development is also focused on electrical conduction solutions so the leakage current can be bypassed from the rolling area.
\nModern Automobiles technology is transforming to enable “connected, autmonomous, shared and electric (CASE). Modern automobile powertrain development is focused on higher efficiency, maintenance free (higher reliability), compactness, light weight and autonomous control using mechatronics capabilities. New generation powertrains utilize lighter materials, lesser number of components and integrated fuctions to achieve these objectives. Battery electric powertrains, hybrid power trains and hydrogen fueled fuel cell technologies are becoming popular in modern automobiles. Bearings are one of critical component (sub-system) to achieve modern powertrain’s demanding technical requirements. It is imperative to bearing engineers to understand critical technical requirements of modern automobiles aggregates functions and bearing performance expection. Understanding aggregate performance and expected bearing technical requirements facilitate optimized solution development. Bearing plays crucial role in enhancing efficiency, integrating the functions, facilitate the compactness to achieve the lightweight powertrain. Bearing technology development focus area concentrating to addressing the modern powertrain’s requirements. Bearing technology research and development areas focused on reliability improvement, power dense solutions, integrated functions, friction optimization, sealing/lubrication solutions, adoption of sensors and special application specific eMotors bearings. In addition to primary functions of bearing with the help of modern electronic technologies bearings are performing critical role of overall system health monitoring in the vehicle.
\nBearing research is typically aligned to applications requirements and trends of the machine’s technology. Modern automobiles are focusing more of passenger comfort with focus on autonomous driving, connected vehicles and electrification of vehicle. These technological requirements pushing bearing research more on sensorization, lower noise, vibration and harshness in addition to reliability improvement, maintenance free operation and application specific solutions. Bearing noise is one of the key concerns in modern powertrain specifically in electric drive trains. Bearing technologist are focusing on this aspect more than ever before. The bearing noise is directly connected to passenger comfort as well as overall system health. Bearing noise is also indication of system health as the issues with any part in the chain directly reflect to bearing vibrations. Leading bearing manufacturers are focusing on the sensor bearing technology as this feedback from vehicle critical parts is key to autonomation of modern automobile vehicles. Chronologically bearing research focus is more on application specific solutions, sensorization, maintenance operations. At system level bearings research is also focused on the “connected vehicle technologies” using on-board diagnostic using vibration signature identification capabilities at the bearing.
\nHowever, bearings are having furthermore potential to contribute and enhance role in modern automobiles in future. Future bearing technologies will focus more on the “bearing as a service” than typical product. Bearing as a service includes ability to collect the data, process the data and transfer the data for better understanding of vehicle dynamic behaviors. In modern automobiles bearing role will be second to electronics. The miniaturization of electronics complements to bearings utility exploitations and expansion to bearing space for additional functionalities. In modern automobiles the role bearings are as important and vital as the electronics considering potentials bearings provide for further integration and research.
\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. An Author, one must:
',metaTitle:"Authorship Policy",metaDescription:"IN TECH's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, one must:",metaKeywords:null,canonicalURL:"/page/authorship-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\\n\\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\\n\\nCHANGES IN AUTHORSHIP
\\n\\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\\n\\nAFFILIATION
\\n\\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\\n\\nPolicy last updated: 2017-05-29
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All contributors who meet these criteria are listed as Authors. Their exact contributions should be described in the manuscript at the time of submission.
\n\nConversely, all contributors who do not meet these criteria should be listed in the Acknowledgments section of the manuscript, along with a short description of their specific contributions.
\n\nCHANGES IN AUTHORSHIP
\n\nIf it is felt necessary to make changes to the list of Authors after a manuscript has been submitted or published, it is the responsibility of the Author concerned to provide a valid reason to amend the published list. Additionally, all listed Authors must verify and approve the proposed changes in order for any amendments to be made.
\n\nAFFILIATION
\n\nAuthors are responsible for ensuring all addresses and emails provided are correct. Under affiliation(s) all Authors should indicate where the research was conducted. Please note that no changes to the affiliation(s) can be made after the chapter has been published.
\n\nPolicy last updated: 2017-05-29
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/54719/images/system/54719.jpg",biography:"Prof. Hany A. El-Shemy received his two PhD degrees in Biochemistry and Genetic Engineering from the University of Cairo, Egypt and University of Hiroshima, Japan. He became an assistant professor in the Biochemistry Department of Cairo University, Egypt, from Sept. 1996 and advanced to associate professor in Sept. 2002 as well as a full professor in March 2007. His research interests are in the fields of plant biotechnology and medicinal plants (Molecular Biology). He registered 2 patents, wrote 12 international books, published more than 90 SCI journal papers and 45 conference presentations, and served as the technique committee member as well as chair in many international conferences and the editor in BMC Genomics as well as in Current Issues in Molecular Biology, and also a reviewer for more than 25 SCI cited journals. He received several awards, including State Prize awarded from the Academy of Science, Egypt (2004); Young Arab Researcher Prize awarded from Schuman Foundation, Jordan (2005); State Excellence Prize from the Academy of Science, Egypt (2011 and 2018); and Cairo University Prizes (2007, 2010, and 2014). He served as an expert for African Regional Center for Technology, Dakar, Senegal, plus a visiting professor at Pan African University, African Union, Nairobi, Kenya. He was appointed acting vice president of the Academy of Science and Technology from November 2013 to November 2014, Egypt. He was also a dean of the Faculty of Agriculture, Cairo University from 2014 to 2017.",institutionString:"Cairo University",institution:{name:"Cairo University",country:{name:"Egypt"}}},{id:"93369",title:"Dr.",name:"Yves",middleName:null,surname:"Gibon",slug:"yves-gibon",fullName:"Yves Gibon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Institut National de la Recherche Agronomique",country:{name:"Morocco"}}},{id:"105746",title:"Dr.",name:"A.W.M.M.",middleName:null,surname:"Koopman-van Gemert",slug:"a.w.m.m.-koopman-van-gemert",fullName:"A.W.M.M. Koopman-van Gemert",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105746/images/5803_n.jpg",biography:"Dr. Anna Wilhelmina Margaretha Maria Koopman-van Gemert MD, PhD, became anaesthesiologist-intensivist from the Radboud University Nijmegen (the Netherlands) in 1987. She worked for a couple of years also as a blood bank director in Nijmegen and introduced in the Netherlands the Cell Saver and blood transfusion alternatives. She performed research in perioperative autotransfusion and obtained the degree of PhD in 1993 publishing Peri-operative autotransfusion by means of a blood cell separator.\nBlood transfusion had her special interest being the president of the Haemovigilance Chamber TRIP and performing several tasks in local and national blood bank and anticoagulant-blood transfusion guidelines committees. Currently, she is working as an associate professor and up till recently was the dean at the Albert Schweitzer Hospital Dordrecht. She performed (inter)national tasks as vice-president of the Concilium Anaesthesia and related committees. \nShe performed research in several fields, with over 100 publications in (inter)national journals and numerous papers on scientific conferences. \nShe received several awards and is a member of Honour of the Dutch Society of Anaesthesia.",institutionString:null,institution:{name:"Albert Schweitzer Hospital",country:{name:"Gabon"}}},{id:"83089",title:"Prof.",name:"Aaron",middleName:null,surname:"Ojule",slug:"aaron-ojule",fullName:"Aaron Ojule",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Port Harcourt",country:{name:"Nigeria"}}},{id:"295748",title:"Mr.",name:"Abayomi",middleName:null,surname:"Modupe",slug:"abayomi-modupe",fullName:"Abayomi Modupe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"Landmark University",country:{name:"Nigeria"}}},{id:"94191",title:"Prof.",name:"Abbas",middleName:null,surname:"Moustafa",slug:"abbas-moustafa",fullName:"Abbas Moustafa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94191/images/96_n.jpg",biography:"Prof. Moustafa got his doctoral degree in earthquake engineering and structural safety from Indian Institute of Science in 2002. He is currently an associate professor at Department of Civil Engineering, Minia University, Egypt and the chairman of Department of Civil Engineering, High Institute of Engineering and Technology, Giza, Egypt. He is also a consultant engineer and head of structural group at Hamza Associates, Giza, Egypt. Dr. Moustafa was a senior research associate at Vanderbilt University and a JSPS fellow at Kyoto and Nagasaki Universities. He has more than 40 research papers published in international journals and conferences. He acts as an editorial board member and a reviewer for several regional and international journals. His research interest includes earthquake engineering, seismic design, nonlinear dynamics, random vibration, structural reliability, structural health monitoring and uncertainty modeling.",institutionString:null,institution:{name:"Minia University",country:{name:"Egypt"}}},{id:"84562",title:"Dr.",name:"Abbyssinia",middleName:null,surname:"Mushunje",slug:"abbyssinia-mushunje",fullName:"Abbyssinia Mushunje",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Fort Hare",country:{name:"South Africa"}}},{id:"202206",title:"Associate Prof.",name:"Abd Elmoniem",middleName:"Ahmed",surname:"Elzain",slug:"abd-elmoniem-elzain",fullName:"Abd Elmoniem Elzain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kassala University",country:{name:"Sudan"}}},{id:"98127",title:"Dr.",name:"Abdallah",middleName:null,surname:"Handoura",slug:"abdallah-handoura",fullName:"Abdallah Handoura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Supérieure des Télécommunications",country:{name:"Morocco"}}},{id:"91404",title:"Prof.",name:"Abdecharif",middleName:null,surname:"Boumaza",slug:"abdecharif-boumaza",fullName:"Abdecharif Boumaza",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Abbès Laghrour University of Khenchela",country:{name:"Algeria"}}},{id:"105795",title:"Prof.",name:"Abdel Ghani",middleName:null,surname:"Aissaoui",slug:"abdel-ghani-aissaoui",fullName:"Abdel Ghani Aissaoui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105795/images/system/105795.jpeg",biography:"Abdel Ghani AISSAOUI is a Full Professor of electrical engineering at University of Bechar (ALGERIA). He was born in 1969 in Naama, Algeria. He received his BS degree in 1993, the MS degree in 1997, the PhD degree in 2007 from the Electrical Engineering Institute of Djilali Liabes University of Sidi Bel Abbes (ALGERIA). He is an active member of IRECOM (Interaction Réseaux Electriques - COnvertisseurs Machines) Laboratory and IEEE senior member. He is an editor member for many international journals (IJET, RSE, MER, IJECE, etc.), he serves as a reviewer in international journals (IJAC, ECPS, COMPEL, etc.). He serves as member in technical committee (TPC) and reviewer in international conferences (CHUSER 2011, SHUSER 2012, PECON 2012, SAI 2013, SCSE2013, SDM2014, SEB2014, PEMC2014, PEAM2014, SEB (2014, 2015), ICRERA (2015, 2016, 2017, 2018,-2019), etc.). His current research interest includes power electronics, control of electrical machines, artificial intelligence and Renewable energies.",institutionString:"University of Béchar",institution:{name:"University of Béchar",country:{name:"Algeria"}}},{id:"99749",title:"Dr.",name:"Abdel Hafid",middleName:null,surname:"Essadki",slug:"abdel-hafid-essadki",fullName:"Abdel Hafid Essadki",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Nationale Supérieure de Technologie",country:{name:"Algeria"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5816},{group:"region",caption:"Middle and South America",value:2,count:5281},{group:"region",caption:"Africa",value:3,count:1754},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15913}],offset:12,limit:12,total:1754},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"24"},books:[{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!0,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:null,bookSignature:"Prof. Hussain Al-Rizzo and Assistant Prof. Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editedByType:null,editors:[{id:"153384",title:"Prof.",name:"Hussain",surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10964",title:"Wearable Technologies",subtitle:null,isOpenForSubmission:!0,hash:"0981ee7867892cc6e0a4edd65b792ac9",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10964.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:25},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:44},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:2},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5315},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"236",title:"Industrial, Organizational and Work Psychology",slug:"industrial-organizational-and-work-psychology",parent:{title:"Psychology",slug:"psychology"},numberOfBooks:1,numberOfAuthorsAndEditors:10,numberOfWosCitations:0,numberOfCrossrefCitations:2,numberOfDimensionsCitations:3,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"industrial-organizational-and-work-psychology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9033",title:"Career Development and Job Satisfaction",subtitle:null,isOpenForSubmission:!1,hash:"8cbf79d466559c37f4ec1bcbe6f908f5",slug:"career-development-and-job-satisfaction",bookSignature:"Josiane Fahed-Sreih",coverURL:"https://cdn.intechopen.com/books/images_new/9033.jpg",editedByType:"Edited by",editors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"68944",doi:"10.5772/intechopen.89117",title:"Job Training Satisfaction, Job Satisfaction, and Job Performance",slug:"job-training-satisfaction-job-satisfaction-and-job-performance",totalDownloads:1172,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"career-development-and-job-satisfaction",title:"Career Development and Job Satisfaction",fullTitle:"Career Development and Job Satisfaction"},signatures:"Wen-Rou Huang",authors:[{id:"305300",title:"Associate Prof.",name:"Wen-Rou",middleName:null,surname:"Huang",slug:"wen-rou-huang",fullName:"Wen-Rou Huang"}]},{id:"70697",doi:"10.5772/intechopen.90647",title:"Go Back to the Beginning: Career Development and the Challenges of Transitioning from the Military to Civilian Employment",slug:"go-back-to-the-beginning-career-development-and-the-challenges-of-transitioning-from-the-military-to",totalDownloads:280,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"career-development-and-job-satisfaction",title:"Career Development and Job Satisfaction",fullTitle:"Career Development and Job Satisfaction"},signatures:"Mirsad Bahtic, Verma Prikshat, John Burgess and Alan Nankervis",authors:[{id:"310834",title:"Prof.",name:"John",middleName:null,surname:"Burgess",slug:"john-burgess",fullName:"John Burgess"},{id:"314918",title:"Dr.",name:"Mirsad",middleName:null,surname:"Bahtic",slug:"mirsad-bahtic",fullName:"Mirsad Bahtic"},{id:"314920",title:"Dr.",name:"Verma",middleName:null,surname:"Prikshat",slug:"verma-prikshat",fullName:"Verma Prikshat"},{id:"314921",title:"Dr.",name:"Alan",middleName:"Ray",surname:"Nankervis",slug:"alan-nankervis",fullName:"Alan Nankervis"}]},{id:"70895",doi:"10.5772/intechopen.90358",title:"Contract, Gender, and Job Satisfaction: Evidence from Benin",slug:"contract-gender-and-job-satisfaction-evidence-from-benin",totalDownloads:176,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"career-development-and-job-satisfaction",title:"Career Development and Job Satisfaction",fullTitle:"Career Development and Job Satisfaction"},signatures:"Monsoï Kenneth Colombiano Kponou",authors:[{id:"311276",title:"Dr.",name:"Kenneth",middleName:null,surname:"Kponou",slug:"kenneth-kponou",fullName:"Kenneth Kponou"}]}],mostDownloadedChaptersLast30Days:[{id:"68944",title:"Job Training Satisfaction, Job Satisfaction, and Job Performance",slug:"job-training-satisfaction-job-satisfaction-and-job-performance",totalDownloads:1174,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"career-development-and-job-satisfaction",title:"Career Development and Job Satisfaction",fullTitle:"Career Development and Job Satisfaction"},signatures:"Wen-Rou Huang",authors:[{id:"305300",title:"Associate Prof.",name:"Wen-Rou",middleName:null,surname:"Huang",slug:"wen-rou-huang",fullName:"Wen-Rou Huang"}]},{id:"72489",title:"Career Development: An Enabler for Job Satisfaction",slug:"career-development-an-enabler-for-job-satisfaction",totalDownloads:327,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"career-development-and-job-satisfaction",title:"Career Development and Job Satisfaction",fullTitle:"Career Development and Job Satisfaction"},signatures:"Ratna Sinha",authors:[{id:"310385",title:"Dr.",name:"Ratna",middleName:null,surname:"Sinha",slug:"ratna-sinha",fullName:"Ratna Sinha"}]},{id:"72678",title:"Introductory Chapter: Job Satisfaction and Career Development",slug:"introductory-chapter-job-satisfaction-and-career-development",totalDownloads:528,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"career-development-and-job-satisfaction",title:"Career Development and Job Satisfaction",fullTitle:"Career Development and Job Satisfaction"},signatures:"Josiane Fahed-Sreih",authors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}]},{id:"72512",title:"Significance of Soft Skills in Career Development",slug:"significance-of-soft-skills-in-career-development",totalDownloads:302,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"career-development-and-job-satisfaction",title:"Career Development and Job Satisfaction",fullTitle:"Career Development and Job Satisfaction"},signatures:"Mitashree Tripathy",authors:[{id:"307471",title:"Dr.",name:"Mitashree",middleName:null,surname:"Tripathy",slug:"mitashree-tripathy",fullName:"Mitashree Tripathy"}]},{id:"70697",title:"Go Back to the Beginning: Career Development and the Challenges of Transitioning from the Military to Civilian Employment",slug:"go-back-to-the-beginning-career-development-and-the-challenges-of-transitioning-from-the-military-to",totalDownloads:281,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"career-development-and-job-satisfaction",title:"Career Development and Job Satisfaction",fullTitle:"Career Development and Job Satisfaction"},signatures:"Mirsad Bahtic, Verma Prikshat, John Burgess and Alan Nankervis",authors:[{id:"310834",title:"Prof.",name:"John",middleName:null,surname:"Burgess",slug:"john-burgess",fullName:"John Burgess"},{id:"314918",title:"Dr.",name:"Mirsad",middleName:null,surname:"Bahtic",slug:"mirsad-bahtic",fullName:"Mirsad Bahtic"},{id:"314920",title:"Dr.",name:"Verma",middleName:null,surname:"Prikshat",slug:"verma-prikshat",fullName:"Verma Prikshat"},{id:"314921",title:"Dr.",name:"Alan",middleName:"Ray",surname:"Nankervis",slug:"alan-nankervis",fullName:"Alan Nankervis"}]},{id:"72506",title:"Maintaining Positive Employee Relations: Does It Apply to Millennials?",slug:"maintaining-positive-employee-relations-does-it-apply-to-millennials-",totalDownloads:199,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"career-development-and-job-satisfaction",title:"Career Development and Job Satisfaction",fullTitle:"Career Development and Job Satisfaction"},signatures:"Josiane Fahed-Sreih",authors:[{id:"103784",title:"Dr.",name:"Josiane",middleName:null,surname:"Fahed-Sreih",slug:"josiane-fahed-sreih",fullName:"Josiane Fahed-Sreih"}]},{id:"70895",title:"Contract, Gender, and Job Satisfaction: Evidence from Benin",slug:"contract-gender-and-job-satisfaction-evidence-from-benin",totalDownloads:176,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"career-development-and-job-satisfaction",title:"Career Development and Job Satisfaction",fullTitle:"Career Development and Job Satisfaction"},signatures:"Monsoï Kenneth Colombiano Kponou",authors:[{id:"311276",title:"Dr.",name:"Kenneth",middleName:null,surname:"Kponou",slug:"kenneth-kponou",fullName:"Kenneth Kponou"}]}],onlineFirstChaptersFilter:{topicSlug:"industrial-organizational-and-work-psychology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/101869/frank-liou",hash:"",query:{},params:{id:"101869",slug:"frank-liou"},fullPath:"/profiles/101869/frank-liou",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()