Open access peer-reviewed chapter

Quantum Calculations to Estimate the Heat of Hydrogenation Theoretically

Written By

Ali Amir Khairbek

Submitted: 08 July 2020 Reviewed: 09 September 2020 Published: 03 November 2020

DOI: 10.5772/intechopen.93955

From the Edited Volume

Advanced Applications of Hydrogen and Engineering Systems in the Automotive Industry

Edited by Luigi Cocco and Muhammad Aziz

Chapter metrics overview

500 Chapter Downloads

View Full Metrics

Abstract

Standard enthalpies of hydrogenation of 29 unsaturated hydrocarbon compounds were calculated in the gas phase by CCSD(T) theory with complete basis set cc-pVXZ, where X = DZ, TZ, as well as by complete basis set limit extrapolation. Geometries of reactants and products were optimized at the M06-2X/6-31g(d) level. This M06-2X geometries were used in the CCSD(T)/cc-pVXZ//M06-2X/6-31g(d) and cc-pV(DT)Z extrapolation calculations. (MAD) the mean absolute deviations of the enthalpies of hydrogenation between the calculated and experimental results that range from 8.8 to 3.4 kJ mol−1 based on the Comparison between the calculation at CCSD(T) and experimental results. The MAD value has improved and decreased to 1.5 kJ mol−1 after using complete basis set limit extrapolation. The deviations of the experimental values are located inside the “chemical accuracy” (±1 kcal mol−1 ≈ ±4.2 kJ mol−1) as some results showed. A very good linear correlations between experimental and calculated enthalpies of hydro-genation have been obtained at CCSD(T)/cc-pVTZ//M06-2X/6-31g(d) level and CCSD(T)/cc-pV(DT)Z extrapolation levels (SD =2.11 and 2.12 kJ mol−1, respectively).

Keywords

  • complete basis set (CBS)
  • density functional theory (DFT)
  • CCSD (T)
  • extrapolated method
  • molecules
  • energy
  • enthalpy
  • hydrocarbons

1. Introduction

The calculation of enthalpies of formation for the large unsaturated molecules, some of which are not included in the practical range of combustion thermochemistry, based on quantum mechanical first principles which have been possible basing on the recent important advances in computational chemistry. Necessary, Quantum mechanical calculations of molecular thermochemical properties are approximate. Approximations may be employed by the Composite quantum mechanical procedures at each of several computational steps and in the same time it may have an empirical factor to correct the cumulative error. When the error of the various approximations is known within narrow limits, but the question about the accuracy of the “known” value is noticed immediately because the uncertainty of the comparison between the approximate quantum mechanical result and the standard to which it is compared.

The most correct quantum mechanical procedure is been established after its ability to reproduce various accurate experimental results to calculate unknown thermochemical values of explosive compounds or unstable, unsuited to classical thermochemical methods, or to calculate thermochemical properties of radicals, molecules, or ions of fleeting existence [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Here where a major advantage to create the accuracy of inherent hydrogen thermochemical results lies, and it works for encouraging and renewing interest in the diverse literature devoted to hydrogen thermochemistry.

The main part of the quantum chemistry is contended in the total electronic energy of a molecule. And this total electronic energy is a function of the nuclear geometric configuration after Born-Oppenheimer separation of electronic and nuclear motion, therefore generating hyper surfaces of potential energy–for electronically excited states as well as for the ground state.

At the end of this work a very important fact is clear now which clarify that wave function-based quantum-chemical methods can produce molecular electronic energies with an accuracy that surpasses that of experimental measurements of molecular energies (in terms of enthalpies of formation).

An important feature of the wavefunction-based quantum-chemical methodology is the ability to access the exact characterizing of the molecular electronic structure in a systematic manner. To achieve systematic approach two basic steps have been taken, the first step using advanced hierarchy of wavefunction models and the second step using systematic sequence of basis sets – or a nearly complete basis set – of atomic orbitals.

Advertisement

2. Basis-set convergence

It is noted that the type of wavefunction model used, or density functional, plays an important role in determining accuracy of computed molecular_electronic energies. In addition to the important role played by the flexibility of the one electron basis set of atomic orbitals (AOs) by which the molecular orbitals (MOs) are expanded. It is worth noting that Slater’s determinants are constructed using MOs for use in Kohn - Sham theory or to expand the n-electron wavefunction.

Different ways can be chosen from basis sets of AOs (the literature [16, 17, 18]). As for the approach followed in study of molecular electronic-structure based on wavefunction methods, a well-defined procedure must have been used in order to generating sequences of the basis sets in order to increase flexibility. This way is very useful by generating hierarchies for basis sets, Each next higher level describes an improved systematically of the molecular electronic structure compared to the next lower level. Within the hierarchy the calculated results converge within a prescribed accuracy, and then the basis-set hierarchy ends up effectively complete basis [16]. Therein lies the problem where approaches of wavefunction that depend on the electron-correlation effects of the convergence to an effectively complete basis are very slow. When increasing the number N of AOs in the basis according to an optimal manner, it reduces the basis-set error as N1, thus obtaining a good approximation. It is often noticed that the accuracy of the electronic correlation calculations is limited by computational technical constraints. This is due to computing times growing at least as N4 and the computational effort grows more quickly compared to gain in accuracy.

2.1 Correlation-consistent basis sets

The correlation-consistent basis sets from Dunning and his co-workers [19, 20] represent a popular hierarchy of basis sets. When the valence orbitals are correlated in a calculations only then can the expansion mainly in the Limit extrapolation, until it ends to an effectively complete basis [21, 22, 23, 24, 25, 26]. The term X-tuple zeta basis sets represents to correlation-consistent polarized valence, denoted by cc-pVXZ, and is used in the calculations of this work, where X = D, T, (double, triple zeta). It should be noted that when all the electrons are correlated (core as well as valence orbitals), the cc-pCVXZ basis sets must be used provided 2 ≤ X ≤ 5.

2.2 Basis-set extrapolation

The correlation-consistent basis sets form a basis-set hierarchy well suited for complete basis-set limit extrapolations of the correlation-energy. Then the correlation energy can have been determined depending on X when X → ∞.

In 1977, 27 formulas for two-point linear extrapolation were introduced by Helgaker et al. [27] via the basis sets cc-pCVXZ and cc-pCVYZ, the electron-correlation energies and are computed EX and EY, and the CXY = X3/(X3 Y3) coefficient is determined in Eq. (1),

EXY=EXX3EYY3/X3Y3=CXYEX+1CXYEYE1

The EX correlation energy can be recovered in correlation-consistent basis of cc-pVXZ via the Eq. (2), When performing calculations according to the basis sets, cc-pVXZ and cc-pVYZ, two equations with two unknowns are obtained, a and E, whose Solving leads to Eq. (2), with that in mind E = EXY

EX=E+aX3E2

Note that through experience [28, 29, 30, 31, 32] that the best estimate of complete basis set limit extrapolation is by using two consecutive basis set when X = Y - 1, for example the pair cc-pCVDZ/cc-pCVTZ, and so on).

The level at which the results were obtained by extrapolation is denoted by cc-pCV(XY)Z, where XY = DT, TQ, and so forth. It is only at this level that the correlation energy is extrapolated.

The CCSD(T)/cc-pV(XY)Z extrapolation will be applied to obtain estimates of the basis-set limit of corrections for M06-2X/6-31g(d) level of theory by calculations of hydrogenation enthalpies of some unsaturated hydrocarbon compounds (Table 1).

ReactionsΔhydH2980exp.
Ethyne +2 H2 → ethane−312.0 ± 0.63
Ethene + H2 → ethane−136.3 ± 0.3
Propadiene +2 H2 → propane−295.1 ± 0.1
Prop-1-yne + 2 H2 → propane−289.6 ± 0.63
Prop-1-ene + H2 → propane−125.0 ± 0.42
But-2-yne + 2 H2 → butane−272.4 ± 1.3
Isobutene + H2 → isobutane−117.8 ± 0.42
(2E)-but-2-ene + H2 → butane−118.5 ± 0.42
(2Z)-but-2-ene + H2 → butane−114.6 ± 0.42
(2E)-pent-2-ene + H2 → pentane−113.8 ± 0.8
(2Z)-pent-2-ene + H2 → pentane−117.7 ± 0.8
2-Methylbut-1-ene + H2 → 2-methylbutane−118.2 ± 0.42
2-Methylbut-2-ene + H2 → 2-methylbutane−111.6 ± 0.3
3-Methylbut-1-ene + H2 → 2-methylbutane−126.3 ± 0.3
Cyclopenta-1,3-diene +2 H2 → cyclopentane−210.8 ± 0.84
Hex-1,5-diene +2 H2 → hexane−251.2 ± 0.42
Hex-1-ene + H2 → hexane−126.0 ± 2.0
2,3-Dimethylbuta-1,3-diene +2 H2 → 2,3-dimethylbutane−223.4 ± 0.63
2,3-Dimethylbuta-1-ene + H2 → 2,3-dimethylbutane−116.1 ± 0.4
2,3-Dimethylbuta-2-ene + H2 → 2,3-dimethylbutane−110.4 ± 0.42
3,3-Dimethylbuta-1-ene + H2 → 2,2-dimethylbutane−125.9 ± 0.63
Benzene +3 H2 → cyclohexane−205.3 ± 0.6
Cyclohexa-1,3-diene +2 H2 → cyclohexane−229.6 ± 0.42
Cyclohexene + H2 → cyclohexane−118.6 ± 0.42
Hept-1-ene + H2 → heptane−125.1 ± 0.3
4,4-Dimethylpent-1-ene + H2 → 2,2-dimethylpentane−122.5 ± 0.42
Cyclohepta-1,3,5-triene +3 H2 → cycloheptane−301.7 ± 1.3
Cyclohepta-1,3-diene +2 H2 → cycloheptane−212.4 ± 0.63
Cycloheptene + H2 → cycloheptane−108.9 ± 0.63

Table 1.

Experimental values of hydrogenation enthalpy of some unsaturated hydrocarbons in the gas phase (in kJ Mol−1).

NIST - JANAF thermochemical tables, Ref. [33]


In Section 3, we shall describe the methods used, the molecular equilibrium geometries, and the basis sets. Results will be shown in Section 3.2, including molecular electronic energies, enthalpies of hydrogenation, and statistical analysis of the computational results.

Advertisement

3. Computational details

3.1 Computational methods

Electronic energies were computed by the density-functional (M06-2X) [34] approach with 6-31g(d) basis set. The M06-2X/6-31g(d) equilibrium geometries of the reactants and products was optimized with the Gaussian 09 program [35]. All CCSD(T)/cc-pV(DT)Z calculations were performed at fixed molecular equilibrium geometries that were optimized at the M06-2X/6-31g(d) level can be found in supporting information.

3.2 Results and discussion

3.2.1 Nonrelativistic electronic energies

The total electronic M06-2X/6-31g(d) energies, Hcorr,Gcorr, and the zero-point vibrational energies (ZPE) are reported in Table 2, while Table 3 shows CCSD(T)/cc-pVXZ energies computed at the M06-2X/6-31g(d) geometries, where X = D, T. Table 3 also shows extrapolated values by the Eq. (2) (denoted E).

CompoundsM06-2X/6-3g(d)
EoHcorrGcorrZPE
H2−1.16356550.013609−0.0011670.010304
Ethane−79.7718140.0801160.0542550.075684
Ethyne−77.2877720.0311180.0084280.027383
Ethene−78.5368360.0557320.0308900.051757
Propane−119.0646020.1106570.0803060.105246
Propadiene−116.5919170.0607820.0333350.056103
Prop-1-yne−116.5917810.0613550.0333750.056509
Prop-1-ene−117.8347750.0857360.0556530.080695
Cis- butane−158.3573730.1404390.1062290.133684
But-2-yne−155.8941410.0911570.0604880.085379
Isobutene−158.3594920.1398910.1055580.133229
Isobutane−157.1335920.1157960.0830030.109592
Trans-butane−158.3566120.1405620.1063440.133858
(2E)-but-2-ene−157.1321360.1160000.0830130.109658
(2Z)-but-2-ene−157.1302710.1159470.0819110.109398
pentane−197.6501500.1711370.1330950.163224
(2E)-pent-2-ene−196.4244440.1462030.1083440.138462
(2Z)-pent-2-ene−196.4224730.1465380.1083660.138911
2-Methylbutane−197.6506160.1704920.1325400.162599
2-Methylbut-1-ene−196.4253990.1459530.1083480.138377
2-Methylbut-2-ene−196.4284270.1459770.1085160.138233
3-Methylbut-1-ene−196.4215940.1460290.1098270.138805
Cyclopentane−196.4479990.1488340.1151700.142836
Cyclopenta-1,3-diene−194.0046930.0990920.0674470.094033
Hexane−236.9428590.2011290.1599440.191831
Hex-1,2-diene−234.4821310.1519960.1119650.143762
Hex-1-ene−235.7127090.1765750.1357400.167804
2,3-Dimethylbutane−236.9446270.2003770.1603370.191276
2,3-Dimethylbuta-1,3-diene−234.4990270.1521020.1146630.144198
2,3-Dimethylbuta-1-ene−235.7192090.1760920.1363500.167500
2,3-Dimethylbuta-2-ene−235.7217000.1758000.1344360.166165
2,2-Dimethylbutane−236.9468250.1999060.1594670.190810
3,3-Dimethylbuta-1-ene−235.7173090.1755800.1366830.167108
Cyclohexane−235.7522870.1793490.1451010.172770
Benzene−232.1364740.1070120.0765930.101699
Cyclohexa-1,3-diene−233.3014530.1302190.0965740.124132
Cyclohexene−234.5257150.1548250.1198530.148434
Heptane−276.2355980.2313280.1865460.220693
Hept-1-ene−275.0054490.2067490.1622140.196621
2,2-Dimethylpentane−276.2393660.2301200.1861200.219693
4,4-Dimethylpent-1-ene−275.0108620.2056330.1630430.195795
Cycloheptane−275.0358410.2098380.1714620.201976
Cyclohepta-1,3,5-triene−271.3771650.1364740.1007910.129851
Cyclohepta-1,3-diene−272.5921070.1610000.1230470.153676
Cycloheptene−273.8128720.1851830.1474480.177646

Table 2.

Calculated total electronic energy (Eo), Hcorr, Gcorr, and the zero-point vibrational energies (ZPE) at the M06-2X/6-31g(d) level (in hartree).

CompoundsEDaETbEc
H2−1.1723118−1.1737775−1.17439464
Ethane−79.582513−79.674425−79.713125
Ethyne−77.109286−77.187516−77.220455
Ethene−78.354614−78.438673−78.474067
Propane−118.780810−118.914036−118.970132
Propadiene−116.314867−116.433424−116.483343
Prop-1-yne−116.315794−116.435339−116.485674
Prop-1-ene−117.556774−117.682351−117.735225
Cis- butane−157.978111−158.152797−158.226349
But-2-yne−155.521138−155.681776−155.749412
Isobutene−157.981505−158.156035−158.229521
Isobutane−156.760003−156.927219−156.997626
Trans -butane−157.979256−158.153758−158.227233
(2E)-but-2-ene−156.758622−156.925479−156.995734
(2Z)-but-2-ene−156.756385−156.923701−156.994150
Pentane−197.176630−197.392504−197.483398
(2E)-pent-2-ene−195.956786−196.164955−196.252605
(2Z)-pent-2-ene−195.954467−196.163063−196.250893
2-Methylbutane−197.177674−197.393756−197.484738
2-Methylbut-1-ene−195.957367−196.165990−196.253832
2-Methylbut-2-ene−195.959195−196.167943−196.255837
3-Methylbut-1-ene−195.954457−196.163021−196.250837
Cyclopentane−195.977809−196.185015−196.272260
Cyclopenta-1,3-diene−193.544249−193.735901−193.816596
Hexane−236.376059−236.633206−236.741478
1,5-Hexdiene−233.926959−234.168762−234.270574
Hex-1-ene−235.151737−235.401337−235.506432
2,3-Dimethylbutane−236.377394−236.635041−236.743524
2,3-Dimethylbuta-1,3-diene−233.940431−234.183237−234.285471
2,3-Dimethylbuta-1-ene−235.156478−235.406736−235.512108
2,3-Dimethylbuta-2-ene−235.157255−235.407711−235.513167
2,2-Dimethylbutane−236.380072−236.637444−236.745811
3,3-Dimethylbuta-1-ene−235.156438−235.406113−235.511240
Cyclohexane−235.187080−235.434840−235.539160
Benzene−231.580490−231.805751−231.900598
Cyclohexa-1,3-diene−232.746205−232.978902−233.076879
Cyclohexene−233.965459−234.205764−234.306946
Heptane−275.574466−275.872952−275.998630
Hept-1-ene−274.350163−274.641090−274.763585
2,2-Dimethylpentane−275.578608−275.877182−276.002897
4,4-Dimethylpent-1-ene−274.355543−274.646391−274.768853
Cycloheptane−274.375461−274.664943−274.786830
Cyclohepta-1,3,5-triene−270.731145−270.997511−271.109665
Cyclohepta-1,3-diene−271.941636−272.215680−272.331066
Cycloheptene−273.157974−273.439442−273.557955

Table 3.

Computed CCSD(T)/ccpVXZ energies at the M06-2X/6-31g(d) geometries, where X = D, T, as well as extrapolated values by the Eq. (2) (in hartree).

M06-2X/cc-pVDZ//M06-2X/6-31g(d) level.


M06-2X/cc-pVTZ//M06-2X/6-31g(d) level.


cc-pV(TD)Z extrapolated level.


Limit energies were obtained using the web page http://sf.anu.edu.au/∼vvv900/cbs/#ref_3 [36].

It is noted from Table 3 that the cc-pV(DT)Z extrapolated level yield electronic energies for all reactants and products less than CCSD(T)/cc-pVDZ and CCSD(T)/cc-pVTZ levels, and it is expected that the calculations of the hydrogenation enthalpies by cc-pV(DT)Z extrapolated level are compatible with the experimental values.

3.2.2 Enthalpies of hydrogenation at 298.15 K in gas phase

The usual way to calculate enthalpies of reaction is to calculate heats of formation, and take the appropriate sums and difference (Eq. (3)).

ΔhydHo298productsΔfHo298reactansΔfHo298E3

However, since Gaussian program provides the sum of electronic and thermal enthalpies, there is a short cut: namely, to simply take the difference of the sums of these values for the reactants and the products. This works since the number of atoms of each element is the same on both sides of the reaction, therefore all the atomic information cancels out, and you need only the molecular data. For example, using the information in Table 2 (or Table 3 for energies), the enthalpy of reaction can be calculated simply by Eq. (4):

ΔhydH2980=E0+HcorrporductsE0+HcorrreactantsE4

E0 can represent either EDZ, ETZ, EQZ or E keeping the calculated Hcorr value at M06-2X/6-31g(d) level is fixed. The calculated enthalpies of hydrogenation are reported in Table 4, along with the experimental values. Table 5 shows statistical parameters for all used computational methods. Figure 1 shows a linear analysis of the best calculated results in terms of experimental results.

CCSD(T)/cc-pVXZ//M06-2X/6–13(d)
ReactionsX = DaX = TbEchydHo(exp.)d
Ethyne +2 H2 → ethane16.04.4−0.5−312.0 ± 0.63
Ethene + H2 → ethane5.12.00.7−136.3 ± 0.3
Propadiene +2 H2 → propane11.44.1−1.3−295.1 ± 0.1
Prop-1-yne + 2 H2 → propane16.06.1−0.5−289.6 ± 0.63
Prop-1-ene + H2 → propane4.92.0−0.4−125.0 ± 0.42
But-2-yne + 2 H2 → butane15.24.1−0.6−272.4 ± 1.3
Isobutene + H2 isobutane7.63.01.1−117.8 ± 0.42
(2E)-but-2-ene + H2 → butane6.11.7−0.2−118.5 ± 0.42
(2Z)-but-2-ene + H2 → butane7.63.92.4−114.6 ± 0.42
(2E)-pent-2-ene + H2 → pentane5.82.30.8−113.8 ± 0.8
(2Z)-pent-2-ene + H2 → pentane−1.7−5.3−6.7−117.7 ± 0.8
2-Methylbut-1-ene + H2 → 2-methylbutane2.9−1.3−3.1−118.2 ± 0.42
2-Methylbut-2-ene + H2 → 2-methylbutane4.70.2−1.7−111.6 ± 0.3
3-Methylbut-1-ene + H2 → 2-methylbutane2.6−1.4−3.1−126.3 ± 0.3
Cyclopenta-1,3-diene +2 H2 → cyclopentane11.14.41.6−210.8 ± 0.84
Hex-1,5-diene +2 H2 → hexane13.15.82.8−251.2 ± 0.42
Hex-1-ene + H2 → hexane5.61.60.0−126.0 ± 2.0
2,3-Dimethylbuta-1,3-diene +2 H2 → 2,3-dimethylbutane11.32.7−0.9−223.4 ± 0.63
2,3-Dimethylbuta-1-ene + H2 → 2,3-dimethylbutane7.22.91.0−116.1 ± 0.4
2,3-Dimethylbuta-2-ene + H2 → 2,3-dimethylbutane10.12.7−0.9−110.4 ± 0.42
3,3-Dimethylbuta-1-ene + H2 → 2,2-dimethylbutane4.50.9−0.6−125.9 ± 0.63
Benzene +3 H2 → cyclohexane18.66.41.3−205.3 ± 0.6
Cyclohexa-1,3-diene +2 H2 → cyclohexane13.15.11.8−229.6 ± 0.42
Cyclohexene + H2 → cyclohexane6.01.80.0−118.6 ± 0.42
Hept-1-ene + H2 → heptane6.42.40.8−125.1 ± 0.3
4,4-Dimethylpent-1-ene + H2 → 2,2-dimethylpentane5.92.51.0−122.5 ± 0.42
Cyclohepta-1,3,5-triene +3 H2 → cycloheptane18.68.03.5−301.7 ± 1.3
Cyclohepta-1,3-diene +2 H2 → cycloheptane12.55.62.6−212.4 ± 0.63
Cycloheptene + H2 → cycloheptane4.51.70.6−108.9 ± 0.63

Table 4.

Difference between experimental and calculation values of standard enthalpies of hydrogenation of some unsaturated hydrocarbons in the gas phase at 298.15 K (in kJ Mol−1).

CCSD(T)/cc-pVDZ//M06-2X/6-31g(d) level.


CCSD(T)/cc-pVTZ//M06-2X/6-31g(d) level.


cc-pV(TD)Z extrapolated level.


NIST-JANAF thermo-chemical tables.


LevelMADRMSError%SDR2
CCSD(T)/cc-pVDZ//M06-2X/6-31g(d)8.810.05.0%2.780.9987
CCSD(T)//cc-pVTZ//M06-2X/6-31g(d)3.43.92.0%2.110.9992
cc-pV(DT)Z extrapolated level1.52.11.0%2.120.9992

Table 5.

Statistical parameters for all used methods to calculate hydrogenation enthalpies. (in kJ Mol–1).

Figure 1.

Calculated versus experimental hydrogenation enthalpy ΔHhyd029815KkJmol1 of 29 hydrocarbons.

Our best theoretical estimates of the enthalpies of hydrogenation are based on basis set limit extrapolation calculations, when the pair cc-pVDZ and cc-pVTZ are used, and the mean absolute deviation (MAD) between experimental and calculated values is 1.5 kJ mol−1 (Table 5). The enthalpies of hydrogenation of some alkenes (12 compounds) have been calculated at the HF, B3LYP, M06, MP2, G3, G4, CBS-QB3, CBS-APNO, and W1BD levels and, in the case of the first four methods, using a variety of basis sets up to aug-ccpVTZ [37], and it is found that the MAD decreases gradually from the first to the last method (18.4–4.2 kJ mol−1). Moreover, Rogers et al. [38, 39, 40] calculated the hydrogenation enthalpy at 298.15 K for reactions involving cyclic and acyclic C4 (20 reactions), cyclic C5 (23 reactions) and C6 (24 reactions) hydrocarbons using the G2 and G2(MP2) ab initio methods, and it is found that the MAD is about 3.3, 3.7 and 5.0 kJ −1, respectively.

Advertisement

4. Conclusion

Enthalpies of hydrogenation are relatively easy to calculate with CCSD(T)/cc-pVXZ/M06-31g(d)/6-31g(d) level, where X = D, T, giving fairly good agreement with experiment, especially when cc-pVTZ basis set are used, and basis set extrapolation techniques by Eq. (2) seem to represent an easy-to-use alternative, especially when the pair cc-pVDZ and cc-pVTZ are used.

Advertisement

1
Hydrogen (H2)
H0.0000000000.0000000000.368263000
H0.0000000000.000000000-0.368263000
2
Ethane (C2H6)
C0.0000000000.0000000000.762978000
C0.0000000000.000000000-0.762978000
H0.0000000001.0195900001.159421000
H-0.882991000-0.5097950001.159421000
H0.882991000-0.5097950001.159421000
H0.000000000-1.019590000-1.159421000
H-0.8829910000.509795000-1.159421000
H0.8829910000.509795000-1.159421000
3
Ethene (C2H4)
C0.0000000000.0000000000.663573000
C0.0000000000.000000000-0.663573000
H0.0000000000.9238260001.234547000
H0.000000000-0.9238260001.234547000
H0.000000000-0.923826000-1.234547000
H0.0000000000.923826000-1.234547000
4
Ethyne (C2H2)
C0.0000000000.0000000000.600962000
H0.0000000000.0000000001.668037000
C0.0000000000.000000000-0.600962000
H0.0000000000.000000000-1.668037000
5
Propadiene
C0.0000000000.0000000000.000000000
C0.0000000000.0000000001.304952000
C0.0000000000.000000000-1.304952000
H0.0000000000.9287490001.868109000
H0.000000000-0.9287490001.868109000
H0.9287490000.000000000-1.868109000
H-0.9287490000.000000000-1.868109000
6
Propane
C0.0000000001.266248000-0.260978000
C0.0000000000.0000000000.591962000
H0.0000000002.1697980000.355701000
H0.8836590001.299469000-0.907461000
H-0.8836590001.299469000-0.907461000
C0.000000000-1.266248000-0.260978000
H0.8774660000.0000000001.249203000
H-0.8774660000.0000000001.249203000
H0.000000000-2.1697980000.355701000
H-0.883659000-1.299469000-0.907461000
H0.883659000-1.299469000-0.907461000
7
Propene
C-1.2869050000.1458750000.000000000
C0.0000000000.4784320000.000000000
H-1.601612000-0.8951810000.000000000
H-2.0722310000.8951200000.000000000
H0.2742870001.5330780000.000000000
C1.134779000-0.5024070000.000000000
H1.773172000-0.3662230000.880442000
H0.765971000-1.5319710000.000000000
H1.773172000-0.366223000-0.880442000
8
Propyne
C0.0000000000.0000000001.423679000
C0.0000000000.0000000000.219688000
H0.0000000000.0000000002.490285000
C0.0000000000.000000000-1.242799000
H0.0000000001.022382000-1.631230000
H0.885409000-0.511191000-1.631230000
H-0.885409000-0.511191000-1.631230000
9
But-2-yne
C0.0000000000.0000000002.066654000
H0.0000000001.0214130002.458673000
H0.884570000-0.5107060002.458673000
H-0.884570000-0.5107060002.458673000
C0.0000000000.0000000000.602950000
C0.0000000000.000000000-2.066654000
H0.0000000001.021413000-2.458673000
H0.884570000-0.510706000-2.458673000
H-0.884570000-0.510706000-2.458673000
C0.0000000000.000000000-0.602950000
10
(Z)-but-2-ane
C0.5831740001.434814000-0.567859000
C0.5831740000.4953600000.636830000
C-0.583174000-0.4953600000.636830000
C-0.583174000-1.434814000-0.567859000
H-0.3728850001.964655000-0.647990000
H0.7410150000.890494000-1.503781000
H1.3755350002.184468000-0.485094000
H0.5473390001.0892040001.557738000
H1.528690000-0.0622640000.665299000
H-1.5286900000.0622640000.665299000
H-0.547339000-1.0892040001.557738000
H-1.375535000-2.184468000-0.485094000
H0.372885000-1.964655000-0.647990000
H-0.741015000-0.890494000-1.503781000
11
(Z)-but-2-ene
C0.0000000000.6669190000.667097000
C0.000000000-0.6669190000.667097000
H0.0000000001.1682570001.634362000
H0.000000000-1.1682570001.634362000
C0.0000000001.580592000-0.524061000
C0.000000000-1.580592000-0.524061000
H-0.880001000-2.233321000-0.510523000
H0.000000000-1.037863000-1.471533000
H0.880001000-2.233321000-0.510523000
H0.0000000001.037863000-1.471533000
H-0.8800010002.233321000-0.510523000
H0.8800010002.233321000-0.510523000
12
Isobutene2-methylprop-1-ene
C0.0000000000.0000000000.124902000
C0.0000000000.0000000001.456866000
C0.0000000001.272771000-0.678500000
C0.000000000-1.272771000-0.678500000
H0.000000000-0.9258430002.025187000
H0.0000000000.9258430002.025187000
H-0.8800530001.319051000-1.331393000
H0.8800530001.319051000-1.331393000
H0.0000000002.157033000-0.036707000
H-0.880053000-1.319051000-1.331393000
H0.000000000-2.157033000-0.036707000
H0.880053000-1.319051000-1.331393000
13
Methylrpopane
C-0.8781020001.1604420000.000000000
C0.3182000000.2094200000.000000000
C0.318200000-0.6597040001.256954000
C0.318200000-0.659704000-1.256954000
H-1.8167170000.5926000000.000000000
H-0.8765050001.8034170000.886375000
H-0.8765050001.803417000-0.886375000
H1.2365700000.8127760000.000000000
H-0.585386000-1.2807710001.290810000
H1.184708000-1.3287770001.278998000
H0.337765000-0.0479180002.164877000
H-0.585386000-1.280771000-1.290810000
H0.337765000-0.047918000-2.164877000
H1.184708000-1.328777000-1.278998000
14
(E)-but-2-ane
C0.7048140001.8202980000.000000000
C0.7048140000.2941130000.000000000
C-0.704814000-0.2941130000.000000000
C-0.704814000-1.8202980000.000000000
H0.1881580002.2097790000.883837000
H0.1881580002.209779000-0.883837000
H1.7212120002.2245750000.000000000
H1.249565000-0.0769640000.878126000
H1.249565000-0.076964000-0.878126000
H-1.2495650000.076964000-0.878126000
H-1.2495650000.0769640000.878126000
H-1.721212000-2.2245750000.000000000
H-0.188158000-2.2097790000.883837000
H-0.188158000-2.209779000-0.883837000
15
(E)-but-2-ene
C-0.3263830000.5800690000.000000000
C0.326383000-0.5800690000.000000000
H-1.4174130000.5664440000.000000000
H1.417413000-0.5664440000.000000000
C0.3263830001.9306690000.000000000
C-0.326383000-1.9306690000.000000000
H-0.032478000-2.5135870000.880427000
H-1.416586000-1.8406280000.000000000
H-0.032478000-2.513587000-0.880427000
H1.4165860001.8406280000.000000000
H0.0324780002.513587000-0.880427000
H0.0324780002.5135870000.880427000
16
(2E)-pent-2-ene
C2.314095000-0.4752610000.268047000
C1.3015680000.569988000-0.210535000
C-0.062964000-0.022508000-0.417562000
C-1.1601700000.3356200000.246048000
C-2.517862000-0.2720360000.051547000
H-0.132949000-0.822240000-1.158725000
H-1.0844420001.1309400000.989387000
H2.000934000-0.9036930001.224639000
H2.397884000-1.295127000-0.453050000
H3.308026000-0.0365150000.395398000
H1.2367110001.3882200000.516039000
H1.6594890001.009665000-1.150825000
H-3.2472270000.481088000-0.268021000
H-2.490794000-1.061858000-0.704665000
H-2.895632000-0.7053000000.984558000
17
(2E)-pentane
C-2.087737000-0.6862010000.167473000
C-1.3978580000.612858000-0.246114000
H-1.623234000-1.556933000-0.305129000
H-2.032398000-0.8274050001.252942000
H-3.144187000-0.681110000-0.116273000
H-1.4184210000.705421000-1.339990000
H-1.9665930001.4645690000.145544000
C0.0496300000.7168110000.239083000
H0.0676170000.6867540001.338032000
H0.4564160001.695525000-0.048477000
C0.968945000-0.377016000-0.304259000
H0.891736000-0.401137000-1.399776000
H0.629781000-1.3575710000.050730000
C2.424147000-0.1669490000.106336000
H2.8027660000.788870000-0.271303000
H2.522458000-0.1536090001.197253000
H3.071296000-0.960391000-0.278665000
18
(2Z)-pent-2-ene
C-2.157668000-0.306501000-0.421749000
C-1.015663000-0.1628330000.590132000
C0.0103260000.8327470000.126525000
C1.2943690000.612662000-0.160571000
C2.043151000-0.685516000-0.070879000
H-0.3692850001.846982000-0.004792000
H1.8861620001.462897000-0.498228000
H-1.779911000-0.681064000-1.377533000
H-2.924349000-0.997521000-0.059313000
H-2.6358960000.660617000-0.608730000
H-1.4294970000.1722420001.550224000
H-0.560025000-1.1401900000.773568000
H2.868553000-0.6073380000.645958000
H1.409139000-1.5190460000.237378000
H2.488018000-0.940929000-1.039284000
19
(2Z)-pentane
C-1.8185480000.7535380000.174327000
C-1.147340000-0.470732000-0.450177000
H-1.1132100001.5771540000.316941000
H-2.6399820001.118341000-0.450018000
H-2.2320220000.5018130001.156923000
H-1.903976000-1.254866000-0.566214000
H-0.805475000-0.230539000-1.466300000
C0.036454000-1.0158010000.368373000
H-0.115502000-0.7711390001.429186000
H0.051833000-2.1101860000.308069000
C1.407278000-0.498829000-0.079387000
H2.180294000-0.9569010000.549432000
H1.597958000-0.846640000-1.103214000
C1.5551150001.020482000-0.032216000
H2.5744800001.324615000-0.288218000
H0.8780780001.509222000-0.740322000
H1.3297690001.4071740000.968220000
20
1,2 Di metgyl cyclo propane
C-0.9830150000.9234860000.000000000
C0.2455320000.4901660000.753182000
C0.2455320000.490166000-0.753182000
H-1.8269990000.2377910000.000000000
H-1.2597710001.9725230000.000000000
H0.8183530001.2951460001.208149000
H0.8183530001.295146000-1.208149000
C0.245532000-0.790236000-1.556100000
C0.245532000-0.7902360001.556100000
H-0.406160000-1.546084000-1.108730000
H-0.117937000-0.607772000-2.572546000
H1.251787000-1.216486000-1.629081000
H1.251787000-1.2164860001.629081000
H-0.117937000-0.6077720002.572546000
H-0.406160000-1.5460840001.108730000
21
1,2 Di metgyl cyclo propene
C0.0000000000.0000000001.391105000
C0.0000000000.6475370000.034858000
C0.000000000-0.6475370000.034858000
C0.000000000-1.958662000-0.652173000
C0.0000000001.958662000-0.652173000
H0.9125110000.0000000001.995747000
H-0.9125110000.0000000001.995747000
H-0.881068000-2.541300000-0.363244000
H0.000000000-1.840975000-1.738686000
H0.881068000-2.541300000-0.363244000
H-0.8810680002.541300000-0.363244000
H0.8810680002.541300000-0.363244000
H0.0000000001.840975000-1.738686000
22
1,3-Pentadiene(Z)
C2.3861850000.1445120000.000000000
C1.101237000-0.2197980000.000000000
C0.0000000000.7406500000.000000000
C-1.3092640000.4575700000.000000000
C-1.947457000-0.8992080000.000000000
H2.6749740001.1927700000.000000000
H3.188346000-0.5856780000.000000000
H0.854201000-1.2789830000.000000000
H0.2994940001.7880830000.000000000
H-2.0035060001.2964540000.000000000
H-1.218572000-1.7114760000.000000000
H-2.589570000-1.0217630000.879756000
H-2.589570000-1.021763000-0.879756000
23
2-Methylbut-1-ene
C-1.8973520000.069688000-0.379011000
C-0.803183000-0.4971170000.532182000
C0.590454000-0.1151540000.094446000
C0.8980990001.3587000000.048952000
C1.496741000-1.033911000-0.237691000
H-1.9132840001.163502000-0.353795000
H-1.735338000-0.242153000-1.415566000
H-2.884222000-0.282783000-0.066139000
H-0.969559000-0.1315390001.555187000
H-0.883921000-1.5887400000.568655000
H0.3096420001.863055000-0.726222000
H0.6463340001.8392480001.002285000
H1.9552470001.539160000-0.160321000
H2.500315000-0.757627000-0.549409000
H1.266234000-2.095358000-0.207945000
24
2-Methylbut-2-ene
C-1.739392000-0.8156900000.000068000
C-0.445666000-0.042781000-0.000004000
C0.731454000-0.6760230000.000031000
C2.107037000-0.076409000-0.000012000
C-0.6229340001.452321000-0.000085000
H-2.344490000-0.563945000-0.879881000
H-1.567257000-1.8951110000.000185000
H-2.344512000-0.5637610000.879948000
H0.707982000-1.7663960000.000117000
H2.672750000-0.405010000-0.879551000
H2.0958910001.015122000-0.000370000
H2.672570000-0.4044350000.879859000
H-1.1981920001.767121000-0.879475000
H-1.1977960001.7672630000.879516000
H0.3200610002.000645000-0.000338000
25
2-Methylbutane
C1.780516000-0.000029000-0.519793000
C0.912273000-0.0000630000.738834000
C-0.6032030000.0000030000.481637000
C-1.0602350001.257557000-0.259637000
H2.8419750000.000039000-0.255438000
H1.595066000-0.884813000-1.136689000
H1.5950160000.884859000-1.136563000
H1.163734000-0.8786120001.346829000
H1.1637510000.8785090001.346795000
H-0.7242630002.1663390000.251626000
H-0.6656060001.280184000-1.281506000
H-2.1522720001.293270000-0.330286000
H-1.0890180000.0000040001.467320000
C-1.060336000-1.257501000-0.259674000
H-0.665592000-1.280203000-1.281495000
H-0.724520000-2.1663080000.251651000
H-2.152364000-1.293073000-0.330443000
26
3-Methylbut-1-ene
C1.517055000-0.8625370000.318229000
C0.477587000-0.019857000-0.432825000
C-0.887587000-0.639452000-0.271180000
C-1.965772000-0.0567950000.245400000
C0.5388970001.4377690000.013736000
H1.307767000-0.8488470001.393325000
H1.502760000-1.905424000-0.014449000
H2.526055000-0.4684180000.160305000
H0.729278000-0.062673000-1.503161000
H-0.960847000-1.676811000-0.601961000
H-2.905847000-0.5917110000.336269000
H-1.9568200000.9719420000.593763000
H0.3120970001.5239180001.082556000
H1.5405560001.846234000-0.150203000
H-0.1760820002.057026000-0.536608000
27
Cyclopenta
C0.0000000001.2372050000.367436000
C0.3406480000.685452000-1.023943000
C-0.340648000-0.685452000-1.023943000
C0.000000000-1.2372050000.367436000
C0.0000000000.0000000001.301698000
H0.6935380002.0153380000.697761000
H-0.9992140001.6861890000.341522000
H1.4257190000.553833000-1.123100000
H0.0099420001.338647000-1.836720000
H-1.425719000-0.553833000-1.123100000
H-0.009942000-1.338647000-1.836720000
H-0.693538000-2.0153380000.697761000
H0.999214000-1.6861890000.341522000
H-0.8774120000.0056820001.954484000
H0.877412000-0.0056820001.954484000
28
Cyclopenta-1,3-diene
C-1.177268000-0.280759000-0.000082000
C-0.7352600000.9883570000.000143000
C0.7352540000.988361000-0.000114000
C1.177270000-0.2807520000.000041000
H-2.209216000-0.610008000-0.000131000
H-1.3486260001.8822970000.000233000
H1.3486140001.882306000-0.000183000
H2.209219000-0.6099950000.000059000
C0.000004000-1.2147800000.000009000
H0.000033000-1.873598000-0.879427000
H-0.000021000-1.8735710000.879466000
29
Pentane
C1.275667000-0.5271130000.000000000
C0.0000000000.3124880000.000000000
H1.274183000-1.1855690000.878212000
H1.274183000-1.185569000-0.878212000
C-1.275794000-0.5275410000.000000000
H-0.0002350000.9733290000.878523000
H-0.0002350000.973329000-0.878523000
C-2.5405460000.3271700000.000000000
H-1.273566000-1.186150000-0.878131000
H-1.273566000-1.1861500000.878131000
H-3.444413000-0.2889200000.000000000
H-2.5737790000.9732950000.883728000
H-2.5737790000.973295000-0.883728000
C2.5406520000.3281530000.000000000
H3.444340000-0.2881530000.000000000
H2.5734970000.974161000-0.883830000
H2.5734970000.9741610000.883830000
30
Hexane
C0.4299180001.9108820000.000000000
C-0.4167940000.6396660000.000000000
H1.0886480001.9050490000.878012000
H1.0886480001.905049000-0.878012000
C0.416794000-0.6396660000.000000000
H-1.0773160000.6438290000.878621000
H-1.0773160000.643829000-0.878621000
C-0.429918000-1.9108820000.000000000
H1.077316000-0.643829000-0.878621000
H1.077316000-0.6438290000.878621000
H-1.088648000-1.9050490000.878012000
H-1.088648000-1.905049000-0.878012000
C0.416794000-3.1810790000.000000000
C-0.4167940003.1810790000.000000000
H1.062641000-3.2191440000.883682000
H-0.205277000-4.0807480000.000000000
H1.062641000-3.219144000-0.883682000
H-1.0626410003.2191440000.883682000
H0.2052770004.0807480000.000000000
H-1.0626410003.219144000-0.883682000
31
Hex1-ene
C3.059992000-0.1918250000.443719000
C2.031872000-0.193363000-0.399121000
C0.7703810000.599545000-0.216038000
C-0.469432000-0.294413000-0.100878000
C-1.7639360000.5025830000.045414000
C-2.993402000-0.3946300000.161583000
H3.0530250000.4215940001.341658000
H3.944231000-0.7968260000.270109000
H2.072945000-0.824722000-1.287818000
H0.6349990001.279548000-1.069067000
H0.8575560001.2277170000.679261000
H-0.348838000-0.9657530000.759219000
H-0.537335000-0.939318000-0.988075000
H-1.8741010001.172797000-0.816907000
H-1.6916860001.1484730000.929906000
H-2.913980000-1.0537170001.032463000
H-3.098725000-1.028497000-0.725217000
H-3.9109370000.1913200000.266394000
32
1,5-Hexadiene
C0.7583650001.0822810000.132388000
C-0.7583650001.082282000-0.132388000
C1.443512000-0.106603000-0.476858000
C-1.443512000-0.1066030000.476857000
C2.164328000-0.9959600000.198166000
C-2.164328000-0.995960000-0.198166000
H1.1845670002.006667000-0.278514000
H0.9448880001.0977480001.213365000
H-0.9448910001.097752000-1.213365000
H-1.1845670002.0066670000.278517000
H1.309651000-0.233049000-1.552214000
H-1.309647000-0.2330510001.552213000
H2.634034000-1.842946000-0.291621000
H2.310076000-0.9067350001.272141000
H-2.634031000-1.8429480000.291621000
H-2.310079000-0.906734000-1.272140000
33
Cyclohexane
C1.2625240000.7289180000.234036000
C0.0000000001.457837000-0.234036000
C1.262524000-0.728918000-0.234036000
C-1.2625240000.7289180000.234036000
C0.000000000-1.4578370000.234036000
C-1.262524000-0.728918000-0.234036000
H2.1581020001.246032000-0.127892000
H1.3039080000.7527780001.332235000
H-0.0000440002.4919870000.127892000
H0.0000290001.505607000-1.332235000
H1.303879000-0.752829000-1.332235000
H2.158146000-1.2459550000.127892000
H-1.3038790000.7528290001.332235000
H-2.1581460001.245955000-0.127892000
H0.000044000-2.491987000-0.127892000
H-0.000029000-1.5056070001.332235000
H-2.158102000-1.2460320000.127892000
H-1.303908000-0.752778000-1.332235000
34
Cyclohexene
C1.4935150000.0419950000.112710000
C0.6639350001.2996450000.060049000
C0.689634000-1.182733000-0.330220000
C-0.6639400001.299643000-0.060038000
C-0.689633000-1.1827300000.330228000
C-1.4935130000.041991000-0.112723000
H2.3830760000.161360000-0.517404000
H1.868656000-0.1054700001.135883000
H1.1952740002.2476840000.118372000
H0.563006000-1.155757000-1.420384000
H1.236070000-2.101254000-0.092430000
H-1.1952790002.247680000-0.118380000
H-1.236069000-2.1012540000.092447000
H-0.563007000-1.1557400001.420392000
H-2.3830860000.1613540000.517372000
H-1.868631000-0.105478000-1.135904000
35
1,3-Cyclohexadiene
C0.0530860001.4200060000.110022000
C-0.0530860000.7328060001.253379000
C0.3176320000.696571000-1.188121000
C0.053086000-0.7328060001.253379000
C-0.317632000-0.696571000-1.188121000
C-0.053086000-1.4200060000.110022000
H0.0093780002.5058520000.107322000
H-0.1991180001.2455440002.199955000
H-0.0488640001.277555000-2.039930000
H1.4071290000.603229000-1.319023000
H0.199118000-1.2455440002.199955000
H-1.407129000-0.603229000-1.319023000
H0.048864000-1.277555000-2.039930000
H-0.009378000-2.5058520000.107322000
36
Benzene
C0.0000000001.3928990000.000000000
C-1.2062860000.6964490000.000000000
C-1.206286000-0.6964490000.000000000
C0.000000000-1.3928990000.000000000
C1.206286000-0.6964490000.000000000
C1.2062860000.6964490000.000000000
H0.0000000002.4787370000.000000000
H-2.1466490001.2393680000.000000000
H-2.146649000-1.2393680000.000000000
H0.000000000-2.4787370000.000000000
H2.146649000-1.2393680000.000000000
H2.1466490001.2393680000.000000000
37
2,2-Dimethylbutane
C-0.891138000-0.4933070001.251301000
C-0.3709190000.2228730000.000000000
C1.1697430000.2706290000.000000000
C1.881540000-1.0814380000.000000000
C-0.891138000-0.493307000-1.251301000
C-0.8911380001.6647860000.000000000
H-0.501945000-0.0236090002.162317000
H-0.601978000-1.5491290001.262973000
H-1.985360000-0.4500490001.291227000
H1.4936100000.8455430000.878474000
H1.4936100000.845543000-0.878474000
H2.966509000-0.9416910000.000000000
H1.627577000-1.672866000-0.884945000
H1.627577000-1.6728660000.884945000
H-0.501945000-0.023609000-2.162317000
H-1.985360000-0.450049000-1.291227000
H-0.601978000-1.549129000-1.262973000
H-0.5426580002.2071790000.886401000
H-1.9867010001.6861300000.000000000
H-0.5426580002.207179000-0.886401000
38
2,3-Dimethylbut-1-ene
C0.659232000-0.195091000-0.376320000
C-0.7582570000.238013000-0.048663000
C1.076755000-1.3935360000.489668000
C-1.0687440001.4499140000.412114000
C-1.827608000-0.802948000-0.270301000
C1.6914960000.922771000-0.254484000
H0.649873000-0.535486000-1.423394000
H1.040697000-1.1223930001.550654000
H2.099986000-1.7000650000.250914000
H0.425460000-2.2584810000.336733000
H-2.0987790001.7157510000.632887000
H-0.3228600002.2175760000.588034000
H-1.756161000-1.6119120000.465518000
H-1.728065000-1.263127000-1.260728000
H-2.826508000-0.367173000-0.192154000
H1.7744950001.2642630000.783396000
H1.4282320001.782970000-0.876827000
H2.6763890000.563342000-0.567120000
39
2,3-Dimethylbut-2-ene
C0.0000000000.0000000000.671173000
C0.0000000000.000000000-0.671173000
C-0.0233730001.2486110001.520147000
C-0.023373000-1.248611000-1.520147000
C0.0233730001.248611000-1.520147000
C0.023373000-1.2486110001.520147000
H0.9274600001.3707410002.054393000
H-0.8014160001.1593650002.288220000
H-0.2183030002.1633840000.961223000
H0.927460000-1.370741000-2.054393000
H-0.801416000-1.159365000-2.288220000
H-0.218303000-2.163384000-0.961223000
H0.2183030002.163384000-0.961223000
H-0.9274600001.370741000-2.054393000
H0.8014160001.159365000-2.288220000
H0.218303000-2.1633840000.961223000
H-0.927460000-1.3707410002.054393000
H0.801416000-1.1593650002.288220000
40
2,3-Dimethylbuta-1,3-diene
C-0.0484310000.7398040000.000000000
C0.048431000-0.7398040000.000000000
C1.232834000-1.3625560000.000000000
C-1.2328340001.3625560000.000000000
C-1.232834000-1.5344690000.000000000
C1.2328340001.5344690000.000000000
H1.292502000-2.4466230000.000000000
H2.175776000-0.8267800000.000000000
H-1.2925020002.4466230000.000000000
H-2.1757760000.8267800000.000000000
H-1.840021000-1.3033730000.881915000
H-1.840021000-1.303373000-0.881915000
H-1.023657000-2.6062320000.000000000
H1.8400210001.3033730000.881915000
H1.8400210001.303373000-0.881915000
H1.0236570002.6062320000.000000000
41
2,3-Dimethylbutane
C-0.2348950000.7342380000.000000000
C0.234895000-0.7342380000.000000000
H-1.3363730000.7238930000.000000000
H1.336373000-0.7238930000.000000000
C0.2348950001.4837010001.249947000
C0.2348950001.483701000-1.249947000
C-0.234895000-1.4837010001.249947000
C-0.234895000-1.483701000-1.249947000
H1.3273180001.4315740001.339772000
H1.3273180001.431574000-1.339772000
H-1.327318000-1.4315740001.339772000
H-1.327318000-1.431574000-1.339772000
H-0.0434970002.5408610001.194199000
H-0.1990220001.0762990002.166612000
H-0.0434970002.540861000-1.194199000
H-0.1990220001.076299000-2.166612000
H0.043497000-2.5408610001.194199000
H0.199022000-1.0762990002.166612000
H0.043497000-2.540861000-1.194199000
H0.199022000-1.076299000-2.166612000
42
3,3-Dimethylbut-1-ene
C0.3531900000.000609000-0.000026000
C-0.999465000-0.675214000-0.000105000
C-2.191693000-0.086344000-0.000016000
C1.119964000-0.454409000-1.251863000
C1.120240000-0.4554280001.251347000
C0.2366880001.5248640000.000626000
H-0.954618000-1.766596000-0.000166000
H-3.106208000-0.6709820000.000021000
H-2.3059840000.993632000-0.000028000
H1.218068000-1.545397000-1.277328000
H2.127783000-0.024058000-1.261702000
H0.600398000-0.138891000-2.162255000
H1.219797000-1.5463190001.275015000
H0.600027000-0.1420570002.162145000
H2.127460000-0.0237620001.262103000
H-0.2968270001.8806110000.888408000
H-0.2970580001.881397000-0.886724000
H1.2336160001.9779590000.000725000
43
Heptane
C0.0000000003.816380000-0.355934000
C0.0000000002.5505380000.497249000
C0.0000000001.275049000-0.343162000
C0.0000000000.0000000000.497153000
C0.000000000-1.275049000-0.343162000
C0.000000000-2.5505380000.497249000
C0.000000000-3.816380000-0.355934000
H0.8836680003.851044000-1.001985000
H-0.8836680003.851044000-1.001985000
H0.0000000004.7192470000.261473000
H0.8779950002.5479910001.156034000
H-0.8779950002.5479910001.156034000
H-0.8785860001.275903000-1.003697000
H0.8785860001.275903000-1.003697000
H0.8786580000.0000000001.157453000
H-0.8786580000.0000000001.157453000
H-0.878586000-1.275903000-1.003697000
H0.878586000-1.275903000-1.003697000
H0.877995000-2.5479910001.156034000
H-0.877995000-2.5479910001.156034000
H0.883668000-3.851044000-1.001985000
H0.000000000-4.7192470000.261473000
H-0.883668000-3.851044000-1.001985000
44
Hept-1-ene
C3.6922970000.0285490000.511847000
C2.6904210000.199001000-0.345267000
C1.389176000-0.548470000-0.304483000
C0.1888840000.381040000-0.091386000
C-1.143889000-0.363761000-0.086599000
C-2.3443820000.5556340000.129274000
C-3.670073000-0.2013020000.131988000
H3.631048000-0.7036580001.313598000
H4.6082150000.6071520000.445302000
H2.7862750000.945692000-1.134834000
H1.247545000-1.094471000-1.247969000
H1.421289000-1.2996990000.494489000
H0.3166600000.9187740000.856942000
H0.1765680001.145757000-0.880365000
H-1.264338000-0.901542000-1.037704000
H-1.129179000-1.1319040000.699428000
H-2.2215840001.0913220001.079300000
H-2.3571310001.322114000-0.656300000
H-3.687483000-0.9542440000.927060000
H-4.5180510000.4715360000.288407000
H-3.824438000-0.720975000-0.819598000
45
Cycloheptane
C1.540218000-0.7575900000.103863000
C1.5396730000.758424000-0.103985000
C0.303129000-1.503353000-0.411665000
C0.3022320001.5034800000.411742000
C-0.956989000-1.2295450000.422263000
C-1.774812000-0.000626000-0.000180000
C-0.9578790001.229151000-0.421999000
H2.436806000-1.169628000-0.374998000
H1.640684000-0.9716280001.177230000
H2.4360760001.1710970000.374675000
H1.6397800000.972488000-1.177384000
H0.123246000-1.256849000-1.467568000
H0.520383000-2.577146000-0.382375000
H0.1226660001.2569780001.467695000
H0.5189250002.5773870000.382331000
H-1.617911000-2.1032100000.393286000
H-0.651897000-1.1234530001.471726000
H-2.434456000-0.274800000-0.832574000
H-2.4354410000.2728410000.831661000
H-1.6193860002.102348000-0.392348000
H-0.6529100001.123927000-1.471587000
46
Cycloheptene
C0.939356000-1.298189000-0.289022000
C-0.427770000-1.5249530000.375058000
C1.639039000-0.0025000000.128026000
C-1.537559000-0.664007000-0.178750000
C0.9433430001.295358000-0.289111000
C-0.4230320001.5262080000.375150000
C-1.5354770000.668765000-0.178758000
H1.595075000-2.138227000-0.030196000
H0.816195000-1.317336000-1.379279000
H-0.705382000-2.5781620000.268292000
H-0.324350000-1.3443530001.455986000
H1.756342000-0.0026210001.221614000
H2.653598000-0.004169000-0.288485000
H-2.393544000-1.180120000-0.609202000
H1.6017470002.133339000-0.030454000
H0.8201800001.314701000-1.379352000
H-0.3200200001.3449390001.455997000
H-0.6974600002.5802910000.268765000
H-2.3897730001.187633000-0.609248000
47
Cyclohepta-1,3-diene
C0.626434000-1.333437000-0.444722000
C-0.687971000-1.4038220000.344298000
C1.630982000-0.3203850000.096587000
C-1.648946000-0.2910340000.029113000
C1.2001460001.1184610000.116506000
C-0.0251810001.648909000-0.008730000
C-1.3349320000.999430000-0.140935000
H1.102963000-2.320040000-0.433508000
H0.400314000-1.100786000-1.491392000
H-1.180706000-2.3597270000.138085000
H-0.464456000-1.4057370001.421161000
H1.933505000-0.6100520001.113718000
H2.548954000-0.385960000-0.502840000
H-2.694995000-0.570273000-0.079947000
H2.0190960001.8259280000.241881000
H-0.0758490002.7362680000.007137000
H-2.1520300001.681646000-0.367001000
48
Cyclohepta-1,3,5-triene
C0.9646910001.217230000-0.203092000
C1.4331990000.0008270000.549650000
C-0.3416030001.525117000-0.283706000
C0.966111000-1.216127000-0.203079000
C-1.4198610000.6780360000.190554000
C-1.419069000-0.6796590000.190528000
C-0.339831000-1.525505000-0.283710000
H1.7020400001.858591000-0.679737000
H2.5184830000.0014600000.668971000
H0.9777250000.0005610001.549688000
H-0.6331520002.462759000-0.752945000
H1.704202000-1.856672000-0.679679000
H-2.3510950001.1768010000.451907000
H-2.349726000-1.1795160000.451856000
H-0.630301000-2.463496000-0.752921000
49
2,2-Dimethylpentane
C-2.154402000-0.6851990000.000000000
C-0.621362000-0.6982990000.000000000
C-0.1317930000.7628070000.000000000
C1.3815030000.9804540000.000000000
C1.7375710002.4661320000.000000000
C-0.131793000-1.4358770001.251552000
C-0.131793000-1.435877000-1.251552000
H-2.541975000-0.1701020000.886403000
H-2.541975000-0.170102000-0.886403000
H-2.554471000-1.7053690000.000000000
H-0.5579660001.269257000-0.878932000
H-0.5579660001.2692570000.878932000
H1.8292510000.5017030000.879010000
H1.8292510000.501703000-0.879010000
H1.3265660002.9658740000.883635000
H2.8203980002.6204650000.000000000
H1.3265660002.965874000-0.883635000
H-0.433818000-0.9055440002.162348000
H-0.557085000-2.4449930001.292827000
H0.958268000-1.5361680001.262279000
H-0.557085000-2.444993000-1.292827000
H-0.433818000-0.905544000-2.162348000
H0.958268000-1.536168000-1.262279000
50
4,4-Dimethylpent-1-ene
C-1.0667000001.3487040000.637920000
C-0.793507000-0.0248210000.015959000
C0.4543530000.031139000-0.897384000
C1.7109940000.497945000-0.219693000
C2.755100000-0.2811740000.049890000
C-0.580273000-1.0580890001.125718000
C-1.994208000-0.437624000-0.840752000
H-0.2633090001.6467460001.319598000
H-1.1639150002.120188000-0.135275000
H-1.9992960001.3296050001.212801000
H0.621989000-0.968812000-1.319260000
H0.2293500000.699988000-1.740856000
H1.7494390001.5491440000.066591000
H3.6426890000.0989910000.546189000
H2.757930000-1.334164000-0.223691000
H0.284819000-0.7998120001.744369000
H-1.462190000-1.1149860001.773679000
H-0.406820000-2.0544090000.701931000
H-2.900236000-0.514094000-0.229161000
H-2.1820080000.296370000-1.632836000
H-1.822997000-1.411237000-1.314032000

References

  1. 1. Schleyer, P. v. R., Encyclopedia of computational chemistry. John Wiley & Sons: 1998
  2. 2. Feller, D.; Peterson, K. A., An examination of intrinsic errors in electronic structure methods using the Environmental Molecular Sciences Laboratory computational results database and the Gaussian-2 set. The Journal of chemical physics1998,108 (1), 154–176
  3. 3. Klopper, W.; Bak, K. L.; Jørgensen, P.; Olsen, J.; Helgaker, T., Highly accurate calculations of molecular electronic structure. Journal of Physics B: Atomic, Molecular and Optical Physics1999,32 (13), R103
  4. 4. Dunning, T. H., A road map for the calculation of molecular binding energies. The Journal of Physical Chemistry A2000,104 (40), 9062–9080
  5. 5. Feller, D.; Sordo, J. A., A CCSDT study of the effects of higher order correlation on spectroscopic constants. I. First row diatomic hydrides. The Journal of Chemical Physics2000,112 (13), 5604–5610
  6. 6. Feller, D.; Sordo, J. A., Performance of CCSDT for diatomic dissociation energies. The Journal of Chemical Physics2000,113 (2), 485–493
  7. 7. Helgaker, T.; Jorgensen, P.; Olsen, J., Molecular electronic-structure theory. John Wiley & Sons: 2000
  8. 8. Feller, D.; Dixon, D. A., Extended benchmark studies of coupled cluster theory through triple excitations. The Journal of Chemical Physics2001,115 (8), 3484–3496
  9. 9. Helgaker, T.; Klopper, W.; Halkier, H.; Bak, K.; Jørgensen, P.; Olsen, J., In Highly Accurate Ab Initio Computation of Thermochemical Data, Cioslowski J. Kluwer: Dordrecht: 2001
  10. 10. Dixon, D. A.; De Jong, W. A.; Peterson, K. A.; Francisco, J. S., Heats of formation of CBr, CHBr, and CBr2 from ab initio quantum chemistry. The Journal of Physical Chemistry A2002,106 (18), 4725–4728
  11. 11. Martin, J. M.; de Oliveira, G., Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory. The Journal of chemical physics1999,111 (5), 1843–1856
  12. 12. Parthiban, S.; Martin, J. M., Fully ab initio atomization energy of benzene via Weizmann-2 theory. The Journal of chemical physics2001,115 (5), 2051–2054
  13. 13. de Oliveira, G.; Martin, J. M.; Silwal, I. K.; Liebman, J. F., Definitive heat of formation of methylenimine, CH2▪NH, and of methylenimmonium ion, CH2NH2+, by means of W2 theory. Journal of Computational Chemistry2001,22 (13), 1297–1305
  14. 14. Parthiban, S.; Martin, J. M.; Liebman, J. F., The heats of formation of the haloacetylenes XCCY [X, Y= H, F, Cl]: basis set limit ab initio results and thermochemical analysis. Molecular Physics2002,100 (4), 453–464
  15. 15. Martin, J. M.; Parthiban, S., W1 and W2 theories, and their variants: thermochemistry in the kJ/mol accuracy range. In Quantum-Mechanical Prediction of Thermochemical Data, Springer: 2001; pp 31–65
  16. 16. Feller, D.; Davidson, E. R., Basis sets for ab initio molecular orbital calculations and intermolecular interactions. Reviews in computational chemistry1990, 1–43
  17. 17. Helgaker, T.; Taylor, P. R., Gaussian basis sets and molecular integrals. In Modern Electronic Structure Theory: Part II, 1995; pp 725–856
  18. 18. Dunning Jr, T.; Peterson, K.; Woon, D., Schleyer PvR, Allinger NL, Clark T, Gesteiger J, Kolman PA, Schaefer HF III (eds) In: Encyclopedia of computational chemistry. Wiley, Chichester: 1998, 88–115
  19. 19. Dunning Jr, T., Rates of convergence and error estimation formulas for the Rayleigh− Ritz variational method. J. Chem. Phys1989,90, 1007–1023
  20. 20. Woon, D. E.; Dunning Jr, T. H., Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. The Journal of chemical physics1995,103 (11), 4572–4585
  21. 21. Feller, D., Application of systematic sequences of wave functions to the water dimer. The Journal of chemical physics1992,96 (8), 6104–6114
  22. 22. Feller, D., The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water. The Journal of chemical physics1993,98 (9), 7059–7071
  23. 23. Martin, J. M., Ab initio total atomization energies of small molecules—towards the basis set limit. Chemical physics letters1996,259 (5–6), 669–678
  24. 24. Martin, J. M., Benchmark ab initio calculations of the total atomization energies of the first-row hydrides AHn (A= Li▪F). Chemical physics letters1997,273 (1–2), 98–106
  25. 25. Martin, J. M., Coupling between the convergence behavior of basis set and electron correlation: a quantitative study. Theoretical Chemistry Accounts1997,97 (1–4), 227–231
  26. 26. Martin, J. M., Very accurate ab initio binding energies—a comparison between empirical corrections and extrapolation methods. Journal of Molecular Structure: THEOCHEM1997,398, 135–144
  27. 27. Helgaker, T.; Klopper, W.; Koch, H.; Noga, J., Basis-set convergence of correlated calculations on water. The Journal of chemical physics1997,106 (23), 9639–9646
  28. 28. Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Koch, H.; Olsen, J.; Wilson, A. K., Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chemical Physics Letters1998,286 (3–4), 243–252
  29. 29. Klopper, W.; Helgaker, T., Extrapolation to the limit of a complete basis set for electronic structure calculations on the N2 molecule. Theoretical Chemistry Accounts1998,99 (4), 265–271
  30. 30. Halkier, A.; Helgaker, T.; Klopper, W.; Jørgensen, P.; Csaszar, A. G., Comment on “Geometry optimization with an infinite basis set”w ž/x J. Phys. Chem. A 103 1999 651 and “Basis-set extrapolation”w ž//x Chem. Phys. Lett. 294 1998 45. Chemical physics letters1999,310, 385–389
  31. 31. Bak, K.; Halkier, A.; Jørgensen, P.; Olsen, J.; Helgaker, T.; Klopper, W., Chemical accuracy from ‘Coulomb hole’extrapolated molecular quantum-mechanical calculations. Journal of Molecular Structure2001,567, 375–384
  32. 32. Bak, K. L.; Jørgensen, P.; Olsen, J.; Helgaker, T.; Klopper, W., Accuracy of atomization energies and reaction enthalpies in standard and extrapolated electronic wave function/basis set calculations. The Journal of Chemical Physics2000,112 (21), 9229–9242
  33. 33. Rogers, D. W., Heats of hydrogenation: experimental and computational hydrogen thermochemistry of organic compounds. World Scientific: 2006, or from website https://webbook.nist.gov/chemistry/
  34. 34. Zhao, Y.; Truhlar, D. G., The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts2008,120 (1–3), 215–241
  35. 35. Frisch, M.; Trucks, G.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G., gaussian 09, Revision d. 01, Gaussian. Inc., Wallingford CT2009,201
  36. 36. Vasilyev, V., Online complete basis set limit extrapolation calculator. Computational and Theoretical Chemistry2017,1115, 1–3. http://sf.anu.edu.au/∼vvv900/cbs/#ref_3
  37. 37. Wiberg, K. B., Accuracy of calculations of heats of reduction/hydrogenation: Application to some small ring systems. The Journal of organic chemistry2012,77 (22), 10393–10398
  38. 38. Rogers, D. W.; McLafferty, F. J.; Podosenin, A. V., Ab Initio Calculations of Enthalpies of Hydrogenation and Isomerization of Cyclic C4 Hydrocarbons. The Journal of Physical Chemistry1996,100 (43), 17148–17151
  39. 39. Rogers, D. W.; McLafferty, F. J.; Podosenin, A. V., G2 (MP2) and G2 (MP2, SVP) calculations of enthalpies of hydrogenation, isomerization, and formation of C5 hydrocarbons. 2. Substituted cyclobutenes, vinylcyclopropene, spiropentane, and methyltetrahedrane. The Journal of Physical Chemistry A1998,102 (7), 1209–1213
  40. 40. Li, Z.; Rogers, D. W.; McLafferty, F. J.; Mandziuk, M.; Podosenin, A. V., Ab initio calculations of enthalpies of hydrogenation, isomerization, and formation of cyclic C6 hydrocarbons. Benzene isomers. The Journal of Physical Chemistry A1999,103 (3), 426–430

Written By

Ali Amir Khairbek

Submitted: 08 July 2020 Reviewed: 09 September 2020 Published: 03 November 2020