The conductivity of the most common CPs.
\r\n\tsustainability, financial and social investigations, and disruptive technologies. This book also covers urban resilience by considering different factors: health and wellbeing; economy and society; infrastructure and environment; leadership and strategy.
\r\n\r\n\tAs a self-contained collection of scholarly papers, the book will target an audience of practicing researchers, academics, PhD students and other scientists. Since it will be published as an Open Access publication, it will allow unrestricted online access to chapters with no reading or subscription fees.
\r\n\t
Green electronics represents an occurring area of research aimed at identifying compounds of natural origin and establishing cost-reasonable ways for the synthetic materials that have utility in environmentally safe and/or biocompatible devices. There are several biocompatible sensing technologies that can perform innumerable physical and physiological measurements. Apart from carbon-based nanomaterials, other active sensing components are widely reported. These materials include polymers, semiconductors and metallic conductor-based nanomaterials as well as ionic and metallic liquids.
Carbon-based technologies are meant to address the energy and cost inefficiency issues posed by their inorganic counterparts. Organic electronics (based on i.e. conjugated polymers, CPs) entered the research field in the 1970s holding the high promise of delivering cost-reasonable and energy-efficient materials and devices. Despite intense effort of the scientific community during the past 30 years, the efficiency and stability of organic semiconductors endure at current times’ major obstacles in their development as solid challengers of the inorganic materials [1, 2, 3]. Consequently, the large-scale rapid replacement of hard core inorganic counterparts, like the ones active in high-speed processors, integrated circuits, and solar cell modules, with organic components is not immediately expected [1, 2, 3]. However, the “soft” nature of carbon-based components confers them a serious benefit over the inorganic materials, enabling production of flexible, conformable and even extremely thin electronic equipment [4].
Conducting polymers, the so-called “fourth generation of polymeric materials”, can provide effective methods for the diagnosis and treatment of different disorders, that is, diabetes. Conducting polymers have often excellent biocompatibility. They can provide favorable interfaces for bioelectrodes owing to their hybrid conducting processes, combining both electron and ionic charge carriers. Many (i.e. glucose) biosensors use immobilized enzymes to construct a selective layer on CP structure. Miniaturization of sensors is a new demand. Mini sensors are portable and wearable with low utilization of sample. New biosensors with a market size of a US$13 billion annual turnover have quickly become valuable instruments in the healthcare. Actually, glucose biosensors (accounting for 85% of the total biosensor market) have notably mended the quality of life of diabetics [5].
Conducting polymers (CPs) have occurred as competitive sensing materials for biological sensing applications. Their convenience of synthesis by chemical or electrochemical routes at ambient conditions, functionalization with monomer, dopant, monomer/dopant ratios and oxidation state to enhance the conductivities over 15 orders of magnitude, biocompatibility and low energy optical transitions have caused a significant concern. CPs have been synthesized by differing procedures, namely, electrochemical dip-pen lithography, mechanical stretching, electrospinning and template-directed electrochemical synthesis [6].
Since CPs were discovered, they have found many utilization. The swift progress in conductive polymer technologies is a significant motivating force for utilization of these materials as alternatives [7, 8] to conventional conductors, such as copper and gold [9, 10], as elements in the construction of electromagnetic devices. Regardless of that, the conductivity of polymers is lower than in metals, it has been presented to be adequate to construct antennas [11, 12]. Simultaneously, appearing green materials are contemplated to achieve a more aspiring purpose, designated by the integration of biocompatible, biodegradable and cost-reasonable electronics, such as the monitoring or the diagnosis of humans with environmentally benign technologies. Examples of the most common conductive polymers are shown in Tables 1 and 2 [11, 12, 13, 14] and Figure 1. Among the different conducting polymers, poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the most encouraging materials for bioelectronics due to its relatively high conductivity, stability and more importantly its organic nature and good compatibility with bioorganic molecules such as enzymes compared to other CPs. Nevertheless, because of its poor solubility and processability, PEDOT is often mixed with PSS to generate water soluble poly(3,4-ethylenedioxythiophene):poly(styrene sulphonate)—PEDOT:PSS, which was developed and patented in 1988 by Bayer AG [15]. Doping of PSS could disrupt the combination of the PEDOT chains and lower their electrochemical efficiency [16]. Despite the fact that water soluble PEDOT:PSS can be applied to generate conducting thin films, the resulting planar layer lacks morphological benefit, having only restricted accessible surface in comparison with processable colloidal interface materials [16].
Conducting polymer | Maximum conductivity (S/CM) | Type of doping |
---|---|---|
Polyacetylene (PA) | 200–1000 | n, p |
Polyparaphenylene (PPP) | 500 | n,p |
Polyaniline (PANI) | 5 | n, p |
Polyparavinylene (PPV) | 1–1000 | p |
Polyparaphenylene sulphide (PPS) | 3–300 | p |
Polypyrrole (PPY) | 40–200 | p |
Polythiophene (PT) | 10–100 | p |
PEDOT:PSS | 100–1500 | p |
The conductivity of the most common CPs.
CPs | Synthesis | Properties | Application |
---|---|---|---|
Polypyrrole (PPy) | Electrochemical and chemical synthesis | High conductivity (up to 160 S cm−1) when doped with iodine; opaque, brittle, amorphous material | Biosensors, antioxidants, drug delivery, bioactuators, neural prosthetics, cardiovascular application |
Polythiophenes (PT) | Electrochemical and chemical synthesis | Good electrical conductivity and optical property | Biosensors, food industry |
Polyaniline (PANI) | Electrochemical and chemical synthesis | Belongs to the semi-flexible rod polymer family; requires simple doping/dedoping chemistry; exists as bulk films or dispersions; high conductivity up to 100 S cm−1 | Biosensors, antioxidants, drug delivery, bioactuators, food industry, cardiovascular application |
Poly(3,4-ethylenedioxythiophene) (PEDOT) | Electrochemical and chemical synthesis | High temperature stability; ability to suppress the so-called “thermal runaway” of the capacitor; transparent conductor; moderate band gap and low redox potential; conductivity up to 210 S cm−1 | Biosensors, antioxidants, drug delivery, neural prosthetics |
Properties of the CPs.
Polymer | Conductivity (S cm−1) | Dopant | Conductivity after doping (S cm−1) | Ref. |
---|---|---|---|---|
PEDOT | 6 × 10−4 | polystyrene sulphonate (PSS) | 10 | [33] |
PPY | 10−2–10−3 | ClO4− | 10 | [34] |
PT | 10–10−3 | BF4 | 10–20 | [34] |
PT | 10–10−3 | SO3− | 10–20 | [34] |
Examples of common CP dopants in biological use.
The most common CPs as sensor elements.
To date, some electrical conductors have been applied in implantable biological interfaces such as cardiac patches [17], neural interfaces [18], electroceuticals [19] and on-command drug delivery platforms [20]. Although classic inorganic electrical materials (i.e. metals and semiconductors) are not appropriate for a seamless biointerface because of the need for extracellular functionalities, the semiconducting polymers seem to be valuable alternatives for these applications [21]. Controlling this limited biocompatibility in flexible electronic materials endures a challenge, and is recently drawing fair research efforts in the bioelectronics group.
Surface modification of the CPs for incorporating biomolecules has been obtained by both physical and chemical moderations. Such modifications can be applied to create both physical and chemical guidance cues, which can be adapted for the required biomedical utilization [22]. Chemical modification has been extensively studied using biomolecules as dopants (biospecific dopants such as peptides, proteins and neurotrophins) [23, 24] or by immobilizing bioactive moieties on the surface of the material [24].
For example, neural microelectrodes are commonly used in chronic, long-term implantations. Due to the fact, highly stable materials are needed that can tolerate the implantation procedure as well as the presence of biochemical environment in living tissue. Polypyrrole, however, has a poorly defined chemical structure in which there is a notable amount of α-β′ coupling. The presence of these defect sites along the polymer chain induces structural disorder, limits the electrochemical response and has been implicated as the primary site of polymer breakdown due to over-oxidation [23]. Moreover, oxidized polypyrrole is unstable to reduction by relatively weak, but biologically relevant, reducing agents such as dithiothreitol and glutathione [23], which act as a p-dopants.
Physical modification has been investigated by enlarging surface roughness by different processes such as generating microporous layers using polystyrene sphere templates, creating composites of nanoparticles and polylactide [25], growing CPs within hydrogels [18] and mixing with biomolecules to yield “fuzzy” structures.
The electrode coatings used are rather soft [26] and can be tailored at the micrometer, nanometer and molecular scale to have fibrillary, nodular, fuzzy, tubular [27] or porous surface morphologies [25]. As a consequence, most tissue- and device-compatible surface tempering of the electrode would be bringing electrical activity, bioactivity, mechanical softness and architectural properties on a similar scale to that of cells in tissues. The surface roughness character of the conducting polymer layers can be tailored by modification of the conducting polymer synthesis temperature [22]. Exceptional adaptation of the surface roughness characteristics is important because rougher topology corresponds with increasing of surface area, which would expand the signal conduction by growing the interface with neurons. For example, polypyrrole films synthesized at a lower temperature (418°C) were rougher than the same layers achieved at 2518°C [28]. Kmecko et al. [29] presented that the introduction of carbon nanotubes as dopants to PPy and PEDOT prefers the creation of bumps and grows the surface roughness. Functionalization of CPs with biomolecules has permitted engineers to modify CPs with biological sensing elements, and to turn ON and OFF different signaling routes demanded for several cellular mechanisms to form conducting polymers that extend cell proliferation/differentiation. Moreover, dopants can be applied as intermediates to allow further modification of CPs, that is, doping with poly(glutamic acid) supplies a carboxylic acid pendent group, which can be functionalized further by covalent binding to any amino group, such as those found in polylysine and laminin [30].
The electrochemical character of the CPs can be varied by modifying the dopant concentration. Electrical conductivities can be varied by as much as 15 orders of magnitude by changing the dopant concentrations so that control is feasible over the all ranging from insulator to semiconductor and then to metal [31]. The usually used dopants contain aromatic sulphonate variants such as p-toluenesulphonate, styrene, sodium benzenesulphonate to dope the polymers [32]. Other appropriate dopants for oxidation polymerization contain buffer salts, I2, BF4, perchlorates and FeCl3 (Table 3). Biological dopants include laminin peptide sequences, hydroxyapatite or a silk-like polymer with fibronectin units and polysaccharides [22]. Nevertheless, a main disadvantage of introducing dopants is the possible diffusion of the dopant into the culture medium with effects on cytotoxicity and deterioration of the electrical characteristics of the CP layer itself. For example, dodecyl sulphate-doped PPy layers undergo structural modifications after 7 days of soaking in deionized water [23].
The scope of possible dopants is huge as long as the selected dopant is charged. On the other hand, covalent methods can be used to more constantly functionalize CPs. The monomer can be synthesized with required functional groups and then polymerized, or post-polymerization covalent modification is also possible. It is crucial to note that the steric effects of any introduced functional group may interrupt the planarity of the conjugated arrangement, which could in turn lower the conductivity [22].
Effective electron transfer between the biorecognition species (e.g. an enzyme) and the electrode is challenging element when creating enzymatic biosensors. Classically, the distance among the active centre of the enzyme and the electrode surface is too long for direct electron transfer (DET) owing to the protective disk of the enzyme. Because electron transfer (ET) via a tunneling mechanism is rarely observed in classic electrodes, establishing electron relays that allow for fast ET, thus avoiding free-diffusing redox species between the electrode and the enzyme, is vital [35]. Due to the fact, organic electronic materials present very attractive expectants for molecular wiring owing to their polymeric essence and conducting character [36].
Doped PPy was the first CP presented to provide an electron relay among the surface of the electrode and the active centre of an enzyme [37, 38]. Nevertheless, owing to deficient electrochemical stability (potentially affecting long-term functionality) [39], attempts moved to other materials such as PEDOT, a polythiophene derivative which appeared as a more stable expectant owing to its low bandgap and high electrochemical stability in the oxidized state [40]. The first example of a PEDOT-based glucose sensor with potential for long-term measurements was presented by Kros et al. [41]. They physically introduced a positively charged polymer in the conducting substrate of the biosensor, permitting more effective ET as a result of the grown electrostatic interaction between the positively charged entrapped polymer and the negatively charged enzyme (Figure 2A). An optional procedure to enhance the electron relay in CPs post-synthesis involves intermixing with redox hydrogels, which have been presented to reveal rapid substrate and counter-ion diffusion effects with high flexibility and quick electron transfer rates. The non-conducting nature of such hydrogels hinders their effective and spatially placed immobilization on the active electrode surface, and mixing them with CPs can thus overcome this issue resulting in an ideal electron-transfer strategy. PEDOT:PSS was used to improve the deficient performance of a mediator-based biosensor by its introduction into nanocomposite enzyme electrodes, emerging in enhanced electron hopping in terms of the electron diffusion coefficient and charge transfer resistance (Figure 2B) [42]. Going one step further, Bao et al. investigated intrinsically conducting nanostructured polyaniline (PANI)-redox hydrogels [43]. In another strategy, a CP-based glucose-permeable redox hydrogel was created by crosslinking polymer acid-templated PANI together with glucose oxidase, leading to the electrical wiring of the enzyme and permitting electrocatalytic oxidation of glucose at low oxidation potentials (Figure 2C) [44]. Recently, CP hydrogels with high permeability to enzymes were utilized to produce metabolite biosensors with excellent sensing character without the need for a mediator (Figure 2D) [45].
Organic conducting materials as effective enzyme immobilization supports and transducers for different body metabolite determination. (A) Electrostatic binding (weak and strong) of glucose oxidase (GOx) onto a PEDOT and PEDOT supplied with positively charged PMVP, poly(N-methyl-4-pyridine), according to [41]. (B) Schematic diagram of the working electrode coated with ferrocene-branched polyethylenimine, PEDOT:PSS and GOx for glucose detection, according to [42]. (C) Phytic acid gelated and doped PANI hydrogel according to [44]. (D) The PANI hydrogel matrix including Pt nanoparticles and the proper biocatalysts for the detection of uric acid, cholesterol and triglyceride, according to [45].
Among the effective presentations of organic bioelectronics, ultra-thin electronic systems for surgical, point-of-care [46], diagnostic implants [47], ambient intelligence for daily-life assistance [48], soft robotics [49], conformable and self-sustaining bioelectronic elements for sports and recreation [48], or even disposable (biodegradable) electronics [50] for food packaging [51] or throw-away applications [52] can be listed. The connection of novel electronic elements with biosensing constituents will open the possibility for investigating disposable diagnostic and drug delivery platforms. This topic has been recently reviewed in detail [53, 54]. The organic bioelectronics field may prove to be the satisfactory host for greeting natural and nature-inspired carbon materials and a perfect base for achieving the ambitious purpose of “green” and sustainable electronics future.
Conducting polymers of pyrrole and thiophene connected by ester linkages have been considered for the generation of temporary scaffolds for cell attachment and proliferation for tissue engineering applications [22]. Moreover, these scaffolds are biodegradable [55]. The possibility of growing cells on CPs has proven the biocompatibility of these polymers [21, 56]. Additionally, recently the biocompatibility of PPy and PEDOT layers and PPy and PEDOT nanotubes was estimated by utilizing a dorsal root ganglion model [57]. The implantation of CPs in vivo for several weeks has led to only minimal inflammation, again pointing to low toxicities and good tissue compatibility [21, 55]. Moreover, Abidian and Martin [18] successfully presented that PEDOT nanotubes could record neuronal spikes about 30% more than control sites with a high signal-to-noise ratio (SNR) for 7 weeks post-implantation in vivo. In addition, there have been a number of reviews on CPs with regard to biomedical applications [22, 27, 55, 58, 59, 60, 61, 62, 63].
Blood is the most generally used body fluid for metabolite level monitoring. Nevertheless, owing to the wealth of electroactive elements, electrochemical determination procedures become somewhat challenging, and the usually observed biofouling of the sensing electrodes poses further restrictions [5, 64]. CPs bearing sustainable surface modifications (i.e. incorporation of electron mediators, permselective membranes) can offer precious instruments towards modern and more accurate diagnostic devices. An antibody-mediated amperometric platform was designed by Wei et al. to avoid the interfering signals often encountered in complex systems (blood) when utilizing enzymatic-mediated amperometric determination. A PPy matrix favored for immobilization of the capture antibody, on top of a 16-array gold electrochemical sensor, which could therefore determine creatinine fast and accurately in whole blood, resulting in a point-of-care (POC) assay for allograft dysfunction (Figure 3A) [65]. Liao et al. recently investigated a flexible organic electrochemical transistor (OECT) platform based on PEDOT:PSS to selective detection of urea and glucose in saliva samples [66]. To exclude electrochemical interference in saliva, thus increasing sensitivity and selectivity, the gate electrodes were modified with oppositely charged bilayer polymeric layers for both anionic and cationic charge exclusion of interferes. Moving towards multiplexing, a PEDOT:PSS-based OECT biosensing platform integrated with microfluidics was investigated for contemporary screening of glucose, lactate and cholesterol in human saliva samples [5]. The final tool was tested with human volunteers before and after exercise to present comparative differences in their metabolite profiles under stimuli (Figure 3B) [67]. In a similar procedure, contemporary sensing of lactate and glucose was presented by integrating two OECT-based tools, each with a separate microfluidic channel. They created a prototype portable glucose sensor by linking a smartphone with the sensing platform through Bluetooth connection, highlighting the ease of integration of such devices for POC systems [68].
Integrated point-of-care systems based on organic electronics. (A) Scheme of the conducting polymer electrochemical sensor for the direct measurement of creatinine from serum, according to [65]. (B) Schematic demonstrating the OECT-based multianalyte system, according to [67]; BSA, bovine serum albumin; ChOx, cholesterol oxidase; GOx, glucose oxidase; HRP, horseradish peroxidase; lox, lactate oxidase.
Determination of cellular metabolites under different stimuli or environmental conditions can give useful prospects for drug discovery and toxicology. Larsen et al. used PEDOT:tosylate microelectrodes as an all polymer electrochemical chip for the determination of potassium-induced transmitter release from neuron-like cells, presenting the potential of the procedure for drug screening applications [69]. To enhance the electrocatalytic effect of the sensing electrode, the PEDOT:PSS gate can also be supplied with electrodeposited Pt nanoparticles [70]. Owing to the high surface area of the nanoparticles and the high specificity of the biocatalyst, the authors obtained very sensitive detection of the crucial metabolites such as glucose and lactate from live cells. Lactate production in tumor cell cultures derived from real patients was also studied using an OECT circuit. Lactate production could be measured from a few cells, underlining the sensitivity of the tool in a highly complex milieu, thus shown its potential for utilization in in vivo applications for cancer diagnostics [71]. Also, recently, Curto et al. presented a multiparametric on-chip platform integrated with microfluidics for cell cultures, using among other in-line methods the OECT-based detection of glucose produced by the cells as a measure to validate their improved differentiation under stimuli conditions [72].
An indisputable trend in biosensor technology is on-body continuous monitoring of metabolites using wearable devices (Figure 4) [1]. Wearable biosensor applications aim to transform centralized hospital-based care systems to home-based personal medicine, reducing healthcare cost and time for diagnosis. Electrochemical transducers offer many benefits as wearable sensors for physiological monitoring, and can be easily integrated onto textile materials or directly on the skin.
Overview of the swiftly increasing field of wearable biosensors.
Sweat-based wearable sensors, although mostly focused on a small number of physical or electrophysiological parameters, can yield crucial information about the health status of a patient based on levels of vital metabolites [73]. Wearable biosensors can be either textile/plastic-based or epidermal (tattoo)-based systems [74]. Epidermal biosensors supply better contact with skin but commonly exhibit shorter lifetimes than the textile-based tools. Such biosensors were first developed in 2009 by Kim et al. for continuous monitoring of physical parameters [75] and, shortly thereafter, Jia et al. combined this route with biorecognition elements to generate the first printed tattoo-based biosensor [76]. A screen-printed electrode on no permanent tattoo paper was investigated with carbon and silver (Ag)/AgCl serving as the working and reference electrodes, respectively. The working electrode was also modified with carbon nanotubes carrying a mediator together with lactate oxidase for endlessly monitoring lactate in sweat during exercise [76].
CPs are specially beneficial for wearable sensor technology owing to their compatibility with production on flexible solids [77]. In a very interesting way, Pal et al. investigated PEDOT:PSS electrodes on flexible fully biodegradable silk protein fibroin supports using a simple photolithographic process and an aqueous ink composed of the CP and carrier proteins (Figure 4B) [78]. In an almost identical route by the same scientific group, silk proteins including fibroin and sericin were modified with photoreactive methacrylate groups for use as substrate inks for water-dispersible PEDOT:PSS that was micropatterned to investigate a biodegradable bioelectrode for glucose sensing in vitro [79]. This pathway presents a new trend for generating an entirely organic and free-standing system with controllable biodegradability including scalability and processability, leading to applications in wearable or implantable bioelectronics [80].
The perspectives of implantable instruments and especially home-based metabolic monitoring can only be reached if they can be simply implanted and explanted (i.e. needle-assisted) without the necessity of complicated surgery [81]. Due to that, the implantable tool should be small, which calls for novel miniaturization of different functional elements such as electrodes, power sources, signal processing systems and sensory components. In addition, miniaturized biosensors implanted by ultrafine needles induce less tissue damage and then less inflammation and foreign body response [82]. Miniaturization of implantable instruments and particularly biosensors can be listed under: (1) miniaturization of sensing electrodes and elements and (2) miniaturization of driving electronics for power, communication and their subsequent integration/packaging. Referring to the production of miniaturized electrodes for analyte sensing, immobilization of biocatalyst onto an ultra-thin Pt wire (diameters less than 50 μm) or carbon nanofibres has been substantial [83]. The latter is convenient for generating nerve stimulating microelectrodes because of the possibility of ultra-fine dimensions and flexibility [84]. Due to subsequent improvement of the electrocatalytic feature of carbon nanofibres, these were modified with different metal nanoparticles without compromising their flexibility [85]. Recently, the advent of sub-micron lithography and its further use to produce miniaturized transistors has encouraged investigators to develop solid state electrochemical sensing systems in a transistor order [86]. Biosensors based on classic Si-based transistors as well as the incipient organic thin film transistors are being investigated for a scope of analytes. The unique electrical character of 1-D nanomaterials (CPs) [86] has led researchers to use them as channel materials and investigates sensors based on modifications induced in either gate conductance, modulation, transconduction, hysteresis or threshold voltage.
The flexible nature of polymers together with their low-temperature processing and demonstrated biocompatibility with enzymes renders them beneficial over classic Si- and glass-based materials [81]. Additionally, the soft and flexible character of polymers could reduce the possibility of tissue damage to the body during implantation and can be beneficial for applications where the instrument has to be able to adjust itself to the shape of the human body.
Green electronics constitutes not only a novel term but also twenty-first century’s slogan; it means an emerging area of research covered the identifying compounds of natural origin and determining economically efficient ways for the fabrication of materials that have applicability in environmentally friendly technologies and devices. The key factor of this chapter is to generate routes for the production of human- and environmentally safe electronics in the main and the integration of such electronic circumferences with biological tissue.
Scientific researches into the class of green electronics may implement not only the original assurance of organic electronics that is to carry cost-reasonable and energy efficient materials but also achieve inconceivable functionalities for electronics, for example, benign integration into life and environment. Modern electronics technology has turned the relationship energy consumed during fabrication versus energy consumed during exploitation of the product to a complete imbalance [48]. A key prerequisite for achieving sustainability in the electronics industry is the usage of materials and technologies that have low embodied energy. In this context, it is worth to emphasize miniaturization procedures and alternative conducting materials as—CPs, which our group successfully implemented in miniature sensor devices (Table 4).
Device | CPS | Analyte | Ref. |
---|---|---|---|
Fluorescence-based biosensor | Poly(dithienotetraphenylsilane) | Dopamine | [87] |
Electrochemical biosensor | Poly(bis-selenophene)-N-nonyl carbazole | Phenolic compounds | [88] |
Optical LTCC biosensor | Poly(bis-thiophene) acridone | Phenolic compounds | [89] |
Glucose biosensor | Langmuir-Schaefer film of N-hexadecyl-2,8-bis(thianthrene)phenothiazine | Glucose | [90] |
Miniature sensors based on CPs.
Organic electronics recently has swiftly gone to the forefront of biological applications, regardless its beginnings in wide, flexible applications realized by tools such as the organic light-emitting diode or organic photovoltaics. One of the agents responsible for the favorable outcome of organic electronics in biosensing applications is the accurate flexibility and tunability of the materials to suit the requirements in biological environment. Organic electronics can then demonstrate the technology to meet the requirements of the biosensor market. With regard to classical raised issues in terms of stability and lifetime of the biocatalyst and other biological elements, the trends in this dynamic field of organic electronic sensors are foreseen to contain the investigation of biomimetic architectures (i.e. molecular imprinted structures), harnessing the versatility in synthesis of such electronic materials. Transducer and biorecognition elements can be met as a single active agent that combines electronic functionalities and the best properties of the biological element in a more stable support, therefore, opening up modern prospects in sensor technologies in both fundamental and practical aspects.
The authors gratefully acknowledge the financial support of Wroclaw University of Science and Technology (10401/0194/17).
Today, like the pattern in developing nations across the globe there is major shift of the population for rural to urban areas. As per a survey, our nation India, also perceives brisk for population shifting in urban areas by huge figures. The accumulating trend of swerving populace to civic living been discerned. The group of researchers stated that approximately 55% percent of population across the globe resides in the urban area, and is believed the percentage to hike up to 70% by the year 2050 [1]. The facts states that 31.2% (approximately 377 millions) of increase in urban population in 2011, the result also predict the numbers to rise to 40% by the year 2030 and up to 60% of the country’s total population would move to the urban living in the nation.
The nimble relocation of populace in civic is usually confronted by service delivery and infrastructure management, are most asserted among all others challenges offered due to population explosion. The local management responsible for urban management should always have the smarter means for the cop-up with any confrontations and any related affairs due to emerging population relocation as in health care management, congestion in traffic management, infrastructure development, waste management, energy demand, pollution, etc. The concept for smart city engages for sophisticated civic modus, which within self has various sophisticated system fir daily requirements and challenges faced by the habitat of a area. The concept of Smart City coined being a blueprint for tackling with all these challenges mentioned. An intelligent and smart game plan for, manages components as in for all the challenges is provided in within Smart City.
With the growth and expansion in the city , new agile, shrewd and ingenious approach is required for the advancement in operational competence, enhancing productivity and as well as diminishing the managerial expenses [2]. Gradually, there has been increase in the IoT appliances such as smart boxes, TV sets, etc. by the dwellers. Even in the sectors of chattels real the appositeness of akin gadgets has upturned as in for Smart locks, thermostats, smart alarms, intelligent voice assistant and many more such gadgets. The neoteric augmentation in the field of digital automation has made the smart cities slicker than antecedent version of self. A smart or intelligent metropolis is rigged with the sensors as in for commutation, state-of-the-art cameras on the streets for influx management on the streets and for the purpose of cognizance as well, sensors at parking for monitoring the vacant slots (if any), etc.The eloquent amelioration in the permissive appliances tech, as in NFC, ingrained actuators, RFID tags, etc. Alongside materialization pertinent utility and appliances the IoT been lauded as abut dominating development to the contemporary hooked and ambulatory hobnob infrastructure. The recent prognosis as envisages that IoT would be imperative chunk of FI, as its akin appliances might surmount the total numbers of mobile and computer devices been accessed by the individuals. For such sequential events unfurls in the impending time frame, deduction of the schema and architecture delineation of FI be dependent on the staunchly be swayed by stipulation of IoT.
A framework of connectivity is catered by the recent turmoil in FI by which plebeians, society can annex with each other and as well as the devices as well. A study conducted which states, the total number of gadgets which are annexed with each other is much greater in number than total of humans on the planet [3]. The technical advancements and elucidations for scientific know-how for conceiving Smart Cities are sprouting and are surfacing up. Figure 1 shows the inter-linkage of individual commodity as in terms of IoT. Multifarious facets of an entity can be stirred by IoT as in healthiness, commutation salvation etc. As in for governance it could play vital job as in to provide better efficiency, policy making, close and obscure monitoring, energy policy, pollution measurements, etc.
Main aspects of smart city and inter-linkages based on IoT.
Network type | NFC | WPAN | WPAN | WPAN | WLAN | WLAN |
---|---|---|---|---|---|---|
Year | 2011 | 2002/2005 | 2003 | 2007 | 2012 | 2009 |
Network Size | — | 7 | 245 | 65,535 | 30 | |
Bit Rate | 424 Kbps | 3Mbps | 55Mbps | 250Kbps | > 7Gbps | 248Mbps |
Frequency | 13.56 MHz | 2.4 GHz | 2.4 GHz | 868–915 MHz/ 2.4GHz | 2.4/5/60 GHz | 2.4/5 GHz |
Range | 0.2 m | 100 m | 100 m | 75 m | 5 m | 50 m |
Important communication standards within IoT.
Government of India (GoI), in its’ election manifesto for 2014 proposed development of 100 smart cities, which in later stage transformed to brown city from green city. In other words, GoI which earlier planning for developing 100 new cities as Smart Cities later planned to develop the existing cities into smart cities. And for this purpose, SCM and AMRUT a completely different wing under Ministry of Urban Development (MoUD) was setup, which was considered a compelling stride for encyclopedic enactment for Smart Cities (Figures 2 and 3). The implementation of SCM be annexed as the contingency plan to knuckle down to defiance of securing the intent of urbanization as per nationwide domestic development plan. Sectors where SCM needs to cynosure are:
Development of competent infrastructure for Civic Establishments and provincial governments.
Development of competent Civic Administrative Organization.
Enacting upon decentralization policy.
Curtailing disagreement in civic domain.
Developing permissive plight for decent and broad urbanization.
Smart cities: Available technologies (right) and challenges (left).
Example of prevailing smart building technologies (Image source: https://thegibraltarmagazine.com).
The clamant materialization for gestating of Smart Cities along Indian lexicon be enunciated as adhere to:
A civic is obligated to be viable and imperishable.
Fundamentals for the reliable administration be cherished.
Abiding foresight, technology, strength of the governance and supportive administration and schema.
Adequacy of the Civic administration to enact the above.
The nation is required to erect its own allusion for ontogenesis of Smart Cities.
Smart City be defined as in Indian lexicon as “A Smart City would be the one which plans judiciously to meet its aspirations and challenges in a sustainable manner while fostering principles of good governance. These are achieved in a Smart City by utilizing the enhanced power of technology, engaging with a more aware and informed citizenry and creating a more competent and capacitated set of people working within an accountable framework.”
The schema for regional area augmentation has been designed by SCM and MoUD with intent to revamping fiscal development and aspect of living. The schema has basically trilateral factors [4]: a) Area – Based Development (ABD) responsible for uplifting of the regional extant inclusive of the blighted areas into advanced and planned ones; b) Green – field Projects which would develop new provinces into state-of-the-art centre so as to facilitate the exploding populace; c) Pan –city Development (PAN) which shall anticipate the appositeness of the elicited smart and intelligent elucidation to prolonging city framework.
The hefty fortification of IoT is playing pivotal guise in the administering of Smart City ventures. The constant advancements in the technology are enabling facilitating Smart Cities across the globe. The commodity by individuals be in service on routine basis are rigged with digital and computerized gears, mechanism and covenants so as to make them pertinent and associated with other linked and connected devices with Internet Protocol. The competence of surveillance and supervise of obscure and secluded area as well is ease with help of IoT. Apart from that one could administer remotely. The important physiognomy of the Smart City is the enormous heterogeneous data from the various sensors and devices deployed within for administrative purposes. The super meteoric accretion of smart cities and the IoT coaxed various challenges for all researchers and industries as well for designing of a conducive and impeccable smart city.
With the use of Standard Web Protocols for communication [5, 6], IoT enact as Broadband Network having Internet at its concenter. For the employment of IoT demand for the communication standards that operates placidly amidst the numerous commodity whichever be computed, implicated and can hatch variance in purlieus. Among all the technologies pertinent to IoT are confabulated in brief as follows:
The arrangement comprises of a chip or a tag along a chip to read the tag. This advancement in technology can be used for registering any individual or an object for the intent to self recognized by the system. Each of the interlinked objects or gadgets accredited with diacritic identity [7].
The prevailing fad in the fields of IoT could facilitate kinship of the individual associated gadgets and equipments so as to entrench smart and intelligent purlieus. The individual identity of the associated gadgets and equipments is must for in IoT.
With the help of WSNs data from different sources be collected easily and then be used in for various sectors as in Traffic Management, wellness program, pollution control, etc. It could also be tagged with some other sensors as in RFID to infer much accurate details about the individual object.
About 30–40% of total power usage and discharge of CO2 is occurring at edifice [8]. The government is trying to clinch to reduce the energy consumption in new and as well as extant infrastructure as well so as to secure sustainability of the environment. Government through its stake holders, real-estate developers, land owner, proprietors, tenants and customers is trying to reforms in the sector to reducing the carbon emission in the buildings. The further energy effectualness can be abated to achieve the objective set by IPCC [9]. Many researchers and industries are working in this regard making the building smart so as to minimize the consumption of energy within the infra-structure.
Over last few decades, there has been rigorous research and advancement in the over Smart Intelligent buildings. Though theoretically, in disquisitions and also in technical communiqué the phrase ‘Smart’ is being cited more often in last few years. With the advancement in new and boost in the technologies, the smart buildings have secured much enthusiasm from researchers and industries as well [10]. Computerization and automation has been so much part of modern days living standard required to chasten our living. Nowadays, everyone is longing to manage and administer the gadgets and devices installed remotely and effortlessly.
The buildings are elementary and fundamental fragment of the society. The buildings in-houses the inhabitancy, plaza, emporiums, office area, deli, residentiary and market complexes, etc. Designing the smart city is intrinsic stride for the ontogenesis towards the Smart City. The Smart Buildings or Intelligent buildings, in defiance of diversified interpretation of the IB from the various Industrials, researchers be observed from the perspective of industrial and technical crux, implicating amalgam construction design, framework, power, utility, technological advancements, environment and amenity administration in a manner so as to aggrandize the assuages and also to curtail the circuition price [11, 12], by means of aid from advanced state-of-the-art technology and information technology advancements. The Smart Intelligent Buildings are also well efficient of curtailing the intramural energy dilapidation.
The ambit of automation and modern IT industry, the modern Smart Intelligent Buildings be confabulated based on technical elegance and assimilation in assorted multitudinous folds [13]. Facilities like control over aegis, avenue, luminosity, elevators, data, Infobahn etc. falls as in basal or crux of the folds of the Smart Buildings. The assimilation of various functionality of the basal fold forms the next in hierarchy of the layers. Assimilated communication system forms the next in line. The comprehensive grid structure of all the Smart buildings forms the apogee for the folds or layers of assimilation. The advancement in IT sector administers the crucial and omphalic aspect here in Smart Buildings, explicitly in cognizance of the subsequent:
Imposing for energy and policies codes and protocols, Building bylaws.
Assimilating with the nearby power/smart grids
Self guided and intelligent uninterrupted building responds.
Visualization of diminishing carbon emission and energy savings.
The new modern advancement in wireless system and sensor grid network can provide provides convenience in structuring for the Smart Buildings as in to administer the smart and complaisant abutment for the occupants. The continuous and unceasing monitoring and administering of the various factors in and out of a building is the necessity to diminish the energy consumption of a building. Sensors and actuators installed at the proper locations and also be attainable at any moment over the grid, is very important for the same purpose of conducive management and automation. As there been development in IoT technology and Smart buildings in recent years, the dominion protocols, building acts and standards for industrial regulations is also been changes accordingly with due course of time, as in Consumer Electronic Bus (CEBus), Local Control Network (LCN). Suite of Internet Protocol (IP) turned to be new and paramount inclination for amalgamation of various services. Smart modern gateways are deployed at the network edge which then equipped with the access to protocols based on IP. The technology based on IEEE 802.154.4 helps in sending IPv6 packets efficiently through 6LoWPAN technique for header compression [14]. The following figure (Figure 4) depicts the rough architecture for the system.
Architecture for administrating and controlling over the system.
The various sensors and actuators installed in a building combine to be the elementary or fundamental cause for data or information procreation. The initial level or Level one for the system be the raw data acquired from the sensor nodule, which then by communication service act upon farther processing of the data acquired. The architecture for the Smart Building is described with as mentioned principles of design.
Information Assemblage. At the primary stage at this level, the raw data from the various sensors and actuators implanted at the building is collected and is stored for processing at later stage.
Dossier Processing. Here at this level, all the data or information compiled in the previous stage is put together and processed so as all the data is stored in common format as in Resource Description Framework (RDF). Resource Description Framework (RDF) is most trivial approach for data castling over the web. Pre-refined data at this level will then be used for morphological knowledge and ambivalent inference at the preceding level.
Dossier Assimilation and Inference. The exploitation of domain dependent distinct data is allowed through morphological web technology. Here all the information from the previous level is assorted and classified in as classes. Later the data collected is categorized into two base Data or Object Property and association of all the data is to defined with the either of two property based on Web Ontology Language (OWL).
SPARQL is a query language subsidiary of RDF which is adopted to salvage and beguile the records hoarded in the RDF form. This stage galvanize towards amalgamation of low-level database.
Gadget Control and Admonition. All the data processed in the previous stage of the architectural hierarchy is now ready to be used by various applications installed for smart activity and administration to ease of human.
To many individuals in the field of building automation continuance praxis, IoT plugging might look alike a jargon for gray wont. Might be that be total untrue. The coronation of sensors and imbrute praxis, angling to comprehend benediction associated with it as in crouched obligation to continuance of the building and viable competence with ameliorated superintendency and crouched corps outlay. The appositeness of IoT overture aggrandized prospects as in worth, viable efficacy, affinity through enhanced valise and liquidity management [15].
Apprehending the statistics on real time basis and cloud dependent dossier capacitate the enterprises in optimization of potency and curb operational squeezes as well. Annexation of the machinery and heirloom appurtenances could large amount of extra debts. Monitoring of those appurtenances installed do provides inestimable insights for the management for lapse, delinquency and to reckon regime bent as well [16, 17, 18, 19].
Modern art-of-the-state designed IoT dossier with agitation apprehension sensors are the next generation system which could be wireless and also be quite setup for temporary setup as well, easily manageable remotely. These monitoring systems are battery operated and unlike conventional CCTV setup compared to are cost effective as well [20].
The present-day advanced system can also be used for securing the electric panels, which could trigger an effective alarm which when detects any unplanned apprehension in the proximity. If GPS be attached for advanced feature can also be triggered to activate with the alarm so as to manage theft if in case it occurs.
IoT based hazard control alarm system could prove very effective in the case of emergency. Fire or smoke alarm which when connected with the cloud dossier can automatically contact nearby fire station and police in case of any emergency. This could curtail ample amount of man hour for maintenance of the alarm and time-honored gratuitous auditing of the system.
The system equipped modern sensors could be instated easily and effectively to manage the equipment as in light power, HVAC, fire, security, etc. and cloud-based dossier helps in supervise and oversight easily and efficiently [21, 22, 23]. Parameters as in temperature, automated door operation, humidity, air quality and pressure, etc. Apart from managing machinery as lift, escalators they also be prognosticate in case of disruption and be prompted for abrupt alleviative alacrity.
The system equipped with sensors once triggered could easily transfer statistics to cloud for further processing and record. It helps in control and optimization and also eliminate the long man-hour for data collection as well also increase the effectiveness with cost diminishing.
In years to come the art-of-the-state real estate development can be visualized globally. The trend of IoT, be then conceptualized in practical manner by next few years. The assemblage of IoT and updated sensors certainly do aggrandize the efficacy, performance, wherewithal, unlimitedness and also curb the outlay over the building. Buildings are the one large power consumer, fact to the government across the globe have their focus now on them, regulations and mandates are updated regarding buildings are updated regularly for carbon footprint mandate.
Apart from management of power the IoT controlled system helps in diminishing carbon emission. With technicality point of view the development of such buildings with proper architecture and standardized codes would not only interoperability be salubrious but cost amiable as well. The bottom-line discussion of this paper is modern sensor based IoT equipped buildings be a necessity in coming years for a healthy and future-secured environment and be cost effective at the same time when making our life a lot simpler and easier.
I would like to express my sincere gratitude and thanks to my be loving parents for their everlasting support and love.
The authors declare no conflict of interest.
IoT | internet of things |
RFID | radio frequency identification |
NFC | near field communication |
FI | future internet |
SCM | smart city mission |
AMRUT | Atal Mission for Rejuvenation and Urban Transformation |
IB | intelligent buildings |
IntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"75563",title:"Dr.",name:"Farzana Khan",middleName:null,surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75563/images/system/75563.png",biography:"Dr Farzana Khan Perveen (FLS; Gold-Medallist) obtained her BSc (Hons) and MSc (Zoology: Entomology) from the University of Karachi, MAS (Monbush-Scholar; Agriculture: Agronomy) and from the Nagoya University, Japan, and PhD (Research and Course-works from the Nagoya University; Toxicology) degree from the University of Karachi. She is Founder/Chairperson of the Department of Zoology (DOZ) and Ex-Controller of Examinations at Shaheed Benazir Bhutto University (SBBU) and Ex-Founder/ Ex-Chairperson of DOZ, Hazara University and Kohat University of Science & Technology. \nShe is the author of 150 high impact research papers, 135 abstracts, 4 authored books and 8 chapters. She is the editor of 5 books and she supervised BS(4), MSc(50), MPhil(40), and Ph.D. (1) students. She has organized and participated in numerous international and national conferences and received multiple awards and fellowships. She is a member of research societies, editorial boards of Journals, and World-Commission on Protected Areas, International Union for Conservation of Nature. Her fields of interest are Entomology, Toxicology, Forensic Entomology, and Zoology.",institutionString:"Shaheed Benazir Bhutto University",institution:{name:"Shaheed Benazir Bhutto University",country:{name:"Pakistan"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5699},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:10244},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10578",title:"Pharmacogenetics",subtitle:null,isOpenForSubmission:!0,hash:"ca2bc2ff6e15a7b735d662d9664086b1",slug:null,bookSignature:"Dr. Islam Khalil",coverURL:"https://cdn.intechopen.com/books/images_new/10578.jpg",editedByType:null,editors:[{id:"226598",title:"Dr.",name:"Islam",surname:"Khalil",slug:"islam-khalil",fullName:"Islam Khalil"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10630",title:"New Robots, Techniques and Applications in Industrial Robotics",subtitle:null,isOpenForSubmission:!0,hash:"4a56dacb7c0504f0601f63000d64c1bc",slug:null,bookSignature:"Prof. Antoni Grau and Dr. Rodrigo Munguia",coverURL:"https://cdn.intechopen.com/books/images_new/10630.jpg",editedByType:null,editors:[{id:"13038",title:"Prof.",name:"Antoni",surname:"Grau",slug:"antoni-grau",fullName:"Antoni Grau"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9734",title:"Chromatin Organization in Health and Disease",subtitle:null,isOpenForSubmission:!0,hash:"ad6935289971d793d26ff2584f57143b",slug:null,bookSignature:"Associate Prof. Jehane Eid",coverURL:"https://cdn.intechopen.com/books/images_new/9734.jpg",editedByType:null,editors:[{id:"325814",title:"Associate Prof.",name:"Jehane",surname:"Eid",slug:"jehane-eid",fullName:"Jehane Eid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10404",title:"Evapotranspiration - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"babca2dea1c80719111734cc57a21a4c",slug:null,bookSignature:"Dr. Amin Talei",coverURL:"https://cdn.intechopen.com/books/images_new/10404.jpg",editedByType:null,editors:[{id:"335732",title:"Dr.",name:"Amin",surname:"Talei",slug:"amin-talei",fullName:"Amin Talei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10488",title:"Renin-Angiotensin Aldosterone System",subtitle:null,isOpenForSubmission:!0,hash:"5815b21958b2b2d5b653771c3f0cc35c",slug:null,bookSignature:"Prof. Samy I. McFarlane",coverURL:"https://cdn.intechopen.com/books/images_new/10488.jpg",editedByType:null,editors:[{id:"53477",title:"Prof.",name:"Samy I.",surname:"McFarlane",slug:"samy-i.-mcfarlane",fullName:"Samy I. McFarlane"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10323",title:"Osteoporosis - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"08e07eb8b6c4997a39a2d04b99ac2ffc",slug:null,bookSignature:"Prof. Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/10323.jpg",editedByType:null,editors:[{id:"73208",title:"Prof.",name:"Luis",surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10013",title:"Geothermal Energy",subtitle:null,isOpenForSubmission:!0,hash:"a5f5277a1c0616ce6b35f4b44a4cac7a",slug:null,bookSignature:"Dr. Basel I. Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/10013.jpg",editedByType:null,editors:[{id:"62122",title:"Dr.",name:"Basel",surname:"Ismail",slug:"basel-ismail",fullName:"Basel Ismail"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10221",title:"Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"96b799aada07c6e98864f2d8e5780bac",slug:null,bookSignature:"Dr. Sonia Bhonchal Bhardwaj",coverURL:"https://cdn.intechopen.com/books/images_new/10221.jpg",editedByType:null,editors:[{id:"178566",title:"Dr.",name:"Sonia Bhonchal",surname:"Bhardwaj",slug:"sonia-bhonchal-bhardwaj",fullName:"Sonia Bhonchal Bhardwaj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10332",title:"Mitochondrial Diseases",subtitle:null,isOpenForSubmission:!0,hash:"5a8e118ff6bdf4923a8e6e1d91b8397e",slug:null,bookSignature:"Prof. Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/10332.jpg",editedByType:null,editors:[{id:"196544",title:"Prof.",name:"Angel",surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9577",title:"Confocal Laser Scanning Microscopy",subtitle:null,isOpenForSubmission:!0,hash:"d0f227eb9f3fc8c85c7757257b6e966a",slug:null,bookSignature:"Dr. Natalia Yu. Grigoryeva",coverURL:"https://cdn.intechopen.com/books/images_new/9577.jpg",editedByType:null,editors:[{id:"239430",title:"Dr.",name:"Natalia",surname:"Grigoryeva",slug:"natalia-grigoryeva",fullName:"Natalia Grigoryeva"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9504",title:"Evidence-Based Approaches to Effectively Respond to Public Health Emergencies",subtitle:null,isOpenForSubmission:!0,hash:"355f26e9a65d22c4de7311a424d1e3eb",slug:null,bookSignature:"Dr. Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/9504.jpg",editedByType:null,editors:[{id:"294761",title:"Dr.",name:"Erick",surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10547",title:"Physiology and Disorders of Adipose Tissue",subtitle:null,isOpenForSubmission:!0,hash:"b423df09d9aaf08881b015f129af27d0",slug:null,bookSignature:"Dr. Hassan M. Heshmati",coverURL:"https://cdn.intechopen.com/books/images_new/10547.jpg",editedByType:null,editors:[{id:"313921",title:"Dr.",name:"Hassan M.",surname:"Heshmati",slug:"hassan-m.-heshmati",fullName:"Hassan M. Heshmati"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:16},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:151},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5143},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1343",title:"Economic Sociology",slug:"sociology-economic-sociology",parent:{title:"Sociology",slug:"sociology"},numberOfBooks:1,numberOfAuthorsAndEditors:7,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:1,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"sociology-economic-sociology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6939",title:"Terrorism and Developing Countries",subtitle:null,isOpenForSubmission:!1,hash:"ad19b1ce8023e63b593a1835e0ec744e",slug:"terrorism-and-developing-countries",bookSignature:"Syed Abdul Rehman Khan and Zhang Yu",coverURL:"https://cdn.intechopen.com/books/images_new/6939.jpg",editedByType:"Edited by",editors:[{id:"254664",title:"Prof.",name:"Syed Abdul Rehman",middleName:null,surname:"Khan",slug:"syed-abdul-rehman-khan",fullName:"Syed Abdul Rehman Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"68514",doi:"10.5772/intechopen.88595",title:"Terrorism in Emerging Economies: A Double-Edged Sword",slug:"terrorism-in-emerging-economies-a-double-edged-sword",totalDownloads:294,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"terrorism-and-developing-countries",title:"Terrorism and Developing Countries",fullTitle:"Terrorism and Developing Countries"},signatures:"Syed Abdul Rehman Khan and Zhang Yu",authors:[{id:"254664",title:"Prof.",name:"Syed Abdul Rehman",middleName:null,surname:"Khan",slug:"syed-abdul-rehman-khan",fullName:"Syed Abdul Rehman Khan"},{id:"309113",title:"Dr.",name:"Zhang",middleName:null,surname:"Yu",slug:"zhang-yu",fullName:"Zhang Yu"}]},{id:"68303",doi:"10.5772/intechopen.88427",title:"Mexican Migrant Smugglers and Foreign Terrorists",slug:"mexican-migrant-smugglers-and-foreign-terrorists",totalDownloads:152,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"terrorism-and-developing-countries",title:"Terrorism and Developing Countries",fullTitle:"Terrorism and Developing Countries"},signatures:"Simón Pedro Izcara Palacios",authors:[{id:"302160",title:"Dr.",name:"Simón Pedro",middleName:null,surname:"Izcara Palacios",slug:"simon-pedro-izcara-palacios",fullName:"Simón Pedro Izcara Palacios"}]},{id:"68962",doi:"10.5772/intechopen.89122",title:"Family-Based Networks: Soft Policy Tools in Countering Radicalisation to Violent Extremism",slug:"family-based-networks-soft-policy-tools-in-countering-radicalisation-to-violent-extremism",totalDownloads:187,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"terrorism-and-developing-countries",title:"Terrorism and Developing Countries",fullTitle:"Terrorism and Developing Countries"},signatures:"Wilson Muna",authors:[{id:"303687",title:"Ph.D.",name:"Wilson",middleName:null,surname:"Muna",slug:"wilson-muna",fullName:"Wilson Muna"}]}],mostDownloadedChaptersLast30Days:[{id:"71366",title:"The Socioeconomic Impact of the Boko Haram Insurgency in the Lake Chad Basin Region",slug:"the-socioeconomic-impact-of-the-boko-haram-insurgency-in-the-lake-chad-basin-region",totalDownloads:357,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"terrorism-and-developing-countries",title:"Terrorism and Developing Countries",fullTitle:"Terrorism and Developing Countries"},signatures:"Cecilia Idika-Kalu",authors:[{id:"309484",title:"Ms.",name:"Cecilia",middleName:null,surname:"Idika-Kalu",slug:"cecilia-idika-kalu",fullName:"Cecilia Idika-Kalu"}]},{id:"71595",title:"Introductory Chapter: The Outbreak of Coronavirus (COVID-19) - Death and Terror in 2020",slug:"introductory-chapter-the-outbreak-of-coronavirus-covid-19-death-and-terror-in-2020",totalDownloads:370,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"terrorism-and-developing-countries",title:"Terrorism and Developing Countries",fullTitle:"Terrorism and Developing Countries"},signatures:"Syed Abdul Rehman Khan and Zhang Yu",authors:[{id:"254664",title:"Prof.",name:"Syed Abdul Rehman",middleName:null,surname:"Khan",slug:"syed-abdul-rehman-khan",fullName:"Syed Abdul Rehman Khan"}]},{id:"68962",title:"Family-Based Networks: Soft Policy Tools in Countering Radicalisation to Violent Extremism",slug:"family-based-networks-soft-policy-tools-in-countering-radicalisation-to-violent-extremism",totalDownloads:187,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"terrorism-and-developing-countries",title:"Terrorism and Developing Countries",fullTitle:"Terrorism and Developing Countries"},signatures:"Wilson Muna",authors:[{id:"303687",title:"Ph.D.",name:"Wilson",middleName:null,surname:"Muna",slug:"wilson-muna",fullName:"Wilson Muna"}]},{id:"68514",title:"Terrorism in Emerging Economies: A Double-Edged Sword",slug:"terrorism-in-emerging-economies-a-double-edged-sword",totalDownloads:294,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"terrorism-and-developing-countries",title:"Terrorism and Developing Countries",fullTitle:"Terrorism and Developing Countries"},signatures:"Syed Abdul Rehman Khan and Zhang Yu",authors:[{id:"254664",title:"Prof.",name:"Syed Abdul Rehman",middleName:null,surname:"Khan",slug:"syed-abdul-rehman-khan",fullName:"Syed Abdul Rehman Khan"},{id:"309113",title:"Dr.",name:"Zhang",middleName:null,surname:"Yu",slug:"zhang-yu",fullName:"Zhang Yu"}]},{id:"70479",title:"The Survival Strategies of Poor Youth in the Metropolitan City of Douala, Cameroon",slug:"the-survival-strategies-of-poor-youth-in-the-metropolitan-city-of-douala-cameroon",totalDownloads:156,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"terrorism-and-developing-countries",title:"Terrorism and Developing Countries",fullTitle:"Terrorism and Developing Countries"},signatures:"Nanche Billa Robert",authors:[{id:"285893",title:"Dr.",name:"Nanche Billa",middleName:null,surname:"Robert",slug:"nanche-billa-robert",fullName:"Nanche Billa Robert"}]},{id:"68303",title:"Mexican Migrant Smugglers and Foreign Terrorists",slug:"mexican-migrant-smugglers-and-foreign-terrorists",totalDownloads:152,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"terrorism-and-developing-countries",title:"Terrorism and Developing Countries",fullTitle:"Terrorism and Developing Countries"},signatures:"Simón Pedro Izcara Palacios",authors:[{id:"302160",title:"Dr.",name:"Simón Pedro",middleName:null,surname:"Izcara Palacios",slug:"simon-pedro-izcara-palacios",fullName:"Simón Pedro Izcara Palacios"}]}],onlineFirstChaptersFilter:{topicSlug:"sociology-economic-sociology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"onlineFirst.detail",path:"/online-first/smart-buildings-a-model-approach-for-institutional-buildings",hash:"",query:{},params:{chapter:"smart-buildings-a-model-approach-for-institutional-buildings"},fullPath:"/online-first/smart-buildings-a-model-approach-for-institutional-buildings",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()