Analysis of different condition of muscles
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"},{slug:"intechopen-s-chapter-awarded-the-guenther-von-pannewitz-preis-2020-20200715",title:"IntechOpen's Chapter Awarded the Günther-von-Pannewitz-Preis 2020"},{slug:"suf-and-intechopen-announce-collaboration-20200331",title:"SUF and IntechOpen Announce Collaboration"}]},book:{item:{type:"book",id:"2270",leadTitle:null,fullTitle:"Fourier Transform - Materials Analysis",title:"Fourier Transform",subtitle:"Materials Analysis",reviewType:"peer-reviewed",abstract:"The field of material analysis has seen explosive growth during the past decades. Almost all the textbooks on materials analysis have a section devoted to the Fourier transform theory. For this reason, the book focuses on the material analysis based on Fourier transform theory. The book chapters are related to FTIR and the other methods used for analyzing different types of materials. It is hoped that this book will provide the background, reference and incentive to encourage further research and results in this area as well as provide tools for practical applications. It provides an applications-oriented approach to materials analysis written primarily for physicist, Chemists, Agriculturalists, Electrical Engineers, Mechanical Engineers, Signal Processing Engineers, and the Academic Researchers and for the Graduate Students who will also find it useful as a reference for their research activities.",isbn:null,printIsbn:"978-953-51-0594-7",pdfIsbn:"978-953-51-4293-5",doi:"10.5772/2659",price:119,priceEur:129,priceUsd:155,slug:"fourier-transform-materials-analysis",numberOfPages:274,isOpenForSubmission:!1,isInWos:1,hash:"5e094b066da527193e878e160b4772af",bookSignature:"Salih Mohammed Salih",publishedDate:"May 23rd 2012",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",numberOfDownloads:40414,numberOfWosCitations:247,numberOfCrossrefCitations:122,numberOfDimensionsCitations:289,hasAltmetrics:1,numberOfTotalCitations:658,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 11th 2011",dateEndSecondStepPublish:"June 8th 2011",dateEndThirdStepPublish:"October 13th 2011",dateEndFourthStepPublish:"November 12th 2011",dateEndFifthStepPublish:"March 11th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7,8",editedByType:"Edited by",kuFlag:!1,editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",middleName:"Mohammed",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih",profilePictureURL:"https://mts.intechopen.com/storage/users/111691/images/system/111691.jpg",biography:"Salih Mohammed Salih (Member IEEE) was born in Babylon-1970, Iraq. He received the B.Sc. degree in Electrical Department from the University of Baghdad (1999)-Iraq, M.Sc. and Ph.D. degrees in Communication Engineering from the University of Technology-Iraq in 2003 and 2008 respectively, Since 2005, he has been with the University of Anbar-Iraq, where he is lecturer in Electrical Engineering Department. His research interests include: MC-CDMA, OFDM, MIMO-OFDM, CDMA, Modulation Techniques, Security, Wireless Communication, Radar, and Computer Networks, and renewable Energy Resources. He completed part of his Ph.D. research in MC-CDMA at the National Technical University of Athens.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Anbar",institutionURL:null,country:{name:"Iraq"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"943",title:"Mathematical Modeling",slug:"metals-and-nonmetals-mathematical-modeling"}],chapters:[{id:"37065",title:"Fourier Series and Fourier Transform with Applications in Nanomaterials Structure",doi:"10.5772/37890",slug:"fourier-series-and-fourier-transform-with-applications-in-nanomaterials-structure",totalDownloads:6073,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Florica Matei and Nicolae Aldea",downloadPdfUrl:"/chapter/pdf-download/37065",previewPdfUrl:"/chapter/pdf-preview/37065",authors:[{id:"114680",title:"Dr.",name:"Florica",surname:"Matei",slug:"florica-matei",fullName:"Florica Matei"},{id:"114681",title:"Dr.",name:"Nicolae",surname:"Aldea",slug:"nicolae-aldea",fullName:"Nicolae Aldea"}],corrections:null},{id:"37066",title:"High Resolution Mass Spectrometry Using FTICR and Orbitrap Instruments",doi:"10.5772/37423",slug:"high-resolution-mass-spectrometry-using-fticr-and-orbitrap-instruments",totalDownloads:3674,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Paulo J. Amorim Madeira, Pedro A. Alves and Carlos M. Borges",downloadPdfUrl:"/chapter/pdf-download/37066",previewPdfUrl:"/chapter/pdf-preview/37066",authors:[{id:"90296",title:"Dr.",name:"Paulo J.",surname:"Madeira",slug:"paulo-j.-madeira",fullName:"Paulo J. Madeira"},{id:"112689",title:"Prof.",name:"Carlos",surname:"Borges",slug:"carlos-borges",fullName:"Carlos Borges"}],corrections:null},{id:"37067",title:"Fourier Transform Infrared Spectroscopy for Natural Fibres",doi:"10.5772/35482",slug:"fourier-transform-infrared-spectroscopy-for-natural-fibres",totalDownloads:8205,totalCrossrefCites:113,totalDimensionsCites:274,signatures:"Mizi Fan, Dasong Dai and Biao Huang",downloadPdfUrl:"/chapter/pdf-download/37067",previewPdfUrl:"/chapter/pdf-preview/37067",authors:[{id:"104647",title:"Prof.",name:"Mizi",surname:"Fan",slug:"mizi-fan",fullName:"Mizi Fan"}],corrections:null},{id:"37068",title:"Fourier Transform Infrared Spectroscopy for the Measurement of Spectral Line Profiles",doi:"10.5772/36120",slug:"fourier-transform-infrared-spectroscopy-for-the-measurement-of-spectral-line-profiles",totalDownloads:2773,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Hassen Aroui, Johannes Orphal and Fridolin Kwabia Tchana",downloadPdfUrl:"/chapter/pdf-download/37068",previewPdfUrl:"/chapter/pdf-preview/37068",authors:[{id:"107138",title:"Prof.",name:"Hassen",surname:"Aroui",slug:"hassen-aroui",fullName:"Hassen Aroui"},{id:"114671",title:"Dr.",name:"Johannes",surname:"Orphal",slug:"johannes-orphal",fullName:"Johannes Orphal"},{id:"114906",title:"Dr.",name:"Fridolin",surname:"Kwabia",slug:"fridolin-kwabia",fullName:"Fridolin Kwabia"}],corrections:null},{id:"37069",title:"Fourier Transform Spectroscopy of Cotton and Cotton Trash",doi:"10.5772/37349",slug:"fourier-transform-spectroscopy-of-cotton-and-cotton-trash",totalDownloads:3850,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Chanel Fortier",downloadPdfUrl:"/chapter/pdf-download/37069",previewPdfUrl:"/chapter/pdf-preview/37069",authors:[{id:"112342",title:"Dr.",name:"Chanel",surname:"Fortier",slug:"chanel-fortier",fullName:"Chanel Fortier"}],corrections:null},{id:"37070",title:"Fourier Transformation Method for Computing NMR Integrals over Exponential Type Functions",doi:"10.5772/35721",slug:"fourier-transformation-method-for-computing-nmr-integrals-over-exponential-type-functions",totalDownloads:1758,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Hassan Safouhi",downloadPdfUrl:"/chapter/pdf-download/37070",previewPdfUrl:"/chapter/pdf-preview/37070",authors:[{id:"105608",title:"Prof.",name:"Hassan",surname:"Safouhi",slug:"hassan-safouhi",fullName:"Hassan Safouhi"}],corrections:null},{id:"37071",title:"Molecular Simulation with Discrete Fast Fourier Transform",doi:"10.5772/35470",slug:"molecular-simulation-with-discrete-fast-fourier-transform",totalDownloads:1616,totalCrossrefCites:0,totalDimensionsCites:2,signatures:"Xiongwu Wu and Bernard R. Brooks",downloadPdfUrl:"/chapter/pdf-download/37071",previewPdfUrl:"/chapter/pdf-preview/37071",authors:[{id:"104593",title:"Dr.",name:"Xiongwu",surname:"Wu",slug:"xiongwu-wu",fullName:"Xiongwu Wu"},{id:"111719",title:"Dr.",name:"Bernard",surname:"Brooks",slug:"bernard-brooks",fullName:"Bernard Brooks"}],corrections:null},{id:"37072",title:"Charaterization of Pore Structure and Surface Chemistry of Activated Carbons – A Review",doi:"10.5772/37460",slug:"charaterization-of-pore-structure-and-surface-chemistry-of-activated-carbons-a-review",totalDownloads:3660,totalCrossrefCites:3,totalDimensionsCites:5,signatures:"Bingzheng Li",downloadPdfUrl:"/chapter/pdf-download/37072",previewPdfUrl:"/chapter/pdf-preview/37072",authors:[{id:"112845",title:"Dr.",name:"Bingzheng",surname:"Li",slug:"bingzheng-li",fullName:"Bingzheng Li"}],corrections:null},{id:"37073",title:"Bioleaching of Galena (PbS)",doi:"10.5772/35434",slug:"bioleaching-of-galena-pbs-",totalDownloads:2569,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"E. R. Mejia, J. D. Ospina, M. A. Marquez and A. L. Morales",downloadPdfUrl:"/chapter/pdf-download/37073",previewPdfUrl:"/chapter/pdf-preview/37073",authors:[{id:"104393",title:"MSc.",name:"Erica",surname:"Mejia",slug:"erica-mejia",fullName:"Erica Mejia"},{id:"104409",title:"Dr.",name:"Marco",surname:"Marquez",slug:"marco-marquez",fullName:"Marco Marquez"},{id:"104411",title:"MSc.",name:"Juan",surname:"Ospina",slug:"juan-ospina",fullName:"Juan Ospina"},{id:"104414",title:"Dr.",name:"Alvaro",surname:"Morales",slug:"alvaro-morales",fullName:"Alvaro Morales"}],corrections:null},{id:"37074",title:"Application of Hankel Transform for Solving a Fracture Problem of a Cracked Piezoelectric Strip Under Thermal Loading",doi:"10.5772/36776",slug:"application-of-hankel-transform-for-solving-a-fracture-problem-of-a-cracked-piezoelectric-strip-unde",totalDownloads:1934,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Sei Ueda",downloadPdfUrl:"/chapter/pdf-download/37074",previewPdfUrl:"/chapter/pdf-preview/37074",authors:[{id:"109764",title:"Prof.",name:"Sei",surname:"Ueda",slug:"sei-ueda",fullName:"Sei Ueda"}],corrections:null},{id:"37075",title:"Eliminating the Undamaging Fatigue Cycles Using the Frequency Spectrum Filtering Techniques",doi:"10.5772/36169",slug:"eliminating-the-undamaging-fatigue-cycles-using-the-frequency-spectrum-filtering-techniques",totalDownloads:2563,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"S. Abdullah, T. E. Putra and M. Z. Nuawi",downloadPdfUrl:"/chapter/pdf-download/37075",previewPdfUrl:"/chapter/pdf-preview/37075",authors:[{id:"107331",title:"MSc.",name:"Teuku Edisah",surname:"Putra",slug:"teuku-edisah-putra",fullName:"Teuku Edisah Putra"},{id:"137085",title:"Prof.",name:"Shahrum",surname:"Abdullah",slug:"shahrum-abdullah",fullName:"Shahrum Abdullah"},{id:"137086",title:"Dr.",name:"Mohd. Zaki",surname:"Nuawi",slug:"mohd.-zaki-nuawi",fullName:"Mohd. Zaki Nuawi"}],corrections:null},{id:"37076",title:"Fourier Transform Sound Radiation",doi:"10.5772/36035",slug:"fourier-transform-sound-radiation",totalDownloads:1739,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"F. X. Xin and T. J. Lu",downloadPdfUrl:"/chapter/pdf-download/37076",previewPdfUrl:"/chapter/pdf-preview/37076",authors:[{id:"106866",title:"Dr.",name:"Fengxian",surname:"Xin",slug:"fengxian-xin",fullName:"Fengxian Xin"},{id:"132539",title:"Prof.",name:"Tianjian",surname:"Lu",slug:"tianjian-lu",fullName:"Tianjian Lu"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"2269",title:"Fourier Transform",subtitle:"Applications",isOpenForSubmission:!1,hash:"eef6992c6b1a91e721958aad15dd33c7",slug:"fourier-transform-applications",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2269.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1860",title:"Fourier Transform",subtitle:"Signal Processing",isOpenForSubmission:!1,hash:"b8f6c94b687a4f0351f2e8d961e35275",slug:"fourier-transform-signal-processing",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/1860.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4538",title:"Fourier Transform",subtitle:"Signal Processing and Physical Sciences",isOpenForSubmission:!1,hash:"4dfc78ab6a3abc41b6136a4a9e2b8afa",slug:"fourier-transform-signal-processing-and-physical-sciences",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/4538.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9371",title:"Atomistic Simulation of Anistropic Crystal Structures at Nanoscale",subtitle:null,isOpenForSubmission:!1,hash:"5f2d16d47501934bf1f4a1e1e948bca8",slug:"atomistic-simulation-of-anistropic-crystal-structures-at-nanoscale",bookSignature:"Jia Fu",coverURL:"https://cdn.intechopen.com/books/images_new/9371.jpg",editedByType:"Authored by",editors:[{id:"292569",title:"Dr.",name:"Jia",surname:"Fu",slug:"jia-fu",fullName:"Jia Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"4",chapterContentType:"compact",authoredCaption:"Authored by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66301",slug:"corrigendum-to-denim-fabrics-woven-with-dual-core-spun-yarns",title:"Corrigendum to: Denim Fabrics Woven with Dual Core-Spun Yarns",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66301.pdf",downloadPdfUrl:"/chapter/pdf-download/66301",previewPdfUrl:"/chapter/pdf-preview/66301",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66301",risUrl:"/chapter/ris/66301",chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]}},chapter:{id:"63209",slug:"denim-fabrics-woven-with-dual-core-spun-yarns",signatures:"Osman Babaarslan, Esin Sarioğlu, Halil İbrahim Çelik and Münevver\nArtek Avci",dateSubmitted:"February 5th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"February 13th 2019",book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"119775",title:"Prof.",name:"Osman",middleName:null,surname:"Babaarslan",fullName:"Osman Babaarslan",slug:"osman-babaarslan",email:"teksob@cu.edu.tr",position:null,institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}},{id:"178353",title:"Dr.",name:"Halil",middleName:"İbrahim",surname:"Çelik",fullName:"Halil Çelik",slug:"halil-celik",email:"hcelik@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"216179",title:"Dr.",name:"Esin",middleName:null,surname:"Sarıoğlu",fullName:"Esin Sarıoğlu",slug:"esin-sarioglu",email:"sarioglu@gantep.edu.tr",position:null,institution:{name:"Gaziantep University",institutionURL:null,country:{name:"Turkey"}}},{id:"245674",title:"Mrs.",name:"Münevver",middleName:null,surname:"Ertek Avci",fullName:"Münevver Ertek Avci",slug:"munevver-ertek-avci",email:"Munevver.ErtekAvci@calikdenim.com",position:null,institution:null}]},book:{id:"7242",title:"Engineered Fabrics",subtitle:null,fullTitle:"Engineered Fabrics",slug:"engineered-fabrics",publishedDate:"February 13th 2019",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"8807",leadTitle:null,title:"Organic Synthesis",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tOrganic synthesis has always been one of the central topics of research for the scientific community in the academic laboratories and industrial world. Many striking journal articles and remarkable reviews and books have been published in the past year describing the practicability and applications of the subject demonstrating the importance of organic synthesis. In the present book, we will be putting together the topics in organic synthesis which may include but not limited to, (1) the basic terms and concepts, (2) various organic reactions including reduction, oxidation, addition, elimination, rearrangements, and cycloadditions, (3) Total Synthesis of Natural products, (4) transition metal catalysts, organocatalysts, enzymes and biotransformations, (5) applications in medicinal chemistry and drug design and development, (6) purification methods and characterization techniques, etc. To set a limit and to increase the scope of the book, author(s) are encouraged to send the chapters that include selected examples with practical applications and good yielding reactions reported within the past decade. Older topics with significant findings or their essence to prepare the foundation may be included in the chapter are welcomed as well.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:null,priceUsd:null,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"f3bbbd989d0896f142d317ccb8abcc35",bookSignature:"Dr. Prashant S Deore",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8807.jpg",keywords:"Natural Product Synthesis, Organic Reaction Mechanism, Stereoselective synthesis, Chirality, C-H Functionalization, Cross-Coupling Reactions, Heterogeneous Catalysis, Homogeneous Catalysis, Green Synthesis, Green Solvents and Reagents, Bioorganic synthesis, Click Chemistry",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"December 10th 2018",dateEndSecondStepPublish:"January 14th 2019",dateEndThirdStepPublish:"March 15th 2019",dateEndFourthStepPublish:"May 20th 2019",dateEndFifthStepPublish:"July 19th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"251769",title:"Dr.",name:"Prashant",middleName:"S",surname:"Deore",slug:"prashant-deore",fullName:"Prashant Deore",profilePictureURL:"https://mts.intechopen.com/storage/users/251769/images/system/251769.png",biography:"Dr. Prashant S. Deore was born in India. He received a Master’s degree in organic chemistry from Pune University in 2007. In the same year, he qualified with the SET and CSIR-NET (JRF) and joined in the group of Prof. Narshinha P. Argade for the doctoral studies in National Chemical Laboratory, India. In 2014, he awarded with a Ph. D. in Chemistry and was a recipient of the 2nd prize in “2014 Eli Lilly and Company Asia Outstanding Thesis Awards”. In July 2014 he moved to Canada and joined as a postdoctoral researcher in the group of Prof. Richard Manderville at the University of Guelph, Canada. Presently, Dr. Deore is working on the collaborative project between the University of Guelph and Aterica health Inc., and providing consulting to the company. His research interest includes organic synthesis, fluorescent probes development, nucleic acid synthesis and modifications, and aptasensor development for proteins and food toxins.",institutionString:"University of Guelph",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270935",firstName:"Rozmari",lastName:"Marijan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270935/images/7974_n.png",email:"rozmari@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"40132",title:"Design and Control of an EMG Driven IPMC Based Artificial Muscle Finger",doi:"10.5772/48814",slug:"design-and-control-of-an-emg-driven-ipmc-based-artificial-muscle-finger",body:'The medical, rehabilitation and bio-mimetic technologydemands human actuated devices which can support in the daily life activities such as functional assistance or functional substitution of human organs. These devices can be used in the form of prosthetic, skeletal and artificial muscles devices (Andreasen et al., 2005; Bitzer & Smagt, 2006; DoNascimento et al., 2008). However, we still have some difficulties in the practical use of these devices. The major challenges to overcome are the acquisition of the user’s intention from his or her bionic signals and to provide with an appropriate control signal for the device. Also, we need to consider the mechanical design issues such as lightweight and small size with flexible behavior etc (Arieta et al., 2006;Shenoy et al., 2008). For the bionic signals, the electromyography (EMG) signal can be used to control these devices, which reflect the muscles motion, and can be acquired from the body surface. We are familiar with the fact that ionic polymer metal composite (IPMC) has tremendous potential as an artificial muscle. This can be stimulated by supplying a small voltage of 3V and shows evidence of a large bending behavior (Shahinpoor & Kim, 2001; 2002; 2004; Bar-Cohen, 2002).In place of the supply voltage from external source for actuating an IPMC, EMG signal can be used where EMG electrodes show a reliable approach to extract voltage signal from body (Jain et al. 2010a;2010b; 2011). Using this voltage signal via EMG sensor, IPMC can illustrate the bio-mimetic behavior through the movement of human muscles. Therefore, an IPMC is used as an artificial muscle finger for the bio-mimetic/micro robot.
The main objective of this chapter is to discuss the design and control of an IPMC based artificial muscle finger where this finger is actuated by EMG signal via movement of human finger. The movement is sensed by EMG sensor which provides signal for actuating the IPMC. When designing IPMC artificial muscle finger based micro gripper for handling the light weight components in an assembly, IPMC bending behaviour is utilized to hold the object. During holding the object, stable EMG signal is required. For this purpose, stable EMG signal is sent through proportional–integral–derivative (PID) controller to the system. Experimentally, it is found that IPMC based artificial muscle finger achieves similar movement like human index finger. This IPMC based artificial muscle finger attains deflection upto 12 mm. By developing a prototype of IPMC artificial muscle finger based micro gripper, it is demonstrated that EMG driven system like IPMC artificial muscle finger based micro gripper can be applicable in handling of light weight components. The major advantages of such system are that IPMC based artificial muscle finger tip shows the compliant behavior and consumes less energy for actuation. Therefore, EMG driven system shows enough potential to substitute for conventional mechanism in micro manipulation and rehabilitation technology.
This chapter is organized as follows: Section 2 describes the prior research related to EMG applications in robotics and bio-mimetics. Section 3.1 explains the basic design of IPMC artificial muscle finger based micro gripper which is driven by EMG signal. The basic tendon of index finger is studied in section 3.2 where muscles are identified for actuation of IPMC based artificial muscle finger. In section 3.3, a model for controlling the EMG signal is highlighted. Different types of control system are implemented for achieving stable data from EMG signal via index finger which is sent to IPMCbased artificial muscle finger. Section 4 discusses experimental testing setup for activation of IPMC based artificial muscle finger by human finger through EMG. In section 5, the results are discussed and the conclusions are drawn in section 6.The future work is recommended in section 7.
In the past, some researchers have reported work related to shape memory alloy (SMA) and other similar actuators to develop the bio-mimetic fingers but IPMC artificial muscle based finger related work is limited. Pfeiffer et al. (1999) have designed artificial limbs and robot prostheses that are lightweight, compact and dexterous. This mimics the human anatomy and maintains a high lifting capability. EMG control is used for SMA actuated fingers in robot prostheses. De Laurentis & Mavroidis (2002) have discussed the design of a 12 degree-of-freedom (DOF) SMA actuated artificial hand where the SMA wires are embedded intrinsically within the hand structure. Cocaud & Jnifene (2003) have investigated the use of artificial muscles as SMA actuators for robot manipulators. A solution is established in order to determine the optimal position of a muscle in various musculoskeletal configurations. Herrera et al. (2004) have also designed and constructed a prosthesis where linear actuators are used for designing the mechanical system and EMG sensors are introduced for designing the electrical control system. Bundhoo et al. (2005, 2008) have reported the design of artificially actuated finger by SMA towards development of bio-mimetic prosthetic hands. Different finger joints are actuated through SMA wires via EMG and the relationship between elongation/contraction of the SMA wires & the finger joints have been obtained. O’Toole & McGrath (2007) have also focused on mechanical design of a 12 DOF SMA actuated artificial hand. The SMA material is used for combination of high strength polymers such as polytetrafluoroethylene (PTFE), polyether ether ketone (PEEK) and low density metals such as titanium.Lau (2009) have carried out research work on a design and development of an intelligent prosthetic hand based on hybrid actuation through DC motor & SMA wires. These are controlled by myoelectric signal. Two novel features are introduced in the new prosthetic hand. Firstly, its hybrid actuation mechanism has the advantage of increasing the active degrees of freedom and secondly, using only two myoelectric sensors, has the potential for controlling more than three patterns of fingers movements. Pittaccio & Viscuso (2011) have developed a SMA wire device for the rehabilitation of the ankle joint where active orthosis powered by two rotary actuators like, NiTi wire are used to obtain ankle dorsiflexion and EMG signal is used to control the orthosis and trigger activation from muscle. Stirling et al. (2011) have shown the potential of SMA wire for an active, soft orthotic in the knee where NiTi based SMA wires is also used. A prototype is tested on a suspended, robotic leg to simulate the swing phase of a typical gait. Thayer & Priya (2011) have designed a biomimetic dexterous humanoid hand where the dexterity of the DART hand have been measured by quantifying functionality and typing speed on a standard keyboard. The hand consists of 16 servo motors dedicated to finger motion and three motors for wrist motion where some of joints are activated through SMA wires.
Some of the researchers have focused on the design of a biomechatronic robotic hand using EMG. Cheron et al. (1996) have found the relationship between EMGand the arm kinematics through dynamic recurrent neural networks (DRNN) method whereasHudgins et al. (1997) have focused on a new control scheme, based on the recognition of naturally myoelectric signal patterns, transfers the burden of multifunction myoelectric control from the amputee to the control system. Rosen et al. (2001) have developed a myosignal-based exoskeleton system. This is implemented in an elbow joint, naturally controlled by the human. The human–machine interface is set at the neuromuscular level, by using the neuromuscular signal (EMG) as the primary command signal for the exoskeleton system. The EMG signals along with the joint kinematics are fed into a myoprocessor (Hill-based muscle model) which in turn predicts the muscle moments on the elbow joint. Banks (2001) has given remarkable effort towards design and control of an anthropomorphic robotic finger with multi-point tactile sensation whereas Light et al. (2002) have emphasized on intelligent multifunction myoelectric control of hand prostheses. Peleg et al. (2002) have extracted multiple features via EMG signal from hand amputees which is selected by help of a genetic algorithm. Fukuda et al. (2003) have developed a prosthetic hand where human-assisting manipulator system based on the EMG signals is utilized. Wheeler (2003) has presented a neuro-electric interface method for virtual device control. The sampled EMG data is taken from forearm and then is fed into pattern recognition software that has been trained to distinguish gestures from a given gesture set. Krysztoforski et al. (2004) have given remarkable effort towards recognition of palm finger movements on the basis of EMG signals with the application of wavelets.
Crawford et al. (2005) have used EMG signals for classifying in real-time with an extremely high degree of accuracy in a robotic arm-and-gripper. A linear support vector machines (SVM) based classifier and a sparse feature representation of the EMG signal are used. Hidalgoet al. (2005) have proposed a design ofrobotic arm employing fuzzyalgorithms to interpretEMG signals from the flexor carpi radialis, extensor carpi radialis and biceps brachiimuscles. The control and acquisition systems are composedof a microprocessor, analog filtering, digital filtering & frequency analysis, and finally a fuzzy control system.Mobasser & Hashtrudi-Zaad (2005) have estimated rowing stroke force with EMG signal using artificial neural network method from upper armmuscles which is involved in elbow joint movement,sensed elbowangular position and velocity.Gao et al. (2006) have focused on acquiring the data from the upper limb of the body for robotic arm motion using EMG whereas Frigo et al. (2007) have detected EMG signal from voluntarily activated muscles which is controlled for functional neuromuscular by electrical stimulation. A comb filter (with and without a blanking window) is applied to remove the signal components synchronously correlated to the stimulus. Roy et al. (2007) have compared the performance of different sEMG signal at various conditions. These performances depend on the electro-mechanical stability between the sensor and its contact with skin. Zollo et al. (2007) have put a remarkable effort on the control system of biomechatronic robotic hand and on the optimization of the hand design in order to obtain human like kinematics and dynamics. By evaluating the simulated hand performance, the mechanical design is iteratively refined. The mechanical structure and the ratio between numbers of actuators to the number of DOF have been optimized. Yagiz et al. (2007) have developed a dynamic model of the prosthetic finger where a non chattering robust sliding mode control is applied to make the model follow a certain trajectory. Wege & Zimmermann (2007) have shown the potential of EMG control for a hand exoskeleton device. The device has been developed with focus on support of the rehabilitation process after hand injuries or strokes. Itoh et al. (2007) have studied the hand finger operation using sEMG during crookedness state of the finger. Two electrodes (Ag/AgCl electrodes) are sticked randomly on the forearm muscles and the intensity of EMG signals at different muscles is measured for each crooked finger.
Hao et al. (2008) have studied the design of pneumatic muscle actuator based robotic hand where its compliance and dexterity handling are attempted.A single finger is controlled by fuzzy & PID controller and comparative studies are discussed. Murphy et al. (2008) have explored the micro electro-mechanical systems based sensor for mechanomyography system whereas Saponas et al. (2008) have also explored the feasibility on muscle-computer interaction methodology that directly senses and decodes human muscular activity rather than relying on physical device actuation or user actions. Andrews (2008) has determined an effective approach to finger movement classification in typing tasks using myoelectric data which are collected from the forearm. Cesqui et al. (2008) have explored the use of EMG signals for post-stroke and robot-mediated therapy. In this work, a pilot study has been reported under young and healthy subjects where experiments are conducted to determine whether it is possible to build a static map to cluster EMG activation patterns for horizontal reaching movements. Chen et al. (2008) have implemented an EMG feedback control method with functional electrical stimulation cycling system (FESCS) for stroke patients. The stroke patients often suffer from low limbs paralysis. By designing the feedback control protocol of FESCS, the physiological signal is recorded with help of FPGA biomedical module, DAC and electrical stimulation circuit. Leeet al. (2009) have described a development procedure of bio-mimetic robot hand and its control scheme where each robot hand has four under-actuated fingers, which are driven by two linear actuators coupled together. Dalley et al. (2009) have given emphasis of an anthropomorphic hand prosthesis that is intended for use with a multiple-channel myoelectric interface. The hand contains 16 joints, which are differentially driven by a set of five independent actuators. Hu et al. (2009) have presented a comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke patients. By comparative study, it was found that the EMG-driven interactive training had a better long-term effect than the continuous passive movement (CPM) treatment.
Blouin et al. (2010) have focused on control of arm movement during body motion as revealed by EMG whereas Luo &Chang (2010) have explored a feasibility study on EMGsignal integrated with multi-finger robot hand control for massage therapy applications. The forearm EMG of a person massaged by the human hands is recorded and analyzedstatistically. Khokhar et al. (2010) have showed the potential of EMG applications whereSVMclassificationtechnique is suitable for real-time classification of sEMG signals. This technique is effectivelyimplemented for controlling an exoskeleton device.Huang et al. (2010) have designed a robust EMG sensing interfacefor pattern classification. The aim of this study was to design sensor fault detection (SFD) module through the sensor interface to provide reliable EMG pattern classification.This module monitors the recorded signals from individual EMG electrodes and performs a self-recovery strategy to recover the classification performance when one or more sensors are disturbed.Naik et al. (2010) has studied the pattern classification of myo-electric signal during different maximum voluntary contractions using BSS techniques for a blind person whereas Artemiadis & Kyriakopoulos (2010 & 2011) have presented a switching regime model for the EMG-based control of a robot arm where decode the EMG activity of 11 muscles has a continuous representationof arm motion in the 3-Dspace.The switching regime model isused to overcome the main difficulties of the EMG-based controlsystems, i.e. the nonlinearity of the relationship between the EMGrecordings and the arm motion, as well as the non-stationary ofEMG signals with respect to time.Vogel et al. (2011) have demonstrated the robotic arm/hand system that is controlled in real time in 6 dimension Cartesian space through measured human muscular activity via EMG. DLR Light-weight Robot III is used during demonstration of impedance control. Li et al. (2011) have presented a robot control system using four different gestures from an arm. These are achieved by EMG signal using phase synchrony features.The phase synchrony analysis using the recent multivariateextensions of empirical mode decomposition(MEMD) is carried out. Joshi et al. (2011) have focused on brain-muscle-computer interface using a single sEMG signal. Initial results show that the human neuromuscular system can simultaneously manipulatepartial power in two separate frequency bands of a sEMG powerspectrum at a single muscle site.Matsubara et al. (2011) have proposed an interface to intuitively control robotic devices using myoelectric signals. Through learning procedure, a set of myoelectric signals is captured from multiple subjects in the system and it can be used as an adaptation procedure to a new user after only a few interactions.
Recently, Ahmad et al. (2012) have presented a review report on different techniques of EMG data recording where condition of an ideal pre-amplifier, signal conditioning and its amplification are discussed. Sun et al. (2012) have conducted an isokinetic exercise to realize the characteristics of femoral muscles in human knee movement through EMG where a mechanical model of muscle for human knee movement is established.Qi et al. (2012) have developed algorithms for muscle-fatigue detection and muscle-recruitment patterns in routine wheelchair propulsion scenarios, e.g., daily practice where for analysis purpose two speeds of muscular behavior are chosen. Gandole (2012) has developed an artificial intelligent model using focused time lagged recurrent neural network (FTLRNN) method with a single hidden layer. FTLRNN method reduces noise intelligently from the EMG signal. Chan et al. (2012) have developed an assessment platform for upper limb myoelectric prosthetic devices using EMG. The assessment platform consists of an acquisition module, a signal capture module, a programmable signal generation moduleand an activation & measurement module. The platform is designed to create a sequence of activation signals from EMG data captured from a patient.
An EAP actuator based design for IPMC fingers have been discussed by Biddiss&Chau (2006). This shows the potential of electroactive polymeric sensors within an operating range of voltage (3V) whereas Kottke et al. (2007) have reported on how to stimulate and activate a non-biological muscle such as an IPMC. Lee et al. (2006, 2007) have also demonstrated the potential of an IPMC actuating system with a bio-mimetic function using EMG signals. A mean absolute method is used for achieving the filtered EMG signal. Aravinthan et al. (2010) have designed a multiple axis prosthetic hand using IPMC. EMG signal through programmable interface controller (PIC) is sent to the IPMC prosthetic material to perform the required actions. By doing experiments, the potential of prosthetic hand using IPMC is shown.After that, we have also demonstrated actuation of IPMC through EMG via forearm muscles where potential of IPMC based micro robotic arm has been shown for lifting the object (Jain et al., 2010a; 2010b; 2011; 2012). For further application of EMG driven system, we are discussing detailed analysis of EMG signal control point view of IPMC based artificial muscle finger for micro gripper in this chapter.
For designing an IPMC artificial muscle finger based micro gripper using EMG, an IPMC strip (Size 40 mm 10 mm 0.2 mm) that imitates human finger movement, is assumed to be artificial muscle finger. This is fixed with holder and another plastic based finger of similar size is made for supporting the micro object as shown in Fig. 1. When human index finger moves up and down, it creates potential difference by its movements. This potential difference is transferred through EMG electrodes into the artificial muscle finger so that this finger is able to move accordingly and holdthe object. The main function of EMG electrode is to detect the voltage from human muscles since human muscles generate few milli-voltages when they are contracting or expanding during movement. For transferring this voltage signal to actuate the artificial muscle finger, it needs the amplification setup which is discussed in section 4. Therefore, IPMC based artificial muscle finger is activated using EMG and it allows holding an object for micro assembly operation.
Schematic diagram of IPMC artificial muscle finger based micro gripper driven by EMG
Schematic diagram of the actuation mechanism of IPMC (Chen et al., 2011)
During development of an EMG driven IPMCbased artificial muscle finger, a typical IPMC strip (Procured custom made from Environmental Robots Inc., USA) is used which has a thin (approximately 200 μm) perfluorinated ion exchange base polymer membrane (Nafion-117) with metal electrodes of platinum (5–10 μm) fused on either side. As a part of the manufacturing process, this base polymer is further chemically coated with metal ions that comprise the metallic composites. It responds in wet/dry condition. An IPMC is usually kept in a hydrated state to ensure proper dynamic operation. When the material is hydrated, the cations will diffuse toward an electrode on the material surface under an applied electric field. Inside the polymer structure, anions are interconnected as clusters providing channels for the cations to flow towards the electrode (Chen et al., 2011). This motion of ions causes the structure to bend toward the anode as shown in Fig. 2. An applied electric field affects the cation distribution within the membrane, forcing the cations to migrate towards the cathode. This change in the cation distribution produces two thin layers, one near the anode and another near the cathode boundaries. The potential is generated by changing the potential electric field on cluster of ionic strips that provides the actuation of the strip.
To examine the bio-mimetic behavior of IPMC based artificial muscle finger, it is important to study the physiological structure of human finger. An internal structure of human index finger is shown in Fig. 3. The index finger is actuated by three intrinsic muscles and four extrinsic muscles. The intrinsic muscles consist of two interosseous (IO 1 and IO 2) muscles & one lumbrical (LU) muscle and four extrinsic muscles connected through long tendons i.e. extensor digitorum communis (EDC), extensor indicis proprius (EIP), flexor digitorum superficialis (FDS) and flexor digitorum profundus (FDP) (Bundhoo & Park, 2005). For heavy lifting & holding purpose, EDC and EIP are responsible in tendon network. Consequently, EMG electrodes are placed at these two positions on the human finger so that we can achieve direct actuation of IPMC based artificial muscle fingerthrough said muscles.
Basic tendons of the index finger (Bundhoo& Park, 2005)
For acquiring the data from said muscles, EMG electrodes are placed for measuring the electric potential produced by voluntary contraction of muscle fiber on the human finger. The frequency range of the EMG signal is within 4 to 900 Hz. The dominant energy is concentrated in the range of 95 Hz and amplitude of voltage range is ±1.2 mV according to muscle contraction and the voltage function Vin(t) in term of signal sample time (t) is given below,
Where, Vinois amplitude of EMG voltage (0.0012V); f is frequency of EMG signal (95 Hz).
In Laplace domain, EMG input signal is written as
Using these parameters, the circuit for filtered EMG signal is designed using MATLAB SIMULINK software as shown in Fig. 4.
Block diagram of EMG signal behaviour from human index finger
In block diagram, the active EMG signal is taken from index finger muscle and uniform noise is considered. The electric potential is first amplified with gain 32 dB and then band pass filter (BPF) is used within specified frequency range (4 to 900 Hz). Using two band stop filters (BSF and BSF1), noise signal (60 Hz) that arises due to AC coupled power is eliminated. The signal is then passed through an amplifier with gain 60 dB. Subsequently, three integrators (Integrator, Integrator1 and Integrator2) are used for achieving better damped signal. The output of EMG signal with sampling time of 10-4 seconds after filtering is shown in Fig. 5.
Acquired data from finger muscles via EMG signal
Thus, the total output duration of EMG signal for sampled data is 0.1 second. The general solution of acquired EMG voltage (VEMG) through curve fitting method is obtained as given below,
where, V0 is the amplitude of EMG voltage of sine function (0.0012 V); f0 is average frequency of sine function (4.7 Hz); 0 is initial phase difference of sine function (1.66 rad); t is signal sample time in second.
After adjustment of root mean square (RMS) value of this sine function, the EMG voltage VEMGrms(s) after filtering is written as
For controlling purpose, single input single output (SISO) control system tool in MATLAB is used and the output VEMG(s) data is obtained. The initial overall transfer function of EMG voltage VEMGinitial (s) is obtained through output signal from (4) to input signal from (2) and is given as
After that, Nyquist criterion is applied to check the stability of EMG signal. The root-locus and bode scheme are plotted as shown in Fig. 6.
Root-locus and bode plot behaviour of EMG signal via finger in initial condition (Jain et al., 2011)
It is found that the zero-poles have real value on both sides of the real axis which does not meet theNyquist stability criteria. Also from Fig. 6,gain cross-over frequency (GCF=2.53 rad/s) is greater than phase cross-over frequency (PCF=1.18 rad/s), indicating that this voltageobtained from EMG signal is unstable.
For achieving the stable EMG signal, different configurations of PID are analysed through SISO control tool of MATLAB software. By applying PD control with proportional control gain factor (Kp=1) and derivative control gain factor (Kd=1), EMG voltage VEMGfinal 1(s) is obtained as given below,
The root locus and bode plot are shown in Fig. 7. This indicates that the obtained data from EMG signal is unstable but through this control system the data is converging towards stability from initial condition.
Root-locus and bode plot behaviour of human finger through PD controller
In case of PI controller, the unit proportional control gain factor (Kp=1) and integrator control gain factor (Ki=1) parameters are used. After applying this control system, EMG voltage VEMGfinal 2(s) is obtained as given below,
The bode plot and root locus for this system are plotted as shown in Fig. 8.From this figure, it shows that the data from EMG signalis again unstable but the response has a better prospect of converging towards stability than previous configuration.
Root-locus and bode plot behaviour of EMG signal via finger through PI controller
After that, PID controller is used where proportional control gain factor (Kp= 0.5), integrator control gain factor (Ki= 1) and derivative control gain factor (Kd=1) are given in compensator toattain the stability of EMG voltage. For applying the PID control system, the SIMULINK block diagram is modified as shown in Fig. 9.
Block diagram of EMG signal via human finger after applying PID control system
Thereafter, the model is again simulated in MATLAB software, upon which, the data from finger muscles shows the all zero-poles in left hand side of real axis which satisfies the Nyquist criteria shown in Fig. 10. The final EMG voltage VEMGfinal (s) is acquired as given below,
Also, GCF (1rad/s) is less than PCF (1.34 rad/s). Hence, a stable EMG voltage data is achieved. This filtered EMG signal is stable enough to provide necessary voltage signal across the IPMC for proper functioning during operation. The major advantage of this control system is that it is stable with least amount of noise. This signal is sent to artificial muscle finger for holding the object.
Root-locus and bode plot behaviour of EMG signal via finger through PID controller (Jain et al., 2011)
In order to examine the bio-mimetic behaviour of IPMC based artificial muscle finger through EMG signal, EMG electrodes (Ag/Agcl based) are positioned at EDC and EIP muscles on the index finger. The input EMG signal from the muscle movement varies in the range of 1.2mV (which is observed through oscilloscope). But activation of IPMC based artificial muscle finger needs the voltage of 3V and current rating of 50-200 mA which is only possible by amplification of voltage and current. For desired output voltage to the artificial muscle finger, EMG signal is transferred through analog-digital convertor (ADC) card and PXI system (PXI-1031 along with NI-6289) in real time environment. EMG signal through electrodes are sent to an input channel at specified ports of the ADC card. Then this signal is amplified through amplification factor of 2550 using express VI of Labview 8.5 and sent to DAC output. But DAC output signal cannot provide enough current (50-200 mA) to drive an IPMC based artificial muscle finger. For achieving this current rating, the current amplification is done using customized IPMC control circuit by combining operational amplifier (Model: LM-324), transistor (Model: TIP 122) and resistances (1k and 10). Noise interference is eliminated by enabling low-pass filtering with PID control system to achieve the stability during operation of the artificial muscle finger as shown in Fig. 11. The IPMC size 40mm 10 mm 0.2 mm is used for testing purpose.
Now, in order to prevent the abrupt physio-chemical change of the IPMC nature and subsequent shortening of the actuation operating time of the IPMC material due to irreversible electrolysis (caused when the voltage applied across the two faces of an IPMC exceeds a maximum limit), two warning flags are used. One warning flag is placed at input EMG signal and another warning flag is placed at output voltage of DAC card where IPMC control circuit is connected. This limited voltage imposed on the IPMC based artificial muscle finger aborts the execution of the program when the warning flag has a high output. The flow chart for actuation of IPMC based artificial muscle finger is shown in Fig. 12.During operation, artificial muscle finger bends in a similar manner as that of the index finger. For generating force, this finger is held in cantilever configuration on the fabricated work bench. Aload cell is used to collect the data at different angles of the index finger. The current and voltage analysis of the human muscles are also done through oscilloscope. Thus an IPMC artificial muscle finger based micro gripper driven by EMG is developed and the holding behaviour is demonstrated.
Basic testing layout for actuation of IPMC based artificial muscle finger
During experimentation, the input parameter from muscle ranging from ±1.2 mV is taken through referenced single-ended (RSE) signal along with continuous sampled pulses. Thesepulses are amplified with the help of a PXI system (amplification factor 2550). The desiredoutput voltage range is generated through a DAC output port. The output signal is connected to IPMC based artificial muscle finger. Due to amplified output voltage from the DAC, an IPMC strip bends in one direction for holding the object. By changing the movement of human finger in an opposite direction, reverse behaviour of IPMC is obtained. The characteristics of IPMC based artificial muscle finger are traced on a graph paper and plotted as shown in Fig. 13. It shows that IPMC based artificial muscle finger gives similar bending behaviour as a human finger (Fig. 14). It is also observed that the deflection of IPMC based artificial muscle finger changes with voltage upto 12 mm in one direction. When this finger moves reverse direction, the characteristic of artificial finger does not attempt the same behaviour. It shows the error between two paths is 0.5 mm. The deflection characteristic of IPMC based artificial muscle finger () in term of voltage (V) with cubic behaviour for holding is given below,
Flow chart of for actuationIPMC based artificial muscle finger using EMG signal
Deflection behaviour of IPMC based artificial muscle finger with different voltages
Control of IPMC based article muscle finger through EMG signal (Jain et al., 2011)
Load test setup for IPMC based artificial muscle finger using load cell
For generating force by the artificial muscle finger, a testing setup with load cell is used. The IPMC based artificial muscle finger is placed in cantilever mode, and a load cell is placed under the tip of the IPMC which produces the reactive force. When human finger moves downward, the generated force by IPMC artificial muscle finger increases accordingly in the load cell as shown in Fig. 15.
By controlling the movement of human finger, the generated force varies accordingly. The generated force characteristic with voltage shows a cubic polynomial behaviour as shown in Fig. 16 when IPMC artificial muscle finger touches the load cell. This happens due to compliant behaviour of IPMC. The generated force (F)by IPMC based artificial muscle finger in term of voltage (V) is given below,
Generated force by IPMC based artificial muscle finger at tip with voltage
The maximum generated force of 10 mN is achieved by IPMC based artificial muscle finger at 450 angle of index finger with cubic polynomial behaviour as shown in Fig. 17. This happens due to human finger behaviour where EIP and EDC muscles are connected with DIP and PIP joints. The generated force (F)by IPMC based artificial muscle finger at tip in term of human finger angle () is also obtained as under
For observing the real time IPMC based artificial muscle finger behaviour with moving human finger angle, experiments are conducted and data are plotted as shown in Fig. 18 and it shows almost proportional behaviour with quadratic relationship. This occurs due to human finger behaviour where EIP and EDC are connected with IO and LU muscles (Fig. 3). The relationship between IPMC based artificial muscle finger displacement () and human finger angle () is given below,
Generated force by IPMC based artificial muscle finger with human finger angle
Relationship between IPMC based artificial muscle finger and human finger angle
For actuation of IPMC based artificial muscle finger, the analysis of activated muscles is carried out as given in Table 1. We have analysed different conditions during contraction of different muscles of index finger like intrinsic and extrinsic which are responsible for actuation of IPMC based artificial muscle finger so that they can be used to hold an object.
Cases | Intrinsic muscles | Extrinsic muscles | State | Polarity | ||||||
IO 1 | IO 2 | LU | EDC | EIP | FDS | FDP | Side A | Side B | ||
1 | OFF | OFF | OFF | OFF | OFF | OFF | OFF | None | None | None |
2 | ON | OFF | ON | OFF | OFF | ON | ON | Adduction | +ive | -ive |
3 | OFF | ON | ON | ON | ON | OFF | OFF | Abduction | -ive | +ive |
4 | ON | ON | ON | ON | ON | ON | ON | None | None | None |
Analysis of different condition of muscles
The two surfaces of IPMC are denoted as side A and side B. In case of intrinsic muscles, the adduction is possible. When IO 1 or IO 2 are in either “on” or “off” condition along with LU muscle in “on” condition then it shows the abduction state. In case of extrinsic muscles, EDC and EIP muscles both are in “off” condition to achieve the adduction state when FDS and FDP muscles both are in “on” condition and for attaining the abduction state EDC and EIP both are in “on” condition when FDS and FDP both are in “off” condition. In rest cases, no power is achieved. Therefore, IPMC based artificial muscle finger is activated in above mentioned conditions from muscles.
The voltage characteristic behavior is taken from EMG and fed to IPMC based artificial muscle finger for actuation in real time environment as shown in Fig. 19. It is found that the trend of IPMC actuation voltage is similar to EMG voltage with amplification factor.
Different voltage responses in real time environment
The EMG voltage VEMG (t) and IPMC actuation voltage VIPMC actuation (t) equations are respectively given below,
Where, V0E is average value of EMG voltage (V); f0E is EMG frequency range (Hz) ; t is signal sample time (s) ; 0E is phase difference when signal is taken through EMG (rad); V0I is average value of IPMC actuation voltage (V); f0I is IPMC actuation frequency range (Hz); 0I is phase difference when signal is given to IPMC (rad). For finding the frequency range of each signal, the experimental data are taken and solved through MATLAB curve fitting tool. The numerical values are V0E= 0.0014510.0002707 V, f0E= 4.70.006201 Hz, 0E= -1.7360.036 rad, V0I= 2.4930.208, f0I= 48.50.65 and 0I= -10.57320.6556 rad. From these data, it is found that EMG frequency range (f01) is similar to simulated data and IPMC actuation frequency range is 48.50.65 Hz which is in between human muscle frequency range (48-52Hz).
IPMC based artificial muscle finger based micro gripper driven by EMG
After these analyses, an IPMC artificial muscle finger based micro gripper is developed which is driven by EMG as shown in Fig. 20 where one IPMC based artificial muscle finger and other plastic based finger are fixed with double sided tape within one holder. The IPMC based artificial muscle finger is connected through copper tape and wire with EMG sensor so that an IPMC based artificial muscle finger is activated by EMG signal via human finger. The packing tape is also placed on the tip of IPMC based artificial muscle finger so that this finger perfectly holds the object like micro pin for assembly. After these observations, it is understood that IPMC finger behaves as an artificial muscle and this characteristic is implemented in the development of IPMC artificial muscle finger based micro gripper for holding the object through EMG. The major advantages of EMG-driven IPMC based artificial muscle finger are low voltage in man-machine interface, large bending amplitude and simple control that are applied in development of micro/bio robot.
In order to develop the micro/bio-mimetic robot for micro assembly, the potential of an EMG driven artificial finger is discussed in this chapter. An artificial finger for micro assembly is designed using IPMC where IPMC is used as an active artificial finger for holding the object. An IPMC has several advantages such as actuating through a small voltage (3 V), light in weight, flexible in nature and does not involve sophisticated controllers for operation. For activating the IPMC based artificial finger, voltage is taken from human index finger through EMG sensor instead of battery source as this is used as a man-machine interface device. Principally, EMG sensor acquires the signal from body during expansion or contraction of muscles. These movements are transferred into an IPMC based artificial muscle finger. For achieving the stable data from EMG, different configurations of control methods are analysed. A PID control system is implemented for attaining the noiseless and stable signal from the user’s myoelectric signal. While acquiring the data, a differential amplification technique is applied where data is filtered through a band pass filter and noise is eliminated through three band stop filters. For sending this signal to the IPMC, an algorithm has been developed in Labview software which gives emphasis on following points:
Acquire voltage data (1.2mV) from human index finger using EMG sensor through data acquisition system
Amplify the continuous EMG signal through DAQ assistant enabling the filter and domain frequency range options
Activate IPMC finger through amplified data (3V) using interface device for functioning as artificial muscle finger
Experimentally, it is demonstrated that IPMC based artificial muscle finger is capable of adopting this voltage from EMG signal and mimics as a human finger. From application point of view, an IPMC artificial finger based micro gripper is developed and its capability is also verified. Through this demonstration, it is proved that IPMC can be activated through EMG signal and is applicable as flexible and compliant finger for holding the object in the fields of micro manipulation. IPMC based artificial muscle could also be a replacement of an electro-mechanical system like electric motors in the application field of rehabilitation technology.
In future, we will focus on developing well equipped EMG driven micro robotic system where IPMC based micro robotic arm along with multiple IPMC artificial fingers will be used. IPMC based micro robotic arm will be operated through human fore arm movement for lifting and manipulation. Multiple IPMC fingers will be used for robust application like grasping, holding and mimicking of a human hand. Therefore, this new generation of robotic system can be really operated in real world through humans using EMG signals.
The authors are grateful to the Director, Central Mechanical Engineering Research Institute (CMERI), Durgapur, West Bengal, India for providing the permission to publish this book chapter.This work is financially supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India under eleventh five year plan on “Modular Re-configurable Micro Manufacturing System (NWP-30)”.
PID is regarded as the standard control structure of classical control theory. PID controllers are used successfully for single-input single-output (SISO) and linear systems due to their good performance and can be easily implemented. The control of complex dynamic systems using classic PID controllers is considered as a big challenge, where the stabilization of these systems requires applying a more robust controller technique. Many studies have proposed to develop a new hybrid PID controller with ability to provide better and more robust system performance in terms of transient and steady-state responses over the standard PID controllers. Lotfollahzade et al. [1] proposed a new LQR-PID controller to obtain an optimal load sharing of an electrical grid. The presented hybrid controller is optimized by Particle Swarm Optimization (PSO) to compute the gain parameters of the PID controller. A new hybrid control algorithm was presented by Lindiya et al. for power converters [2]. They adopted a conventional multi-variable PID and LQR algorithm for reducing cross-regulation in DC-to-DC converters. Sen et al. introduced a hybrid LQR-PID controller to regulate and monitor the locomotion of a quadruped robot. The gain parameters of the hybrid controller is tuned using the Grey-Wolf Optimizer (GWO) [3]. In [4] a new PID and LQR control system was proposed to improve a nonlinear quarter car suspension system.
\nThe intent of this study is to design a new hybrid PID controller based on an optimal LQR state feedback controller for stabilization of 3DOF helicopter system. To this end an improvement in the system performance has been achieved in both the transient and steady-state responses. In the proposed system the classical PID and optimal LQR controller have been combined to formulate a hybrid controller system. Simulations were implemented utilizing Matlab programming environment to verify the efficiency and effectiveness of the proposed hybrid control method.
\nIn this section, basics and theory of integer and fractional order PID controllers are presented. Theory of an intelligent LQR controller, which is used with PID controller to combine a hybrid control system, is also introduced.
\nA PID is the most popular controller technique that is widely used in industrial applications due to the simplicity of its structure and can be realized easily for various control problems as the gain parameters of the controller are relatively independent [5, 6]. Basically, the controller provides control command signals \n
where \n
FOPID is a special category of PID controller with fractional order derivatives and integrals. Its concept was introduced by Podlubany in 1997. During the last decade, this controller approach has attracted the attention of control engineers in both academic and industrial fields. Compared with the classical PID controller, it offers flexibility in dynamic systems design and more robustness.
\nFractional order calculus is an environment of calculus that generates the derivatives or integrals of problem functions to non-integer (fractional) order. This fractional order mathematical operation allows to establish a more accurate and concise model than the classical integer-order method. Moreover, the fractional order calculus can also produce an effective tool for describing dynamic behavior for control systems [7].
\nFractional order calculus is a generalization of differentiation and integration to non-integer order fundamental operator which is denoted by \n
Grunwald – Letnikov (GL) definition:
\nwhere \n
Riemann-Liouville definition:
\nwhere \n
Laplace transform of differ-integral operator \n
Where \n
Fractional order PID controller denoted by \n
The block diagram of a FOPID structure.
Based on the above equation, it can be expected that the FOPID controller can enhance the performance of the control system due to more tuning knobs introduced. Taking the Laplace transform of Eq. (9), the system transfer function of the FOPID controller is given by:
\nWhere \n
PID controllers with fraction orders. (a) Classical. (b) Fractional order.
Linear quadratic regulator is a common optimal control technique, which has been widely utilized in various manipulating systems due to its high precision in movement applications [11]. This technique seeks basically a tradoff betwwen a stable performance and acceptable control input [12]. Using the LQR controller in the design control system requires all the plant states to be measurable as it bases on the full state feedback concept. Therefore, using the LQR controller to stabilize the 3DOF helicopter system based on the assumption that the system states are considered measurable. LQR approach includes applying the optimal control effort:
\nWhere \n
Where \n
Where \n
For \n
Based on the above expression, the control effort \n
so that the cost function Eq. (12) can be reformulated as in Eq. (16).
\nWhere \n
In this study, GA tuning approach has been invoked to tune the gain matrix of LQR controller used to approximate the gain parameters of PID controller for 3DOF helicopter system. GA is a global search optimization technique bases on the strategy of natural selection. This optimization method is utilized to obtain an optimum global solution for more control and manipulating problems. The procedure of GA approach includes three basic steps: selection, crossover and mutation, that constitute the main core of GA with powerful searching ability.
\nSelection: This step includes choosing individual genomes with high adaptive value from the current population to create mating pool. At present, there mainly are: sequencing choice, adaptive value proportional choice, tournament choice and so on. In order to avoid the best individuals of current population missing in the next generation due to destruction influence of crossover and mutation or selection error, De Jong put forward to the cream choice strategy [3xxx];
\nCrossover: This operation is the process of mimicking gene recombination of natural sexual reproduction, through combining the
Mutation: In this process one or more indivisual values in a chromosome are altered from its initial state. This can result in entirely new gene values being added to the gene pool. This stage is also important by the view of preventing the genes local optimal points.
\nApplying these main operations creates new individuals which could be better than their parents. Based on the requirements of desired response, the sequence of GA optimization technique is repeated for many iterations and finally stops at generating optimum solution elements for the application problems. The sequence of the GA tuning method is presented in Figure 3 [13, 14]. The steps of the GA loop are defined as follows:
Initial set of population.
Choose individuals for mating.
Mating the population to create progeny.
Mutate progeny.
Inserting new generated individuals into populations.
Are the system fitness function satisfied?
End search process for solution.
Process loop of GA optimization method.
In this study, the aim of using GA optimization method is to tune the elements of the state weighting matrix \n
PID controller is a simple manipulating technique that can be successfully implemented for one dimension control systems. For multi dimensions systems it can use a multi channel PID controller system to control the dynamic behavior of these systems. Currently, there is a considerable interest by many researchers in development new control approaches using PID controller. Xiong and Fan [15] proposed a new adaptive PID controller based on model reference adaptive control (MRAC) concept for control of the DC electromotor drive. They presented an autotuning algorithm that combines PID control scheme and MRAC based on MIT rule to tune the controller parameters. Modified PI and PID controllers are introduced to regulate output voltage of DC-DC converters using MRAC manipulating technique [16, 17]. The parameters of the controllers are adapted effectively using MIT rule. Based on the adapted controllers parameters an improvement in the regulation behavior of the converters has been investigated.
\nFurther improvement in the performance of the standard PID controller is also achieved by involving an integrator of order \n
In the last decades, a new hybrid controller scheme using PID technology is proposed in [18, 19, 20] for different applications. The structure of the presented hybrid controller system is constructed by combination between conventional PID controller and state feedback LQR optimal controller. The gain parameters of the PID controller used to achieve desired output response are determined based on optimal LQR theory.
\nIn this chapter, a hybrid PID controller based on LQR optimal technique is designed to stabilize 3DOF helicopter system. The proposed hybrid LQR-PID controller is optimized using GA optimization method, which is used to tune its gain parameters.
\nThe conceptual platform of 3DOF helicopter scheme is presented in Figure 4. It consists of an arm mounted on a base. The main body of the helicopter constructed of propellers driven by two motors mounted are the either ends of a short balance bar. The whole helicopter body is fixed on one end of the arm and a balance block installed at the other end.
\nPrototype model of 3DOF helicopter system.
The balance arm can rotate about the travel axis as well as slope on an elevation axis. The body of the helicopter is free to roll about the pitch axis. The system is provided by encoders mounted on these axes used to measure the travel motion of the arm and its elevation and pitch angle. The propellers with motors can generate an elevation mechanical force proportional to the voltage power supplied to the motors. This force can cause the helicopter body to lift off the ground. It is worth considering that the purpose of using a balance block is to reduce the voltage power supplied to the propellers motors. In this study, the nonlinear dynamics of 3DOF helicopter system is modelled mathematically based on developing the model of the system behavior for each of the axes.
\nThe free body diagram of 3DOF helicopter system based on elevation axis is shown in Figure 5. The movement of the elevation axis is governed by the following differential equations:
\nSchematic diagram of elevation axis model for 3DOF helicopter system.
Where \n
Consider the pitch schematic diagram of the system in Figure 6. It can be seen from the figure that the main torque acting on the system pitch axis is produced from the thrust force generated by the propeller motors. When \n
Schematic diagram of the pitch axis model for 3DOF helicopter scheme.
Where \n
Based on the assumption that the pitch angle \n
The free body diagram of the helicopter system dynamics based on the travel axis is presented in Figure 7. In this model, when \n
Schematic diagram of the travel rate axis model for 3DOF helicopter scheme.
The thrust forces of the two propeller motors \n
Where \n
Based on the assumption that the coupling dynamics, gravitational torque (\n
In order to design a state feedback controller based on LQR technique for 3DOF helicopter system, the dynamics model of the system should be formulated in state space form. In this study, the proposed hybrid control algorithm is investigated for the purpose of control of pitch angle, elevation angle and travel rate of 3DOF helicopter scheme by regulating the voltage supplies to the front and back motors. Let \n
Based on Eqs. (31)-(33), choosing these state variables yields the following system state space model:
\nThe general state and output matrix equations describing the dynamic behavior of the linear-time-invariant helicopter system in state space form are as follows:
\nWhere \n
In this study, for the purpose of control system design, the model of the system is formulated in state space form using the physical parameters values listed in Table 1 [21]. Based on Eq. (37) and using the parameters values in Table 1, the state equation of the system is given by Eq. (39):
\nSymbol | \nPhysical unit | \nNumerical values | \n
---|---|---|
\n\n | \nkg m2\n | \n1.8145 | \n
\n\n | \nkg m2\n | \n1.8145 | \n
\n\n | \nkg m2\n | \n0.0319 | \n
\nW\n | \nN | \n4.2591 | \n
\n\n | \nm | \n0.88 | \n
\n\n | \nm | \n0.35 | \n
\n\n | \nm | \n0.17 | \n
\n\n | \nN/V | \n12 | \n
Values of physical parameters of 3DOF helicopter system.
Based on step input, a hybrid controller is designed for the following desired performance parameters: rise time (\n
Under the assumption that the desired system states are zero the block diagram of the proposed helicopter control system based on the LQR controller is shown in Figure 8. The control system is analysed mathematically and then simulated using Matlab software tool to validate the proposed hybrid controller. Based on the desired performance parameters, which include rise and settling time, overshoot and error steady state, the fitness function of the control problem is formulated as follows:
\nLQR controller based on GA for 3DOF helicopter system.
where, \n
In this subsection, the gain parameters \n
GA tuning method. For this application, analyzing Eq. (15) yields the following control effort [22]:
\nwhere \n
If \n
In this study, for elevation angle, the control equation is based on the following PID control equation:
\nWhile the pitch angle is controlled by the following PD control equation:
\nThe travel rate is gonverned by the following PI control equation:
\nWhere \n
Summing the rows of (41) results the following [21]:
\nThe above equation can be written as
\nIt is obvious that Eqs. (43) and (49) have the same structure, this means that the gain parameters of the pitch PID controller can be obtained from the gain elements of the LQR controller. Thus, comparing Eq. (43) with Eq. (49), yields the following gain relationships:
\nThe block diagram of closed-loop control system for 3DOF helicopter system based on hybrid LQR-PID controller is shown in Figure 9. Taking Laplace transform for elevation axis model Eq. (31) yields the following equation:
\nControl system block diagram for helicopter elevation, pitch and travel axis using PID controller.
The transfer function of the elevation axis plant is given by:
\nThe transfer function of the PID controller is as follows:
\nwhere \n
Based on Eqs. (52) and (53), the open loop elevation transfer function becomes:
\nThe closed loop transfer function for elevation angle control is as follows:
\nSimilarly, the difference of the rows of Eq. (41) results in
\nSubstitution Eq. (47) in Eq. (45) results,
\nIt is clear that Eqs. (58) and (59) have exactly the same structure. Then, by comparing these equations, it can obtain the feedback gains for the PID controller from the LQR gains parameters as follows:
\nTaking Laplace transform for pitch axis model Eq. (32) yields:
\nThe transfer function for pitch axis model is given by:
\nThe transfer function of the PD controller is as follows:
\nwhere \n
The closed loop transfer function of pitch angle is given by:
\nTaking Laplace transform for travel axis model Eq. (33) results:
\nThe transfer function for travel axis model is given by:
\nThe transfer function of the PI controller is as follows:
\nwhere \n
The closed loop transfer function for travel angle is as follows:
\nIn order to validate the proposed helicopter stabilizing system, the LQR controller is analysed mathematically using Matlab tool. Based on objective function (J) and using the Matlab command “lqr” the elements of the LQR weighting matrices Q, R are tuned using GA optimization method. For this application, each chromosome in GA tuning approach is represented by nine cells which correspond to the weight matrices elements of the LQR controller as shown in Figure 10. By this representation it can adjust the LQR elements in order to achieve the required performance. The parameters of the GA optimization approach chosen for the tuning process of the helicopter control system are listed in Table 2. Converging elements of the LQR weight matrices \n
Definition of GA chromosome.
GA property | \nValue/Method | \n
---|---|
Population Size | \n20 | \n
Max No. of Gen. | \n100 | \n
Selection Method | \nNormalized Geo. Selection | \n
Crossover Method | \nScattering | \n
Mutation Method | \nUniform Mutation | \n
Parameters of GA tuning method.
PID parameters | \nRelationship | \nAbsolute Value | \n
---|---|---|
\n\n | \n\n\n | \n10.6463 | \n
\n\n | \n\n\n | \n2.3438 | \n
\n\n | \n\n\n | \n0.3302 | \n
\n\n | \n\n\n | \n5.3634 | \n
\n\n | \n\n\n | \n1.4799 | \n
\n\n | \n\n\n | \n0.7678 | \n
\n\n | \n\n\n | \n0.3230 | \n
Values of gain parameters for PID, PD and PI controllers.
Number of generation of GA-LQR parameters Q and R.
Based on the proposed fitness function stated in Eq. (40), the LQR weighting matrices \n
The feedback gain matrix of the LQR controller can be mathematically calculated using Eq. (13), where P matrix is the stabilizing solution of the Riccati equation stated in Eq. (14).
\nIn this application, by using the state matrix\n
Based on the feedback gain matrix and using Eq. (11), the LQR control effort vector for the 3DOF helicopter system is dertermined as follows:
\nBased on Eqs. (50), (60) and (71), the absolute values of PID, PD and PI gain parameters for elevation, pitch and travel axis model respectively for helicopter
\nsystem are listed in Table 3 [21]. Using the values in Table 1 and 3, the closed-loop transfer function of elevation, pitch and travel axis Eqs. (56), (65) and (70) become as in Eqs. (72), (73) and (74) respectively:
\nBased on bounded input signal, the elevation, pitch and travel axis model of 3DOF helicopter system are unstable as they give unbounded outputs. The output responses for elevation, pitch and travel angle are illustrated in the Figure 12. It can be say that the open loop helicopter system without control action is unable to provide a stable output response.
\nOpen loop response of Helicopter system.
In this study, in order to achieve a stable output, a hybrid control system using LQR based PID controller for 3DOF helicopter system is proposed to control the dynamic behaviour of the system. To validate the proposed helicopter stabilization system, the controller is simulated using Matlab programming tool. Three axis, elevation, pitch, travel rate, are considered in the simulation process of the control system. The performance of the helicopter balancing system is evaluated under unit step reference input using rise, settling time overshoot and steady state error parameters for the elevation, pitch and travel angles to simulate the desired command given by the pilot.
\nThis section deals with the simulation of LQR based PID controller used to control the position of helicopter elevation model. The parameters of the hybrid controller are tuned using GA optimization method. Figure 13 presents a tracking control curve of the demand input based on the PID controller using optimized gain parameters listed in Table 3 for helicopter elevation angle.
\nClosed-loop response of the elevation model system.
The simulation results show that the controller successed to guide the system output through the desired input trajectory effectively with negligible overshoot, short rise and settling time of 0.1 ms and 0.3 ms respectively.
\nIn this section, an optimized LQR-PD controller based on GA tuning approach is designed to control the dynamic model of helicopter pitch angle. Based on the optimized PD parameters stated in Table 3, the output response of the proposed helicopter tracking system is illustrated in Figure 14. It is obvious from the minifigure of the system response that the LQR-PD controller succeeded to force the pitch angle state of the helicopter system to follow the desired trajectory effectively without overshoot, shorter rise and settling time and zero steady state tracking error.
\nClosed-loop response of the pitch model system.
The control of the travel rate for the 3DOF helicopter system is governed by a GA-LQR based PI controller. The time response of the optimized PI tracking system using optimum gain parameters which are listed in Table 3. is shown in Figure 15. It can be noted from the miniplot of the system response that the optimised hybrid LQR-PI controller enabled the system output state to track the desired input trajectory without overshoot, and shorter rise and settling time with minimal steady state tracking error.
\nClosed-loop response of the travel model system.
The control inputs supplied to the propellers motors of the proposed 3DOF helicopter system are shown in Figure 16. Consequently, it can say that the control performance of optimised GA-LQR based PID, PD and PI controllers for helicopter elevation, pitch and travel axis model respectively was acceptable through tracking the system output states for the reference input efficiently. Based on the minifigures of Figures 13 and 14 and Figure 15, the performance parameters of PID, PD and PI controller for helicopter elevation, pitch and travel axis are listed in Table 4. From the response data of the controlled helicopter system in Table 4 it can be said that the hybrid controllers were able to provide robust and good tracking performance in both the transient and steady state responses.
\nConrol input of 3DOF helicopter control system.
Controller | \n\n\n | \n\n\n | \n\n\n | \n
---|---|---|---|
Elevation PID | \n0.343 | \n0.535 | \n1.1 | \n
Pitch PD | \n0.582 | \n1.05 | \n0 | \n
Travel PI | \n1.17 | \n12.4 | \n5.29 | \n
Values of performance elements s of controllers.
In this study, a new hybrid control methodology has been developed for complex dynamical systems through combinig the LQR optimal technique with traditional PID controller. An efficient hybrid control system has been designed to stabilize 3DOF helicopter systems. The dynamics of elevation, pitch and travel axis for a helicopter system is modeled mathematically and then formulated in state space form to enable utilizing state feedback controller technique. In the proposed helicopter stabilizing scheme, a combination of a conventional PID control with LQR state feedback controller is adopted to stabilize the elevation, pitch and travel axis of the helicopter scheme. The gain parameters of the traditional PID controller are determined from the gain matrix of state feedback LQR controller. In this research, the LQR controller is optimized by using GA tuning technique. The GA optimization method has been adopted to find optimum values for LQR gain matrix elements which are utilized to find best PID gain parameters. The output response of the optimized helicopter control system has been evaluated based on rise time, setting time, overshoot and steady state error parameters. The simulation results have shown the effectiveness of the proposed GA-LQR based PID controller to stabilize the helicopter system at desired values of the elevation and pitch angle and travel parameters.
\nIntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"25"},books:[{type:"book",id:"8737",title:"Rabies Virus",subtitle:null,isOpenForSubmission:!0,hash:"49cce3f548da548c718c865feb343509",slug:null,bookSignature:"Dr. Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:null,editors:[{id:"61139",title:"Dr.",name:"Sergey",surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science",subtitle:null,isOpenForSubmission:!0,hash:"b6091426454b1c484f4d38efc722d6dd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10496",title:"Feed Additives in Animal Nutrition",subtitle:null,isOpenForSubmission:!0,hash:"8ffe43a82ac48b309abc3632bbf3efd0",slug:null,bookSignature:"Prof. László Babinszky",coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",editedByType:null,editors:[{id:"53998",title:"Prof.",name:"László",surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9534",title:"Banking and Finance",subtitle:null,isOpenForSubmission:!1,hash:"af14229738af402c3b595d7e124dce82",slug:"banking-and-finance",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"52",title:"Genetic Epidemiology",slug:"genetic-epidemiology",parent:{title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"},numberOfBooks:1,numberOfAuthorsAndEditors:22,numberOfWosCitations:26,numberOfCrossrefCitations:13,numberOfDimensionsCitations:45,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"genetic-epidemiology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"2556",title:"Methylation",subtitle:"From DNA, RNA and Histones to Diseases and Treatment",isOpenForSubmission:!1,hash:"ab598a9444e1ee2f8ad04109f1cb898d",slug:"methylation-from-dna-rna-and-histones-to-diseases-and-treatment",bookSignature:"Anica Dricu",coverURL:"https://cdn.intechopen.com/books/images_new/2556.jpg",editedByType:"Edited by",editors:[{id:"106758",title:"Prof.",name:"Anica",middleName:null,surname:"Dricu",slug:"anica-dricu",fullName:"Anica Dricu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"38950",doi:"10.5772/51774",title:"The Methylation of Metals and Metalloids in Aquatic Systems",slug:"the-methylation-of-metals-and-metalloids-in-aquatic-systems",totalDownloads:2019,totalCrossrefCites:4,totalDimensionsCites:11,book:{slug:"methylation-from-dna-rna-and-histones-to-diseases-and-treatment",title:"Methylation",fullTitle:"Methylation - From DNA, RNA and Histones to Diseases and Treatment"},signatures:"Robert P. Mason",authors:[{id:"152418",title:"Dr.",name:"Robert",middleName:"Peter",surname:"Mason",slug:"robert-mason",fullName:"Robert Mason"}]},{id:"38530",doi:"10.5772/51691",title:"Host-Mimicking Strategies in DNA Methylation for Improved Bacterial Transformation",slug:"host-mimicking-strategies-in-dna-methylation-for-improved-bacterial-transformation",totalDownloads:2064,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"methylation-from-dna-rna-and-histones-to-diseases-and-treatment",title:"Methylation",fullTitle:"Methylation - From DNA, RNA and Histones to Diseases and Treatment"},signatures:"Hirokazu Suzuki",authors:[{id:"152236",title:"Ph.D.",name:"Hirokazu",middleName:null,surname:"Suzuki",slug:"hirokazu-suzuki",fullName:"Hirokazu Suzuki"}]},{id:"38575",doi:"10.5772/51419",title:"Circulating Methylated DNA as Biomarkers for Cancer Detection",slug:"circulating-methylated-dna-as-biomarkers-for-cancer-detection",totalDownloads:3086,totalCrossrefCites:0,totalDimensionsCites:7,book:{slug:"methylation-from-dna-rna-and-histones-to-diseases-and-treatment",title:"Methylation",fullTitle:"Methylation - From DNA, RNA and Histones to Diseases and Treatment"},signatures:"Hongchuan Jin, Yanning Ma, Qi Shen and Xian Wang",authors:[{id:"40131",title:"Dr.",name:"Xian",middleName:null,surname:"Wang",slug:"xian-wang",fullName:"Xian Wang"},{id:"163999",title:"Prof.",name:"Hongchuan",middleName:null,surname:"Jin",slug:"hongchuan-jin",fullName:"Hongchuan Jin"}]}],mostDownloadedChaptersLast30Days:[{id:"38575",title:"Circulating Methylated DNA as Biomarkers for Cancer Detection",slug:"circulating-methylated-dna-as-biomarkers-for-cancer-detection",totalDownloads:3086,totalCrossrefCites:0,totalDimensionsCites:7,book:{slug:"methylation-from-dna-rna-and-histones-to-diseases-and-treatment",title:"Methylation",fullTitle:"Methylation - From DNA, RNA and Histones to Diseases and Treatment"},signatures:"Hongchuan Jin, Yanning Ma, Qi Shen and Xian Wang",authors:[{id:"40131",title:"Dr.",name:"Xian",middleName:null,surname:"Wang",slug:"xian-wang",fullName:"Xian Wang"},{id:"163999",title:"Prof.",name:"Hongchuan",middleName:null,surname:"Jin",slug:"hongchuan-jin",fullName:"Hongchuan Jin"}]},{id:"38950",title:"The Methylation of Metals and Metalloids in Aquatic Systems",slug:"the-methylation-of-metals-and-metalloids-in-aquatic-systems",totalDownloads:2019,totalCrossrefCites:4,totalDimensionsCites:11,book:{slug:"methylation-from-dna-rna-and-histones-to-diseases-and-treatment",title:"Methylation",fullTitle:"Methylation - From DNA, RNA and Histones to Diseases and Treatment"},signatures:"Robert P. Mason",authors:[{id:"152418",title:"Dr.",name:"Robert",middleName:"Peter",surname:"Mason",slug:"robert-mason",fullName:"Robert Mason"}]},{id:"38180",title:"Bifunctional Prokaryotic DNA-Methyltransferases",slug:"bifunctional-prokaryotic-dna-methyltransferases",totalDownloads:1450,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"methylation-from-dna-rna-and-histones-to-diseases-and-treatment",title:"Methylation",fullTitle:"Methylation - From DNA, RNA and Histones to Diseases and Treatment"},signatures:"Dmitry V. Nikitin, Attila Kertesz-Farkas, Alexander S. Solonin and Marina L. Mokrishcheva",authors:[{id:"151694",title:"Dr.",name:"Dmitri",middleName:null,surname:"Nikitin",slug:"dmitri-nikitin",fullName:"Dmitri Nikitin"},{id:"152806",title:"Dr.",name:"Attila",middleName:null,surname:"Kertesz-Farkas2",slug:"attila-kertesz-farkas2",fullName:"Attila Kertesz-Farkas2"},{id:"152807",title:"Dr.",name:"Alexander",middleName:null,surname:"Solonin",slug:"alexander-solonin",fullName:"Alexander Solonin"},{id:"152808",title:"Dr.",name:"Marina",middleName:null,surname:"Mokrishcheva",slug:"marina-mokrishcheva",fullName:"Marina Mokrishcheva"}]},{id:"38530",title:"Host-Mimicking Strategies in DNA Methylation for Improved Bacterial Transformation",slug:"host-mimicking-strategies-in-dna-methylation-for-improved-bacterial-transformation",totalDownloads:2064,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"methylation-from-dna-rna-and-histones-to-diseases-and-treatment",title:"Methylation",fullTitle:"Methylation - From DNA, RNA and Histones to Diseases and Treatment"},signatures:"Hirokazu Suzuki",authors:[{id:"152236",title:"Ph.D.",name:"Hirokazu",middleName:null,surname:"Suzuki",slug:"hirokazu-suzuki",fullName:"Hirokazu Suzuki"}]},{id:"41211",title:"Messenger RNA Cap Methylation in Vesicular Stomatitis Virus, a Prototype of Non‐Segmented Negative‐Sense RNA Virus",slug:"messenger-rna-cap-methylation-in-vesicular-stomatitis-virus-a-prototype-of-non-segmented-negative-se",totalDownloads:2801,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"methylation-from-dna-rna-and-histones-to-diseases-and-treatment",title:"Methylation",fullTitle:"Methylation - From DNA, RNA and Histones to Diseases and Treatment"},signatures:"Jianrong Li and Yu Zhang",authors:[{id:"153206",title:"Dr.",name:"Jianrong",middleName:null,surname:"Li",slug:"jianrong-li",fullName:"Jianrong Li"}]},{id:"40284",title:"Deciphering Protein Arginine Methylation in Mammals",slug:"deciphering-protein-arginine-methylation-in-mammals",totalDownloads:2114,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"methylation-from-dna-rna-and-histones-to-diseases-and-treatment",title:"Methylation",fullTitle:"Methylation - From DNA, RNA and Histones to Diseases and Treatment"},signatures:"Ruben Esse, Paula Leandro, Isabel Rivera, Isabel Tavares de Almeida, Henk J Blom and Rita Castro",authors:[{id:"151778",title:"Prof.",name:"Rita",middleName:null,surname:"Castro",slug:"rita-castro",fullName:"Rita Castro"}]},{id:"39269",title:"DNA Methylation in the Pathogenesis of Head and Neck Cancer",slug:"dna-methylation-in-the-pathogenesis-of-head-and-neck-cancer",totalDownloads:2169,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"methylation-from-dna-rna-and-histones-to-diseases-and-treatment",title:"Methylation",fullTitle:"Methylation - From DNA, RNA and Histones to Diseases and Treatment"},signatures:"Zvonko Magić, Gordana Supić, Mirjana Branković-Magić and Nebojša Jovic",authors:[{id:"40933",title:"Dr.",name:"Gordana",middleName:null,surname:"Supic",slug:"gordana-supic",fullName:"Gordana Supic"},{id:"153134",title:"Prof.",name:"Zvonko",middleName:null,surname:"Magic",slug:"zvonko-magic",fullName:"Zvonko Magic"},{id:"162918",title:"Prof.",name:"Nebojsa",middleName:null,surname:"Jovic",slug:"nebojsa-jovic",fullName:"Nebojsa Jovic"},{id:"162919",title:"Dr.",name:"Mirjana",middleName:null,surname:"Brankovic-Magic",slug:"mirjana-brankovic-magic",fullName:"Mirjana Brankovic-Magic"}]},{id:"41250",title:"Breaking the Silence: The Interplay Between Transcription Factors and DNA Methylation",slug:"breaking-the-silence-the-interplay-between-transcription-factors-and-dna-methylation",totalDownloads:2570,totalCrossrefCites:2,totalDimensionsCites:5,book:{slug:"methylation-from-dna-rna-and-histones-to-diseases-and-treatment",title:"Methylation",fullTitle:"Methylation - From DNA, RNA and Histones to Diseases and Treatment"},signatures:"Byron Baron",authors:[{id:"100140",title:"Dr.",name:"Byron",middleName:null,surname:"Baron",slug:"byron-baron",fullName:"Byron Baron"}]},{id:"41225",title:"Diverse Domains of (Cytosine-5)-DNA Methyltransferases: Structural and Functional Characterization",slug:"diverse-domains-of-cytosine-5-dna-methyltransferases-structural-and-functional-characterization",totalDownloads:2372,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"methylation-from-dna-rna-and-histones-to-diseases-and-treatment",title:"Methylation",fullTitle:"Methylation - From DNA, RNA and Histones to Diseases and Treatment"},signatures:"A. Yu. Ryazanova, L. A. Abrosimova, T. S. Oretskaya and E. A. Kubareva",authors:[{id:"152990",title:"Prof.",name:"Elena",middleName:null,surname:"Kubareva",slug:"elena-kubareva",fullName:"Elena Kubareva"},{id:"153059",title:"Dr.",name:"Alexandra",middleName:null,surname:"Ryazanova",slug:"alexandra-ryazanova",fullName:"Alexandra Ryazanova"},{id:"153060",title:"Ms.",name:"Liudmila",middleName:null,surname:"Abrosimova",slug:"liudmila-abrosimova",fullName:"Liudmila Abrosimova"},{id:"153063",title:"Prof.",name:"Tatiana",middleName:null,surname:"Oretskaya",slug:"tatiana-oretskaya",fullName:"Tatiana Oretskaya"}]},{id:"41210",title:"DNA Methylation, Stem Cells and Cancer",slug:"dna-methylation-stem-cells-and-cancer",totalDownloads:1875,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"methylation-from-dna-rna-and-histones-to-diseases-and-treatment",title:"Methylation",fullTitle:"Methylation - From DNA, RNA and Histones to Diseases and Treatment"},signatures:"Anica Dricu, Stefana Oana Purcaru, Alice Sandra Buteica, Daniela Elise Tache, Oana Daianu, Bogdan Stoleru, Amelia Mihaela Dobrescu, Tiberiu Daianu and Ligia Gabriela Tataranu",authors:[{id:"106758",title:"Prof.",name:"Anica",middleName:null,surname:"Dricu",slug:"anica-dricu",fullName:"Anica Dricu"}]}],onlineFirstChaptersFilter:{topicSlug:"genetic-epidemiology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/101440/veronica-zanon",hash:"",query:{},params:{id:"101440",slug:"veronica-zanon"},fullPath:"/profiles/101440/veronica-zanon",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var m;(m=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(m)}()