\r\n\t
",isbn:"978-1-83968-460-9",printIsbn:"978-1-83968-459-3",pdfIsbn:"978-1-83969-232-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"babca2dea1c80719111734cc57a21a4c",bookSignature:"Dr. Amin Talei",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10404.jpg",keywords:"Water Budget, Ground Measurement, Satellite Data, Empirical Models, Physical Models, Data-Driven Models, Artificial Neural Network, Neuro-Fuzzy Systems, Genetic Programming, Irrigation Management, Drought, Aquifer Management",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 29th 2020",dateEndSecondStepPublish:"November 26th 2020",dateEndThirdStepPublish:"January 25th 2021",dateEndFourthStepPublish:"April 15th 2021",dateEndFifthStepPublish:"June 14th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher in developing hydrological models using adaptive neuro-fuzzy systems, a pioneering researcher in tropical biofiltration systems, appointed head of the Civil Engineering Discipline in Monash University Malaysia.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"335732",title:"Dr.",name:"Amin",middleName:null,surname:"Talei",slug:"amin-talei",fullName:"Amin Talei",profilePictureURL:"https://mts.intechopen.com/storage/users/335732/images/system/335732.jpg",biography:"Associate Professor Amin Talei joined Monash University Malaysia in January 2013 and currently is the head of Civil Engineering discipline. His previous appointment was as researcher in School of Civil & Environmental Engineering of Nanyang Technological University of Singapore where he studied for his PhD during 2008-2011. His research is predominantly focused on hydrological modeling and flood forecasting using artificial intelligence techniques. Most recently, he has been also involved in research projects dealing with sustainable urban water management. To date, he has published over 50 articles in reputable journals and international conference proceedings. He has supervised several PhD and Master students and won the Supervisor of the Year Award in Monash University Malaysia in 2017. He has absorbed over AUD370,000 research funding from industry and international/national funding agencies since 2014 and is a chartered professional engineer of the Engineers Australia.",institutionString:"Monash University Malaysia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Monash University Malaysia",institutionURL:null,country:{name:"Malaysia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"43165",title:"Replicating – DNA in the Refractory Chromatin Environment",doi:"10.5772/52656",slug:"replicating-dna-in-the-refractory-chromatin-environment",body:'The replication of DNA is a process found throughout the prokaryotic and the eukaryotic kingdoms. Although the basic aim of this process is the duplication of the genetic information, the mechanisms leading to replication are different in prokaryotes and in eukaryotes. A major divergence between the two kingdoms corresponds to the nature of the substrate of the replication process [1]. Indeed, while the genetic information in prokaryotic cell is recovered in the nucleoid, the eukaryotic genome is found in the nucleus and the genetic material is associated with proteins. The tight interaction of the DNA molecule with proteins forms the chromatin, and for replication as well as for the other cellular processes that require the access to the genetic material, the chromatin is the actual substrate [2]. This organization of the eukaryotic genome in chromatin generates additional constraints to enzymatic activities. Therefore, it is required for the replication machinery to over-rule the refractory environment of chromatin.
Although the arrangement of the genetic material with proteins is an inhibitory environment, it is also required for packaging the molecule of DNA within the confined nuclear volume and for organizing the genome. Therefore, defects in the genetic material packaging affect genome stability and cell viability. Importantly, as replication results in the doubling of DNA, it is required for the cell to synthesize DNA-associated proteins and to form chromatin. This process known as replication-coupled chromatin assembly implies the copy of the epigenetic information carried by the histone proteins [3].
In the present chapter, we define the general features of chromatin, primarily on the basis of the fundamental sub-unit, the nucleosome, and the constraints that this structure generates for creating a refractory environment to replication. In addition to the view of the single nucleosome, as chromatin can be viewed as a polymer of nucleosomes which are highly ordered, the impediment of the replication machinery induced by higher chromatin order is discussed. Although replication activity should be inhibited by the chromatin, we review the mechanisms developed by eukaryotic cells to over-rule this non-permissive environment. Genetic experiments have shown that chromatin structure is essential for cell viability. We review the data providing evidence that the genome stability is, at least partly, inherent to chromatin assembly during replication, and the histone requirement in this process.
The basic chromatin sub-unit is the nucleosome, which is composed of the association of histone proteins with DNA [4]. The histone proteins are the most abundant nuclear proteins and are divided in four classes, H2A, H2B, H3 and H4, respectively. We distinguish in the histone protein two regions, the histone fold domain which is involved in the histone-histone and histone-DNA interactions, and the histone tail domain located at the N-terminal part of the protein, which is unstructured and extends out of the nucleosome [2, 5](Figure 1A). The association of the histones via their fold domain is highly conserved throughout the eukaryotic kingdom. Indeed, H3 is always associated with H4 and H2A with H2B forming therefore heterocomplexes H3/H4 and H2A/H2B (Figure 1B, upper panel). The histone pairing is done by three helixes of the fold domain of two histone counterparts which adopt a specific ‘handshake’ structure. The first high resolution crystal structure of the histone octamer in absence of DNA revealed that the histone octamer was organized in a tripartite structure wherein the H3/H4 complex formed a central tetramer which is flanked by two H2A/H2B dimers [6, 7](figure 1B, lower panel). Interestingly, while the histone fold domains were clearly resolved in the crystal, the unstructured tail domains were unseen. Although the histone octamer arrangement in presence of DNA confirmed the tripartite structure of the histone octamer, details of the edge of histone tails revealed the exit of these unstructured domains from the nucleosome [8].
It has been believed that the basic nature of the histones allowed the neutralization of the DNA phosphodiester backbone. However, the structure of the nucleosome at 1.9 Å resolution substantially improved the clarity of the electron density and revealed the presence of over 3000 water molecules and 18 ions [9]. The water molecules within the nucleosome promote the formation of hydrogen-bond bridges between the histone and the DNA molecule, like balls in a ball-bearing. Therefore, the water molecules enable the accommodation of intrinsic DNA conformational variation and promote the nucleosome mobility by limiting the rigidity of the nucleoprotein complex. The nucleosome crystal structures provided important information on the interactions between the histones and showed that the histone-DNA association is not only due to electrostatic interactions between the positively charge histones and the negatively charge DNA as it was primarily believed.
Histones and nucleosome formation: (A) schematic representation of the core histones. The boxes indicate the helixes of the histone fold domain, which is involved in the histone-histone interactions between H2A/H2B, and H3/H4. The amino-acid sequences correspond to the conserved sequence of the unstructured histone tail domain. (B) Individual core histones H2A (green), H2B (blue), H3 (yellow) and H4 (magenta) first heterodimerize to form the H2A/H2B and the H3/H4 complexes. The different complexes can either under different stringencies or with the help of histone chaperones associate together to form the nucleosome composed of a central tetramer of H3/H4 flanked by two heterodimers of H2A/H2B, and wrapped by 146 base pairs of DNA.
The demonstration of the labile interactions between the DNA molecule and the histone octamer was performed by the development of an elegant biochemical approach examining the accessibility of specific DNA sites within the nucleosomal DNA [10, 11]. In these experiments, the authors used a known nucleosome-positioning DNA sequence from the 5S gene, and by directed mutagenesis, restriction sites were generated at precise position within the DNA sequence. Nucleosome core particles were reconstituted with the different DNA sequences and purified by sucrose gradient centrifugation. The accessibility of the specific DNA sequences was examined as a function of time by adding to the nucleosome core particles the restriction enzymes. The quantitative analyses of the digested nucleosomal DNA reflect the accessibility of precise positions within the nucleosome core particles corresponding to the loss of histone-DNA contacts. Interestingly, the results revealed that DNA sequences engaged in the histone-DNA interactions are accessible to the restriction enzymes, and the accessibility gradually decreased when the restriction site is placed at proximity of the diad axis [12]. It was thus proposed that within the nucleosome core particle, dissociation of the histone-DNA contacts enables the transient exposure of DNA stretches to the solvent. Using a similar strategy, Widom and colleagues have also examined the contribution of the histone tail domains in the accessibility of nucleosomal DNA [13]. The results revealed that the removal of the histone tail domains leads to up to 14-fold increase in the site exposure within the nucleosomal DNA. Therefore, the tail domains within the nucleosome are also involved in the stabilization of DNA-histone fold domain interactions possibly by repressing the intrinsic dynamic nature of DNA.
The packaging of DNA in the nucleosome is a dynamic structure in conformational equilibrium, transiently exposing stretches of DNA off the histone surface, as demonstrated in model systems. Importantly, the binding of linker histone nearby the dyad axis to DNA restricts the flapping of the arms of DNA at the entry and at the exit of the nucleosome [14]. Although the analyses of the nucleosome behavior are very informative on the potential mobility of the nucleosome, it is obvious that the nucleosome is not recovered as a single sub-unit in living cell but rather found as a nucleosome polymer. Thus, the mobility of a considered monomer is possibly modulated by the surrounding nucleosomes. The analyses of a dinucleosome template generated from the 5S gene revealed a spontaneous mobility of the core histones which is restricted by the presence of the linker histone [15]. To better understand the function of the histones in the chromatin folding, it was required to examine templates that contained more than one or two nucleosomes. Using defined oligonucleosome models systems, the molecular mechanisms through which the histones modulated the chromatin folding were investigated [16]. These experiments revealed that the core histone tails play a critical function in the chromatin folding, as demonstrated by the removal of the tail domains in vitro [17, 18]. Interestingly, analyses of histone acetylation mimics on the chromatin fiber folding exhibited effects on the self-association properties of model nucleosome arrays, which depended upon the histone carrying the acetylation mimics and the number of mimics within the nucleosomes [19]. Such in vitro approaches using reconstituted nucleosomes systems are performed under particular pH and salt conditions. Additionally, acetylated histones increase chromatin solubility. Even if this can potentially biased the results, these investigations provide important features for understanding the physico-chemical parameters that facilitates or relieves the folding chromatin. But to date, the actual arrangement of the nucleosomes in the fiber is not yet well-determined. Nonetheless, experimental data have enabled to propose different models, the solenoid model and the zig-zag model, and it is possible that both models are juxtaposed in the nucleus [20, 21].
The ordered structure of chromatin represents the primary barrier to access the genetic information. On the basis of in vitro studies, the linker histones are proposed to be involved in the high-ordered chromatin structures [22]. Although the linker histone is not essential in protozoans [23, 24], the knock-out experiments in mouse revealed critical functions [25]. Indeed, in higher eukaryotes, the linker histones are composed of about eight subtypes which can compensate each other in some extend. However, upon the deletion of three subtypes, the synthesis compensation fails and embryonic lethality is observed. To attempt to gain insight in the function of the linker histone, analyses of the histone modifications have been carried out and reported a correlation between the cell cycle and the phosphorylation of the C-terminal tail domain [26, 27]. Surprisingly, while the genetic analyses revealed that preventing the phosphorylation of linker histone affects the chromatin organization leading to an increase of the nuclear volume, a raise in the linker histone phosphorylation was also detected in mitosis [28, 29]. Nonetheless, at the G1/S phase transition, linker histone is also found as substrate of cyclin-dependant kinase Cdk2, wherein the phosphorylation of the C-terminal tail leads to a relaxation of chromatin structure which might facilitate DNA replication [30, 31]. More recently, knock-down experiments of the linker histone in the slime mold Physarumpolycephalum showed a significantly faster rate of genome duplication, which was caused by a lost in the regulation of replication origin firing rather than the increase in the replication fork propagation [32]. Clearly, it has been evidenced that the linker histone affect the compaction of chromatin into the nucleus, and its release is required for the initial transition from non-permissive to permissive chromatin, but the actual mechanisms remain unclear.
Undoubtedly, if the primary inhibition for DNA replication is the higher levels of chromatin structure, relieving the high order of chromatin leaves the core histones associated with DNA, which is still an impediment for DNA accessibility. Thus, the next step is the release of the parental core histones to allow replication machinery to process all along the DNA molecule. To reach this goal, several concerns have to be taken into account. A bevy of studies have attempted to address the segregation of parental histones during replication, but the results are often controversial and many questions still need to be addressed. The fate of parental nucleosomes deals mainly with two overlapping key questions : do they dissociate from DNA during replication ? and, how are they transferred behind the replication fork ?
In vitro studies claimed chromatin replication without histone displacement. Initially showed in prokaryotic in vitro system [33], same conclusions were drawn from eukaryotic system studies [34]. In contrast, other studies evidenced that parental nucleosomes dissociate from DNA [35, 36]. The main argument for a non-displacement was that radioactively-labeled histone octamers are not reassembled onto a large excess of competitor DNA templates, suggesting that they do not dissociate from initial DNA matrix [34]. The idea that nucleosomes could partially relax to allow the passage of DNA processing machineries without complete dissociation is a matter of intense debate in the chromatin field, where the problematic of DNA accessibility is essential for most chromatin activities including replication, transcription and repair. Regarding replication, although no definite model can be drawn, it is commonly believed that disrupted parental nucleosomes are bound to specific protein chaperones which would transfer the core histone building blocks behind the replication fork.
The tripartite structure of the histone octamer implies that the removal of the H3/H4 from the nucleosome is associated with a displacement of the histone dimers H2A/H2B. However, two hypotheses could be postulated for lost of the nucleosomal structure, either the entire octamer is evicted or this is performed by the successive displacement of the different building blocks composing the histone octamer. Experimental approach for studying parental histone segregation implies the possibility of discriminating the old pool of histones and the new one [37]. By preventing the synthesis of new histones using translation inhibitors, like cycloheximide and puromycine, would enable the analysis of parental nucleosome transfer, though such treatments impair replication progression. Still, one can argue that as the replication process requires a tight regulation of the histone supply, impairing this regulation profoundly impact the replication leading to the replication fork blocks. Thus, most conclusions from these experiments have to be taken with caution. Original studies using this approach coupled with micrococcale digestion (enzyme allowing specific digestion of internucleosomal DNA) revealed that the size of the fragments obtained were consistent with DNA size protected by the histone octamer. So it was originally proposed that the parental nucleosomes are dissociated ahead of the replication fork and transferred behind with no detectable intermediate. Whether the experimental design led to artifacts remains likely.
Importantly, several studies using different approaches have demonstrated a distinct mobility for the H2A/H2B and the H3/H4 in living cells [36, 38]. On the basis of the different motions of the H2A/H2B and the H3/H4, one can reasonably believe that the octamer building blocks dissociate during cellular processes. Moreover, in vitro experiments for reconstituting or destabilizing nucleosome revealed the presence of basic heterocomplexes of H3/H4 tetramer and H2A/H2B dimer [37]. At physiological conditions, the heterotetramer H3/H4 prepared from chromatin and in absence of histone chaperones is the most stable form of the complex in solution [39]. Even if it has been claimed that a very transient dimeric state can exist, the absence of demonstration of the H3/H4 dimers led to the anchored view that parental nucleosomes split into two H2A/H2B dimers and a H3/H4 tetramer, and are then reassembled behind the fork, with the central tetramer H3/H4 deposited first [40, 41].
The simplest view regarding the dissociation of the parental core histone from DNA could be that the driving force of the replication fork progression is sufficient for overriding the histone-DNA interactions by the only action of replication specific proteins as helicases [42]. This model involves that core histones in presence of DNA spontaneously form nucleosomal structures with a tripartite organization. Unfortunately, in vitro experiments demonstrated that such arrangement of the histone octamer required either high salt concentrations or chaperone proteins to assist the proper loading of the histones in a tripartite structure [43]. A more comprehensive view was provided by a study by Groth et al [44] showing that the major H3/H4 histone chaperone ASF1 (Anti-Silencing Factor 1) forms a complex with the putative replicative helicase MCM2-7 (Minichromosome Maintenance Complex), via a H3/H4 bridge. On the basis of the in vitro capability of ASF1 to assemble chromatin, it has been proposed that this chaperone might be involved in the recycling and the transfer of parental H3/H4 histones directly coordinated by the DNA replication process.
Concerning H2A/H2B, picture is even less clear. Chaperones, like NAP1 (Nck-associated protein 1) and FACT (Facilitates Chromatin Transcription) might be involved. The heterodimeric complex FACT, a chromatin-modifying factor initially described to promote nucleosome rearrangement during RNA polymerase II-driven transcription through H2A/H2B dimer destabilization [45], was shown to be involved in DNA replication. FACT interacts with DNA polymerase α, and in human with the MCM helicase to act on DNA unwinding [46]. Recently, a conditional knock-out of one of the FACT subunit in DT40 chicken cells (Structure-Specific Recognition Protein 1, SSRP1) showed apparent impairment in replication fork progression [47]. Even if the precise mechanisms are still to be elucidated because this complex interacts with H2A/H2B and H3/H4 in multiple ways, the synergized action of histone chaperones and replication actors is actually an attractive model of coordinated nucleosome eviction/reassembly and DNA replication during S-phase.
It is known for a long time that chromatin assembly is an ATP-dependent process [48], so it is not surprising that ATP-dependent chromatin remodeling factors have been implicated in the release of the chromatin structure. Most studies focused on nucleosome movement during transcription, but strong arguments of their involvement during replication exist. The ISWI-class of ATP-dependent remodeling family interacts with several proteins in complexes, among them ACF1 (ATP-utilizing Chromatin assembly and remodeling Factor) and WSTF (Williams syndrome transcription factor). Depletion experiments demonstrated that ACF1 is critical for efficient DNA replication of highly condensed regions of mouse cells [49], and that WSTF, targeted to replication foci via its interaction with the processivity factor PCNA (Proliferating Cell Nuclear Antigen), promotes DNA replication by preventing premature maturation of chromatin [50].
Chromatin reassembly behind the replication fork is a rapid process. Electron microscopic studies and psoralen cross-linked nucleosome used, have clearly shown random distribution of the nucleosomal structures on both strand of the nascent DNA, with no apparent free-DNA [35]. By blocking protein synthesis with different inhibitors, it was demonstrated that half of the nucleosome pool came from random segregation of recycled parental ones, whereas the other half came from newly synthesized histones. In proliferating cells, the histone biosynthesis is coupled with the cell cycle progression. The vast majority of histones (the canonical histones) are massively produced at the beginning of the S phase, mainly by transcriptional activation of histone genes and improvement of pre-mRNA processing and stability, that begins during G1 phase (reviewed in [51, 52]). Through a feedback regulation reducing drastically the half-life of histone mRNAs, the amount of proteins then decreased at the end of S-phase until the baseline level is reached. However, experiments using replication blocking agents showed distinct synthesis profiles between H3/H4 and H2A/H2B, illustrating that specific level of regulation may exist [53]. Some specific histones (histone variants), used for deposition and exchange of nucleosomes outside of the S-phase (replication-independent chromatin assembly), are produced throughout the cell cycle. Although this aspect presents a great interest, the present chapter focuses on the regulation of the canonical histone proteins at the onset of DNA replication (for reviews about histone variants see [54, 55]).
Once the histones are synthesized, they are rapidly delivered to the site of replication and assembled into chromatin. Because these proteins are highly basic proteins, histones tend to promptly bind non-specifically to nucleic acids with a higher affinity to RNA than DNA, and they do not spontaneously form nucleosomes. To allow correct transfer into the nucleus and efficient deposition onto DNA, histone chaperones play a dual function, they neutralize the histone charge to prevent the formation of aggregates and they address the histones at precise locations within the nucleus [56].
The supply of histone is a tightly regulated process. Any events leading to replicational stress (as DNA damage for example) disturb the fine balance between histone supply and demand and have deleterious effects on the cell. Histone chaperone have critical roles in regulating this process. Consistently, deletion of the major histone H3/H4 chaperones CAF-1 (Chromatin Assembly Factor 1) or ASF1 in various organisms impair S-phase progression [57, 58]. In human, it was shown that ASF1 exists in a highly mobile soluble pool that buffered the histone excess [59]. In the budding yeast S. cerevisiae, ASF1 depletion impairs cell cycle progression and generates chromosome instability [60]. In this organism, it was shown that the up-regulation of the amount of histone in the cells leads to the degradation of the excess histones by a Rad53 kinase-dependent mechanism [61].
The nuclear import of the histone complexes is among the first levels of regulation. Several groups have attempted to define the mechanisms by which the histone supply might be regulated. The role of specific domains within newly synthesized histones essential for transport (and also formation of nascent chromatin) was first addressed using powerful genetic approaches in the yeast S. cerevisiae. Pioneer studies performed in budding yeast emphasized the essential role of both N-terminal H2A/H2B tails for cell viability (reviewed in [62]). Fusion protein experiments using fluorescent tracers led to the assumption that nuclear localization signals (NLS) are present in the N-terminal non-structured domain of histone proteins, and their interaction with karyopherin or importins would promote nuclear import of newly synthesized histones [63, 64]. Nevertheless, incorporation experiments of exogenous histones in the slime mold Physarum polycephalum showed that H2A/H2B dimers lacking both tail regions still localized to the nucleus. It was thus concluded that the tails of H2A/H2B are dispensable for nuclear import. However, the chromatin assembly analyses revealed that at least one tail is necessary for the deposition of the dimer complex into chromatin [65]. Conversely, studies using a similar strategy of incorporation of exogenous histones in Physarum to examine the fate of the H3/H4 complexes exhibited a function of the amino-terminal domains in nuclear import. Indeed, the histone H3/H4 dimers lacking H4 tail are inefficiently imported, while H3 tail was found dispensable in this process, but impaired nucleosome assembly coupled to replication [66].
By extending out of the nucleosomal structure, the exposed N-terminal regions of histones are subjected to active post-translational modifications. These marks, when imposed on assembled histones, have been shown to impact on the overall nature of the chromatin [67]. Newly synthesized histones are also characterized by a specific pattern of post-translational modifications, imposed in the cytoplasm shortly after synthesis. For example, newly synthesized H4 are diacetylated at lysine 5 and 12 by the holoenzyme HAT1 (Histone Acetyl Transferase 1), and these acetyl groups are rapidly removed after the assembly of histones into chromatin [68]. Despite the conservation of the H4 diacetylation throughout the evolution, the actual function in histone nuclear import and/or chromatin assembly remains undetermined. In Drosophila embryos, the RCAF complex comprises ASF1, acetylated H3K14, and diactetylated H4K5K12 [60] and in human, the CAC complex is composed of diacetylated H4K5K12 and CAF-1 [69]. This highlights an essential role of this dual signature for the formation of a complex between H3/H4 and the major chaperones associated to replication. However, as revealed by the co-crystal structure, ASF1 interacts with the C-terminal region of H3 [70], so the precise role of the post-translational modifications is not obvious. Strikingly, all described chaperones so far do not interact with the unstructured tails of histones. To conclude, even if the requirement of the amino-terminal regions of the histones has been evidenced for the assembly of chromatin and/or regulation of histones, their precise involvements in the overall process still necessitate investigations.
Albeit the two DNA strands run in opposite directions, the progression of the replication fork is unidirectional. To reconcile that, during the replication process one daughter strand is synthesized continuously (the leading strand) whereas the other (the lagging strand) is build by short stretches of DNA named Okazaki fragments, ligated afterwards. Does this particular mode of duplication have an impact on parental nucleosomes segregation ? Even if adjacent “old” histones tend to segregate together, no clear preference for the leading or lagging strand have been demonstrated, mainly because the studies did not clearly discriminate the two strands. A recent study suggests that nucleosome positioning onto the lagging-strand could determined the length of Okazaki fragment in S. cerevisiae, via interaction with the enzyme polymerase pol δ, responsible for the extension of the nascent DNA chain through the 5′ end of an Okazaki fragment [71]. By purifying Okazaki fragments, and performing the alignment onto the yeast genome, they demonstrated that they strikingly mapped with nucleosome positions. Once again, these experiments nicely illustrated the coupling between the DNA replication and the chromatin assembly.
The apparent higher sensitivity to nuclease digestion of newly synthesized chromatin compared to bulk chromatin suggests that new chromatin is not completely mature. Even though it was shown that specific post-translational modifications carried by newly synthesized histones and the absence of linker H1 histone could at least partially outline a more relaxed chromatin state, the reasons for the detection of the greater DNA accessibility in replicated chromatin remain actually elusive.
Newly synthesized H3/H4 are sequestered into the cytoplasm by ASF1, probably through interaction with several other chaperones, like the histone acetyltransferase HAT1, heat-shock proteins as HSC70 (Heat Shock Cognate 70 kDa protein), HSP90 (Heat Shock Protein 90), and NASP (Nuclear Autoantigenic Sperm Protein). The recent involvement of NASP as part of a cytosolic H3/H4 histone buffering complex is surprising, as this protein was initially described as an H1 chaperone [72, 73]. Indeed, in the nucleus ASF1 synergize with CAF1 via direct interaction with the p60 subunit. CAF1 was described to promote chromatin assembly in vitro [74]. This evolutionary conserved trimeric protein complex is recruited to site of DNA synthesis through interaction of the p150 subunit with the replication processivity factor PCNA, linking again chromatin assembly to replication fork progression [58]. As for parental histones, pioneer experiments using pulse-labeled histones suggested a sequential deposition of newly synthesized histones, with a H3/H4 tetramer assembled first, follow by the deposition of two H2A/H2B dimers.
The deposition model of nucleosomes, based on the stable tetrameric nature of histone H3/H4, was recently revisited [75]. Tagami and colleagues purified predeposition chromatin assembly complexes from HeLa cells stably expressing epitope-tagged histone H3.1 isoform (the replicative histone). The analyses of the immunoprecipitated tagged histones from purified nucleosomes and from the predeposition complexes showed that whereas about 50% of H3 in the nucleosomal fraction contained the epitope tag, all the histone complex in the predeposition complexes were tagged. It was thus concluded that H3/H4 complex is deposited onto DNA as dimer rather than tetramer. Biochemical, crystallographic and NMR analyses of ASF1 in complex with H3 (and sometimes H4) confirmed the dimeric nature of H3/H4 bound to the chaperone [70, 76, 77]. Furthermore, the structural data pointed out that the H3/H4 heterodimer binds ASF-1 at critical residues for H3/H3 interaction in the nucleosome, thus physically blocking the formation of a H3/H4 heterotetramer. This model has been reinforced by mutations of amino acids at critical regions. The dimeric nature of H3/H4 is also supported by a paper analyzing the composition of centromeric nucleosomes in the fruit fly Drosophila. At this particular genomic location, the nucleosome would exist in interphase as a stable tetramer, as a complex of single copy of CenH3-H2A-H2B and H4 has been identified [78].
The semi-conservative mode of replication of DNA ensures that the genetic information is faithfully transmitted to the daughter cells after mitosis. In higher eukaryotes, as the DNA is replicated, the chromatin environment has to be removed and subsequently restored. Here, we have reviewed an overview of the actual mechanisms that can sustain this operation. The studies described and cited in this chapter are based upon different experimental approaches, which might potentially present caveats inherent to the experimentations. Even though profound advancements have been reported during the past few years to clarify the factors involved in the transport and delivery of histones, basic concerns still have to be unraveled.
It is generally believed that the histone post-translational modifications impact chromatin structure and the chromatin activities through the recruitment of different effectors and modulators. Beside the mechanistic comprehension of the process of DNA replication in the chromatin context, underlying question addressed is how the chromatin organization and the information carried by histones are maintained or altered during replication. Indeed, the demonstration of the link between chromatin replication and cell differentiation suggests that the S-phase is a window of great opportunity for modulating the epigenetic regulations in a genetic program. However, in this context, the alterations of the chromatin structure and the histone modifications have not yet been fully elucidated.Three models can emphasize the nucleosome reorganization behind replication fork (Figure 2): (A) the entire parental octamer is transferred to form nucleosome and newly synthesized histones fill up the gaps. (B) The parental nucleosome splits into building blocks composed of a tetramer of H3/H4 and dimers of H2A/H2B, and the blocks are redistributed onto the two strands of DNA. The new histones are utilized for achieving the formation of the octamer. (C) The recently advanced dimeric nature of H3/H4 paved a new avenue for future investigations. The splitting of the tetramer could lead to mixed nucleosome, composed of parental and new histones.
Working models of nucleosome reorganization during DNA replication. (A) Parental nucleosome is transferred as intact unit, without disruption of the octamer, leading to nucleosome fully constituted either of old or of new histones. (B) Parental nucleosome splits into H3/H4 tetramer and H2A/H2B dimers. In this model, new and old H3/H4 cannot coexist in the same nucleosome behind the replication fork. (C) Parental nucleosome splits into H3/H4 and H2A/H2B dimers, leading to mixed nucleosomes composed of old and new histones in each nucleosome building block.
In any considered model, the epigenetic information associated with the histone marks need to be copied from parental histones to newly synthesized ones. Concerning DNA methylation, the inheritance is a better-characterized process. In mammals, this modification mainly occurs on CpG dinucleotide (a cytosine followed by a guanine). The anti-parallelism of the DNA molecule, and the semi-conservative mode of DNA replication, ensure that the PCNA-interacting DNA methyltransferase DNMT1 easily copy the parental pattern onto the virgin daughter strand. To date, the mechanisms of the histone modification inheritance remains unclear. Most likely, future works in the field will attempt to address this issue.
The abundance of social media application creates an ecosystem of social media [1] which business organizations can use to enhance their information system (IS) and strategic endeavors [2, 3]. The use of social media in business organizations is in the post adoption stage. For instance, Mahr and Lievens [4] highlighted that 80% of firms listed in Standard and Poor’s 500 index used social media. Although large organizations embraced social media, Kiron et al. [5] suggested that both large and small organizations practice social media. In addition, Braojos-Gomez et al. [6] suggest that small firms tend to use and leverage social media for strategic objectives such as marketing because of their low portfolio of financial resources to compete more effectively in the market compared with large business organizations. Although social media can be leveraged for strategic reasons, Kietzmann et al. [7] suggested that executives were struggling to build strategies for engaging effectively with social media. For instance, Omotosho [8] suggests small business entrepreneurs are familiar with major social media platforms and their relevance to their business endeavors but lack of continuity with platforms for business purposes was a factor for converting the platforms for their personal use. Likewise, Effing and Spil [9] finds that social media strategy within organizations is not yet well developed. The difficulty of developing a strategy is attributed to abundance of social media applications which exist in different forms such as blogs, content communities, or social networking sites (ibid). Kwayu et al. [3] found organizations used different social media platforms for different strategic activities, which explains why there is a co-existence of different social media platforms in organizations. Therefore, while social media platforms support different strategic practices, Hanna et al. [1] suggest that the social media ecosystem creates an understanding of the overall social media strategy. Social media ecosystem is an accumulation of social media applications which emerge as important e-commerce context for organization to engage [10].
Partly out of financial constraints, small businesses turn into social media strategies [6]. Small businesses understand that social media is crucial for the competitiveness of small businesses. The evidence that the practice of social media within organizations is far advanced than its recognition in the literature [11], further underscores the need for scholars to understand the practice of small businesses use of social media and how the social media ecosystem influences strategies of small business.
Considering the above, this paper explores how the social media ecosystem enacts strategy for small business. The paper draws from practice theory which focuses on how people interact with technology in their ongoing activities while enacting structures, which influence emergent and situated use of that technology [12]. Thus, the practice perspective offers us with an understanding of how technology is used and how the use of that technology affects the organization.
Motivated by the concerns above, this paper seeks to answer the following question: how does the social media ecosystem enact strategy for small business?
Accordingly, this research is an autoethnography research that adopts an interpretivist philosophy to gather empirical evidence from personal experience and self-reflection of owning and managing a small online business. In this respect, the paper makes the following contributions. First and foremost, it will help to understand how an ecosystem of social media produces, embeds and enacts strategic activities for a small business. Second, it will help to understand the role of context in organization and assist contextual inclusivity. Third, it will give insights on the digital divide that exists between developed and developing context and the role of social media at either bridging or expanding the divide. Lastly, the paper will be useful for small businesses that want to develop agility, which is required to successfully adopt and implement digital transformation.
The remainder of this paper is structured as follows. First, I discuss the literature on social media, followed by a discussion on practice theory. Then a methodology section follows. Thereafter is the presentation of the findings and a discussion on the implication to literature and practice. Finally, I conclude with limitations and avenues for future research.
Social media is now a mainstream practice within organizations [13]. It is a new form of information technology that allows interaction and interoperability of users [14]. Dabner [15] explains social media as an internet and mobile based application which integrates technology, telecommunication and social interaction to enable the creation and dissemination of words, videos, images and audio. Treem and Leonardi [16] suggest social media is distinct from previous forms of information technology (IT) in terms of affordances. For instance, it allows simultaneous and instantaneous exchange of information between users which has enabled social media usage to soar within a relatively short period of time. For example, Piskorski [17] highlights that most of popular social media such as Facebook, Twitter, Instagram and YouTube which were made in mid-2000 are now having more than billion users. Thus, with the affordances that social media offers to organizations and the influence that it has; organization are generating a considerable interest in understanding how to implement and develop strategies around social media.
Kwayu et al. [14] argues that social media is a broad term which embodies various forms making it difficult to apprehend. There have been various efforts to classify social media with Kaplan and Haenlein [18] developing six categories of social media which are: blogs, social networking sites, content communities, virtual game worlds, virtual social worlds and collaborative communities. Another attempt to offer understanding on different forms of social media was of Kietzmann et al. [7] which developed seven functional building blocks of categorizing social media platforms. The functional blocks are: Identity, sharing, conversation, presence, relationships, groups and reputations. Although the categorization of social media helps to understand a platform and its effect in organization, it obscures the understanding of the combined effect of social media applications that exist within the organization consequently denying organizations’ executives with means of developing the overall social media strategy within organization.
In efforts to understand how social media co-exist in organizations, Piskorski [17] argues that for social media to be successful they have to offer a single social solution. Once it offers more than one solution, it becomes less effective. Given this observation, social media platforms refrain from copying social solutions from other platforms, hence this is the reason why different platforms with non-overlapping social solutions can co-exist in an organization. Like Piskorski [17], Kwayu et al. [3] found different social media platforms engendered different strategic practices within an organization. Although different social media platforms serve different functions within an organization, understanding of social media as an ecosystem helps the organization to pursue overall social media strategy rather than being tactical [1, 10]. Piskorski [17] suggests that an overall strategy needs structural change and helps organization in the long run whereas tactics are limited to a function and they are short-lived. In practice many organizations tend to use a functional approach to strategy [19] which denies organizations with full potential towards a social media strategy. Therefore, this paper intends to help in understanding how the social media ecosystem shapes business strategy.
It is crucial to understand social media strategy in order to understand how the social media ecosystem shapes business strategy. Piskorski [17] defines social media strategy as the idea of using social media for value creation and competitive advantage. Though limited some studies have explored social media strategy. For example, Culnan et al. [20] proposed an outline for implementing social media strategy which includes three elements that are; mindful adoption of social media platforms, building community in social media platforms and creating absorptive capacity for sourcing value from the community in social media. Similarly, Piskorski [17] argues that successful implementation of social media strategy seeks to increase organization’s profit by improving interactions between people and making them undertake sets of corporate function for free. In addition, Piskorski [17] builds his argument using Porter [21] generic business strategy which gives organizations two choices of either differentiation or cost leadership. With differentiation an organization will use social media to pursue customers and ensure that they pay more without increasing the cost, while with cost leadership an organization will use social media to reduce their cost without reducing the customers willingness to pay. Another study that reviewed social media strategy is Effing and Spil [9], who developed a framework which comprises three stages and seven key elements of social media strategy. The first stage is initiation, which comprises targeting audience and channel choice. Most organizations focused on the first stage. Second stage is diffusion which has elements of goals, resources and policies. Whereas the third stage is maturity which involves elements of monitoring and content activities. While these studies provide significant understanding of social media strategy, their major weakness is that they focus on customers. The studies also ignore other issues such as impact of social media on processes, structure and strategy of business organization.
As mentioned earlier, practice perspective view how people interact with technology in their ongoing practices to enact structure that shape emergent and situated use of the technology [12]. This implies that practice theory emphases the latent connection of material aspects of social reality [22]. Golsorkhi et al. [22] argues that practice enables a researcher to deal with the most fundamental issues in contemporary social analysis by showing how social action is linked with structure and agency. Furthermore, they suggest practice perspective has potential to explain why and how social action sometimes follows and reproduces routine, rules and norms and sometimes it does not (ibid). The underlying belief of practice theory is that activities of social life are carried out through ordinary acts of life.
Halkier [23] suggests that practice theory is not a coherent theory, but it attempts to synthesize conceptual elements regarding the performing of social action. Thus, practice theory is concerned with performativity, meaning that activities of any kind in human life are continuously carried out and through ordinary life performance organized through multiplicity of shared practice (ibid). Thus, practice theory offers a way to explain why a social phenomenon comes to be the way it is, making it a better way to understand how strategy is enacted.
Within the IS field it is believed that technologies embodied structure with them, and the structures were appropriated when the technology was in use [24]. However, Orlikowski [12] proposed a practice theory which advances the notion of embodied structure with enactment of structure and the notion of appropriation with emergent use of technology. This means that practice theory acknowledges that structure is enacted when technology is used, and consequently when there is recursive use of technology a structures of technology use emerge. Hence, Orlikowski [12] made a distinction between technology in practice (use) and technology as artifacts. The practice theory thus focuses on the use of technology, which makes it useful means of exploring how people organize themselves when interacting with technology. Thus, the practice theory explains organizing phenomena as interweaving of social and material. In this way, and by focusing on activity the practice theory does not distinguish social and material as there is no social without material and no material without social [25]. Therefore, practice theory acknowledges that social activities depends on material arrangement in which the activity is taking place (Ibid). Furthermore, practice theory has been used in the study of social media, for instance Kwayu et al. [2] used practice theory to explore how social media is a tool for competitiveness and its influence on organizational practice and strategy. Likewise, Huang et al. [26] used practice theory to study social media used in a ticketing company in china. The theory was useful to explain the phenomenon of site-shifting and how practices where bundled to produce emerging, dynamic and fluid nature of ambidexterity. Considering this, practice theory becomes a suitable theory for explaining how the social media ecosystem affects the strategy of a small business.
This research is an autoethnographic research which follows an interpretivist philosophy. The interpretivist philosophy is suitable for this research as it views knowledge as being socially constructed through language, consciousness and shared meaning [27]. Interpretivist philosophy is in line with autoethnographic research. It’s a form of research, writing and method that connects the autobiographical and personal to the cultural and social [28]. Cunliffe [29] insists that autoethnography is not a method but a methodology. This means that autoethnography is more than techniques of data collection and analysis.
Wall [30] suggests that autoethnography draws on personal experience that extends to provide insights on a social behavior making it reflexive and better suited to explain social phenomenon since it acknowledges an inextricable link between personal and the wider context. Thus, autoethnography research provides means of organizing reflection on everyday life as experienced by researchers [31]. Furthermore, autoethnography is suitable for this research because it is enactive as it is concerned with material and physical domain that relates to the researcher domain of research (ibid). Therefore, autoethnography is beneficial for the research as it offers opportunity for making latent and tacit knowledge ordinary. This is because personal experience removes the access boundary of generating knowledge on the interdependencies between researched phenomenon being enacted and researchers. Therefore, despite autoethnography research being in line with interpretivist philosophy it is also in line with practice theory and the research phenomenon of understanding how the social media ecosystem enacts strategy of small business.
This research draws from my personal experience of establishing an online shop on ETSY platform. My shop sells handmade crafts from Africa with the main source being Ghana. My business started in 2018. The business significantly depends on several social media platforms, which create an ecosystem that shape the strategy of my business. I started the shop while in the UK and I continue to manage it from Tanzania. This transition has offered me a good experience of navigating/conducting business between developed and developing countries. My data is a recollection of my personal experience and reflection.
The analysis of my reflection follows a reflexive thematic approach, which is considered a fully qualitative approach [32]. Reflexive approach is centred on deep engagement, commitment and rigor as it emphasizes meaning as contextual or situated, reality or realities as multiple and researcher subjectivity as not just valid but a resource [33]. In addition, Braun et al. [32] suggest in a reflexive analysis a researcher becomes a storyteller, actively engaged in interpreting data through the lens of their own cultural membership, social positioning, theoretical assumptions, ideological commitments and their scholarly knowledge.
The finding of this research is drawn from my personal experience, which can make it hard to generalize the results. Nevertheless, Halkier [23] suggests that it is possible to generalize but with a change on how we view generalizability. First generalizability should be specific and bound by context rather than taking it as universal. Second, generalizability must attempt to present dynamism, uncertainties, conflicts and complexities that constitute various overlapping context and knowledge production processes (ibid). Thus, generalizability is not supposed to produce stable representations but possibilities and instability [34]. This form of generalizability can be done by positioning as a way of drawing inferences on narratives and discourses to enable representation of dynamics that constitute social construction of things, relationship and performances [23]. Hence this type of analysis is suitable to analyze practice which is performative of social action making it a suitable method for understanding how social media ecosystem enacts strategy for small businesses like mine.
The findings are presented in a narrative form. This is because they are from my personal experience and reflection. My narration is structured to first provide a background including outlining the objective of my business. Second it outlines the products of my business. Third, it explains the use of social media applications. Finally, I conclude with my reflection on the influence of the social media ecosystem on my business.
In the last quarter of 2018, I started an online shop on Etsy. I had planned to start earlier but I delayed perhaps due to procrastination. The idea of starting an online shop originated from conversations with my extremely practical sister. She was selling handicrafts on Saturday markets. I thought it took a lot of energy from her hence I suggested that she should explore a way of selling online. Being practical, she immediately started to sell online. Her online business picked up. As it did, she gradually stopped going to the Saturday markets. She found more time to spend with her daughter. As her online business kept rising, I shared strategies from theoretical understanding of the information system (IS), but I never practiced anything. It was until I saw the benefits and gains she was getting that I was personally prompted to start my own online digital shop. My objective was to get income and build capital. I had gained insight and considerable understanding of business from her experience. She also linked me with people who she had met through social media. I manage to source items following her example. My business strategy is a digital business strategy, which is a fusion of IT and business strategy [35]. Thus, for me, the IT strategy is the business strategy. The digital business strategy was informed and influenced by my research in IS.
In Etsy, I sell handmade products from Ghana, Zimbabwe and Tanzania. The products include different types of handwoven baskets such as baby bassinets, laundry baskets, handbags, buckets and wall hanging basket decors.
My business significantly relies on different social media applications, which enable different functions for my business. From the outset I knew that I would need to use different social media applications because I knew one social media application could not do everything. Also, I wanted to get the synergy by using different social media applications in combinatorial fashion. In my business I use WhatsApp to communicate with local artisans. For marketing and promotion, I use Pinterest, Facebook and Instagram. For Logistic and tracking I use ParcelsApp. Whereas, for financial operations I use Wave, PayPal and internet banking applications. Wave enables people to send money to some African countries and the recipient receives their money on their mobile wallet such as MTN. There are other applications which send money to Africa, but their cost structure is different. Wave deals with exchange rate but other applications such as World Remit charge a percentage which can reduce or take off the profit margin of the business. These applications work as an ecosystem, a change in function of one application changes the whole structure and strategy of the business. For example, in December 2019 Wave was unable to send money to Tanzania. With that inability, it was hard to pay for products from Tanzania and consequently I thought to change my operation strategy. For example, I thought instead of shipping from Tanzania to ship from neighboring countries (Kenya or Rwanda) but this would increase the costs, which could affect my competitiveness or make it impossible to sell. My competitiveness to sell depends on my process design and the context that is created by the social media ecosystem. Similarly, when the Covid-19 Pandemic started it was difficult to ship due to flight cancelation, only DHL could ship but it was too expensive and this prompted me to cancel operations in other countries apart from Ghana, where DHL shipping was reasonable. The business process is a two-way highway - one is money/cash and information flow from the consumer to me (merchant) to supplier (producer/artisan) and the second way is the product from the producer to the consumer. The portfolio/context of my social media applications (ecosystem) needs to support this process in a perfective way. In other words, a change in context changes my business process, efficiency and strategy.
When my business started to grow, I wanted to sell on other platforms such as Facebook and Amazon. In Facebook to integrate any app one needs to have more than 2000 followers, I had to do so and managed to integrate my Etsy shop with my Facebook page. Nevertheless, after doing so I realized that it was not effective. It was difficult to sell products on Facebook which has lots of potential buyers. The affordance of Facebook Shop Page does not facilitate quick sales in that potential buyers may not see the products as visible as it could be. Considering that, I tried to register for Facebook Marketplace only to find out that it is limited to America. I tried to sell on Instagram, which is also connected to Facebook, but I was also not able since it only allows big selected brands from the US. After failing to do so I managed to register on Amazon UK, which also offers the opportunity to sell in Europe. I was not able to sell lots of products perhaps because I am new, and my pictures are not very sophisticated. Hence, I tried to register on
In reflecting my own experience as briefly described above, I have come to appreciate the importance of what I call ‘soft infrastructure’. Unfortunately, ‘soft infrastructure’ is an ill way of referring provision of human services from more common recognized hard infrastructure [36, 37] Thus, it is difficult to define soft infrastructure because its intangible, hard to measure and often described in a subjective and qualitative way that may not be easily understood (ibid). Therefore, by soft infrastructure, I mean intangible facilities that enable successful operation of my business. This includes things like bank details, identity information, postal address, national and international policies, and software applications. For instance, sometimes we can be on the same platforms but due to differences in identity such as nationality or location, size can be limited. This is due to the way those platforms are structured. For instance, a small business can fail to register because it cannot fill a required field that is not oriented to their context. Sometimes, network issues and even cost for maintaining platforms is a factor hindering small business from exploiting social media platforms [8]. Different contexts, for example countries have different institutions which have different arrangements and agreements. Thus, although social media platforms are global, access to some services from these platforms can be constrained due to different institutional arrangements and agreements. Thus, the ecosystem of application can enable or constrain a business strategy for a small business. My business has been successful because of the information and technology developments which are occurring in Africa. Most of these developments in information and technology are recent, perhaps less than two decades. For example, most local artisans do not have bank accounts, but they do have mobile wallets. Thus, the money I transfer goes straight to their mobile wallets in the cell phones. This sort of transaction I cannot do with my UK bank. For example, I cannot transfer cash from my UK bank account straight to the mobile wallet in Africa. I can only do that via social applications such as Wave to a mobile wallet in Africa. If it is sent straight from my UK bank account, the only way is to go to another bank account in Africa. This would have been an impediment since it is often the case that my local artisans in different countries in Africa do not hold bank accounts, yet they all have mobile wallets. Technological progress makes it easier to send to mobile wallets because the money is received instantly and with the notification on both phones. Further confirmation and acknowledgement of receipt is done through WhatsApp. Thus, the ecosystem of social media creates a context that facilitates business. Lastly, my business has thus been successfully due to access to soft infrastructures in the developed world as well as some of the developments that are taking place in Africa. Thus, my business strategy operates in overlapping contexts of the developed and developing world.
The above findings show that each social media platform plays a role as identified by Kwayu et al. [3] and Piskorski [17]. In addition, they show that although each platform plays a role they collectively function as a system. This highlights Omotosho [8] argument that small businesses are failing to use social media platforms due to lack of continuity with platforms for business purposes. Thus, it underscores the importance of understanding social media ecosystem and its role in forming continuity with platforms for business purposes. Changes in one platform can affect how the whole ecosystem works. This is a significant finding as it shows how an ecosystem enacts a strategy for a small business. It further signifies the synergetic effect of co-existing social media platforms in an organization. This extends Hanna et al. [1] research on ecosystems by explaining why people use different social media platforms in simultaneity.
Second, these findings show how contexts overlap and interact with each other thus creating a narrow path for small business to enacts its strategy. For example, there are different types of social applications that transfer money abroad, however they function differently. As explained above, some apps transfer money but they charge a percentage which can reduce or take off the profit margin hence making the business meaningless. Therefore, although there is an abundance of social media applications, the choice is limited due to the multiplicity of overlapping contexts such as business context and geopolitical context. All of these factors affect business in their totality. Walsham [38] suggests the use of IT in sub-Saharan Africa is recent and its associated with mobile phones and social media. This explains why I have to use a combination of internet banking (UK) and social application (Wave) to send money to Africa mobile wallet (M-Pesa). Thus, not one social media can navigate different contexts on its own. It is a link of different social applications that creates an ecosystem that enables to carry out business financial functions. Thus, this paper contributes to literature on context and ICT4D (information communication technology for development) research by showing how the digital divide exists between developed and developing context [39]. This insight is helpful to assist digital inclusivity especially for less developed countries which are left behind with widening inequality that is created by digital companies such as GAFA (Google, Amazon, Facebook and Apple). Furthermore, the digital inequality (i.e. rural – urban, developing and developed) is exacerbated by neglect of research on social media and its influence on small business even within context of developed world [40].
Third, the findings show the importance of social and material arrangements in supporting small business strategies. As much as a single platform embodies a structure that can enable or limit a function, an ecosystem of social media platforms enacts a structure which creates an emergent strategy. For example, if Facebook opens its marketplace to other countries, this will influence our strategy because it will afford us with a new market from Facebook. Thus, any change in social or material arrangement as explained in the finding enacts an emergent strategy. Hence, this study enhances our understanding of Orlikowski [12] proposition that enactment and emergence are complementary to embeddedness and appropriation of technology structure. It enhances this understanding by showing where embodied structure plays a role and at what point enactment of structure becomes dominant.
In practice, the findings in this paper have the following significance.
Through highlighting the importance of soft infrastructure, this study shows the importance of synchronizing development of soft infrastructure. The misalignment of soft infrastructure between the developed and developing world exacerbates the digital divide that exists between the two. Synchronization of soft infrastructure will enable small businesses to grow and be able to access global markets with seamless effort. This will be successful if stakeholders and policymakers create conducive environment for use of social media for business activities among entrepreneurs and small businesses [8]. The policy holders and stakeholders will be in a better position to do this if they take a holistic view of understanding the social media ecosystem.
Second, this paper underscores the importance of strategizing practice for small business. Strategizing is a dynamic, iterative, interactive and continuous social process [41]. Social media platforms are dynamic, and they change continuously, thus small businesses need to constantly practice strategizing processes as business strategy is enacted continuously depending on changes that are happening in the social media ecosystem. Thus, what is right or what functions today might not be the same tomorrow. Therefore, small businesses that want to develop agility, which is required to successfully adopt and implement digital transformation need to have a continuous strategizing practice.
This study has provided a fresh insight on how the social media ecosystem influences a strategy of small business and how the ecosystem performative is interspersed with context. The study is subjective to my view and personal experience with the sole objective of understanding how the ecosystem of social media influences business. This is because being a situated actor and a researcher engenders a strong feeling of attachment and responsibility for the research subject. Therefore, although this is limited to my personal experience future research can bring objectivity in the same phenomenon by deploying other research methods such as surveys. Furthermore, this research implies Africa as a developing world, future research can explore other emerging markets such as Asia and South American countries. Inferences from other areas will provide deeper insights that will help our understanding of globalization and its influence on small businesses especially during this era of social media.
These Terms and Conditions outline the rules and regulations pertaining to the use of IntechOpen’s website www.intechopen.com and all the subdomains owned by IntechOpen located at 5 Princes Gate Court, London, SW7 2QJ, United Kingdom.
',metaTitle:"Terms and Conditions",metaDescription:"These terms and conditions outline the rules and regulations for the use of IntechOpen Website at https://intechopen.com and all its subdomains owned by Intech Limited located at 7th floor, 10 Lower Thames Street, London, EC3R 6AF, UK.",metaKeywords:null,canonicalURL:"/page/terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\\n\\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\\n\\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\\n\\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\\n\\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\\n\\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\\n\\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\\n\\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\\n\\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\\n\\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\\n\\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\\n\\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\\n\\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\\n\\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\\n\\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\\n\\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\\n\\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\\n\\nCroatian version of Terms and Conditions available here
\\n"}]'},components:[{type:"htmlEditorComponent",content:'By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\n\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\n\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\n\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\n\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\n\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\n\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\n\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\n\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\n\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\n\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\n\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\n\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\n\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\n\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\n\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\n\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\n\nCroatian version of Terms and Conditions available here
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5703},{group:"region",caption:"Middle and South America",value:2,count:5174},{group:"region",caption:"Africa",value:3,count:1690},{group:"region",caption:"Asia",value:4,count:10246},{group:"region",caption:"Australia and Oceania",value:5,count:889},{group:"region",caption:"Europe",value:6,count:15653}],offset:12,limit:12,total:117316},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,11,12,14"},books:[{type:"book",id:"10581",title:"Alkaline Chemistry and Applications",subtitle:null,isOpenForSubmission:!0,hash:"4ed90bdab4a7211c13cd432aa079cd20",slug:null,bookSignature:"Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10581.jpg",editedByType:null,editors:[{id:"300527",title:"Dr.",name:"Riadh",surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10374",title:"Advances in Micro- and Nanofluidics",subtitle:null,isOpenForSubmission:!0,hash:"b7ba9cab862a9bca2fc9f9ee72ba5eec",slug:null,bookSignature:"Prof. S. M. Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/10374.jpg",editedByType:null,editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10597",title:"Electric Grid Modernization",subtitle:null,isOpenForSubmission:!0,hash:"62f0e391662f7e8ae35a6bea2e77accf",slug:null,bookSignature:"Dr. Mahmoud Ghofrani",coverURL:"https://cdn.intechopen.com/books/images_new/10597.jpg",editedByType:null,editors:[{id:"183482",title:"Dr.",name:"Mahmoud",surname:"Ghofrani",slug:"mahmoud-ghofrani",fullName:"Mahmoud Ghofrani"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10412",title:"Transition Metals",subtitle:null,isOpenForSubmission:!0,hash:"bd7287b801dc0ac77e01f66842dc1d99",slug:null,bookSignature:"Dr. Sajjad Haider and Dr. Adnan Haider",coverURL:"https://cdn.intechopen.com/books/images_new/10412.jpg",editedByType:null,editors:[{id:"110708",title:"Dr.",name:"Sajjad",surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10216",title:"Paraffin - Thermal Energy Storage Applications",subtitle:null,isOpenForSubmission:!0,hash:"456090b63f5ba2290e24e655abd119bf",slug:null,bookSignature:"Dr. Elsayed Zaki and Dr. Abdelghaffar S. Dhmees",coverURL:"https://cdn.intechopen.com/books/images_new/10216.jpg",editedByType:null,editors:[{id:"220156",title:"Dr.",name:"Elsayed",surname:"Zaki",slug:"elsayed-zaki",fullName:"Elsayed Zaki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10506",title:"Liquid Metals",subtitle:null,isOpenForSubmission:!0,hash:"a1c30d83631953e1c8905554d937bb10",slug:null,bookSignature:"Dr. Samson Jerold Samuel Chelladurai, Dr. S. Gnanasekaran and Dr. Suresh Mayilswamy",coverURL:"https://cdn.intechopen.com/books/images_new/10506.jpg",editedByType:null,editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10491",title:"Anaerobic Digestion in Natural and Built Environments",subtitle:null,isOpenForSubmission:!0,hash:"082ec753a05d6c7ed8cc5559e7dac432",slug:null,bookSignature:"Dr. Anna Sikora and Dr. Anna Detman",coverURL:"https://cdn.intechopen.com/books/images_new/10491.jpg",editedByType:null,editors:[{id:"146985",title:"Dr.",name:"Anna",surname:"Sikora",slug:"anna-sikora",fullName:"Anna Sikora"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10573",title:"Fluid-Structure Interaction",subtitle:null,isOpenForSubmission:!0,hash:"3950d1f9c82160d23bc594d00ec2ffbb",slug:null,bookSignature:"Dr. Khaled Ghaedi",coverURL:"https://cdn.intechopen.com/books/images_new/10573.jpg",editedByType:null,editors:[{id:"190572",title:"Dr.",name:"Khaled",surname:"Ghaedi",slug:"khaled-ghaedi",fullName:"Khaled Ghaedi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10590",title:"Humic Substance",subtitle:null,isOpenForSubmission:!0,hash:"85786eb36b3e13979aae664a4e046625",slug:null,bookSignature:"Prof. Abdelhadi Makan",coverURL:"https://cdn.intechopen.com/books/images_new/10590.jpg",editedByType:null,editors:[{id:"247727",title:"Prof.",name:"Abdelhadi",surname:"Makan",slug:"abdelhadi-makan",fullName:"Abdelhadi Makan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10609",title:"Zeolites",subtitle:null,isOpenForSubmission:!0,hash:"90681a8fef45a03f68f4b9276acba2d3",slug:null,bookSignature:"Dr. Pavel Krivenko",coverURL:"https://cdn.intechopen.com/books/images_new/10609.jpg",editedByType:null,editors:[{id:"180922",title:"Dr.",name:"Pavel",surname:"Krivenko",slug:"pavel-krivenko",fullName:"Pavel Krivenko"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10495",title:"Insights Into Global Engineering Education After the Birth of Industry 5.0",subtitle:null,isOpenForSubmission:!0,hash:"e83ddb1aa8017926d0635bbe8a90feca",slug:null,bookSignature:"Dr.Ing. Montaha Bouezzeddine",coverURL:"https://cdn.intechopen.com/books/images_new/10495.jpg",editedByType:null,editors:[{id:"313464",title:"Dr.Ing.",name:"Montaha",surname:"Bouezzeddine",slug:"montaha-bouezzeddine",fullName:"Montaha Bouezzeddine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10502",title:"Aflatoxins",subtitle:null,isOpenForSubmission:!0,hash:"34fe61c309f2405130ede7a267cf8bd5",slug:null,bookSignature:"Dr. Lukman Bola Abdulra'uf",coverURL:"https://cdn.intechopen.com/books/images_new/10502.jpg",editedByType:null,editors:[{id:"149347",title:"Dr.",name:"Lukman",surname:"Abdulra'uf",slug:"lukman-abdulra'uf",fullName:"Lukman Abdulra'uf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:10},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:14},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:55},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:28},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5150},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"153",title:"Biochemistry",slug:"materials-science-biochemistry",parent:{title:"Materials Science",slug:"materials-science"},numberOfBooks:26,numberOfAuthorsAndEditors:720,numberOfWosCitations:1298,numberOfCrossrefCitations:823,numberOfDimensionsCitations:1783,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"materials-science-biochemistry",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7012",title:"Biochemical Testing",subtitle:"Clinical Correlation and Diagnosis",isOpenForSubmission:!1,hash:"1aa28a784b136633d827933ad91fe621",slug:"biochemical-testing-clinical-correlation-and-diagnosis",bookSignature:"Varaprasad Bobbarala, Gaffar Sarwar Zaman, Mohd Nasir Mohd Desa and Abdah Md Akim",coverURL:"https://cdn.intechopen.com/books/images_new/7012.jpg",editedByType:"Edited by",editors:[{id:"207119",title:"Dr.",name:"Varaprasad",middleName:null,surname:"Bobbarala PhD",slug:"varaprasad-bobbarala-phd",fullName:"Varaprasad Bobbarala PhD"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8244",title:"New Advances on Fermentation Processes",subtitle:null,isOpenForSubmission:!1,hash:"d14302686630dee0aa70e9dda9540c27",slug:"new-advances-on-fermentation-processes",bookSignature:"Rosa María Martínez-Espinosa",coverURL:"https://cdn.intechopen.com/books/images_new/8244.jpg",editedByType:"Edited by",editors:[{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6202",title:"Applications of Modified Starches",subtitle:null,isOpenForSubmission:!1,hash:"9d5fc4b642d47ae13c608ceaa38cf554",slug:"applications-of-modified-starches",bookSignature:"Emmanuel Flores Huicochea and Rodolfo Rendón Villalobos",coverURL:"https://cdn.intechopen.com/books/images_new/6202.jpg",editedByType:"Edited by",editors:[{id:"206705",title:"Dr.",name:"Emmanuel",middleName:null,surname:"Flores Huicochea",slug:"emmanuel-flores-huicochea",fullName:"Emmanuel Flores Huicochea"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6185",title:"Lignin",subtitle:"Trends and Applications",isOpenForSubmission:!1,hash:"3c0b9e64cd29f76f5de2dc06531633ce",slug:"lignin-trends-and-applications",bookSignature:"Matheus Poletto",coverURL:"https://cdn.intechopen.com/books/images_new/6185.jpg",editedByType:"Edited by",editors:[{id:"140017",title:"Dr.",name:"Matheus",middleName:null,surname:"Poletto",slug:"matheus-poletto",fullName:"Matheus Poletto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6001",title:"Acrylic Polymers in Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"598f8fc0a85fde7d5cea05aa541f2ea5",slug:"acrylic-polymers-in-healthcare",bookSignature:"Boreddy S.R. Reddy",coverURL:"https://cdn.intechopen.com/books/images_new/6001.jpg",editedByType:"Edited by",editors:[{id:"16251",title:"Dr.",name:"Boreddy",middleName:"S.R.",surname:"Reddy",slug:"boreddy-reddy",fullName:"Boreddy Reddy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5904",title:"Aspects of Polyurethanes",subtitle:null,isOpenForSubmission:!1,hash:"514b1dfa3811606d3dd5faf2c4f3ef30",slug:"aspects-of-polyurethanes",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/5904.jpg",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5919",title:"Elastomers",subtitle:null,isOpenForSubmission:!1,hash:"5c1ca61ab151481bb9e7da3fd463cf14",slug:"elastomers",bookSignature:"Nevin Cankaya",coverURL:"https://cdn.intechopen.com/books/images_new/5919.jpg",editedByType:"Edited by",editors:[{id:"175645",title:"Associate Prof.",name:"Nevin",middleName:null,surname:"Çankaya",slug:"nevin-cankaya",fullName:"Nevin Çankaya"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5365",title:"Adhesives",subtitle:"Applications and Properties",isOpenForSubmission:!1,hash:"c2b4cabdd0f77b9b7ab6d38eb8392873",slug:"adhesives-applications-and-properties",bookSignature:"Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/5365.jpg",editedByType:"Edited by",editors:[{id:"110857",title:"Associate Prof.",name:"Anna",middleName:null,surname:"Rudawska",slug:"anna-rudawska",fullName:"Anna Rudawska"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5260",title:"Conducting Polymers",subtitle:null,isOpenForSubmission:!1,hash:"5b1132e8d69de0d37de11869d8b87543",slug:"conducting-polymers",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/5260.jpg",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5302",title:"Viscoelastic and Viscoplastic Materials",subtitle:null,isOpenForSubmission:!1,hash:"b83c0ce566156f818b8e19bbf24366ab",slug:"viscoelastic-and-viscoplastic-materials",bookSignature:"Mohamed Fathy El-Amin",coverURL:"https://cdn.intechopen.com/books/images_new/5302.jpg",editedByType:"Edited by",editors:[{id:"17141",title:"Prof.",name:"Mohamed",middleName:"F.",surname:"El-Amin",slug:"mohamed-el-amin",fullName:"Mohamed El-Amin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5251",title:"Emerging Concepts in Analysis and Applications of Hydrogels",subtitle:null,isOpenForSubmission:!1,hash:"e3ca3de461f0eeb54055b0b83de89bc7",slug:"emerging-concepts-in-analysis-and-applications-of-hydrogels",bookSignature:"Sutapa Biswas Majee",coverURL:"https://cdn.intechopen.com/books/images_new/5251.jpg",editedByType:"Edited by",editors:[{id:"100703",title:"Dr.",name:"Sutapa",middleName:null,surname:"Biswas Majee",slug:"sutapa-biswas-majee",fullName:"Sutapa Biswas Majee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:26,mostCitedChapters:[{id:"38964",doi:"10.5772/48779",title:"Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes",slug:"microwave-absorption-and-emi-shielding-behavior-of-nanocomposites-based-on-intrinsically-conducting-",totalDownloads:12891,totalCrossrefCites:44,totalDimensionsCites:96,book:{slug:"new-polymers-for-special-applications",title:"New Polymers for Special Applications",fullTitle:"New Polymers for Special Applications"},signatures:"Parveen Saini and Manju Arora",authors:[{id:"149897",title:"Dr.",name:"Parveen",middleName:null,surname:"Saini",slug:"parveen-saini",fullName:"Parveen Saini"},{id:"156193",title:"Dr.",name:"Manju",middleName:null,surname:"Arora",slug:"manju-arora",fullName:"Manju Arora"}]},{id:"38965",doi:"10.5772/48758",title:"Oxidative Polymerization of Aniline: Molecular Synthesis of Polyaniline and the Formation of Supramolecular Structures",slug:"oxidative-polymerization-of-aniline-molecular-synthesis-of-polyaniline-and-the-formation-of-supramol",totalDownloads:19353,totalCrossrefCites:28,totalDimensionsCites:65,book:{slug:"new-polymers-for-special-applications",title:"New Polymers for Special Applications",fullTitle:"New Polymers for Special Applications"},signatures:"I.Yu. Sapurina and M.A. Shishov",authors:[{id:"149374",title:"Dr.",name:"Irina",middleName:"Yurievna",surname:"Sapurina",slug:"irina-sapurina",fullName:"Irina Sapurina"}]},{id:"38901",doi:"10.5772/46094",title:"Plant Cell Wall Polymers: Function, Structure and Biological Activity of Their Derivatives",slug:"plant-cell-wall-polymers-function-structure-and-biological-activity-of-their-derivatives",totalDownloads:7563,totalCrossrefCites:22,totalDimensionsCites:60,book:{slug:"polymerization",title:"Polymerization",fullTitle:"Polymerization"},signatures:"Marisol Ochoa-Villarreal, Emmanuel Aispuro-Hernández, Irasema Vargas-Arispuro and Miguel Ángel Martínez-Téllez",authors:[{id:"65387",title:"Dr.",name:"Miguel Angel",middleName:"Angel",surname:"Martinez-Tellez",slug:"miguel-angel-martinez-tellez",fullName:"Miguel Angel Martinez-Tellez"}]}],mostDownloadedChaptersLast30Days:[{id:"51535",title:"An Introduction to Hydrogels and Some Recent Applications",slug:"an-introduction-to-hydrogels-and-some-recent-applications",totalDownloads:8244,totalCrossrefCites:20,totalDimensionsCites:38,book:{slug:"emerging-concepts-in-analysis-and-applications-of-hydrogels",title:"Emerging Concepts in Analysis and Applications of Hydrogels",fullTitle:"Emerging Concepts in Analysis and Applications of Hydrogels"},signatures:"Morteza Bahram, Naimeh Mohseni and Mehdi Moghtader",authors:[{id:"179718",title:"Prof.",name:"Morteza",middleName:null,surname:"Bahram",slug:"morteza-bahram",fullName:"Morteza Bahram"},{id:"185713",title:"Dr.",name:"Naimeh",middleName:null,surname:"Mohseni",slug:"naimeh-mohseni",fullName:"Naimeh Mohseni"},{id:"185714",title:"Dr.",name:"Mehdi",middleName:null,surname:"Moghtader",slug:"mehdi-moghtader",fullName:"Mehdi Moghtader"}]},{id:"41941",title:"Introduction of Fibre-Reinforced Polymers − Polymers and Composites: Concepts, Properties and Processes",slug:"introduction-of-fibre-reinforced-polymers-polymers-and-composites-concepts-properties-and-processes",totalDownloads:25723,totalCrossrefCites:20,totalDimensionsCites:41,book:{slug:"fiber-reinforced-polymers-the-technology-applied-for-concrete-repair",title:"Fiber Reinforced Polymers",fullTitle:"Fiber Reinforced Polymers - The Technology Applied for Concrete Repair"},signatures:"Martin Alberto Masuelli",authors:[{id:"99994",title:"Dr.",name:"Martin",middleName:"Alberto",surname:"Masuelli",slug:"martin-masuelli",fullName:"Martin Masuelli"}]},{id:"69537",title:"Serum Protein Electrophoresis and Its Clinical Applications",slug:"serum-protein-electrophoresis-and-its-clinical-applications",totalDownloads:873,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"biochemical-testing-clinical-correlation-and-diagnosis",title:"Biochemical Testing",fullTitle:"Biochemical Testing - Clinical Correlation and Diagnosis"},signatures:"Satish Ramanathan and Chakravarthy Narasimhachar Srinivas",authors:[{id:"229011",title:"Dr.",name:"Satish",middleName:null,surname:"Ramanathan",slug:"satish-ramanathan",fullName:"Satish Ramanathan"}]},{id:"49884",title:"Biopolymers – Application in Nanoscience and Nanotechnology",slug:"biopolymers-application-in-nanoscience-and-nanotechnology",totalDownloads:7051,totalCrossrefCites:12,totalDimensionsCites:16,book:{slug:"recent-advances-in-biopolymers",title:"Recent Advances in Biopolymers",fullTitle:"Recent Advances in Biopolymers"},signatures:"Sneha Mohan, Oluwatobi S. Oluwafemi, Nandakumar Kalarikkal,\nSabu Thomas and Sandile P. Songca",authors:[{id:"99092",title:"Prof.",name:"Samuel Oluwatobi",middleName:null,surname:"Oluwafemi",slug:"samuel-oluwatobi-oluwafemi",fullName:"Samuel Oluwatobi Oluwafemi"}]},{id:"52573",title:"Adhesion in Restorative Dentistry",slug:"adhesion-in-restorative-dentistry",totalDownloads:2627,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"adhesives-applications-and-properties",title:"Adhesives",fullTitle:"Adhesives - Applications and Properties"},signatures:"Alexandra Vinagre and João Ramos",authors:[{id:"186163",title:"Ph.D.",name:"Alexandra",middleName:null,surname:"Vinagre",slug:"alexandra-vinagre",fullName:"Alexandra Vinagre"},{id:"194352",title:"Prof.",name:"João",middleName:null,surname:"Ramos",slug:"joao-ramos",fullName:"João Ramos"}]},{id:"58768",title:"An Overview on the Use of Lignin and Its Derivatives in Fire Retardant Polymer Systems",slug:"an-overview-on-the-use-of-lignin-and-its-derivatives-in-fire-retardant-polymer-systems",totalDownloads:2284,totalCrossrefCites:4,totalDimensionsCites:17,book:{slug:"lignin-trends-and-applications",title:"Lignin",fullTitle:"Lignin - Trends and Applications"},signatures:"Neeraj Mandlekar, Aurélie Cayla, François Rault, Stéphane Giraud,\nFabine Salaün, Giulio Malucelli and Jin-Ping Guan",authors:[{id:"27644",title:"Prof.",name:"Fabien",middleName:null,surname:"Salaün",slug:"fabien-salaun",fullName:"Fabien Salaün"},{id:"72195",title:"Prof.",name:"Giulio",middleName:null,surname:"Malucelli",slug:"giulio-malucelli",fullName:"Giulio Malucelli"},{id:"189339",title:"Dr.",name:"Stéphane",middleName:null,surname:"Giraud",slug:"stephane-giraud",fullName:"Stéphane Giraud"},{id:"218812",title:"Prof.",name:"Guan",middleName:null,surname:"Jinping",slug:"guan-jinping",fullName:"Guan Jinping"},{id:"229606",title:"Dr.",name:"Aurélie",middleName:null,surname:"Cayla",slug:"aurelie-cayla",fullName:"Aurélie Cayla"},{id:"235379",title:"Mr.",name:"Mandlekar",middleName:null,surname:"Neeraj",slug:"mandlekar-neeraj",fullName:"Mandlekar Neeraj"},{id:"235380",title:"Dr.",name:"Francois",middleName:null,surname:"Rault",slug:"francois-rault",fullName:"Francois Rault"}]},{id:"57986",title:"Lignin Degradation Processes and the Purification of Valuable Products",slug:"lignin-degradation-processes-and-the-purification-of-valuable-products",totalDownloads:2058,totalCrossrefCites:1,totalDimensionsCites:7,book:{slug:"lignin-trends-and-applications",title:"Lignin",fullTitle:"Lignin - Trends and Applications"},signatures:"Stefan Schoenherr, Mehrdad Ebrahimi and Peter Czermak",authors:[{id:"178577",title:"Prof.",name:"Peter",middleName:"M",surname:"Czermak",slug:"peter-czermak",fullName:"Peter Czermak"},{id:"215626",title:"MSc.",name:"Stefan",middleName:null,surname:"Schoenherr",slug:"stefan-schoenherr",fullName:"Stefan Schoenherr"},{id:"215627",title:"MSc.",name:"Mehrdad",middleName:null,surname:"Ebrahimi",slug:"mehrdad-ebrahimi",fullName:"Mehrdad Ebrahimi"}]},{id:"42104",title:"Polymers and the Environment",slug:"polymers-and-the-environment",totalDownloads:7901,totalCrossrefCites:5,totalDimensionsCites:11,book:{slug:"polymer-science",title:"Polymer Science",fullTitle:"Polymer Science"},signatures:"Telmo Ojeda",authors:[{id:"140465",title:"Dr.",name:"Telmo",middleName:null,surname:"Ojeda",slug:"telmo-ojeda",fullName:"Telmo Ojeda"}]},{id:"16991",title:"Functionalization of Carbon Nanotubes",slug:"functionalization-of-carbon-nanotubes",totalDownloads:11920,totalCrossrefCites:18,totalDimensionsCites:35,book:{slug:"carbon-nanotubes-polymer-nanocomposites",title:"Carbon Nanotubes",fullTitle:"Carbon Nanotubes - Polymer Nanocomposites"},signatures:"In-Yup Jeon, Dong Wook Chang, Nanjundan Ashok Kumar and Jong-Beom Baek",authors:[{id:"31369",title:"Prof.",name:"Jong-Beom",middleName:null,surname:"Baek",slug:"jong-beom-baek",fullName:"Jong-Beom Baek"},{id:"41447",title:"Dr.",name:"Ashok Kumar",middleName:null,surname:"Nanjundan",slug:"ashok-kumar-nanjundan",fullName:"Ashok Kumar Nanjundan"},{id:"41448",title:"Mr.",name:"In-Yup",middleName:null,surname:"Jeon,",slug:"in-yup-jeon",fullName:"In-Yup Jeon,"},{id:"41449",title:"Dr.",name:"Dong Wook",middleName:null,surname:"Chang",slug:"dong-wook-chang",fullName:"Dong Wook Chang"}]},{id:"50847",title:"Space Charge–Limited Current Model for Polymers",slug:"space-charge-limited-current-model-for-polymers",totalDownloads:3038,totalCrossrefCites:9,totalDimensionsCites:11,book:{slug:"conducting-polymers",title:"Conducting Polymers",fullTitle:"Conducting Polymers"},signatures:"Syed A. Moiz, Iqbal. A. Khan, Waheed A. Younis and Khasan S.\nKarimov",authors:[{id:"66696",title:"Prof.",name:"Khasan",middleName:null,surname:"Karimov",slug:"khasan-karimov",fullName:"Khasan Karimov"},{id:"180970",title:"Dr.",name:"Syed",middleName:null,surname:"Abdul Moiz",slug:"syed-abdul-moiz",fullName:"Syed Abdul Moiz"},{id:"182221",title:"Prof.",name:"Iqbal",middleName:null,surname:"Ahmed Khan",slug:"iqbal-ahmed-khan",fullName:"Iqbal Ahmed Khan"},{id:"182222",title:"Dr.",name:"Waheed",middleName:null,surname:"Younis",slug:"waheed-younis",fullName:"Waheed Younis"}]}],onlineFirstChaptersFilter:{topicSlug:"materials-science-biochemistry",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"onlineFirst.detail",path:"/online-first/social-media-ecosystem-and-its-influence-on-small-business-strategic-practices",hash:"",query:{},params:{chapter:"social-media-ecosystem-and-its-influence-on-small-business-strategic-practices"},fullPath:"/online-first/social-media-ecosystem-and-its-influence-on-small-business-strategic-practices",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()