Abstract
Terahertz imaging looks set to become an integral part of future applications from semiconductor quality control to medical diagnosis. This will only become a reality when the technology is sufficiently cheap and capabilities adequate to compete with others. Single-pixel cameras use a spatial light modulator and a detector with no spatial-resolution in their imaging process. The spatial-modulator is key as it imparts a series of encoding masks on the beam and the detector measures the dot product of each mask and the object, thereby allowing computers to recover an image via post-processing. They are inherently slower than parallel-pixel imaging arrays although they are more robust and cheaper, hence are highly applicable to the terahertz regime. This chapter dedicates itself to terahertz single-pixel cameras; their current implementations, future directions and how they compare to other terahertz imaging techniques. We start by outlining the competing imaging techniques, then we discuss the theory behind single-pixel imaging; the main section shows the methods of spatially modulating a terahertz beam; and finally there is a discussion about the future limits of such cameras and the concluding remarks express the authors’ vision for the future of single-pixel THz cameras.
Keywords
- spatial light modulator
- single pixel camera
- compressed sensing
- Hadamard imaging
- terahertz time-domain spectrometer
- single-element detectors
- sub-wavelength resolution
1. Introduction
Visual information from the eyes generates vast amounts of data for the human brain to process, and provides us with unparalleled clarity and insight into the world we live in. Imaging with terahertz (THz) radiation is a research field that has gained a lot of interest and is in the process of moving from research laboratories to commercial applications [1, 2, 3, 4]. As such, the THz research field has grown so much that it has become impossible for a single human to be able to keep track of all developments [4]. Nevertheless, it is possible to outline why there is great interest and potential in THz imaging technology. Most non-conductive materials and non-polar liquids are THz transparent, useful for non-invasive inspection of many multi-component or buried systems, such as paintings [5], electronic circuits [6], space shuttle panels [7] and carbon-fiber composites [8]. Other possibilities are the measurement of picosecond processes in semiconductors [9], quality control of pharmaceutical tablets [10] and non-invasive detection of explosive substances [11]. A plethora of fundamental material resonances, such as phonons, rotations of molecules and precessions of spins, are observable and controllable by THz radiation [12]. Bio-medical applications are highly alluring most notably because the THz photon energies are non-ionizing and high-water sensitivity gives rise to label-free diagnosis of diseases that alter water content, such as cancer [13] and diabetic foot syndrome [14]. There is also the possibility of damaging or repairing DNA with intense THz radiation [15].
With so many possible applications, the reason why THz radiation is barely used outside of laboratories is due to costs of current THz technology. In particular to imaging, the technology is either too expensive, too slow or sacrifices some detection capability (such as picosecond temporal resolution). This is because materials which are suitable for efficient THz detection simply do not exist. This has resulted in THz detector arrays normally working in either narrowbands [16] or needing cryogenic temperatures for sensitive detection [17]. However, microbolometer arrays have very large bandwidths at room temperature operation [18] and when combined with digital holography they can measure both the amplitude and phase of THz radiation [19, 20]. Unfortunately bolometers achieve frequency resolution with a frequency selective source and they do not offer picosecond temporal resolution. This is acceptable for some applications such as detecting concealed weapons, however for applications where time gated detection is used, for example in extracting depths of painting coatings in original art works [5], it becomes unfeasible. An another imaging technique is to project a THz image on an electro-optic crystal then use visible light CCD arrays to spatially map-out the THz field incident onto the crystal [21, 22]. This does not sacrifice the temporal resolution offered time-domain THz spectrometers, however this needs a regen-amplified Ti:Sapphire laser which makes the whole system big and expensive and has prevented the widespread adoption of this technology despite its capabilities. These imaging techniques are all far-field, apart from [21], meaning that they fail to see detail below
The aforementioned imaging approaches are the standard imaging techniques, relying on a detector array or raster scanning, however there is another alternative. Namely, using a spatially modulated light beam and a single-pixel detector to obtain an image [30]. Approaches based on this technique are commonly called
2. Single-pixel imaging theory
Single-pixel imaging theory concerns itself with obtaining an image of a scene using a detector that can only measure the total amplitude emanating from the scene. The simplest idea is to raster scan an aperture across the field-of-view, building the image pixel by pixel. However, as the aperture is made smaller and smaller, the signal reaching our detector is reduced. We could increase the light incident onto our detector and overcome detector-noise by simultaneously scanning more apertures during each measurement, an idea that originates with Yates in 1935 [32]. In Figure 1(a) we show the main principle of this idea; we have a light beam that is spatially modulated which propagates through an object and onto a detector with no spatial resolution. It is of the utmost importance that in each measurement we know which apertures were open and which were closed. Without this information we could never reconstruct an image of the object. Each measurement is the dot product of the spatial encoding mask and the transmission function of the object, which is mathematically expressed as

Figure 1.
(a) Imaging with a single-element detector. An encoding mask spatially encodes a beam of radiation, then the beam passes through an object and onto the single-element detector. (b) Spatial encoding masks, where the first, second, third and fourth coloumns were constructed from Sylvester Hadamard, cyclic Hadamard, random and Fourier matrices respectively. The green triangle in the cyclic mask is there as a visual guide. (c) 2D image transform examples. Figure (a) was extracted from reference [
where
where the rows of matrix
The Sylvester-Hadamard matrices are binary, meaning that they are easily implemented, specifically with digital micromirror devices which are relatively cheap and have switch rates upto 20 kHz. The reconstruction technique can also be efficiently calculated by just doing the Fast Hadamard-Walsh transform, meaning one does not need to store
The Cyclic-Hadamard matrices, also known as Paley Type I and type II Hadamard matrices as they were first discovered by Paley in 1933 [36], are orthogonal and circulant matrices made of 1 s and -1 s. This means they have large noise robustness, easy binary implementation and they are constructed by having one vector,
Random masks constructed from Bernoulli matrices, or Gaussian random matrices, can also be made from 1 s and -1 s making for easy implementation using binary spatial light modulators. However, these matrices are not directly invertible and using a pseudo-inverse can create stability problems. Therefore convex minimization algorithms are usually used for image reconstruction [30, 31]. The main benefit of this masking approach is that is can be used for undersampling which can greatly reduce the total measurement time at the expense of complicated calculations. References [37, 38] were the first theoretical investigation and one can obtain their reconstruction scripts from reference [39], although reference [40] also freely provides their MATLAB scripts for another minimization algorithm called TVAL3 [41]. These algorithms can be slow, hence a mention needs to be given to reference [42] where Kowarlz et al. creates a pseudo-inverse matrix via Fourier-domain regularization that is able to recover images of quality similar to the slow minimazation algorithms, however with faster calculations based on matrix multiplication methods. Note, they also provide their MATLAB and Python scripts freely on github [43].
Fourier masks are those derived from the Fourier matrix. However, as this is just linear algebra representation of the Fourier transform and we are measuring real images (without imaginary numbers), then we do not need to measure the negative Fourier frequencies as they are just the complex conjugate of their positive frequency counterpart. The Fourier matrix is also orthogonal meaning it has noise robustness equal to the Hadamard matrices as well efficient image reconstruction algorithms, simply the Fast Fourier Transform. These masks, however, are not binary but require grayscale values which limits their deployability. Binary spatial modulators can accomplish this either by temporal dithering, at the expense of slower switch-rates, or by spatial dithering, which creates some quantization errors [34]. Nevertheless, these masks benefit from extensive literature based on the Fourier Transform and various image compression algorithms that can be reversed for image-undersampling procedures.
3. Spatially modulating THz radiation
In this single-pixel imaging modality, the most crucial part is to create a spatially modulated beam. In this respect for the THz regime there are four main methods that can be employed; by creating a physical mechanical mask, by changing the electrical conductivity of a material via the injection/depletion of charge carriers, by controlling the refractive index of liquid crystal cells and by creating a spatially varied beam directly at the THz generation stage.
3.1 Mechanical masks
Creating a physical mask to modulate THz radiation has the great advantage that this is the easiest in terms of manufacturing with great modulation depth,
There is another modulation technique that falls in this mechanical category. Namely, mirror arrays where each mirror can be individually addressed. Such arrays already exist for the visible light regime in the form of digital micromirror arrays (DMD). However, DMD mirrors are with dimensions around 10

Figure 2.
Schematic of a single pixel of the THz-SLM for normally incident terahertz waves. The pixel is composed of mirrors that are arranged in 4 rows and 8 columns. (a) OFF-state for a bias voltage of 0 V. all mirrors are inclined and incident terahertz radiation (red) is diffracted away (blue) from the transceiver. (b) ON-state for a bias voltage of 37 V. all mirrors are pulled down to the substrate and incident terahertz radiation (red) is reflected (blue) into the transceiver. (c) Schematic cross-sectional view of an unreleased mirror. The base of the mirror adheres to the parylene C, while the part to be released sits on the poly-Si. (d) Schematic cross-sectional view of a released mirror. The base of the mirror adheres to the parylene C, while the released part is inclined due to residual stress in the Cr-Cu-Cr mirror material. (e) Modulation contrast of the THz-SLM. The contrast exceeds a value of 0.5 for a working range from 0.97 THz to 2.28 THz with a maximum contrast of 0.87 at 1.38 THz. (f) Linear dependence of the detected modulated electric field on the number of switched-ON rows in the THz-SLM. (g) Linear dependence of the detected modulated electric field on the number of switched-ON columns in the THz-SLM. Figure reprinted from reference [
3.2 THz modulation by charge carrier injection/depletion
The main principle with this THz modulation technique is based upon the Drude model dielectric function [48, 49].
where
3.2.1 Optical modulators
Optical based spatial THz-light modulators are currently the best in terms of achieved switch-rate, operational frequency and ease of implementation. Their switch-rate and operational frequencies are both similar to the electrical modulators in that they also rely on modifying the charge carrier density in some material. However, as they use optical light to achieve this, their experimental implementation is very different and due to the current state of visible-light SLMs they are much easier to be implemented. One starts by patterning a visible light beam and then projecting this spatial pattern onto a semiconductor, thereby creating areas that experience large optical excitation and other areas which are left in their ground state. This in turn creates a spatially varying conductivity/absorption profile on the surface of the semiconductor, and thus if a THz beam passes through this surface then the inverse spatial pattern from the visible-light beam is imparted onto the THz beam. The optical excitation can come in two forms, pulsed and continuous wave. For both cases, the carrier concentration is described by
for carrier generation rate
For continuous wave excitation one needs to consider the photo-carrier generation, recombination and diffusion dynamics within the semiconductor. The steady-state equilibrium carrier concentration within the semiconductor is given by [48].
where

Figure 3.
(a) Carrier density (in arbitrary units) for different carrier lifetimes, shown by the colored numbers in ms, as we switch a continuous wave source on and off. (b) Illustration of imaging setup: Using a digital micromirror device and a lens, a pump pulse is spatially structured and projected onto a silicon wafer. This spatially modulates a coincident THz pulse. This THz pulse then passes through an object and is measured on a single-element THz detector. Inset is an optical image of a resolution test target (cartwheel) manufactured from gold on a 6
For pulsed optical-excitation probed by a synchronous THz pulse, Eq. (5) changes because the THz pulse can travel through the spatially photopumped region a few picoseconds after photoexcitation and for
3.2.2 Electrical modulators
Electrical based modulators are likely to be the long-term future solution for spatial THz modulators because they have very little fundamental limitations. Namely, the maximum switch-rates are limited by the carrier recombination rates meaning they can potentially achieve megahertz switch rates, provided the RC constants of the devices are taken into account, especially with electrically tunable materials such as graphene [58, 59]. Their size is determined by photolithographic manufacturing technologies, which is already orders of magnitudes smaller than the THz wavelengths meaning that pixel sizes can be highly subwavelength. In fact, sometimes THz modulation structures can be too large for some commercial photolithographic systems. They are fully self-contained and compact, which is their main advantage over the optical based modulators (see
One of the first demonstrations of this modulation technique was by Kleine-Ostmann et al. in 2004 [60] where they electronically depleted carriers from a GaAs/AlGaAs interface, achieving about 3% modulation across a broadband frequency range of 0.1 to 2 THz. Since then there have been numerous attempts at improving the modulation depth, see references [61, 62] for recent reviews. These efforts have included enhancing the interaction between the THz wave and the charge carrier regions by metamaterial structures [63, 64]. Others have recently used graphene as the modulator [65, 66]. Using metamaterials or Fabry-Perot type resonances to enhance the modulation depth has the trade-off of reducing the working frequencies of the modulator. A further note is that subwavelength grating structures can enhance the THz modulation over a broadband range [58] for the correct THz polarization.
In 2014 C. M. Watts et al. created an electrical based THz-SLM in reference [67], and Figure 4(a) shows their experimental schematic and part (b) shows an image of their SLM. They electrically change the THz absorption of a 2

Figure 4.
(a) Schematic of the single-pixel imaging process utilizing an SLM. An image is spatially modulated by the metamaterial and the resulting radiation is sent to the single-pixel detector. (b) Photograph of the SLM (courtesy of K. burke, Boston College media technology services); total active area of the SLM is (4.8 mm
3.3 Spatially patterned THz generation
Another innovative approach to single-pixel imaging is to create a spatially patterned beam at the generation step, rather than generate a homogeneous beam that is then spatially modulated, which has the benefit of not needing a THz-SLM. For the terahertz regime, this can be accomplished by three possible ways. First, having an array of photoconductive antennas [70, 71, 72], however this approach suffers from antenna cross-talk and inefficiency problems arising from the small working-area of the antennas whilst occupying a large area. Further, such antennas arrays have only been used as detectors. The second method is to use an electro-optic (EO) crystal that converts visible-light to THz frequencies via non-linear polarization effects [73]. The generation of THz radiation is localized to where the visible light is, hence projecting a spatially varying light beam will generate a THz-beam with the same spatial features. This idea was implemented by references [74, 75] where they used a used a SLM to pattern an 800 nm femtosecond pulse and project that onto a ZnTe crystal. The third method is similar to the second one, with the difference being the use of a spintronic THz emitter instead of an electro-optic crystal. Here the inverse spin Hall effect is used to generate an ultrafast current transient that generates the THz radiation [76, 77, 78]. The spatial patterning is again done by a visible-light SLM since the THz generation is again localized to areas where the optical-pump was shined upon. This was demonstrated by Chen et al. in reference [79].
The similarities between the spintronic and electro-optic crystal approaches are that they both require femtosecond pulses with mJ/cm
Figure 5(a) shows the experimental setup of reference [79] which uses the spintronic emitter array approach. Note that the EO crystal approach is identical in that you only have to replace the spintronic emitter with the EO crystal and remove the magnetic field, then place the object as close as possible to the emitter array. One should note that the use of the second DMD in Figure 5(a) is only to correct the phase front induced by first DMD, which can also be achieved by the technique shown in the supplementary information of reference [82]. The spintronic emitter is nanometer thick hence Chen et al. was able to resolve metallic lines 6

Figure 5.
(a) Schematic of the GHOSTEAM system. The spintronic THz emitter array (STEA) is excited by two-DMD-encoded fs laser pulses and generates spatially coded THz pulses. An object “CAEP” was placed in the near-field region (
3.4 Liquid crystal THz modulators
Liquid crystal modulators work by the re-orientating the material molecules under an applied voltage. As the molecules are oblong, this changes the refractive index that an electro-magnetic wave experiences. Therefore these devices are great for phase modulation giving the greatest freedom in the values that the sampling matrix can take. In other words, they can theoretically project a Fourier matrix that has grayscale complex-values. Note that complex valued masks can be used in conjunction with an intensity only detector to obtain an image that has phase and amplitude information [83]. A liquid crystal based SLM for THz was computationally studied [84]. However, the re-orientation of the molecules is a slow process, and in the visible light regime liquid crystal displays are typically limited to below 100 Hz switch rates. Due to the longer THz wavelengths, thicker layers of liquid crystals are needed resulting in even slower switch rates. For this reason, liquid crystal spatial modulators for THz radiation have been limited mostly to applications where slow switching speeds are acceptable such as dynamically controllable lenses [85, 86], absorption [87] or polarization control [88].
4. Applications and discussion
The first demonstration of a single-pixel THz camera that uses a multi-pixel modulation approach3 was in 2008 by Chan et al. [89]. Therein the authors showed amplitude and phase imaging was possible. Since Chan showed single-pixel THz imaging with metallic masks [89], most publications up until now have focused on improving the implementation by showing proof-of-concept modulation/generation techniques as opposed to potential applications. Shortly after in 2009 spectroscopic imaging was demonstrated [90]. The next experiment was in 2012 by Shen et al. [46] where they used a spinning disc with random masks, but it should be noted that their experiment used an infrared and a THz source whilst using the same SLM. The first demonstration of an optical based SLM was by Shrekenhamer et al. in 2013 [49]. The same group then published an electrical based SLM for single-pixel THz imaging in 2014 [67]. The next developments showed in 2016 that such imaging systems can detect a sub-wavelength fissure (8
The potential applications and capabilities of single-pixel THz cameras are directly determined by the THz source and detector, rather than the technique used to impart a spatial pattern in a beam of THz radiation. As such, it is unlikely for there to be a single-solution for all practical applications. Therefore, it is valuable to discuss where each of the techniques in
The metallic/physical based masks, employed in
Modifying the Drude plasma frequency of a semiconductor via injection/depletion of charge carriers has great potential for compact integration of the entire imaging system, as long as electrical gating is used as it negates the need for an extra pump-laser. The drawback is that to ensure modulation depth over a large frequency range the Drude plasma frequency has to be sufficiently modified. For example, after photoexcitation of silicon if
Direct generation of a spatially varying THz beam,
5. Conclusions
Although the first experimental implementations of single-pixel cameras can be traced back to 1976 [97], such imaging approaches were not widely studied or implemented in the commercial world. The reason is that the serial measurement of such ideas can not compete with parallel data acquisition of imaging arrays. Further, compressed sensing techniques began gaining mainstream attention in 2006 after two publications [37, 38]. This coincides with the development of visible light spatial modulators thereby allowing the implementation of the ideas in references [37, 38]. Whilst inherently slower than imaging arrays, these single-pixel cameras are much more robust and easier to implement in areas where imaging array technology is unavailable. In particular, the terahertz frequency regime.
This book chapter began by outlining the current state of THz cameras. Then it discusses the background theory of single-pixel imaging techniques. Most of the chapter was dedicated to discussing the current state of spatial THz-light modulators for use in single-pixel THz imaging in
The most advanced THz-SLM at present are those based on optical excitation of semiconductors,
Ultimately, the development of single-pixel THz cameras is likely to proceed with optical modulators being used in university laboratories to optimize the algorithms and methodologies used in image recovery as well as synchronization of all the equipment. Simultaneously there will be an effort to develop electrical based array modulators that have fast-switch rates and large modulation depth over a broadband frequency range. Then the miniaturization of such modulator arrays will start and it is likely that at this point such commercially available THz-SLMs will become available from new specialized start-up companies. Spatially-generated THz beams will likely remain only in laboratories for fundamental studies of different systems, but are unlikely to be used for industrial and commercial applications mostly due to the requirement of pump powers of
Acknowledgments
This work was partially supported by the Research Grants Council of Hong Kong (project numbers 14206717 and 14201415), The Hong Kong Innovation and Technology Fund (project number ITS/371/16), The Engineering and Physical Sciences Research Council (grant number EP/S021442/1), and the Royal Society Wolfson Merit Award (EPM).
Conflict of interest
The authors declare no conflict of interest.
Nomenclature
Atomic force microscope
Printed Circuit Board
Field-programmable gate array
Spatial light modulator
Terahertz
Electro-optic
Signa-to-noise ratio
Digital micromirror device
Vanadium Dioxide
Charge Coupled device
Notes
- This assumes that the photogenerated holes and electrons have similar properties such carrier mobility, effective mass, lifetime,... ie. a hole and an electron absorb the same amount of terahertz.
- This is also assumes that the pulse repetition period is much longer than the carrier lifetime, ie. the carriers have relaxed back to their ground state by the time the next pulse arrives.
- Technically, a raster scanner is a single-pixel camera. However this chapter concerns itself when the beam of radiation has multiple scatters and apertures in each measurement. Therefore raster scanners are excluded.
- This is was done by changing the reflection coefficient from 1 to −1 near the Brewster angle.
- Losses from various optical elements would occur and hence higher laser powers will be needed initially.