Summary of current literature that compares multiport laparoscopic Hartmann’s reversal versus the conventional open technique.
\r\n\tneurology, neurosurgery or plastic surgery and physical medicine.
",isbn:"978-1-78985-258-5",printIsbn:"978-1-78985-257-8",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"faa3d9b75498d42c252aa550b9346922",bookSignature:"Prof. Hande Turker",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8203.jpg",keywords:"Peripheral Nerve Anatomy, Surgery Methods, New Methods, Surgical Models, Complications, Carpal Tunnel Syndrome, Cubital Tunnel Syndrome, Peripheral Nerve Injury, Peripheral Nerve Healing, Peripheral Nerve Trauma, Surgical Therapy, Graft for Surgical Interventions",numberOfDownloads:354,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 21st 2019",dateEndSecondStepPublish:"April 11th 2019",dateEndThirdStepPublish:"June 10th 2019",dateEndFourthStepPublish:"August 29th 2019",dateEndFifthStepPublish:"October 28th 2019",remainingDaysToSecondStep:"8 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,editors:[{id:"63331",title:"Prof.",name:"Hande",middleName:null,surname:"Turker",slug:"hande-turker",fullName:"Hande Turker",profilePictureURL:"https://mts.intechopen.com/storage/users/63331/images/system/63331.jpeg",biography:"Hande Turker is a neurologist and a clinical neurophysiologist. She has been dealing with headache, neuropathic pain, neuromuscular diseases, dystonia, and electromyography and evoked potentials for nearly 25 years. She is the author of many publications including several book chapters on evoked potentials and electromyography. Her main interests other than clinical neurophysiology are neuropathic pain, headache, and botulinum toxin injections in movement disorders. She has been working at Ondokuz Mayıs University, Samsun, Turkey, since 2003. She is a professor of neurology and lecturer and teaches headache, neuropathic pain, neuromuscular diseases, and electromyography and evoked potentials at the university where she founded the 'Evoked Potential Lab” and directed the EMG and EP Unit between 2003 and 2010.\nShe is also the author of InTech book chapters 'Middle and Long Latency Auditory Evoked Potentials and Their Usage in Fibromyalgia and Schizophrenia,” 'Neurological Complications of Hypothyroidism,” and 'Surface Electromyography in Sports and Exercise.” She is the editor of the InTech books Electrodiagnosis in New Frontiers of Clinical Research and 'Current Perspectives on Less-known Aspects of Headache.",institutionString:"Ondokuz Mayis University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:[{id:"69523",title:"Peripheral Nerve Imaging: Focus on Sonography",slug:"peripheral-nerve-imaging-focus-on-sonography",totalDownloads:47,totalCrossrefCites:0,authors:[null]},{id:"64757",title:"Biological and Preclinical Evaluations of Designed Optically Guided Medical Devices with Light Scattering Modules for Carpal Tunnel Syndrome Treatment and Surgical Procedure",slug:"biological-and-preclinical-evaluations-of-designed-optically-guided-medical-devices-with-light-scatt",totalDownloads:119,totalCrossrefCites:0,authors:[null]},{id:"66037",title:"Focal Upper Limb Mononeuropathies in Patients with Diabetes Mellitus",slug:"focal-upper-limb-mononeuropathies-in-patients-with-diabetes-mellitus",totalDownloads:113,totalCrossrefCites:0,authors:[null]},{id:"69871",title:"Interventional Treatment Options for Trigeminal Neuralgia",slug:"interventional-treatment-options-for-trigeminal-neuralgia",totalDownloads:48,totalCrossrefCites:0,authors:[null]},{id:"70343",title:"Peripheral Sensitization",slug:"peripheral-sensitization",totalDownloads:27,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"3390",title:"Electrodiagnosis in New Frontiers of Clinical Research",subtitle:null,isOpenForSubmission:!1,hash:"ccd9da6b93d7419d735f17e246f78fe2",slug:"electrodiagnosis-in-new-frontiers-of-clinical-research",bookSignature:"Hande Turker",coverURL:"https://cdn.intechopen.com/books/images_new/3390.jpg",editedByType:"Edited by",editors:[{id:"63331",title:"Prof.",name:"Hande",surname:"Turker",slug:"hande-turker",fullName:"Hande Turker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5377",title:"Current Perspectives on Less-known Aspects of Headache",subtitle:null,isOpenForSubmission:!1,hash:"e22300c84af27da2da87a7bf37602205",slug:"current-perspectives-on-less-known-aspects-of-headache",bookSignature:"Hande Turker",coverURL:"https://cdn.intechopen.com/books/images_new/5377.jpg",editedByType:"Edited by",editors:[{id:"63331",title:"Prof.",name:"Hande",surname:"Turker",slug:"hande-turker",fullName:"Hande Turker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"René Mauricio",surname:"Barría",slug:"rene-mauricio-barria",fullName:"René Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"53643",title:"The Evolution of Minimally Invasive Techniques in Restoration of Colonic Continuity",doi:"10.5772/66720",slug:"the-evolution-of-minimally-invasive-techniques-in-restoration-of-colonic-continuity",body:'\nIn this chapter we would like to focus on the restoration of intestinal continuity after Hartmann’s procedure in general and highlight emerging minimally invasive techniques in specific.
\nHistorically, restoration of bowel continuity after Hartmann’s procedure has been considered technically challenging and is associated with high morbidity and mortality rates even despite modern surgical techniques. This is the main reason why restoration of intestinal continuity is often not attempted. Intraoperative difficulties during laparotomy or multiport laparoscopy are mainly caused by the formation of adhesions at the laparotomy site and lower part of the abdomen after active inflammation and/or infection and previous surgery.
\nThe use of the former colostomy site as access to the abdominal cavity has gained some popularity recently. Placing a single-port access system in the former colostomy site combines the potential benefits of minimally invasive surgery (shorter postoperative recovery time, minimal postoperative hospital stay, and lower morbidity rates) with the advantages of Hartmann’s reversal through the colostomy site (the absence of new incisions and decreased necessity of midline adhesiolysis).
\nHenri Albert Hartmann was born on June 16, 1860. Hartmann finished his medical school at the University of Paris on December 19, 1881.
\nHartmann starts his internship with Felix Terrier at Hôpital Bichat, who was considered to be one of the most authoritative surgeons at that time [1]. After finishing his surgical training in 1887, Hartmann was appointed as an assistant professor in 1895 and in 1909 as a professor and chairman of the Department of Surgery in 1892. In 1914, Hartman became the chief of Surgery at l\'Hôtel-Dieu hospital in Paris (\nFigure 1\n) [2]. During his lengthy and extraordinary career, Hartmann meticulously recorded each operation he performed. Upon his retirement he had documented around 30,000 cases [3].
\nHenri Hartmann (second from the right) and his three assistants, Drs. Bergeret, Gouverneur, and Huet, at the Hotel-Dieu, Paris. Source image: http://wellcomeimages.org.
Hartmann’s procedure was first described in 1921 [4, 5]. In his first patients with obstructive carcinoma of the sigmoid, he performed a proximal colostomy and then a sigmoid resection with closure of the rectal stump via an abdominal approach. He developed this technique in response to high mortality rates in his patients who underwent an abdominoperineal resection, as first described by Miles in 1908 [1]. In 1931 Hartmann described the procedure in detail in his book Chirurgie du Rectum (\nFigure 2\n).
\nCover of the book Chirurgie du rectum by Henri Hartmann. Published 1931. Source image: http://archive.org.
Although Hartmann developed his technique mainly for rectal cancer, in present times, Hartmann\'s procedure is often the preferred procedure for severe diverticulitis of the sigmoid. Despite Hartmann never intended restoration of bowel continuity, recent publications showed that a direct reconstruction is feasible in selected patients [6].
\nHartmann never attempted to reanastomose the bowel in his patients. He believed this would result in unnecessarily high morbidity and mortality [3].
\nRestoring intestinal continuity after Hartmann’s operation is a difficult operation that is associated with a high morbidity rate, with anastomotic leakage rates ranging from 4% to 16% and an operative mortality reported as high as 10% [7–10].
\nThe high incidence of morbidity and mortality is the main reasons why surgeons are reluctant to restore intestinal continuity in approximately 40% of the patients undergoing Hartmann’s procedure [10, 11].
\nThe primary indication for reversal of Hartmann’s procedure is curing people of the discomforts that are caused by the end colostomy. Patients with stomas face many physical and psychological challenges, including leakage, skin rashes, lifestyle alterations, and sexual dysfunction [12, 13].
\nLiterature defines no contraindications for reversal of Hartmann’s procedure. However, a review of the literature covering restoration after Hartmann’s procedure shows that advanced age, ASA grade 3, or higher and fecal peritonitis at the time of Hartmann’s procedure are often considered relevant contraindications. Roque-Castellano and colleagues analyzed factors related to the decision of restoring intestinal continuity. They found that female sex and neoplastic disorders are relative contraindications for restoration of intestinal continuity [14]. Furthermore, we believe there must be some reluctance to perform conventional restoration of bowel continuity by laparotomy in patients with an incisional hernia. The reason for this statement is the need for repair of the incisional hernia and the restoration of the bowel continuity at the same time. This reluctance is following the dictum that abdominal wall prostheses must be avoided during contaminated operations [15]. The authors advocate the use of single-port laparoscopic reversal of Hartmann’s procedure in case of an incisional hernia. With this modality the midline can be left unchanged rendering concomitant repair of the incisional hernia unnecessary. The single-port laparoscopic technique will be discussed in detail in Section 5.1.
\nPrior to the restoration of the intestinal continuity, routine evaluation of the rectal stump and descending colon is often performed in order to detect stump leakage, cavity formation, or strictures and establish the length of the rectal stump. The integrity and patency of the rectal stump are evaluated by physical examination, flexible endoscopy and/or radiographically by contrast proctography CT scan. Despite these routine practices, little data exist to support this in case of restoration of bowel continuity after Hartmann’s procedure. Data do exist on the routine use of contrast enema prior to the closure of a defunctioning ileostomy in patients with low pelvic anastomosis is inconsistent when its sole purpose is detecting leaks or cavity formation [16–18]. These studies show that strictures or narrowing of the bowel lumen is seldom detected. In cases where strictures are detected, dilatation is performed without the need for cancelation the reversal of the – ostomy. When extrapolating these findings, it is questionable whether routine contrast studies are necessary in the case of Hartmann’s reversal. Moreover, usually patients who develop an anastomotic leak of the rectal stump present with clinical symptoms long before restoration of the bowel continuity is scheduled. However, in patients where initial Hartmann’s procedure was acutely performed for neoplastic disorders, direct visualization of the rectal stump and remaining colon is mandatory to exclude recurrence of the malignancy or other neoplastic lesions. Based on these limited data, the authors advocate performing flexible rectoscopy to ensure viability of the rectal stump and the absence of remaining diverticular disease or local recurrence in case of prior malignancy. Data on routinely performing X-ray or contrast enema is limited to expert opinions and therefore not mandatory. Authors’ recommendations are summarized in the algorithm in \nFigure 3\n.
\nAlgorithm advocated to be used during decision-making and the preoperative workup for restoration of bowel continuity after Hartmann’s procedure.
There is limited data available concerning the optimal timing of restoration of continuity. Most surgeons will postpone surgery for at least 6 months after the initial operation, obviously depending on the current health and recuperation of the patient. It has been suggested by Keck and coworkers that a waiting period of 15 weeks may be beneficial [19]. It is however noteworthy that reversing Hartmann’s procedure after a shorter period did not influence morbidity or mortality, but did seem to lengthen the duration of hospitalisation and increase the perceived operative difficulty (and thus the risk). Other authors have also suggested there is no indication to delay closure for longer than 16 weeks [20]. Based on these limited data, the authors advocate a minimal waiting period of 4 months between the initial operation and restoration of continuity in order to maximize the possibility of minimally invasive techniques for restoring continuity.
\nReestablishing bowel continuity after Hartmann’s procedure is considered a major surgical procedure that is accompanied by considerable morbidity and mortality. Multiport laparoscopy was the first technique in a sequence of attempts to reduce the high morbidity and mortality that is associated with this procedure.
\nThe patient is placed in a supine position. Next, there are two different ways to continue the procedure. In one option the procedure is initiated with mobilization of the stoma to the level of the abdominal wall and then freeing the ostomy from the fascia. The alternative procedure starts by insertion of a 10 mm camera trocar and a working trocar when needed (\nFigure 4\n), establishing the pneumoperitoneum, and perform a prior inspection for factors that could potentially cause abortion later on in the procedure. We advocate starting the procedure in the latter fashion, since this technique facilitates early decision-making by the surgeon on continuing or aborting the procedure when a potential unsuccessful bowel restoration is anticipated. Consequently, there is no need for refashioning of the end colostomy.
\nIn both techniques the next step is transecting the colon using a linear stapler to remove the end of the colostomy and securing the anvil of a circular stapler is secured with a purse-string suture, in the proximal colon. The descending colon is then returned into the abdominal cavity. Any adhesions in the abdominal cavity are freed to enable insertion of the other ports. The colostomy site is closed using a wound protector/retractor device with a laparoscopic cap so that it can function as an additional working port. The pneumoperitoneum is then established. Additional 5 mm working trocars are placed in the right upper quadrant and right iliac fossa. Extensive dissection of adhesions from the anterior abdominal wall in the midline is mandatory with this multi-port technique in order to cross the midline (\nFigure 4\n).
\nPort positions for multiport laparoscopic Hartmann’s reversal. L = laparoscopic trocar position. Red-shaded area: area of maximal adhesion formation after previous laparotomy. Green-shaded area: area of range of action that is relatively free of adhesions. Note that in this technique the midline has to be crossed.
The small bowel is mobilized from the left iliac fossa and out of the pelvis. The proximal descending colon would have been mobilized to a varying extent at the initial Hartmann’s procedure, and this will need to be redone, including the splenic flexure. A rectal probe or circular stapler sizer is used to identify the rectal stump. In order to perform an end-to-end anastomosis, further mobilization and adhesiolysis of the rectal stump are sometimes necessary. Alternatively, if mobilization is difficult and the anterior rectal wall can clearly be identified and adequate length of the descending colon is available to allow a tension-free anastomosis, an side-to-side anastomosis can be performed. A circular stapler is introduced into the rectum to fashion the anastomosis. The stapler is deployed and the donuts are checked. Next, we advocate performing an additional leak test as this is associated with reduced rates of postoperative adverse events in literature [21]. The pneumoperitoneum is released, and the trocars are removed under direct visualization. The fascia is then closed in apertures equal to or larger than 10 mm.
\nIn recent literature a limited amount of studies compared an open approach with the multiport laparoscopic technique [22–31]. In \nTable 1\n a summary of studies on multiport laparoscopic versus conventional Hartmann’s reversal is presented.
\nStudy | \nCountry | \nYear of publication | \nProcedure | \nNumber of patients | \nMorbidity (%) | \nMortality (% | \nOperation time (mean min) | \nHospital stay (days) | \nControl group (number of patients) | \nMorbidity (%) | \nMortality (%) | \nOperation time (mean min) | \nHospital stay (days) | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rosen et al. [24] | \nUSA | \n2005 | \nLaparoscopic | \n20 | \n3 (14) | \n0 (0) | \n158 | \n4.2 | \nNo | \n\n | \n | \n | NS | \n
Faure et al. [25] | \nFR | \n2007 | \nLaparoscopic | \n14 | \n2(14.2) | \n0 (0) | \n143 | \n9.5 | \nConventional (20) | \n6 (30) | \n0 (0) | \n180 | \n11 | \n
Haughn et al. [26] | \nUSA | \n2008 | \nLaparoscopic | \n61 | \n8 (13) | \n0 (0) | \n154 | \nNS | \nConventional (61) | \n11 (18) | \n0(0) | \n210 | \nNS | \n
Vermeulen et al. [27] | \nNL | \n2008 | \nLaparoscopic | \n3 | \n(15.8)\n*\n\n | \n(5)\n*\n\n | \nNS | \nNS | \nConventional(48) | \n(15.8)\n*\n\n | \n(5)\n*\n\n | \nNS | \nNS | \n
Mazeh et al. [28] | \nIL | \n2009 | \nLaparoscopic | \n82 | \n15 (17.6) | \n0 (0) | \n193 | \n6.5 | \nConventional (41) | \n15 (36.5) | \n0 (0) | \n209 | \n8.1 | \n
Di Carlo et al. [29] | \nIT | \n2010 | \nLaparoscopic | \n3 | \n0 (0) | \n0 (0) | \n95.6 | \nNS | \nConventional (3) | \n0 (0) | \n0 (0) | \n136.6 | \nNS | \n
De\'angelis et al. [30] | \nFR | \n2013 | \nLaparoscopic | \n28 | \n3 (10.7) | \n0 (0) | \n171.1 | \n6.7 | \nConventional (18) | \n6 (33.6) | \n0 (0) | \n235.8 | \n11.2 | \n
Yang et al. [31] | \nAU | \n2014 | \nLaparoscopic | \n43 | \n6 (14) | \n0 (0) | \n276.4 | \n6.7 | \nConventional (64) | \n20 (31) | \n0 (0) | \n242 | \n10.8 | \n
Summary of current literature that compares multiport laparoscopic Hartmann’s reversal versus the conventional open technique.
In the study by Vermeulen et al. [32]. Subdivision is made for laparoscopic or conventional reversal; therefore, only overall morbidity and mortality are given for this study.
AU, Australia; FR, France; IT, Italy; IL, Israel; NL, the Netherlands; USA, United States of America; NS, not stated.
As expected, for the minimal invasive technique, the total length of hospital stay was shorter with 6.9 days when compared to the open approach that shows a mean of 10.4 days. Furthermore, for patients in whom bowel continuity was restored laparoscopically, overall morbidity rates seemed lower when compared to patients who were treated conventionally. In the laparoscopic group, mean morbidity rates were 12% versus 20% in the open group. The main and foremost complications after bowel restoration for both modalities are summarized in \nTable 2\n.
\n\n | Type of intestinal continuity restoration\n | \n|
---|---|---|
Multiport laparoscopy | \nLaparotomy | \n|
Hemorrhage | \n1.7 | \n3 | \n
Wound infection | \n10.6 | \n14 | \n
Anastomotic leakage | \n1.2 | \n5 | \n
Reoperation | \n4 | \n7 | \n
Cardiopulmonary | \n3.6 | \n7 | \n
Morbidity rates depicted for multiport laparoscopic reversal of Hartmann’s procedure compared with conventional reversal.
Values are derived from the literature. Values are in mean percentages.
In the reviewed literature, mortality seems comparable for both techniques, with a mean mortality of 0.9% in the laparoscopic group and 1.2% in the conventional group. No statistically significant differences were found for mean total operation time, 150 minutes for the laparoscopic technique and 172 minutes for conventional procedures. A possible explanation for the relative long operation duration for both techniques is the extensive adhesiolysis that is required. 80 percent of the conversions from laparoscopy to the conventional technique arises for this reason [33], resulting in an average conversion rate of 12 percent. In the opinion of the authors, there is no place for primary open restoration of continuity after Hartmann’s procedure, due to unnecessary morbidity, mortality, and trauma to the abdominal wall. We advocate selection of a minimally invasive procedure.
\nAlthough laparoscopic restoration of the intestinal continuity has many advantages, in laparoscopic reversal of Hartmann’s procedure, an extended adhesiolysis in the midline and pelvis is still needed. This adhesiolysis may increase postoperative paralytic ileus and the risk of inadvertent bowel lacerations.
\nThe use of the colostomy site as an even less invasive method for access to the abdominal cavity and restoration of the intestinal continuity was first described by Vermeulen and colleagues in 2008 [32]. In this technique manual access is gained through the stoma site in combination with a blindly performed adhesiolysis without laparoscopic assistance (\nFigure 5\n). This procedure was called the SIR method “stoma incision reversal” procedure.
\nManual lysis of adhesions at the tip of the rectal stump, which was identified using a rigid club. Previously, the anvil of a circular stapler was placed intraluminal of the descending colon. DC, descending colon with anvil; RH, right hand; A, adhesions; B, bladder; LH, left hand; C, rigid club; RS, rectal stump; L, left leg. Source: Ref. [34].
The patient is positioned in the lithotomy. The stoma is released, taking a small amount of surrounding skin with it. Then the colostomy is closed provisionally with a running suture. The length of the incision at the stomal site must be large enough to fit the surgeon’s hand. The descending colon stump is brought outside the abdomen; visible adhesions connected to the left colon are sharply dissected. Further adhesiolysis of the left colon is performed manually between the thumb and index finger in order to create enough length for the descending colon to reach the pelvic cavity. If enough bowel length is created. The anvil of a circular stapler is placed intraluminal. The stump is closed using a linear stapler. The tip of the stapler anvil is brought through the colon the staple line and tied by a purse-string suture. The descending colon with the anvil is returned intra-abdominally. For the next step, the surgeon’s right hand is placed intra-abdominally through the former colostomy side. The left hand is used to transanally introduce a rigid sizer to identify and manipulate the rectal stump. Adhesions between the rectal stump and adjacent small bowels are loosened manually and blindly with the surgeon’s right hand. Consecutively, the circular stapler is introduced into the rectal stump. The pin of the circular stapler is passed through the rectal wall, and the anvil is attached. Before firing the circular stapler, the proximal bowel segment is manually checked for rotation and interposition. After firing the stapler, the integrity of the doughnuts of the anastomosis is inspected, and a leak test is performed. The fascia is closed with a PDS suture, and the skin as deemed appropriate.
\nA review of the literature shows three studies [32, 34–36] on the SIR technique. \nTable 3\n summarizes the results. Vermeulen and colleagues described the first pilot study in 2010. They attempted the procedure in 13 consecutive patients with a median age of 56 years (range 35–81 years). Indications for initial surgery were iatrogenic bowel perforation (n = 3), intestinal bowel obstruction due to complicated diverticulitis (n = 3), and diverticulitis (n = 7). Median delay of reversal was 7 months.
\nStudy | \nCountry | \nYear of publication | \nNumber of patients | \nProcedure | \nControl group (number of patients) | \nMorbidity (%) | \nMortality (%) | \nOperation time (mean min) | \nHospital stay (days) | \n
---|---|---|---|---|---|---|---|---|---|
Vermeulen et al. [32] | \nNL | \n2008 | \n13 | \nTrephine access | \nNo (0) | \n0 (0) | \n0 (0) | \n81 | \n4.2 | \n
Vermeulen et al. [34] | \nNL | \n2010 | \n16 | \nTrephine access | \nYes (32) | \n4 (25) | \n0 (0) | \n75 | \n4 | \n
Aydin et al. [35] | \nTR | \n2011 | \n8 | \nTrephine access | \nNo (0) | \n0 (0) | \n0 | \n65 | \n5.5 | \n
Summary of “trephine access” technique reversal of Hartmann’s procedure in the current literature.
NL, the Netherlands; TR, Turkey.
Of the 13 patients assigned for reversal of Hartmann’s procedure through the stomal site, two patients needed direct conversion to laparotomy due to firm adhesions. Of the 11 patients in which the procedure was accomplished through the stoma site, mean operation time was 81 min (range 58–109 min) with a mean hospital stay of 4.2 days. No anastomotic leaks occurred. In 2010 Vermeulen and colleagues published the results of their “stoma incision reversal” procedure in 22 patients and compare the results with matched cases in which restoration of the intestinal continuity was performed by laparotomy. In the “SIR” group, five procedures were converted to laparotomy due to firm adhesions (n = 2), doubt about the quality of the doughnuts (n = 2), or iatrogenic small bowel lacerations (n = 1).
\nIn this study the mean operation time was significantly shorter when performing the SIR procedure (75 min (58–208)) compared to the open group (141 min (85–276)) (p < 0.001). Patients who underwent the SIR procedure had a shorter postoperative hospital stay (SIR group range 2-7 days) (p < 0.001). The total postoperative number of complications was not significantly different between both procedures. Twenty-five percent for the SIR patients versus 50% of the patients that were treated by the conventional technique. Postoperative complications after bowel continuity restoration are depicted in \nTable 4\n.
\n\n | Type of intestinal continuity restoration\n | \n|
---|---|---|
“SIR” | \nLaparotomy | \n|
Total complications | \n4 | \n16 | \n
Anastomotic leakage | \n1 | \n2 | \n
Ileus | \n0 | \n1 | \n
Wound infections | \n1 | \n5 | \n
Urine retention | \n1 | \n0 | \n
Incisional hernia | \n1 | \n8 | \n
Mortality | \n0 | \n1 | \n
Postoperative complications after restoration of bowel continuity depicted for the “SIR” procedure (trephine access) and conventional technique.
Vermeulen et al. 2010 [35].
In 2011 Aydin and colleagues perform the aforementioned technique in eight patients. Indications for the initial Hartmann’s procedure were sigmoid volvulus (n = 4), obstructive sigmoid cancer (n = 2), rectal trauma (n = 2), and Fournier’s gangrene (n = 1). The mean duration between the primary procedure and reversal of the Hartmann’s procedure was 5 months (range 2–8 months). All patients included had a body mass index of less than 30 km/m2 and a rectal stump of at least 5 cm. In two patients the incision was extended from the stoma site for better visualization of the rectal stump in one patient and due to injury of the intestine in one patient. Mean duration of the operation was 65 min (range 45–80 min). No postoperative complications were observed. Patients were discharged after a mean of 5.5 days (range 4–9 days). Aydin and coworkers note that this technique should ideally be used in non-obese patients with long rectal stumps of sufficient length.
\nThe SIR technique originated in the Netherlands and met criticism due to the blind nature of the dissection phase of the procedure. Regarding the risk of blind dissection as well as the availability of improved access platforms that enable adequate vision and control, the authors do not advocate the use of the SIR technique in present times.
\nSingle-port restoration of intestinal continuity with access through the formal site of the colostomy is a relatively new technique. The main goal for the development of this method is introducing a minimally invasive technique that further reduces the morbidity and mortality of a procedure that is technically demanding and complex.
\nThe patient is placed in lithotomy position. Primarily, the colostomy is mobilized and freed from the fascia (\nFigure 6\n). The mobilized descending colon is then pulled out of the abdomen and exposed (\nFigure 7\n). Next, the colon is transected using a linear stapler to remove the end colostomy, and the anvil of a circular stapler is secured with a purse-string suture, in the proximal colon. Either a terminal or lateral position can be chosen (\nFigure 8\n). The descending colon is returned into the abdominal cavity. Any adhesions close to the wound in the abdominal cavity on direct view are freed. The single-port access platform is then placed in the fascial defect at the colostomy site, and the pneumoperitoneum is then established (\nFigure 9\n). A rigid 30-degree laparoscope is introduced and a diagnostic laparoscopy is performed. Subsequently, the patient is positioned in anti-Trendelenburg position making the small pelvis visible. Adhesiolysis is performed using two 5 mm working trocars.
\nRelease of the colostomy.
Mobilization of the descending colon with sufficient length.
Insertion of the anvil of the circular stapler. Left picture shows a terminal position. Right picture shows a lateral positioning of the anvil for side-to-end configuration.
Placement of the single-port access device in the fascia defect at the formal stoma site. Right picture shows the placement of the flexible wound protector.
Dissection of adhesions and scar tissue surrounding the rectal stump is performed extensively, by either sharp dissection with laparoscopic scissors or ultrasonic dissection devices, until the rectal stump is as bare as possible (\nFigure 10\n). Adhesions formed at the previous midline incision can be left unchanged at this stage, reducing the risk of iatrogenic bowel perforation and reducing total operation time. Next, the circular stapler is advanced via the anus, and the descending colon is identified and checked if adequate length is available to allow a tension-free anastomosis. If necessary, the splenic flexure of the colon can be mobilized (\nFigure 11\n). The stapler is deployed and the donuts are checked. The pneumoperitoneum is released and the trocars are removed under direct visualization. The fascia is then closed in apertures equal to or larger than 10 mm.
\nAdhesiolysis and mobilization of the splenic flexure.
Dissection of adhesions and scar tissue surrounding the rectal stump.
A review of the literature reveals that only a few small case series have been published on this technique. At the moment no randomized controlled trials were published [37–42]. \nTable 5\n summarizes the results of the available literature. The technique was first described by Smith and colleagues [42]; in this case single-port restoration of the intestinal continuity was performed in a 56-year-old patient with a history of perforated diverticulosis. Their total operation time was 104 min. The patient started a clear liquid diet on postoperative day 2 and was discharged after 5 days. The largest study without control patients was that of Choi et al. [40] and consisted of 23 patients. In one patient closure of the colostomy was aborted due to intraoperative difficulties. The median age of their patients was 62 years (range 21–87 years), with an overall ASA grade of II. Median time to reversal was 153.5 days (range 99–1028). Main indications for Hartmann’s procedure were: complicated diverticulitis (27.3%), colorectal carcinoma (27.3%), and sigmoid volvulus (18.2%). They reported a median operation time of 165 minutes (range 100-340 minutes) and a total hospital stay of 8 days (range 4–31 days). There morbidity rate was 18.2% with two reoperations, one for anastomotic dehiscence and one for rectovesical fistula. No mortality was reported. Carus and colleagues’ study consisted of 8 patients with a median age of 60.4 years (range 36–84). Hartmann’s procedure was performed for complicated diverticulitis (five laparoscopic, three open). The reversal was performed 2–4 months after the primary procedure. No conversions were reported in one procedure; they had to play one extra trocar had to be placed during adhesiolysis; and one patient with a superficial wound infection (morbidity 12.5%). No mortality was reported. Patients were discharged after a median of 6.4 days (range 4–8 days). The series by Clermonts et al. [37] was the only study that included a control group. They included a total of 25 patients (median age, 52.2 years). Indications for primary surgery consisted of complicated diverticulitis (60%) and malignancy in 28% of the cases. Median time to reversal was 16 months. These patients were compared with a control group in which closure of the colostomy was performed in an open method. In the open group, all primary Hartmann’s procedures were performed by laparotomy; in the single-port group, 88% was performed by laparotomy. No statistical significant differences were observed between the two groups. Median operation time in the single-port group was 153.5 min (range: 73–332 minutes) and 184.4 min (range 29–377 minutes) in the open group. One single-port procedure was converted to laparotomy and two procedures to multiport laparoscopy due to difficulties during the adhesiolysis. In the single-port group, a total of eight complications were observed compared with 33 complications in the open group. Wound infections, 5 (20 %) versus 12 (75 %), accounted for the largest number of complications in the SPHR and OHR groups. One patient died after anastomotic leakage and sepsis in the control group; no mortality was observed in the single-port group. The median hospital stay was 4 days in the single-port group compared to a mean of 16 days in the open group.
\nStudy | \nCountry | \nYear of publication | \nNumber of patients | \nProcedure | \nControl group (number of patients) | \nMorbidity (%) | \nMortality (%) | \nHospital stay(days) | \n
---|---|---|---|---|---|---|---|---|
Smith et al. [42] | \nUSA | \n2011 | \n1 | \nStoma site. Single port | \nNo (0) | \n0(0) | \n0(0) | \n5 | \n
Carus et al. [39] | \nGE | \n2011 | \n8 | \nStoma site. Single port | \nNo (0) | \n1 (12.5) | \n0 (0) | \n4 | \n
Borowski et al. [38] | \nUK | \n2011 | \n5 | \nStoma site. Single port | \nNo (0) | \n1 (20) | \n0 | \n4.2 | \n
Joshi et al. [41] | \nUK | \n2013 | \n14 | \nStoma site. Glove port | \nNo (0) | \n3 (21) | \n0 (0) | \n5.5 | \n
Choi et al. [40] | \nKR | \n2015 | \n22 | \nStoma site. Glove port. Single port | \nNo (0) | \n4 (18.2) | \n0(0) | \n8 | \n
Clermonts et al. [37] | \nNL | \n2016 | \n25 | \nStoma site. Single port | \nYes (16) | \n8 (32) | \n0 (0) | \n4 | \n
Summary of single-port reversal of Hartmann’s procedure in the current literature.
KR, Korea; NL, the Netherlands; UK, the United Kingdom; GE, Germany; USA, the United States of America.
Single port restoration of the intestinal continuity has some major advantages over the previously mentioned techniques. The minimally invasive technique has the usual advantages of this technique with less pain and faster recovery. Specifically, in Hartmann’s reversal also a shorter operation time is observed. The single port variant using the formal stoma site as an access point has the additional advantage that crossing the midline is avoided, rendering an extensive adhesiolysis unnecessary as \nFigure 12\n schematically shows.
\nPort position for single-port Hartmann’s reversal. SP = single-port trocar position. Red-shaded area: area of maximal adhesion formation after previous laparotomy. Green-shaded area: area of range of action that is relatively free of adhesions.
Another big advantage of minimalizing the access trauma is shown in the very short hospital stay compared to the open and laparoscopic techniques. The small incision, almost no blood loss, and short operation time could be the main reasons.
\nIn Section 5 we already described the advantages of single-port restoration of intestinal continuity with access through the formal site of the colostomy. Recently, a new technique that combines the single-port trephine access with single-port transanal access was presented [43]. It is suggested the transanal approach will aid in the technically challenging dissection of the rectal stump and perform a pelvic adhesiolysis in a safer manner.
\nPatients receive mechanical bowel and rectal stump cleansing. Patients are placed in lithotomy position. The procedure is performed by two surgeons starting simultaneously; one surgeon starts the abdominal trephine access approach (Section 5). The second surgeon places a single-port transanal access platform through the anal canal with three working trocars. The pneumorectum is created. Next, circular dissection next to the stapler line in the proximal part of the rectal stump is performed into the avascular presacral plane posteriorly. This plane of dissection is extended medially, laterally, and interiorly to achieve the desired circumferential rectal mobilization. Finally, the peritoneal reflection was visualized and divided to achieve the proximal rectal stump removal, with both surgeons working together. The previous stapler line with the resected tissue can be extracted transanally. Next, a Prolene purse-string suture is used to close the distal rectal stump. In order to complete the end-to-end anastomosis, a circular stapler is inserted via the anal canal and connected to the anvil in the proximal descending colon. After firing the circular stapler and completing the anastomosis, the integrity of the anastomosis can be evaluated with an air test, as well as an intraluminal examination through the transanal access platform.
\nA review of the literature reveals one study by Bravo and colleagues [43]. The study group describes a technique that is easily adopted and mastered by surgeons already trained in transanal colorectal surgery. They report no postoperative morbidity and a quick recovery and discharge from the hospital (no exact numbers given). Furthermore, a shorter total operation time is mentioned when compared to a multiport laparoscopic approach.
\nAdvantages of this technique mentioned by the authors are first of all the safe dissection of the rectal stump because most of the work is done in a surgical plane not touched during the initial surgery and thus without adhesions. This gives the ability to precisely identify structures with adherence to the rectal stump like small bowel or ureter. The main difficulty of this technique can be performing the transanal dissection in patients with hard adhesions to the rectal stump after perforation or peritonitis. Furthermore, a very short rectal stump makes positioning the transanal single-port access difficult and without adequate workspace impossible.
\nThe authors believe that the minimally invasive technique is an attractive approach for rever-sal of Hartmann’s procedure. So far, reports are promising. The technique may reduce the substantial morbidity known from open reversal. The SIR technique may be considered to be obsolete, especially in the era of laparoscopy. Most patients will be best suited by use of lapa-roscopic techniques. We would like to emphasize that laparoscopy is a means to an end and not a goal in itself. If minimally invasive techniques are deemed unsafe or unsuitable, conver-sion to open technique may be utilized at any time. We believe that. The recently developed technique of single port restoration of continuity seems especially promising, as contralateral access that can be cumbersome due to the adhesions from a previous laparotomy is avoided and a ventral hernia defect when present can be avoided. We believe Trephine assess in combination with the transanal approach as primary surgical approach is not always necessary. We recommend this technique to be used as a step-up approach or back-up when pelvic dissection is proving technically challenging or unsafe during initial trephine or multiport access. Authors recommendations are summarized in the algorithm in \nFigure 13\n.
\nAlgorithm to be used during the decision-making which technique is best suited for the restoration of bowel continuity after Hartmann’s procedure.
The reversal of Hartmann’s procedure carries a high operative morbidity and mortality rate. Therefore this is only performed in a selected group of patients. A considerable group of patients, with advanced age, or expected high operative risk, are left with a permanent end colostomy. This chapter gives an overview of the development less invasive techniques, that may reduce morbidity and therefore be offered to a larger group of patients.
\nConventional laparoscopic reversal of Hartmann’s procedure was the first technique with the primary goal of reducing morbidity and mortally. This technique reduced surgical access trauma resulting in a shorter post operative hospital stay and avoiding the negative consequences of relaparotomy. In the quest for even less invasive ways of restoring the bowel continuity the Trephine access technique was developed. This technique received criticism on the fact that the adhesiolysis was performed mainly in a blind fashion. This is probably the reason why this technique has not gained wide popularity and acceptance. This technique however gave birth to the development of the single-port access technique. This minimally invasive laparoscopic technique has our preference. We recommend using this technique for the major reduction in access trauma. Avoiding crossing the midline reduces the need for adhesiolysis, with its potential hazards like iatrogenic bowel injury. When proven safe in larger series, reversal of Hartmann’s procedure may be offered to a larger proportion of patients then is presently routine.
\nHaving its origin in the 1960s as well as the silica glass fiber, the polymer optical fiber (POF) stayed long in the shadow of the huge development and success of glass fiber communications. However, the advances in POF technology and the growing need for high-speed short-range communication networks make POF nowadays gain more and more importance. The key advantage of POF is a large core diameter. It makes POF tolerant to the fiber facet damages and relaxes the alignment tolerances, thus also reducing the installation costs. Furthermore, POF is pliable, durable, and inexpensive; offers small weight and short bend radius; allows easy installation, simple termination, and quick troubleshooting; and also provides the immunity to electromagnetic interference. Due to its diverse advantages, in short-range applications POF established itself as a reasonable alternative to the traditional data communication media such as glass fibers, copper cables, and wireless systems (see Table 1).
\nTransmission medium | \nData rate | \nDistance | \nSafety | \nCost | \nHandling | \nInstallation | \nTotal | \n
---|---|---|---|---|---|---|---|
Twisted pair cable | \n+ | \n0 | \n0 | \n++ | \n— | \n0 | \n2+ | \n
Coaxial cable | \n0 | \n0 | \n0 | \n+ | \n0 | \n0 | \n1+ | \n
Glass fiber | \n++ | \n++ | \n++ | \n— | \n— | \n— | \n1+ | \n
Polymer fiber | \n0 | \n— | \n++ | \n+ | \n+ | \n+ | \n4+ | \n
Wireless | \n— | \n— | \n— | \n++ | \n++ | \n++ | \n1+ | \n
Powerline | \n— | \n— | \n— | \n+ | \n+ | \n++ | \n0 | \n
Comparison of different transmission media. Characteristics between very bad (−−) and particularly good (++) [1].
Today, POF is produced with different core materials, core diameters, and index profiles. A comprehensive overview on various POFs is given in [1]. Two major POF types are made of polymethyl methacrylate (PMMA) and perfluorinated (PF) materials. The parameters of the common PMMA and PF POFs are specified in the IEC Standard 60793-2-40, which defines eight different POF classes [2]. The PMMA POF is produced with both step-index (SI) and graded-index (GI) profile, whereas the PF POF offers only GI profile. The GI profile of the core ensures high modal bandwidth exceeding 1.5 GHz × 100 m for the PMMA POF and 300 MHz × 1 km for the PF POF. However, the implementation of the PMMA GI-POF is confined to 500–680 nm wavelength range due to the high optical attenuation at other wavelengths (>400 dB/km). In contrast, the PMMA SI-POF suffers from intermodal dispersion limiting the bandwidth-length product to around 50 MHz × 100 m but also provides several attenuation windows in the visible spectrum (400–700 nm). Due to its advantages over the other POF types such as technological maturity, ease and cost of production, and high numerical aperture (NA), the standard 1 mm PMMA SI-POF (POF class A4a.2 according to IEC 60793-2-40) is the best known and by far the most widely employed type of POF. This is also the fiber this work concentrates on.
\nIn vehicles SI-POF displaces copper in the network structure of a passenger cabin for multimedia data services. The infotainment communication system known as Media Oriented System Transport (MOST) connects different multimedia components in the SI-POF-based ring topology [3], as illustrated in Figure 1. The current (third) version of the MOST system (MOST150) supports the data transfer at 150 Mb/s over link lengths of about 10 m.
\nSI-POF-based ring topology of a MOST system in a car.
Another sector where SI-POF displaces traditional communication media are short-range networks in houses and offices. As an in-house extension of a broadband access network (e.g., VDSL, HFC, FTTB), the typical application of POF technology is the delivery of triple-play services (combination of broadcasting, telecommunication, and the Internet) to the end user. The Fast Ethernet transceivers (100 Mb/s) and since 2013 also the Gigabit Ethernet transceivers (1 Gb/s) are available on the market enabling the transmission of broadband services over 50 m SI-POF. The Gigabit solutions from KD-POF employing the multilevel signaling and from Teleconnect based on the multicarrier modulation are accompanied by the technical standards ETSI TS 105175-1-2 [4] and ITU-T G.9960, Annex F [5], respectively.
\nThe commercial communication systems with SI-POF use a single channel for data transmission. However, the transmission performances of SI-POF are impaired by strong intermodal dispersion and high optical attenuation. Stimulated by the growing bandwidth demands (e.g., 10–40–100 Gb/s Ethernet speed), various concepts to overcome the low-pass characteristic of SI-POF have been successfully demonstrated over the last few years. The simplest solutions utilized passive equalization implemented as an analog high-pass filter that increased the electrical −3 dB bandwidth of a channel [6]. A major focus was also placed on the digital signal processing techniques, which were mostly implemented offline due to the lack of commercial components. Both the non-return-to-zero (NRZ) and the spectrally efficient multilevel signaling were combined with the digital receiver equalization to increase the data rates over SI-POF [7, 8]. The sophisticated spectrally efficient multicarrier modulation formats were also successfully implemented to combat the highly dispersive SI-POF channel [9, 10].
\nComplying with any of the hitherto developments, utilization of several optical carriers for parallel transmission of data channels over a single fiber represents another alternative to increase the transmission capacity of SI-POF. The technique is well-known as wavelength division multiplexing (WDM). The principle of WDM is shown in Figure 2. Since different wavelengths λ1–λN do not interfere with each other in a linear medium, they can be used to simultaneously carry the data signals over a single fiber. Thereby, the capacity of a fiber, i.e., of an optical communication system, increases almost proportionally with the number of wavelength channels.
\nPrinciple of WDM: MUX, multiplexer; DEMUX, demultiplexer.
Two components are essential for WDM, a wavelength multiplexer and demultiplexer. The multiplexer combines the signals at different wavelengths, coming from different transmitters, onto a single fiber. On the opposite side of the optical link, the demultiplexer performs an inverse function, separating the wavelength channels to be detected by separate receivers.
\nThe existing WDM components developed for single-mode glass fibers in the infrared region, such as Mach-Zehnder interferometers, arrayed waveguide gratings or fiber Bragg gratings, cannot be reused for a highly multimode SI-POF. On the other hand, the operating principles of demultiplexers based on thin-film interference filters and on a diffraction grating can be applied for POF. In spite of some other demultiplexing solutions (e.g., employing dispersion prisms), these two demultiplexing techniques have been recognized as the most promising for SI-POF. However, because of the difference in the operating wavelength range, fiber diameter, NA, etc., compared to the glass fibers, such demultiplexers must be newly designed for SI-POF communication. An overview of the state-of the-art thin-film interference filter-SI-POF demultiplexers will be given. The first aim of this work is to further investigate experimentally these demultiplexing techniques for SI-POF. Accordingly, the aim of this work is to demonstrate experimentally high-speed POF WDM data transmission offering capacity increase compared to the single-channel systems.
\nThe 1 mm PMMA SI-POF is the best known and by far the most widely employed type of POF. It is made of 980 μm diameter PMMA core surrounded by a thin cladding (10 μm) made of fluorinated polymer. The typical spectral attenuation of SI-POF is shown in Figure 3. The fiber supports operation in the visible spectrum from 400 to 700 nm. The lower wavelength bound is determined by the degradation of the PMMA compound with prolonged exposure to the ultraviolet (UV) wavelengths shown in [11] and in [12]. The attenuation value of around 400–450 dB/km, which still allows operation over shorter link lengths (<20 m), sets the upper wavelength bound.
\nTypical spectral attenuation of 1 mm PMMA SI-POF [13] with contributions of intrinsic loss mechanisms and with attenuation minima and maxima.
Two intrinsic loss mechanisms contribute to the raise of attenuation at shorter and particularly UV wavelengths. The electronic transitions due to the absorption of light in the polymer compound cause absorption peaks in the UV region. However, their absorption tails extend through the visible spectrum affecting the POF attenuation [13]. The dependence of the attenuation coefficient of electronic transitions \n
The second loss mechanism is the Rayleigh scattering. It is caused by the structural irregularities in the polymer compound that are much smaller than the wavelength of light (order of one tenth of wavelength or less). The effect of scattering becomes more pronounced as the wavelength decreases since the scattering attenuation coefficient \n
In the infrared region, the attenuation significantly increases due to the intrinsic absorption losses caused by vibrations of the molecular C-H bonds (total of eight per MMA monomer). The higher overtones of the C-H bond vibrations also extend in the visible spectrum. The seventh overtone at 549 nm and particularly the sixth and the fifth overtone at 627 and 736 nm, respectively, cause pronounced absorption peaks and wide absorption bands, predominantly determining the level of attenuation in the red spectral range shown by Emslie [16] and by Groh [17].
\nThe contributions of the intrinsic loss mechanisms to the overall attenuation of SI-POF are also shown in Figure 3. The wavelength regions where the fiber exhibits low attenuation are called attenuation windows. The SI-POF has four attenuation windows. Those are blue, green, yellow, and red windows, with the absolute attenuation minimum of approx. 62 dB/km at around 568 nm (yellow window). The parameters of the attenuation windows are listed in Table 2.
\nAttenuation window | \nBlue | \nGreen | \nYellow | \nRed | \n
---|---|---|---|---|
Attenuation minimum [dB/km] | \n85 | \n70 | \n62 | \n125 | \n
Wavelength of the attenuation minimum [nm] | \n476 | \n522 | \n568 | \n650 | \n
Approximate 3 dB width of the window [nm] | \n19 | \n24 | \n8 | \n4 | \n
Attenuation windows of SI-POF (based on the attenuation curve from Figure 2).
The mean refractive index of SI-POF core material in the visible spectrum is \n
has the value of 0.482 (usually rounded to 0.5). The corresponding maximum acceptance angle of the fiber is 30°. The large core radius \n
of 2698 at 550 nm, which is far above the limit \n
corresponding to 3.64 million modes at 550 nm. Due to the significant path difference between lower- and higher-order modes, propagating respectively at smaller and larger angles relative to the optical axis, the strong intermodal dispersion is inherent to SI-POF. In the time domain, it is manifested as pulse broadening, thus introducing the inter-symbol interference (ISI). In the frequency domain, the intermodal dispersion results in a low-pass frequency response, constraining the bandwidth-length product of SI-POF to around 50 MHz × 100 m shown by Ziemann et al. [18].
\nThe technology based on thin-film interference filters is mature and one of the most commonly applied technologies for realization of WDM demultiplexers in single-mode glass fiber communication. The demultiplexers for coarse WDM applications cascade the interference filters to provide up to 16 flattop channels between 1271 and 1611 nm, with 20 nm minimum channel spacing [19]. The typical parameters of commercial 4-, 8-, and 16-channel demultiplexers with IL <1.6, 2.7, and 3.7 dB, respectively, can be found in [20]. The thin-film filter-based demultiplexers for dense WDM applications are commercially available with up to 40 channels in 1550 nm region and <8 dB IL. Instead of simply cascading the filters, those devices usually employ a modular configuration described in by Dutta et al. [21]. The same reference provides a typical transfer function of the 40-channel demultiplexer with 3–6 dB IL and 100 GHz (0.8 nm) channel spacing.
\nIn the visible spectrum, and thus within the application range of SI-POF, a vast variety of thin-film interference filters is available from various manufacturers. Even though not particularly intended for POF applications, the visible interference filters represent an attractive solution for POF demultiplexers, where wavelength selectivity, low IL, and high isolation are required.
\nA dichroic mirror is a special type of interference filter intended for the spatial separation or combination of light at different wavelengths. It is designed to operate at 45° AOI, such that a certain spectral range is transmitted, whereas the rejected wavelength range is reflected at 90° angle with respect to the incident optical axis. A commercial visible spectrum dichroic mirror has a transition slope between the transmission and reflection band of typically 30–40 nm (see Figures 3 and 4). This is significantly less steep compared to the standard interference filters designed for the normal incidence. Unlike an interference filter, e.g., a long-pass mirror must be not only highly transmissive above the cutoff wavelength but also highly reflective below it. Therefore, producing steeper slopes would require increased complexity of the coating and, accordingly, a significant rise in production costs.
\nPrinciple of separation of two collimated wavelength channels employing thin-film interference filters: (1) dichroic mirror (45° AOI); (2) interference filter (0° AOI).
The interference filters show significant angular dependence of their transmission characteristic measured by Lee et al. [22]. To be applicable for SI-POF, the highly divergent beam from the fiber must be transformed into a bundle of parallel rays prior to the incidence. To increase the channel isolation, an additional band-pass filtering in each of the output channels should be implemented prior to the focusing of light. As an example, a selection of the dichroic mirror and interference filters for demultiplexing two wavelength channels centered around λ1 = 450 nm and λ2 = 525 nm is shown in Figure 4.
\nTwo data transmission techniques were used to overcome the bandwidth limitation of a POF WDM channel, which is primarily caused by the intermodal dispersion of SI-POF. Those were:
Non-return-to-zero (NRZ) modulation in combination with electronic dispersion compensation, in particular feed-forward equalization (FFE)
Discrete multitone (DMT) modulation
In the single-channel POF systems with intensity modulation and direct detection (IM/DD), those are well-known techniques for increasing the channel capacity. The next two subsections briefly introduce the two techniques: non-return-to-zero modulation and feed-forward equalization.
\nAccording to the Nyquist theorem for two-level signaling, the maximum bit rate (in bits per second) for a noiseless channel of the bandwidth \n
The equalization techniques are used to open the eye diagram at the receiver for clock and data recovery (CDR). In its principle, the equalizer compensates for ISI, which is deterministic (unlike the random noise) and determined by the low-pass frequency response of a POF channel. In the work a simple linear FFE equalization technique was employed to correct the distorted signal waveforms at the receiver.
\nAn FFE equalizer is realized as a discrete-time finite impulse response filter with adjustable coefficients. The output of the equalizer is obtained as the weighted sum of the delayed samples of the input signal as
\nwhere \n
Basic structure of an FFE equalizer.
Through its coefficients the equalizer may synthesize a transfer function corresponding to the inverted channel frequency response, thus eliminating the ISI. In a noisy POF channel, and due to inverting the channel frequency response, this would lead to great noise amplification at higher frequencies where the channel frequency response is small in magnitude. Typically, to minimize the probability of the decision error, the weighting factors are calculated to minimize the noise power at the cost of a certain amount of residual ISI after equalization. The descriptions of different algorithms for optimizing the equalizer coefficients can be found in Loquai et al. [23].
\nThe BER performance of the system was estimated based on the Q-factor of the equalized eye diagram (Figure 6)
\nCalculation of the Qy-factor from the eye diagram: \n\nP\n\n1\n\n\n and \n\nP\n\n0\n\n\n, probability distributions of received logic 1 and 0 levels, respectively.
where \n
Principle of DMT transmission over an optical IM/DD channel: \n\n\nN\nCP\n\n,\n\n length of CP.
where \n
To provide high spectral efficiency of the signals transmitted within POF WDM channels, a DMT modulation technique was used. The DMT is a multicarrier modulation format and represents a baseband version of a better-known orthogonal frequency division multiplexing (OFDM). Unlike the OFDM, which is used in wireless communication systems such as wireless local area networks (WLAN), the DMT is widely employed as enabling technology for digital subscriber lines (DSL), e.g., asymmetric DSL (ADSL) and very high DSL (VDSL). The DMT-based transmission was also shown to be very beneficial for SI-POF communication by Joncic et al. [24], Diaz et al. [25], and Vinogradov et al. [10].
\nThe DMT technique slices the frequency-selective channel into a large number of subchannels that can be considered to have a flat frequency response. Each subchannel is then used for transmission of a passband signal with quadrature amplitude modulation (QAM). The simultaneous transmission of the low-speed parallel streams reduces the influence of the ISI. Another important property of DMT is that it adapts the signal parameters (QAM size and power in each subchannel) to the characteristic of the communication channel.
\nThe principle of the DMT transmission over an optical IM/DD channel is shown in Figure 7. A high-speed serial data stream is first divided into \n
At the receiver, the DMT waveform is direct-detected, analog-to-digital and serial-to-parallel converted, and demodulated using \n
This chapter focuses on the experimental realization of a thin-film interference filter-based SI-POF demultiplexer using a modular and precisely adjustable setup. In a step-by-step approach, the intermediate solutions with two and three channels were first established. In addition, two different configurations of the target demultiplexer setup with four channels were realized. The principle of operation and the approach for experimental realization are explained for the simplest case of a two-channel demultiplexer. The same basic principles also apply to the demultiplexers with higher channel count.
\nBy extending the channel count to four, it was possible to investigate two different demultiplexer configurations. Those were:
Serial configuration
Two-stage configuration
The principle of operation of a four-channel demultiplexer with serial configuration is shown in Figure 8. In this configuration the dichroic mirrors were cascaded such that each mirror (except the last one) demultiplexed a single-wavelength channel while passing all other wavelengths.
\nPrinciple of operation of a four-channel SI-POF demultiplexer with serial configuration (see enumeration in Figure 3).
For practical realization 425, 505, and 567 nm cutoff long-pass dichroic mirrors were cascaded so that the interference filters centered at 405, 450, 525, and 650 nm could be implemented in the output ports 1–4, respectively. The corresponding transfer function and the basic parameters of the demultiplexer are shown in Figure 9 and Table 3, respectively. The factors contributing to high IL in the output ports 3 and 4 are discussed in the next subchapter.
\nTransfer function of the four-channel demultiplexer with serial configuration and the channels centered at 404.9, 450.1, 529.1, and 646.4 nm.
Output port | \n1 | \n2 | \n3 | \n4 | \n
---|---|---|---|---|
Center wavelength [nm] | \n404.9 | \n450.1 | \n529.1 | \n646.4 | \n
3 dB passband bandwidth [nm] | \n9.4 | \n9.2 | \n39.6 | \n47.8 | \n
Minimum IL [dB] | \n4.24 | \n4.86 | \n9.21 | \n8.63 | \n
IL uniformity [dB] | \n4.97 | \n|||
(Non)adjacent channel isolation [dB] | \n>30 | \n
Basic parameters of the four-channel demultiplexer with serial configuration.
The principle of operation of a four-channel demultiplexer with two-stage configuration is shown in Figure 10. The first stage of the demultiplexer, represented by a dichroic mirror that follows directly after the collimating lens, splits the incident spectrum into two spectral bands. The separation of the individual wavelength channels was then performed within the second stage of the demultiplexer. The corresponding laboratory setup is shown in Figure 11.
\nPrinciple of operation of a four-channel SI-POF demultiplexer with two-stage configuration (see enumeration in Figure 8).
Laboratory setup of the four-channel demultiplexer with two-stage configuration.
The practical realization was carried out with 505 nm cutoff long-pass dichroic mirror in the first stage of the demultiplexer. It reflected the lower spectral band so that 425 nm cutoff dichroic mirror was used in the second stage to demultiplex the signals for the output ports 1 and 2 in which 405 and 450 nm filters were employed, respectively. The upper spectral band transmitted by 505 nm mirror was demultiplexed in the second stage by 567 nm dichroic mirror. The filters centered at 525 and 650 nm were used in the output ports 3 and 4, respectively.
\nThe corresponding transfer function is shown in Figure 12. The basic parameters of the demultiplexer are given in Table 4. The measurement results for the four-channel demultiplexer with two-stage configuration were presented at the International Conference on Plastic Optical Fibers (ICPOF) 2013 [26]. To comply with all other measurements shown in this chapter, which were performed 2 years thereafter, the demultiplexer setup was assembled and characterized again. While preserving the same principal behavior of the spectral response, the minimum IL in the output ports 1 to 4 was 6.15, 5.44, 4.21, and 3.85 dB, respectively. Those were by 0.49, 0.89, 0.74, and 0.66 dB higher values than those reported by Appelt et al. [26].
\nTransfer function of the four-channel demultiplexer with two-stage configuration and the channels centered at 404.9, 450.1, 528.3, and 646.4 nm [26].
Output port | \n1 | \n2 | \n3 | \n4 | \n
---|---|---|---|---|
Center wavelength [nm] | \n404.9 | \n450.1 | \n528.3 | \n646.4 | \n
3 dB passband bandwidth [nm] | \n9.4 | \n9.3 | \n41.6 | \n47.6 | \n
Minimum IL [dB] | \n5.66 | \n4.55 | \n3.47 | \n3.19 | \n
IL uniformity [dB] | \n2.47 | \n|||
(Non)adjacent channel isolation [dB] | \n>30 | \n
Basic parameters of the four-channel demultiplexer with two-stage configuration [26].
The transfer functions shown in Figures 9 and 12 comprised for each demultiplexer channel:
Loss of the connector interface at the demultiplexer input
Attenuation of 1 m ingoing and 1 m outgoing SI-POF
Propagation losses through the setup between the fiber end faces
The loss of the connector interface was minimized by applying the index-matching gel. This loss downscaled the transfer function of the demultiplexer by approx. 0.5 dB. To obtain the performance of the optomechanical setup itself, the value of 0.5 dB should be added to the measured transmittance values. The propagation losses included the Fresnel loss at the end face of the ingoing and the outgoing fiber, the losses introduced by the optical components (including reflections on the anti-reflection coatings), and the coupling losses due to the setup misalignments, optical aberrations, and clear aperture of components. For the perfectly aligned components and for given distances between them (obtained, e.g., from the CAD model), the minimum loss of the demultiplexer could be estimated by means of an optical ray tracing software. However, that work was beyond the scope of this work.
\nThe shape of the spectral response of each demultiplexer channel was predominantly determined by an interference filter that was used. Those filters provided flattop response, steep transition slopes, and high isolation between the channels due to an optical density greater than 4 (transmission of <0.01%) in the rejection bands within 400–700 nm region. The deviations of the channels from the nominal central wavelengths and bandwidths of interference filters comply with the center wavelength and passband bandwidth tolerances of ±2 and ±5 nm for 10 and 50 nm filters, respectively. An exception is the green channel where the spectral response curve was truncated by 505 nm cutoff dichroic mirror with the transmission band starting at 520 nm.
\nThe four-channel demultiplexer introduced an additional channel in the short wavelength region. That allowed simultaneous operation at the violet and blue wavelengths, which are both very attractive for POF communication due to the availability of commercial laser diodes. Two different demultiplexer configurations offered significantly different performance.
\nIn the serial configuration, the longer wavelength channels corresponded to the higher output ports. Because of the longer optical path than the shorter wavelength channels, the longer wavelength channels:
Were more sensitive to alignment inaccuracies
Encountered more optical components (dichroic mirrors)
Suffered from stronger optical aberrations
Experienced increased beam radius due to the beam divergence caused by the finite size of the source fiber [27]
The influence of those effects can be observed in the transfer function from Figure 12, where the green and red channels experienced significantly higher IL than the violet and blue ones. If the effect of alignment inaccuracy, which is a parameter related to the particular setup adjustment, would be disregarded, all other effects that are inherent to the serial configuration would lead to the same principal behavior of the transfer function.
\nThe Appelt et al. [26] demultiplexer outperformed the four-channel solution from [28] in terms of IL and especially crosstalk. An exceptional performance of that demultiplexer with IL between 3.19 and 5.66 dB (overall minimum IL of 16.87 dB) may be explained by a very precise alignment of the components. However, all other measurements (performed 2 years thereafter) with two-, three-, and four-channel setups, which had to be each time newly aligned, showed somewhat higher IL but also very consistent behavior to one another. Therefore, it cannot be excluded that some other factors such as accumulated dust on the optical surfaces or coating damages due to improper handling could have introduced additional attenuation compared to [26] measurement, which was performed with brand new components. In spite of that, all subsequent measurement results, including the IL of 3.85–6.15 dB for the reassembled two-stage demultiplexer, can be considered as excellent achievements.
\nThe significance of these and of the other previously realized interference filter-based SI-POF demultiplexers is that they enable realization of POF WDM systems and investigation on their data-carrying capacity. For these reasons it is important to further optimize the realized demultiplexer setup and extend the channel count.
\nThis subchapter shows the initial experimental setup and gives the measurement results prior and after the first optimization step. Even though performed measurements cannot be considered as real WDM, the setup with multiplexer and demultiplexer along the optical path was assembled, and its functionality was demonstrated.
\nThe data transmission setup is shown in Figure 13. It comprised an Agilent N4903A bit error rate tester (BERT), four butt-coupled edge-emitting laser diodes, multiplexing POF coupler, 10 m SI-POF link, interference-based POF demultiplexer, optical receivers, and Agilent 86100B sampling oscilloscope.
\nExperimental setup for the measurements employing NRZ modulation: LD, laser diode; MUX, multiplexer; DEMUX, demultiplexer; PD, photodiode; TIA, transimpedance amplifier.
To provide precise temperature control, prevent possible damage from overheating, and extend the lifetime, the laser diodes were mounted in Thorlabs TCLDM temperature-controlled laser diode mounts. The temperature of an integrated temperature control (TEC) element of the mount was adjusted to +15°C. Only for OSRAM samples the cooling at +10°C was used to provide better stability of the optical output power. Both the temperature of the TEC element and the bias current were controlled over a Thorlabs ITC8022 module. Four of those modules were installed in a Thorlabs PRO8000 modular chassis for the simultaneous control of four operating diodes (see Figure 15). To maximize the coupling efficiency from the laser diode into the fiber, a butt-coupling unit based on an \n
Eye diagrams for 10 m SI-POF link at an aggregate bit rate of 2.5 Gb/s (note: The full time scale was automatically set by the oscilloscope and is smaller than two unit intervals of the signal).
Operating wavelength [nm] | \n405 | \n450 | \n515 | \n639 | \n
Laser diode-to-coupler port launching loss [dB] | \n1.5 | \n1.3 | \n1.3 | \n1.5 | \n
IL of 4 × 1 fused POF coupler [dB] | \n7.9 | \n8.9 | \n8.1 | \n8.6 | \n
Connector loss (with index-matching gel) [dB] | \n0.5 | \n|||
Total loss [dB] | \n9.9 | \n10.7 | \n9.9 | \n10.6 | \n
Optical power loss at the transmitter side when using 4 × 1 fused POF coupler.
The laser diodes providing the signals at four different wavelengths operated at 405 (DL-5146-101S), 450, 515, and 660 nm. Each diode was inserted into a laser socket of the TCLDM mount, which was also equipped with an internal 500 MHz bandwidth bias tee and had separate inputs for the bias and modulating current. The respective data rates achieved in the individual WDM channels were 0.5, 0.5, 0.7, and 0.8 Gb/s. The corresponding eye diagrams are represented in Figure 14. The effect of pulse shaping due to the low-pass characteristic of the fiber can clearly be recognized, e.g., in 405 nm channel.
\nTO-56 diode mounted in a retainer ring; (c) TCLDM9 mount with a butt-coupling unit.
The irregular signal trajectories, e.g., in the eye diagrams of 515 and 660 nm channels, indicate the presence of nonlinearities in the electrical domain (presumably introduced by the bias tee circuit). No BER measurement data were saved. However, due to the eye diagrams still opened wide enough, it can be reasonably assumed that the corresponding BERs were below the FEC threshold of 10–3, allowing for the error correction.
\nHigh optical isolation of the demultiplexer provided very low optical crosstalk between the WDM channels. The crosstalk of ≤35 dB, coming from 450 nm channel, was detected in 515 nm channel. In all other channels, the crosstalk lower than −45 dB was detected with a Melles Griot 13 PDH 005 integrating sphere. Considering the amplitude levels of the recorded eye diagrams and low interchannel crosstalk, no reduction in the SNR of the received signals could be assumed if the laser diodes were modulated simultaneously. Therefore, it can be stated that an aggregate bit rate of 2.5 Gb/s could be transmitted over 10 m SI-POF with four simultaneously active channels and no interchannel errors. The corresponding information rate after deduction of 7% FEC overhead would be 2.33 Gb/s.
\nIn the next experiment, 405 (DL-5146-101S), 450, 515, and 639 nm laser diodes were used as WDM optical sources. To directly modulate the diodes with a higher modulation bandwidth, each diode was soldered to a 50 ohm SMA formable coax cable (Figure 14), which was connected to the output of an external bias tee with 6 GHz bandwidth and 0.1 MHz low cutoff frequency.
\nDue to the low impedance of the laser diodes (typically 2–5 ohms), a severe impedance mismatch was present. However, by using higher power of the modulating signals, the mismatch could be compensated. For mounting the diodes into the mounts, copper retainer rings for both TO-56 and TO-38 packages were fabricated (Figure 15). For better thermal conductivity between the TEC element of the mount, the retainer ring, and the laser diode housing, a heat-conductive paste was applied on the contact surfaces.
\nThe bit rates in the individual channels were 1.25 Gb/s (405 nm channel), 1.05 Gb/s (450 nm channel), 1.25 Gb/s (515 nm channel), and 1.45 Gb/s (639 nm channel). The transmission parameters for the individual channels are listed in Table 6. In contrast to the previous measurement, no signal nonlinearities were present, and the maximum achievable data rates were limited by the ISI.
\nOperating wavelength [nm] | \n405 | \n450 | \n515 | \n639 | \n
Bit rate [Gb/s] | \n1.25 | \n1.05 | \n1.25 | \n1.45 | \n
BER | \n6⋅10−5 | \n7⋅10−5 | \n1.1⋅10−6 | \n9⋅10−7 | \n
Transmission parameters for 10 m SI-POF link at an aggregate bit rate of 5 Gb/s.
Taking into account the amplitude levels of the recorded eye diagrams and low interchannel crosstalk, like in the previous experiment, no power penalty due to crosstalk could be assumed if the laser diodes were modulated simultaneously. Therefore, it can be stated that 5 Gb/s transmission could be realized over 10 m SI-POF link at the BER <10–4 with four simultaneously active channels and no interchannel errors. Using a standard Reed-Solomon (255,247) FEC with 3.2% redundancy, 4.84 Gb/s transmission could be achieved at the BER<10–9 [28].
\nThis subchapter shows the improved experimental setup and gives the measurement results of the simultaneous four-channel NRZ transmission over 50 m SI-POF. To mitigate the effects of ISI, the FFE equalization was implemented at the receiver side. The experimental setup is shown in Figure 16. It comprised a four-channel Agilent M8190A arbitrary waveform generator (AWG), four butt-coupled edge-emitting laser diodes, four-legged multiplexing POF bundle, SI-POF link of two different lengths, interference-based POF demultiplexer, Graviton SPD-2 receiver, and four-channel Agilent DSA91604A real-time oscilloscope with built-in software for digital signal processing. A photo of the general setup for investigating four-channel high-speed POF WDM transmission is shown in Figure 17.
\nExperimental setup for the measurements employing NRZ modulation and offline-processed FFE: ATT, attenuator; AMP, amplifier; DC, direct current.
Experimental setup for investigating four-channel high-speed POF WDM transmission: (1) Agilent M8190A AWG; (2) attenuator and MERA-556+ wideband amplifier; (3) bias tee; (4) Thorlabs TCLDM temperature-controlled laser diode mount, (5) Thorlabs ITC8022 module; (6) Thorlabs PRO8000 modular chassis; (7) four-legged multiplexing POF bundle; (8) SI-POF link; (9) four-channel interference filter-based demultiplexer; (10) graviton SPD-2 receiver; (11) Agilent DSA91604A real-time oscilloscope; (12) Melles Griot universal optical power meter with 13 PDH 005 integrating sphere; (13) Thorlabs PM100D power meter with S140C integrating sphere.
To multiplex the signals from four laser diodes onto the SI-POF link, a four-legged POF bundle was used. A multiplexing interface is formed by positioning the fiber bundle against 1 mm SI-POF.
\nFor realization of the bundle, an Asahi KASEI DB-400 PMMA SI-POF with 400 μm cladding diameter and NA = 0.5 was used. Four 60-cm-long fibers were terminated at the input side with 400 μm FC connectors. The opposite ends of the fibers were joined together and glued inside 970 μm FC connector to form the fiber bundle (Figure 18). As illustrated in Figure 18, an FC connector-mating sleeve was used to bring together and align the bundle and the input of the SI-POF link, thereby forming the multiplexing interface. An index-matching gel was applied between the connectors to reduce the losses.
\nFour-legged multiplexing POF bundle: (a) cross sections of four 400 μm cladding diameter fibers arranged within a circle with 970 μm diameter (left) and of 980/1000 μm SI-POF (right); (b) principle of operation of the POF bundle as a multiplexer; (c) four 400 μm fibers glued within 970 μm FC connector; (d) formation of a multiplexing interface with the POF bundle aligned against the SI-POF link using an FC connector-mating sleeve.
The described multiplexing solution was first shown in [29]. Shortly before, the patent application for an optical POF multiplexer based on a multi-legged POF bundle, which referred to arbitrary channel counts and fiber diameters, was submitted to the German Patent and Trade Mark Office (DPMA) under number DE 102013 020236.1. A similar approach was later adopted in [30, 31] to realize the low loss seven-legged and three-legged multiplexers, respectively.
\nThe AWG simultaneously generated four independent NRZ data streams (Figures 16 and 19) based on 27-1 PRBS with the maximum sampling rate. The received electrical signals were acquired by the real-time oscilloscope with 8-bit vertical resolution and oversampling. The digital receiver equalization was carried out in the offline mode. For that purpose the oscilloscope’s built-in Serial Data Equalization software was used [32].
\nEye diagrams for 50 m SI-POF link at an aggregate bit rate of 7.8 Gb/s.
To prevent the equalizer from amplifying the noise components at higher frequencies where the energy content of useful signal was low, the bandwidth of the oscilloscope was set to the value in GHz corresponding to one half of the data rate in Gb/s. A phase-locked loop was used to extract the clock from the equalized data.
\nThe eye diagram of an equalized waveform was displayed on the oscilloscope’s screen for further analysis. The oscilloscope’s built-in software EZJIT Complete was used to estimate the corresponding Q-factor [33]. Thereby, only a small time window (2% of the unit interval) in the middle of the equalized eye diagram was taken into consideration. The BER value was then calculated using Eq. (5). Table 7 shows the optical power losses of the four used WDM channels.
\nOperating wavelength [nm] | \n405 | \n450 | \n520 | \n639 | \n
Laser diode-to-400 μm fiber launching loss + attenuation of a bundle leg [dB] | \n4.06 | \n2.63 | \n2.82 | \n4.76 | \n
Connector loss (with index-matching gel) [dB] | \n0.87 | \n0.98 | \n0.52 | \n0.77 | \n
Total loss [dB] | \n4.93 | \n3.61 | \n3.34 | \n5.53 | \n
Optical power loss at the transmitter side when using four-legged POF bundle.
The WDM channels based on 405 nm (DL-7146-101S), 450, 515, and 639 nm laser diodes were employed in this transmission experiment. To maximize the modulating signal amplitude and thereby improve the SNR of the received signal, the optical output power of each laser diode was adjusted to its maximal possible value. For 405, 450, and 515 nm devices, the operating point was set to comply with the upper limit of the receiver’s dynamic range. The 639 nm device was driven with the maximum recommended forward current. The respective used bias currents were 70, 40, 61, and 43 mA. The optical powers coupled into the SI-POF link and the received optical powers measured after the demultiplexer are given in Table 7. All diodes were driven in their linear lasing region. The 1 Vpp output amplitude of the AWG was sufficient to modulate 450, 515, and 639 nm laser diodes with the modulation index of approx. 0.9. The signal in 405 nm channel was additionally amplified to achieve the same modulation index. For the amplification, a MERA-556+ wideband amplifier (20.5 dB gain at 0.1 GHz) was used in combination with 10 dB attenuator to avoid amplifier nonlinearities (18 dBm output power at 1 dB compression point at 0.1 GHz).
\nThe maximum transmission rates achieved in the individual channels were 1.7 Gb/s (405 nm channel), 1.9 Gb/s (450 nm channel), 2.2 Gb/s (515 nm channel), and 2 Gb/s (639 nm channel). Thereby, six FFE taps with the tap delay equal to one half of the corresponding bit period were used in each of the channels. The transmission parameters for the individual channels are listed in Table 8. The resulting eye diagrams are represented in Figure 19. A total of 7.8 Gb/s were transmitted over 50 m SI-POF at the BER < 10–5. After deduction of 3.2% redundant bits required for Reed-Solomon (255,247) FEC, a net bit rate of 7.56 Gb/s was obtained. Compared to the record capacity of a single-channel system over the same fiber length used by Vinogradov et al. [10], an improvement of 1.67 Gb/s was achieved.
\nOperating wavelength [nm] | \n405 | \n450 | \n515 | \n639 | \n
Bit rate [Gb/s] | \n1.7 | \n1.9 | \n2.2 | \n2 | \n
Q-factor | \n5.06 | \n4.67 | \n4.96 | \n4.76 | \n
BER | \n2.10⋅10−7 | \n1.51⋅10−6 | \n3.52⋅10−7 | \n9.68⋅10−7 | \n
Transmission parameters for 50 m SI-POF link at an aggregate bit rate of 7.8 Gb/s.
We experimentally demonstrated the feasibility and potential of a high-speed POF WDM concept; a four-channel data transmission setup was realized. A four-legged multiplexing POF bundle was developed to combine the signals from four visible laser diodes onto SI-POF link. For the separation of wavelength channels, the interference filter-based demultiplexer with two-stage configuration was used. It was shown that POF WDM with lower channel rates and simple transmission technique (NRZ + FFE) could provide aggregate bit rates comparable to those achieved with the single-wavelength systems that used advanced modulation formats (DMT or PAM + DFE) and required significant signal processing. In addition, the 50 m SI-POF link at an aggregate bit rate of 7.8 Gb/s was demonstrated over 50 m SI-POF, respectively, at the BER = 10–3.
\nWe gratefully acknowledge the funding by the German Ministry of Education and Research (BMBF) under grant number 16V0009 (HS Harz)/16V0010 (TU BS). All injection molded parts are done with the support of the Institute of Micro and Sensor Systems at the Otto von Guericke University Magdeburg and Prof. Bertram Schmidt.
\nOur books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.
',metaTitle:"Order Print Copies",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your printed copy, you can do so by contacting our Print Sales Department at orders@intechopen.com.\n\nOur hardcover books are carefully designed and printed on wood-free premium quality paper.\n\nThe paper size is 155 mm x 225 mm (6.1 X 8.8 inches).",metaKeywords:null,canonicalURL:"/page/order-print-copies",contentRaw:'[{"type":"htmlEditorComponent","content":"InTechOpen contributors can order print books at a special price ranging from:
\\n\\nFor a quote please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\\n\\nAll of the books and chapters can be browsed online. To obtain InTechOpen's full book catalogue in PDF, please contact us.
\\n\\n\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nPrint copies of our publications are most often purchased as individual purchases by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions. Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nASEAN - Books International
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nMallory International Ltd
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'InTechOpen contributors can order print books at a special price ranging from:
\n\nFor a quote please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\n\nAll of the books and chapters can be browsed online. To obtain InTechOpen's full book catalogue in PDF, please contact us.
\n\n\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nPrint copies of our publications are most often purchased as individual purchases by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions. Our books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nASEAN - Books International
\n\nChina Publishers Services Ltd - CPS
\n\nMallory International Ltd
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add a Book Value-Added Tax of 5%. Institutions and companies registered as VAT taxable entities in their own EU member state, will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5319},{group:"region",caption:"Middle and South America",value:2,count:4830},{group:"region",caption:"Africa",value:3,count:1469},{group:"region",caption:"Asia",value:4,count:9372},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14789}],offset:12,limit:12,total:108347},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"11"},books:[{type:"book",id:"8084",title:"Mechanical Properties of Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"93a82c83d0f81eace906cc1f99809495",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8084.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7416",title:"Compound Engine",subtitle:null,isOpenForSubmission:!0,hash:"e7901967cd17843e83c855abd4014838",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7416.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8086",title:"Wireless Sensor Networks",subtitle:null,isOpenForSubmission:!0,hash:"6c677401984d1bd55bd1850fbdf0f19f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8086.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8157",title:"Engineering Geology",subtitle:null,isOpenForSubmission:!0,hash:"9bbaf1948e7cbcb162bd33ba1d5e8382",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8157.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8909",title:"Slope Engineering",subtitle:null,isOpenForSubmission:!0,hash:"88a2deba0e1b8b43bfc15f9c68e55912",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8909.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9258",title:"Production and Use of Wood",subtitle:null,isOpenForSubmission:!0,hash:"af729587df4f781686bc9ca438e9655a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9258.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9300",title:"Grinding",subtitle:null,isOpenForSubmission:!0,hash:"13159c356c2dea4bc63ac13ac03a5325",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9300.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9270",title:"Ergonomics",subtitle:null,isOpenForSubmission:!0,hash:"805cc15a5860b565856369874f5aca71",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9270.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9887",title:"PID Controllers",subtitle:null,isOpenForSubmission:!0,hash:"6df8bc051d09782d22951af604521aec",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/9887.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10023",title:"Traffic Safety",subtitle:null,isOpenForSubmission:!0,hash:"1bfb11b36d9d17f5607670cee3e02084",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10023.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10007",title:"Propulsion",subtitle:null,isOpenForSubmission:!0,hash:"9c985fd167cdfa0500c1b2eef47dc9d7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10007.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10021",title:"Multivariate Analysis",subtitle:null,isOpenForSubmission:!0,hash:"65d1d5d170320a729d990160892e43f1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10021.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:33},{group:"topic",caption:"Business, Management and Economics",value:7,count:10},{group:"topic",caption:"Chemistry",value:8,count:30},{group:"topic",caption:"Computer and Information Science",value:9,count:25},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:68},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:37},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:136},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:14},{group:"topic",caption:"Technology",value:24,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4},{group:"topic",caption:"Insectology",value:39,count:1},{group:"topic",caption:"Genesiology",value:300,count:1},{group:"topic",caption:"Machine Learning and Data Mining",value:521,count:1},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:88},popularBooks:{featuredBooks:[{type:"book",id:"7640",title:"Perspective of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:"8b85a9957fad5206369eadf0c1ffa27d",slug:"perspective-of-carbon-nanotubes",bookSignature:"Hosam El-Din Saleh and Said Moawad Mohamed El-Sheikh",coverURL:"https://cdn.intechopen.com/books/images_new/7640.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam El-Din",middleName:"M.",surname:"Saleh",slug:"hosam-el-din-saleh",fullName:"Hosam El-Din Saleh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7612",title:"Electrospinning and Electrospraying",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"77e9708250507395a4bea2c17d012982",slug:"electrospinning-and-electrospraying-techniques-and-applications",bookSignature:"Sajjad Haider and Adnan Haider",coverURL:"https://cdn.intechopen.com/books/images_new/7612.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7646",title:"Scientometrics Recent Advances",subtitle:null,isOpenForSubmission:!1,hash:"86bbdd04d7e80be14283d44969d1cc32",slug:"scientometrics-recent-advances",bookSignature:"Suad Kunosic and Enver Zerem",coverURL:"https://cdn.intechopen.com/books/images_new/7646.jpg",editors:[{id:"88678",title:"Prof.",name:"Suad",middleName:null,surname:"Kunosic",slug:"suad-kunosic",fullName:"Suad Kunosic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7404",title:"Hysteresis of Composites",subtitle:null,isOpenForSubmission:!1,hash:"8540fa2378dbb92e50411cfebfb853a6",slug:"hysteresis-of-composites",bookSignature:"Li Longbiao",coverURL:"https://cdn.intechopen.com/books/images_new/7404.jpg",editors:[{id:"260011",title:"Dr.",name:"Li",middleName:null,surname:"Longbiao",slug:"li-longbiao",fullName:"Li Longbiao"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4407},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7640",title:"Perspective of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:"8b85a9957fad5206369eadf0c1ffa27d",slug:"perspective-of-carbon-nanotubes",bookSignature:"Hosam El-Din Saleh and Said Moawad Mohamed El-Sheikh",coverURL:"https://cdn.intechopen.com/books/images_new/7640.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam El-Din",middleName:"M.",surname:"Saleh",slug:"hosam-el-din-saleh",fullName:"Hosam El-Din Saleh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7612",title:"Electrospinning and Electrospraying",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"77e9708250507395a4bea2c17d012982",slug:"electrospinning-and-electrospraying-techniques-and-applications",bookSignature:"Sajjad Haider and Adnan Haider",coverURL:"https://cdn.intechopen.com/books/images_new/7612.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7646",title:"Scientometrics Recent Advances",subtitle:null,isOpenForSubmission:!1,hash:"86bbdd04d7e80be14283d44969d1cc32",slug:"scientometrics-recent-advances",bookSignature:"Suad Kunosic and Enver Zerem",coverURL:"https://cdn.intechopen.com/books/images_new/7646.jpg",editors:[{id:"88678",title:"Prof.",name:"Suad",middleName:null,surname:"Kunosic",slug:"suad-kunosic",fullName:"Suad Kunosic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editedByType:"Edited by",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8747",title:"Asphalt and Asphalt Mixtures",subtitle:null,isOpenForSubmission:!1,hash:"6083f7c9881029f1e033a1e512af7e20",slug:"asphalt-and-asphalt-mixtures",bookSignature:"Haitao Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8747.jpg",editedByType:"Edited by",editors:[{id:"260604",title:"Prof.",name:"Haitao",middleName:null,surname:"Zhang",slug:"haitao-zhang",fullName:"Haitao Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editedByType:"Edited by",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8292",title:"Oral Health by Using Probiotic Products",subtitle:null,isOpenForSubmission:!1,hash:"327e750e83634800ace02fe62607c21e",slug:"oral-health-by-using-probiotic-products",bookSignature:"Razzagh Mahmoudi",coverURL:"https://cdn.intechopen.com/books/images_new/8292.jpg",editedByType:"Edited by",editors:[{id:"245925",title:"Dr.",name:"Razzagh",middleName:null,surname:"Mahmoudi",slug:"razzagh-mahmoudi",fullName:"Razzagh Mahmoudi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editedByType:"Edited by",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8347",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3d7024a8d7d8afed093c9c79ec31f15a",slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",bookSignature:"Lulu Wang and Liandong Yu",coverURL:"https://cdn.intechopen.com/books/images_new/8347.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Dr.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editedByType:"Edited by",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editedByType:"Edited by",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editedByType:"Edited by",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"243",title:"Android Science",slug:"android-science",parent:{title:"Robotics",slug:"physical-sciences-engineering-and-technology-robotics"},numberOfBooks:9,numberOfAuthorsAndEditors:101,numberOfWosCitations:383,numberOfCrossrefCitations:376,numberOfDimensionsCitations:745,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"android-science",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"899",title:"The Future of Humanoid Robots",subtitle:"Research and Applications",isOpenForSubmission:!1,hash:"130ce80afc8dec281b5e15a475be5d77",slug:"the-future-of-humanoid-robots-research-and-applications",bookSignature:"Riadh Zaier",coverURL:"https://cdn.intechopen.com/books/images_new/899.jpg",editedByType:"Edited by",editors:[{id:"63414",title:"Dr.",name:"Riadh",middleName:null,surname:"Zaier",slug:"riadh-zaier",fullName:"Riadh Zaier"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1881",title:"Mobile Robots",subtitle:"Current Trends",isOpenForSubmission:!1,hash:"6f1ee45d3e50f6d5295a1d8c190b646c",slug:"mobile-robots-current-trends",bookSignature:"Zoran Gacovski",coverURL:"https://cdn.intechopen.com/books/images_new/1881.jpg",editedByType:"Edited by",editors:[{id:"89211",title:"Dr.",name:"Zoran",middleName:null,surname:"Gacovski",slug:"zoran-gacovski",fullName:"Zoran Gacovski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3632",title:"Human-Robot Interaction",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"human-robot-interaction",bookSignature:"Daisuke Chugo",coverURL:"https://cdn.intechopen.com/books/images_new/3632.jpg",editedByType:"Edited by",editors:[{id:"1022",title:"Dr.",name:"Daisuke",middleName:null,surname:"Chugo",slug:"daisuke-chugo",fullName:"Daisuke Chugo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3698",title:"Humanoid Robots",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"humanoid_robots",bookSignature:"Ben Choi",coverURL:"https://cdn.intechopen.com/books/images_new/3698.jpg",editedByType:"Edited by",editors:[{id:"132340",title:"Dr.",name:"Ben",middleName:null,surname:"Choi",slug:"ben-choi",fullName:"Ben Choi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4814",title:"Stereo Vision",subtitle:null,isOpenForSubmission:!1,hash:"8d18cf7b9c13e7bcd89bc9121d71f5fc",slug:"stereo_vision",bookSignature:"Asim Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/4814.jpg",editedByType:"Edited by",editors:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3604",title:"Recent Advances in Multi Robot Systems",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"recent_advances_in_multi_robot_systems",bookSignature:"Aleksandar Lazinica",coverURL:"https://cdn.intechopen.com/books/images_new/3604.jpg",editedByType:"Edited by",editors:[{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3598",title:"Humanitarian Demining",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"humanitarian_demining",bookSignature:"Maki K. Habib",coverURL:"https://cdn.intechopen.com/books/images_new/3598.jpg",editedByType:"Edited by",editors:[{id:"80821",title:"Dr.",name:"Maki K.",middleName:null,surname:"Habib",slug:"maki-k.-habib",fullName:"Maki K. Habib"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3372",title:"Humanoid Robots",subtitle:"Human-like Machines",isOpenForSubmission:!1,hash:"581c6d2ca6e91bebee1a1679c857a0c4",slug:"humanoid_robots_human_like_machines",bookSignature:"Matthias Hackel",coverURL:"https://cdn.intechopen.com/books/images_new/3372.jpg",editedByType:"Edited by",editors:[{id:"144263",title:"Dr.",name:"Matthias",middleName:null,surname:"Hackel",slug:"matthias-hackel",fullName:"Matthias Hackel"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3373",title:"Humanoid Robots",subtitle:"New Developments",isOpenForSubmission:!1,hash:"486fa33207ca761a78fee46492830ee1",slug:"humanoid_robots_new_developments",bookSignature:"Armando Carlos de Pina Filho",coverURL:"https://cdn.intechopen.com/books/images_new/3373.jpg",editedByType:"Edited by",editors:[{id:"24367",title:"Prof.",name:"Armando Carlos",middleName:null,surname:"De Pina Filho",slug:"armando-carlos-de-pina-filho",fullName:"Armando Carlos De Pina Filho"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:9,mostCitedChapters:[{id:"240",doi:"10.5772/4876",title:"Geminoid: Teleoperated Android of an Existing Person",slug:"geminoid__teleoperated_android_of_an_existing_person",totalDownloads:3496,totalCrossrefCites:60,totalDimensionsCites:102,book:{slug:"humanoid_robots_new_developments",title:"Humanoid Robots",fullTitle:"Humanoid Robots: New Developments"},signatures:"Shuichi Nishio, Hiroshi Ishiguro and Norihiro Hagita",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"}]},{id:"172",doi:"10.5772/4808",title:"Limit Cycle Walking",slug:"limit_cycle_walking",totalDownloads:4299,totalCrossrefCites:9,totalDimensionsCites:82,book:{slug:"humanoid_robots_human_like_machines",title:"Humanoid Robots",fullTitle:"Humanoid Robots, Human-like Machines"},signatures:"Daan G.E. Hobbelen and Martijn Wisse",authors:null},{id:"5767",doi:"10.5772/5898",title:"A Performance Review of 3D TOF Vision Systems in Comparison to Stereo Vision Systems",slug:"a_performance_review_of_3d_tof_vision_systems_in_comparison_to_stereo_vision_systems",totalDownloads:5346,totalCrossrefCites:22,totalDimensionsCites:44,book:{slug:"stereo_vision",title:"Stereo Vision",fullTitle:"Stereo Vision"},signatures:"Stephan Hussmann, Thorsten Ringbeck and Bianca Hagebeuker",authors:null}],mostDownloadedChaptersLast30Days:[{id:"163",title:"Artificial Muscles for Humanoid Robots",slug:"artificial_muscles_for_humanoid_robots",totalDownloads:9419,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"humanoid_robots_human_like_machines",title:"Humanoid Robots",fullTitle:"Humanoid Robots, Human-like Machines"},signatures:"Bertrand Tondu",authors:null},{id:"5767",title:"A Performance Review of 3D TOF Vision Systems in Comparison to Stereo Vision Systems",slug:"a_performance_review_of_3d_tof_vision_systems_in_comparison_to_stereo_vision_systems",totalDownloads:5346,totalCrossrefCites:22,totalDimensionsCites:44,book:{slug:"stereo_vision",title:"Stereo Vision",fullTitle:"Stereo Vision"},signatures:"Stephan Hussmann, Thorsten Ringbeck and Bianca Hagebeuker",authors:null},{id:"8632",title:"Robot-Aided Learning and r-Learning Services",slug:"robot-aided-learning-and-r-learning-services",totalDownloads:2193,totalCrossrefCites:22,totalDimensionsCites:31,book:{slug:"human-robot-interaction",title:"Human-Robot Interaction",fullTitle:"Human-Robot Interaction"},signatures:"Jeonghye Han",authors:null},{id:"240",title:"Geminoid: Teleoperated Android of an Existing Person",slug:"geminoid__teleoperated_android_of_an_existing_person",totalDownloads:3496,totalCrossrefCites:60,totalDimensionsCites:102,book:{slug:"humanoid_robots_new_developments",title:"Humanoid Robots",fullTitle:"Humanoid Robots: New Developments"},signatures:"Shuichi Nishio, Hiroshi Ishiguro and Norihiro Hagita",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"}]},{id:"25773",title:"Exoskeleton and Humanoid Robotic Technology in Construction and Built Environment",slug:"exoskeleton-and-humanoid-robotic-technology-in-construction-and-built-environment",totalDownloads:12082,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"the-future-of-humanoid-robots-research-and-applications",title:"The Future of Humanoid Robots",fullTitle:"The Future of Humanoid Robots - Research and Applications"},signatures:"T. Bock, T. Linner and W. Ikeda",authors:[{id:"71147",title:"Prof.",name:"Thomas",middleName:null,surname:"Bock",slug:"thomas-bock",fullName:"Thomas Bock"},{id:"150546",title:"Dr.",name:"Thomas",middleName:null,surname:"Linner",slug:"thomas-linner",fullName:"Thomas Linner"}]},{id:"6239",title:"Stable Walking Pattern Generation for a Biped Robot Using Reinforcement Learning",slug:"stable_walking_pattern_generation_for_a_biped_robot_using_reinforcement_learning",totalDownloads:3548,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"humanoid_robots",title:"Humanoid Robots",fullTitle:"Humanoid Robots"},signatures:"Jungho Lee and Jun Ho Oh",authors:null},{id:"6241",title:"Neurophysiological Models of Gaze Control in Humanoid Robotics",slug:"neurophysiological_models_of_gaze_control_in_humanoid_robotics",totalDownloads:2006,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"humanoid_robots",title:"Humanoid Robots",fullTitle:"Humanoid Robots"},signatures:"Luigi Manfredi, Eliseo Stefano Maini and Cecilia Laschi",authors:null},{id:"22293",title:"Mobile Robotics in Education and Research",slug:"mobile-robotics-in-education-and-research",totalDownloads:4859,totalCrossrefCites:0,totalDimensionsCites:5,book:{slug:"mobile-robots-current-trends",title:"Mobile Robots",fullTitle:"Mobile Robots - Current Trends"},signatures:"Georgios A. Demetriou",authors:[{id:"66153",title:"Dr.",name:"Georgios A.",middleName:null,surname:"Demetriou",slug:"georgios-a.-demetriou",fullName:"Georgios A. Demetriou"}]},{id:"6244",title:"6-DOF Motion Sensor System Using Multiple Linear Accelerometers",slug:"6-dof_motion_sensor_system_using_multiple_linear_accelerometers",totalDownloads:5013,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"humanoid_robots",title:"Humanoid Robots",fullTitle:"Humanoid Robots"},signatures:"Ryoji Onodera and Nobuharu Mimura",authors:null},{id:"173",title:"A Human-Like Approach to Footstep Planning",slug:"a_human-like_approach_to_footstep_planning",totalDownloads:2467,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"humanoid_robots_human_like_machines",title:"Humanoid Robots",fullTitle:"Humanoid Robots, Human-like Machines"},signatures:"Yasar Ayaz, Khalid Munawar, Mohammad Bilal Malik, Atsushi Konno and Masaru Uchiyama",authors:null}],onlineFirstChaptersFilter:{topicSlug:"android-science",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10080",title:"Vortex Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"ea97962e99b3e0ebc9b46b48ba5bea14",slug:null,bookSignature:"Dr. Zambri Harun",coverURL:"https://cdn.intechopen.com/books/images_new/10080.jpg",editedByType:null,editors:[{id:"243152",title:"Dr.",name:"Zambri",middleName:null,surname:"Harun",slug:"zambri-harun",fullName:"Zambri Harun"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8771",title:"Raman Scattering",subtitle:null,isOpenForSubmission:!0,hash:"1354b3097eaa5b27d9d4bd29d3150b27",slug:null,bookSignature:"Dr. Samir Kumar and Dr. Prabhat Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/8771.jpg",editedByType:null,editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10073",title:"Recent Advances in Nanophotonics-Fundamentals and Applications",subtitle:null,isOpenForSubmission:!0,hash:"aceca7dfc807140870a89d42c5537d7c",slug:null,bookSignature:"Dr. Mojtaba Kahrizi and Ms. Parsoua Abedini Sohi",coverURL:"https://cdn.intechopen.com/books/images_new/10073.jpg",editedByType:null,editors:[{id:"113045",title:"Dr.",name:"Mojtaba",middleName:null,surname:"Kahrizi",slug:"mojtaba-kahrizi",fullName:"Mojtaba Kahrizi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9284",title:"Computational Aeroacoustics",subtitle:null,isOpenForSubmission:!0,hash:"7019c5e5985faef7dc384c87dca5c8ef",slug:null,bookSignature:"Prof. Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/9284.jpg",editedByType:null,editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",middleName:null,surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"onlineFirst.detail",path:"/online-first/optoelectronic-key-elements-for-polymeric-fiber-transmission-systems",hash:"",query:{},params:{chapter:"optoelectronic-key-elements-for-polymeric-fiber-transmission-systems"},fullPath:"/online-first/optoelectronic-key-elements-for-polymeric-fiber-transmission-systems",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()