Spinocerebellar functional problems in common SCA types.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"8188",leadTitle:null,fullTitle:"Ion Beam Techniques and Applications",title:"Ion Beam Techniques and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"A wide variety of ion beam techniques are being used in several versatile applications ranging from environmental science, nuclear physics, microdevice fabrication to materials science. In addition, new applications of ion beam techniques across a broad range of disciplines and fields are also being discovered frequently. In this book, the latest research and development on progress in ion beam techniques has been compiled and an overview of ion beam irradiation-induced applications in nanomaterial-focused ion beam applications, ion beam analysis techniques, as well as ion implantation application in cells is provided. Moreover, simulations of ion beam-induced damage to structural materials of nuclear fusion reactors are also presented in this book.",isbn:"978-1-78984-571-6",printIsbn:"978-1-78984-570-9",pdfIsbn:"978-1-83880-970-6",doi:"10.5772/intechopen.78139",price:119,priceEur:129,priceUsd:155,slug:"ion-beam-techniques-and-applications",numberOfPages:114,isOpenForSubmission:!1,isInWos:1,hash:"4f212072e7141ba20788b6fe79d28370",bookSignature:"Ishaq Ahmad and Tingkai Zhao",publishedDate:"June 10th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/8188.jpg",numberOfDownloads:2304,numberOfWosCitations:1,numberOfCrossrefCitations:3,numberOfDimensionsCitations:4,hasAltmetrics:1,numberOfTotalCitations:8,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 31st 2018",dateEndSecondStepPublish:"February 13th 2019",dateEndThirdStepPublish:"April 14th 2019",dateEndFourthStepPublish:"July 3rd 2019",dateEndFifthStepPublish:"September 1st 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"25524",title:"Prof.",name:"Ishaq",middleName:null,surname:"Ahmad",slug:"ishaq-ahmad",fullName:"Ishaq Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/25524/images/system/25524.jpg",biography:"Ishaq Ahmad joined the National Centre for Physics in 1999 and currently holds the positions of Director, Experimental Physics Department, National Centre for Physics, Islamabad, and Co-Director of NPU-NCP Joint International Research Centre on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xian, China. He has co-authored more than 130 publications in SCI journals and supervised several master’s, PhD, and postdoctoral students. He has published a number of books and book chapters. His research interests are focused on ion implantation, radiation-induced modification of materials/nanomaterials, synthesis of nanomaterials/thin films, and ion beam analysis of materials. He is a senior fellow of UNESCO UNISA AFRICA Chair in Nanosciences/Nanotechnology, South Africa. He was a TWAS-UNESCO-iThemba LABS research associate from 2014 to 2016. He obtained his PhD at the Graduate University of the Chinese Academy of Sciences, China.",institutionString:"National Center for Physics",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Quaid-i-Azam University",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"145181",title:"Prof.",name:"Tingkai",middleName:null,surname:"Zhao",slug:"tingkai-zhao",fullName:"Tingkai Zhao",profilePictureURL:"https://mts.intechopen.com/storage/users/145181/images/system/145181.png",biography:"Tingkai Zhao is currently working as a full time professor in the School of Materials Science and Engineering of Northwestern Polytechnical University (NPU) and received his PhD degree from Xi’an Jiaotong University (XJTU), China, in 2005. He has visited Northwestern University (Evanston, USA) and the University of Oxford (Oxford, UK) as a visiting scholar. As the Director of the NPU-NCP Joint International Research Center on Advanced Nanomaterials & Defects Engineering, and the Vice-Director of Shaanxi Engineering Laboratory for Graphene New Carbon Materials & Applications, his research group mainly investigates the synthesis, structure, and performance of advanced carbon materials such as carbon nanotubes, graphene, 2D nanomaterials, carbon foam, and their applications in composites, energy conversion (solar cell, supercapacitor, and Li-ion batteries), smart devices, and biosensors. He has published two books, 10 Chinese invention patents, and more than 130 academic articles in SCI journals, and also obtained more than 25 awards and honors such as first prize in the Shaanxi Science and Technology Awards in 2013, first and second prizes in the College Science and Technology Awards of Shaanxi Province in 2013, etc. He has written four scientific reports in China Science Daily newspapers covering his research achievements. He has also been elected as a director of the Xi’an Nanoscience & Technology Society.",institutionString:"Northwestern Polytechnical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"292",title:"Material Science",slug:"technology-material-science"}],chapters:[{id:"72212",title:"Ion Implantation in Metal Nanowires",doi:"10.5772/intechopen.92328",slug:"ion-implantation-in-metal-nanowires",totalDownloads:216,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Shehla Honey, Asim Jamil, Samson O. Aisida, Ishaq Ahmad, Tingkai Zhao and Maaza Malek",downloadPdfUrl:"/chapter/pdf-download/72212",previewPdfUrl:"/chapter/pdf-preview/72212",authors:[null],corrections:null},{id:"67918",title:"Ion Beam Experiments to Emulate Nuclear Fusion Environment on Structural Materials at CMAM",doi:"10.5772/intechopen.87054",slug:"ion-beam-experiments-to-emulate-nuclear-fusion-environment-on-structural-materials-at-cmam",totalDownloads:418,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Marcelo Roldán, Patricia Galán, Fernando José Sánchez, Isabel García-Cortés, David Jiménez-Rey and Pilar Fernández",downloadPdfUrl:"/chapter/pdf-download/67918",previewPdfUrl:"/chapter/pdf-preview/67918",authors:[null],corrections:null},{id:"66344",title:"Modification of Physical and Chemical Properties of Titanium Dioxide (TiO2) by Ion Implantation for Dye Sensitized Solar Cells",doi:"10.5772/intechopen.83566",slug:"modification-of-physical-and-chemical-properties-of-titanium-dioxide-tio-sub-2-sub-by-ion-implantati",totalDownloads:680,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Hafsa Siddiqui",downloadPdfUrl:"/chapter/pdf-download/66344",previewPdfUrl:"/chapter/pdf-preview/66344",authors:[null],corrections:null},{id:"67719",title:"Reaction between Energy Particle Ion Beam with Carbon Nanotube",doi:"10.5772/intechopen.85529",slug:"reaction-between-energy-particle-ion-beam-with-carbon-nanotube",totalDownloads:385,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Qintao Li, Zhichun Ni and Shehla Honey",downloadPdfUrl:"/chapter/pdf-download/67719",previewPdfUrl:"/chapter/pdf-preview/67719",authors:[null],corrections:null},{id:"70033",title:"Focused Ion Beam Tomography",doi:"10.5772/intechopen.88937",slug:"focused-ion-beam-tomography",totalDownloads:300,totalCrossrefCites:1,totalDimensionsCites:0,signatures:"Dilawar Hassan, Sidra Amin, Amber Rehana Solangi and Saima Q. Memon",downloadPdfUrl:"/chapter/pdf-download/70033",previewPdfUrl:"/chapter/pdf-preview/70033",authors:[null],corrections:null},{id:"65871",title:"Investigation of Toxic Metals in the Tobacco of Pakistani Cigarettes Using Proton-Induced X-Ray Emission",doi:"10.5772/intechopen.84723",slug:"investigation-of-toxic-metals-in-the-tobacco-of-pakistani-cigarettes-using-proton-induced-x-ray-emis",totalDownloads:310,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Iram Mahmood, Sadaqat Khan, Waheed Akram, Raphael M. Obodo, Tariq Mehmood, Ishaq Ahmad and Tingkai Zhao",downloadPdfUrl:"/chapter/pdf-download/65871",previewPdfUrl:"/chapter/pdf-preview/65871",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"6140",title:"Accelerator Physics",subtitle:"Radiation Safety and Applications",isOpenForSubmission:!1,hash:"f68c778ce6d0271e05997c75618cd6b6",slug:"accelerator-physics-radiation-safety-and-applications",bookSignature:"Ishaq Ahmad and Maaza Malek",coverURL:"https://cdn.intechopen.com/books/images_new/6140.jpg",editedByType:"Edited by",editors:[{id:"25524",title:"Prof.",name:"Ishaq",surname:"Ahmad",slug:"ishaq-ahmad",fullName:"Ishaq Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5802",title:"Ion Implantation",subtitle:"Research and Application",isOpenForSubmission:!1,hash:"b7a1bd893c9f0b454cf061b5906d99de",slug:"ion-implantation-research-and-application",bookSignature:"Ishaq Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/5802.jpg",editedByType:"Edited by",editors:[{id:"25524",title:"Prof.",name:"Ishaq",surname:"Ahmad",slug:"ishaq-ahmad",fullName:"Ishaq Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6845",title:"Graphene and Its Derivatives",subtitle:"Synthesis and Applications",isOpenForSubmission:!1,hash:"63a9783e678fc42ce981efb35be02096",slug:"graphene-and-its-derivatives-synthesis-and-applications",bookSignature:"Ishaq Ahmad and Fabian I. Ezema",coverURL:"https://cdn.intechopen.com/books/images_new/6845.jpg",editedByType:"Edited by",editors:[{id:"25524",title:"Prof.",name:"Ishaq",surname:"Ahmad",slug:"ishaq-ahmad",fullName:"Ishaq Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6737",title:"Powder Technology",subtitle:null,isOpenForSubmission:!1,hash:"65211e3ea1db91e795908df350115d1f",slug:"powder-technology",bookSignature:"Alberto Adriano Cavalheiro",coverURL:"https://cdn.intechopen.com/books/images_new/6737.jpg",editedByType:"Edited by",editors:[{id:"201848",title:"Dr.",name:"Alberto",surname:"Cavalheiro",slug:"alberto-cavalheiro",fullName:"Alberto Cavalheiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"72181",slug:"corrigendum-to-potassium-channels-as-a-potential-target-spot-for-drugs",title:"Corrigendum to: Potassium Channels as a Potential Target Spot for Drugs",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/72181.pdf",downloadPdfUrl:"/chapter/pdf-download/72181",previewPdfUrl:"/chapter/pdf-preview/72181",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/72181",risUrl:"/chapter/ris/72181",chapter:{id:"71907",slug:"potassium-channels-as-a-potential-target-spot-for-drugs",signatures:"Vladimir Djokic and Radmila Novakovic",dateSubmitted:"October 13th 2019",dateReviewed:"March 18th 2020",datePrePublished:"April 28th 2020",datePublished:"December 16th 2020",book:{id:"10143",title:"Molecular Pharmacology",subtitle:null,fullTitle:"Molecular Pharmacology",slug:"molecular-pharmacology",publishedDate:"December 16th 2020",bookSignature:"Angel Catala and Usama Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10143.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"313382",title:"Ph.D.",name:"Radmila",middleName:null,surname:"Novakovic",fullName:"Radmila Novakovic",slug:"radmila-novakovic",email:"radmila.novakovic@med.bg.ac.rs",position:null,institution:null}]}},chapter:{id:"71907",slug:"potassium-channels-as-a-potential-target-spot-for-drugs",signatures:"Vladimir Djokic and Radmila Novakovic",dateSubmitted:"October 13th 2019",dateReviewed:"March 18th 2020",datePrePublished:"April 28th 2020",datePublished:"December 16th 2020",book:{id:"10143",title:"Molecular Pharmacology",subtitle:null,fullTitle:"Molecular Pharmacology",slug:"molecular-pharmacology",publishedDate:"December 16th 2020",bookSignature:"Angel Catala and Usama Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10143.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"313382",title:"Ph.D.",name:"Radmila",middleName:null,surname:"Novakovic",fullName:"Radmila Novakovic",slug:"radmila-novakovic",email:"radmila.novakovic@med.bg.ac.rs",position:null,institution:null}]},book:{id:"10143",title:"Molecular Pharmacology",subtitle:null,fullTitle:"Molecular Pharmacology",slug:"molecular-pharmacology",publishedDate:"December 16th 2020",bookSignature:"Angel Catala and Usama Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10143.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10573",leadTitle:null,title:"Fluid-Structure Interaction",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThe ever-growing speed of scientific studies is relatively proven by the increasing number of research papers, books, reports, etc. yearly. Without a doubt, this process causes a data detection problem. If the consequences of a part of scientific effort are to deliver constructive information, the interpretative published works have to be commonly recognized and accessible and they have to be able of being perceived and assessed by readers.
\r\n\r\n\tThe present book aims to link these gaps in Fluid-Structure Interaction (FSI) methods. This is to give a deep understanding of FSI to the readers. FSI is an interplay between structures and their environs' fluid flow. Concerning both computational and modeling methods, FSI is one of the most serious and controversial multiphysics problems. This book provides an intensive understanding of FSI together with theory, simulation techniques, and solutions for several FSI problems in the engineering field. The book delivers the essential theories, approaches, and results advanced for the FSI applications. To this end, Finite Element Analysis (FEA) and mathematical approaches are utilized with integrated FSI methods.
\r\n\r\n\tFurthermore, results obtained from FEA and mathematical methods are compared to existing experimental or numerical results to show the correctness of the methods and their importance in applied engineering. Taking benefits of information provided in the book, the readers would become skilled to self-reliantly formularize models to solve FSI problems.
",isbn:"978-1-83969-176-8",printIsbn:"978-1-83969-175-1",pdfIsbn:"978-1-83969-177-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"3950d1f9c82160d23bc594d00ec2ffbb",bookSignature:"Dr. Khaled Ghaedi, Dr. Ahmed Niameh Mehdy Alhusseny, Dr. Adel Gharib Nasser and Dr. Nabeel Al-Zurfi",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10573.jpg",keywords:"Simulation, Applied Engineering, Multiphysics Coupling, Nonlinear Analysis, Structural Deformation, Fluid Dynamics, Structural Deformation, Hydrodynamics, Finite Element Method, Infinite Element, Fluid Flow, Large Deformation",numberOfDownloads:557,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 22nd 2020",dateEndSecondStepPublish:"December 1st 2020",dateEndThirdStepPublish:"January 30th 2021",dateEndFourthStepPublish:"April 20th 2021",dateEndFifthStepPublish:"June 19th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A senior researcher in finite element methods and structural dynamics, appointed committee member of ASCE-22, appointed reviewer and editorial board member of several civil and structural engineering journals, senior software consultant, and holder of one registered patent.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"190572",title:"Dr.",name:"Khaled",middleName:null,surname:"Ghaedi",slug:"khaled-ghaedi",fullName:"Khaled Ghaedi",profilePictureURL:"https://mts.intechopen.com/storage/users/190572/images/system/190572.jpeg",biography:"Dr. Khaled Ghaedi has experience in both the academia and industry fields. Over the course of 16 years career, he has built his core foundation through his involvement in many research and engineering projects, holding different positions such as researcher and lecturer, principle structural engineer and quality control manager. He is currently the technical director of a software engineering services and solutions provider in Malaysia to support the engineering industry in Southeast Asia. Because of his excellent practical experience with multiple engineering software, he has been invited by various national and international firms in Southeast Asia and Middle East regions to train their engineers. He has provided consultation for many projects such as the transportation project of MRT Putrajaya line, underground part, in Malaysia (RM13.11 billion) and Pavilion Damansara Heights (RM7 billion) among others. He is also a member of several world organizations such as the American society of civil engineers (ASCE), American concrete institute (ACI). He is presently taking part as the associate committee Member in revising ASCE7-16 that will be reissued as ASCE7-22 in 2022. He has frequently published his researches in well-known journals in different engineering fields including buildings, bridges, dams, etc. He has also contributed to the process of knowledge sharing through his roles as the editorial board member and reviewer of eminent engineering journals. He has also been invited in several international conferences as a committee member. Khaled has shown his support and guidance to students to become an important part of their community and to Engineers to advance their technical skills.",institutionString:"University of Malaya",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}}],coeditorOne:{id:"208783",title:"Dr.",name:"Ahmed",middleName:"Niameh Mehdy",surname:"Alhusseny",slug:"ahmed-alhusseny",fullName:"Ahmed Alhusseny",profilePictureURL:"https://mts.intechopen.com/storage/users/208783/images/system/208783.jpg",biography:"Dr. Ahmed Alhusseny has obtained his BSc and MSc in air conditioning and refrigeration engineering from the University of Technology, Baghdad, Iraq in 2001 and 2005, respectively. Afterward, he worked as a member of the academic staff at the Faculty of Engineering, University of Kufa, Iraq. Dr. Alhusseny has written a Ph.D. research entitled 'Heat Transfer Enhancement Using Rotating Metallic Porous Media' at the University of Manchester. He has obtained a Ph.D. degree (May 2016.) in mechanical engineering from the School of Mechanical, Aerospace, and Civil Engineering/ University of Manchester. Dr. Alhusseny is still associated with the University of Manchester as a Visiting Researcher although he has recently returned to Iraq and resumed his former employment there as a member of the academic staff in the Department of Mechanical Engineering and the head of the Branch of Air-conditioning and Refrigeration Engineering.",institutionString:"University of Manchester",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Manchester",institutionURL:null,country:{name:"United Kingdom"}}},coeditorTwo:{id:"208796",title:"Dr.",name:"Adel",middleName:"Gharib",surname:"Nasser",slug:"adel-nasser",fullName:"Adel Nasser",profilePictureURL:"https://mts.intechopen.com/storage/users/208796/images/system/208796.jpg",biography:"Adel Nasser has been awarded his BSc in mechanical engineering from the University of El-Fateh in 1977, while he has got the MSc in aeronautical and mechanical engineering from the University of Salford, Manchester, UK in 1980. Afterward, he worked in the UK as a staff member in the UMIST, and at the University of Salford until 1990. He was awarded the Ph.D. in mechanical engineering from the UMIST, UK in 1990. Later, Dr. Nasser worked in the Computer Graphics Unit at the University of Manchester, and then for the Information System Department at the UMIST until 2004. Now, he is a member of the academic staff at the School of Mechanical, Aerospace and Civil Engineering, University of Manchester, where he has supervised a number of postgraduate students. Besides his publications in a variety of leading scientific journals, he acts as a peer-reviewer for several international journals.",institutionString:"University of Manchester",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Manchester",institutionURL:null,country:{name:"United Kingdom"}}},coeditorThree:{id:"217892",title:"Dr.",name:"Nabeel",middleName:null,surname:"Al-Zurfi",slug:"nabeel-al-zurfi",fullName:"Nabeel Al-Zurfi",profilePictureURL:"https://mts.intechopen.com/storage/users/217892/images/system/217892.jpg",biography:"Nabeel Al-Zurfi was awarded his BSc and MSc in Mechanical Engineering from the University of Kufa, Najaf, Iraq in 2002 and 2005, respectively. Afterward, he worked as a member of the academic staff at the Faculty of Engineering, University of Kufa, Iraq as an assistant professor. Al-Zurfi was awarded the degree of Ph.D. in Mechanical Engineering / Heat transfer and fluid flow from the University of Manchester – England on 12 October 2016. He has published several papers in different international journals in the field of heat and mass transfer. He had also participated in a couple of international conferences as an author. Al-Zurfi is an expert in turbulence numerical methods, especially, Large Eddy Simulation method.",institutionString:"University of Manchester",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Manchester",institutionURL:null,country:{name:"United Kingdom"}}},coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:[{id:"71784",title:"Dynamics of Rayleigh-Taylor Instability in Plasma Fluids",slug:"dynamics-of-rayleigh-taylor-instability-in-plasma-fluids",totalDownloads:181,totalCrossrefCites:0,authors:[{id:"282807",title:"Dr.",name:"Sukhmander",surname:"Singh",slug:"sukhmander-singh",fullName:"Sukhmander Singh"}]},{id:"73862",title:"Evolutions of Growing Waves in Complex Plasma Medium",slug:"evolutions-of-growing-waves-in-complex-plasma-medium",totalDownloads:84,totalCrossrefCites:0,authors:[null]},{id:"72030",title:"Fluid Instabilities and Transition to Turbulence",slug:"fluid-instabilities-and-transition-to-turbulence",totalDownloads:151,totalCrossrefCites:0,authors:[null]},{id:"74429",title:"Numerical Investigation of Natural Convection and Entropy Generation of Water near Density Inversion in a Cavity Having Circular and Elliptical Body",slug:"numerical-investigation-of-natural-convection-and-entropy-generation-of-water-near-density-inversion",totalDownloads:57,totalCrossrefCites:0,authors:[null]},{id:"74546",title:"A Note on Heat Transport with Aspect of Magnetic Dipole and Higher Order Chemical Process for Steady Micropolar Fluid",slug:"a-note-on-heat-transport-with-aspect-of-magnetic-dipole-and-higher-order-chemical-process-for-steady",totalDownloads:86,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"44426",title:"Target Cancer Therapy",doi:"10.5772/55284",slug:"target-cancer-therapy",body:'Over the past decade, cancer therapy has changed drastically by the introduction of the target therapies, which focus on unique molecules present in tumors or protein whose expression or function is enriched within the neoplastic tissue; the so called molecular targets. In this context, target therapies may include monoclonal antibodies, drugs or small inhibitors capable of inhibiting specific molecules, such as kinases. The major targets in cancer therapy are pathways directing cell growth, proliferation and survival, as well as, those interfering on tumors microenvironmental aspects, such as angiogenesis. On the other hand, an emerging field on target therapy is the use of epigenetic drugs, which aim the restoration of the normal epigenetic landscape in cancer cells by targeting the epigenetic machinery of cells. Despite some major side effects associated to some target drugs, these therapies are well tolerated by patients. Moreover, it bears the possibility of developing personal therapies to each individual patient, which is considered the optimum choice in oncology.
Kinases are by definition proteins capable of catalyzing the transfer of the terminal phosphate of ATP to substrates that contain, in most cases, a serine, threonine or tyrosine residue. The importance of targeting kinases to fight cancer relies on the central role that these molecules play on tumorigenesis, as uncontrolled tissue growth, and the capacity of cells to invade and metastasize [1]. Considering that, kinases involved in cell growth, division, migration and differentiation, as well as, angiogenesis and metastasis have been exploited and targeted in therapeutic oncology [2].
RAF/MEK/ERK and PI3K/AKT/mTOR are particularly important, as aberrant activation of these pathways is frequently observed in many types of cancers. Of interest, they are involved in chemoresistance to conventional chemotherapy, hormonal therapies and radiaotherapy. In addition, upstream elements of these signaling pathways, such as growth factors and growth factor receptors, as well as kinases exclusively found on cancer cells, as the kimeric kinases derived from Philadelphia chromosome (Ph), can also be target for cancer therapy. Thus, inhibitors targeting any of these molecules can potentially suppress tumorigenesis and bypass resistance to conventional treatments to cancer [3, 4, 5].
Kinase inhibitors (KI) are divided into several classes based on the site they bind to at the enzyme. Types 1 and 2 bind to the ATP site of kinases, acting as ATP competitors. The difference between these two types is that whereas type I inhibitors target the active conformation of the kinase, type 2 bind to the inactive one. On the other hand, type 3 KI bind outside the ATP site, inhibiting kinases on an allosteric manner. This class of KI is usually more selective, since they bind to unique sequences from specific kinases. The forth class of KI are the covalent inhibitors, which irreversibly bind to the kinase active site, usually by reacting with a nucleophilic cystein residue [6]. KI already approved by the US Food and Drug Administration (FDA) will be discussed next, followed by KI currently under trial.
Gefitinib was approved under FDA’s accelerated approval regulation in 2003. It acts by inhibiting the phosphorylation of a series of intracellular kinases associated with epidermal growth factor receptor (EGFR), among others. At its initial approval it was recommended for the treatment of patients with locally advanced or metastatic non-small cell lung carcinoma (NSCLC) after the failure of both platinum-based and docetaxel chemotherapies. However, in 2005, FDA published a labeling revision due to the failure demonstrated by gefitinib in increasing NSCLC patients’ survival. Since this revision, gefitinib has only been prescribed for patients who are benefiting or have benefited from gefitinib.
In 2004, FDA approved erlotinib, which also inhibits the phosphorylation of EGFR-associated TKs, for the treatment of locally advanced or metastatic NSCLC after failure of at least one prior chemotherapy regimen. On the next year, the indication for the use of erlotinib in combination with gemcitabine for the first-line treatment of patients with locally advanced, unresectable or metastatic pancreatic cancer (PC).
Different from the above mentioned KIs, lapatinib, approved by FDA in 2007, is a direct inhibitor of the intracellular kinase domain of both EGFR and human growth epidermal growth factor 2 (HER2/neu), inhibiting the tumor driven cell growth. Its initial indication was for the treatment of patients with advanced or metastatic breast cancer (BC) whose tumors overexpress HER2 and who have received prior therapy including an anthracycline, a taxane, and trastuzumab. In 2012, the indications for lapatinib include the combined use of this drug with: capecitabine, for the treatment of patients with advanced or metastatic BC in the same conditions as mentioned above; letrozole for the treatment of postmenopausal women with hormone receptor positive metastatic BC that overexpress the HER2 receptor for whom hormonal therapy is indicated.
A variety of agents have been discovered to interfere with RAF kinases, each of which acting on different ways in order to block Raf protein expression, c-Ras/Raf interaction, Raf kinase activity, Raf‘s ATP-binding site, or the kinase activity of the Raf target protein MAPKK.
Among these, sorafenib tyosilate, a c-Raf inhibitors, has been approved by FDA in 2005. This bi-aryl urea was initially identified as an adenosine triphosphate competitive inhibitor of the c-Raf kinase. Sorafenib targets two kinase classes known to be involved in both tumor proliferation and angiogenesis [7]. The drug blocks the enzyme c-Raf kinase it self, a critical component of the Ras/Raf/MEK/ERK signaling pathway, which is responsible for controlling cell division and proliferation. In addition, sorafenib inhibits the vascular endothelial growth factor receptor (VEGFR)-2/platelet-derived growth factor receptor (PDGFR)-beta signaling cascade, thereby blocking tumor growth and angiogenesis. Sorafenib has been evaluated as a single therapy agent and in combination with various chemotherapy drugs in a number of clinical trials [8-10]. At its first approval sorafenib tosylate was indicated for the treatment of adenois cyst carcinoma (ACC) patients; latter on, at the latest review, in 2012, the indication for the treatment of unresectable hepatocellular carcinoma (HCC) patients was included.
Later on, in 2011, vemurafenib, which targets the mutated form of BRAF protein BRAFv600, was approved by FDA [11]. It has been approved for the treatment of patients with metastatic melanoma (MM) whose tumors presented the mutation, as detected by a FDA approved test. However, it is not recommended for the treatment of MM patients who harbors the wild-type BRAF gene. It has been no review on vermurafenib label so far.
Raf inhibitors that are currently under clinical evaluation have shown promising signs of anti-cancer efficacy with a very tolerable safety profile [12], and will be further discussed on this chapter.
Although MEK mutations are rare in human cancer, MEK inhibitors have been developed as a therapeutic strategy to combat B-RAF inhibitor resistance by targeting downstream effectors. To date, these MEK inhibitors have shown poor efficacy and activity in the clinic. However, with the emergence of resistance to B-RAF therapy, and a higher than previously thought frequency of somatic MEK mutations, these inhibitors are finding renewed clinical use [13].
Several MEK inhibitors have been identified: PD184352 (CI-1040), Selumetinib (AZD6244, ARRY-142886), PD0325901, XL518, GSK1120212 (JTP-74057), ARRY-438162. Worth noticing, most of the known MEK inhibitors are noncompetitive (ie, they do not bind to the ATP–binding site of the kinase) [14]. Despite ATP-biding pockets are highly conserved among human kinases [15], structural analysis of demonstrates tha it harbors a unique site adjacent to the ATP binding site [16]. Thus, biding of inhibitos to this unique MEK site explain the high degree of specificity of the MEK inhibitors compared to other kinase inhibitors with competitive activity.
PD184352 is an orally active highly selective and potent chemical inhibitor of MEK1/2 and was the first MEK inhibitor to enter clinical trials. Selumetinib is the second MEK inhibitor to go into clinical trial after the first MEK inhibitor, CI-1040, demonstrated poor clinical efficacy. Selumetinib is a benzimidazole derivative with reported nanomolar activity against the purified MEK1 enzyme. Through a series of studies using preclinical cell cultures and animal models, it was shown that Selumetinib suppresses the growth of melanoma cells through the induction of cytostasis, but Selumetinib has a limited ability to induce apoptosis or block angiogenesis [17,18].
Rapamycin, the canonical mTOR inhibitor, was identified in 1975 as a potent antifungal isolated from Streptomyces hygroscopicus, nowadays it is recognized for its immunosuppressive and antitumor activities. However, rapamycin has limited bioavailability duo to its poor aqueous solubility. In an effort to improve its pharmacokinetic characteristics, several rapamycin analogues, named rapalogs, have been developed, such the first generation mTOR inhibitors temsirolimus, everolimus, and ridaforolimus [19-21].
In mammalian cells, members of this pharmacological class associate with the intracellular receptor FK506 binding protein 12 (FKBP12). Then, this complex interacts with FKBP12-rapamycin binding (FRB) domain, performing an allosteric mechanism of inhibition of mammalian target of rapamycin (mTOR) kinase activity. Traditionally the rapalogs inhibit only mTOR complex (mTORC) 1, probably because FRB domain is occluded in mTORC2. However, some studies have shown that these compounds are able to disrupt mTORC2 in a dose-, time- and cell type-dependent manner [20, 22]. A possible mechanism by which rapamycin and rapalogs could inhibit mTORC2 would be that rapamycin- or rapalogs-FKBP12 complexes would interact with newly synthesized mTOR molecules. In turn, this interaction would prevent mTOR interaction with RICTOR, inhibiting mTORC2. Indeed, it has been shown that prolonged treatment of cancer cells with rapamycin can promote its binding to mTOR before mTORC2 assembly, and subsequently inhibit Akt signaling [23]. In addition, treatment with temsirolimus or everolimus in acute myeloid leukemia (AML) cell lines blocked mTORC1 as well mTORC2 assembly [24]. In this way, rapalogs inhibit the signal transduction through the mTORCs downstream effectors, as 4E-BP1 and S6K1, resulting in reduction of protein synthesis and cell proliferation, also inhibit cell-cycle progression and angiogenesis, and promote apoptosis. Despite this positive action against cancer cells, these compounds, when inhibiting only mTORC1, lead to relieve negative feedback loop from S6K1 to IRS-1 resulting in PI3K/AKT pathway activation, and, consequently, could promote cell survival and chemoresistance [21, 25].
Temsirolimus and everolimus have been approved by FDA for the treatment of renal cell carcinoma (RCC). Everolimus has been approved for pancreatic neuroendocrine tumors, and recently for HER2-negative BC in combination with exemestane, after letrozole or anastrozole treatment fails. These antineoplastic agents have been investigated in clinical trials for malignancies from many tissues, including breast, gynecologic, gastrointestinal, lung and melanoma, alone or in association with hormonal therapies, EGFR inhibitors, and cytotoxic drugs [3, 19, 26, 27].
The efficacy of rapalogs is partially limited by compensatory mechanism of mTOR activation driven by the loss of negative feedback and because mTOR can be regulated by other signaling pathways such as Ras/Raf/MEK/ERK. Thereby, the inhibition of this pathway alone provides a transient benefit that may result in treatment resistance. It has already been shown the benefits of using mTOR inhibitors in combination with anti-insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibodies. Thus, in order to overcome possible mechanisms of resistance, it would be interesting to establish therapeutic schemes that use combinations of different drugs [4, 27]. Inhibitors of mTOR (TORKinhibs) are still under development/trial, as well as the dual mTOR/PI3K inhibitors and will be discussed further on this chapter.
In 2003, FDA approved imatinib mesylate, a Bcr-Abl fusion tyrosine kinase, leading to impaired proliferation and apoptosis induction of cancer cells. Its indications were for newly diagnosed adult patients with Ph chromosome positive chronic myelogeneous leukemia (CML) in chronic phase, as well as for patients with CML in blast crisis, accelerated phase, or in chronic phase after failure of interferon (IFN)-alfa therapy. Apart from that, imatinib mesylate was also indicated for the treatment of patients with c-Kit positive unresected and/or metastatic malignant gastrointestinal stroma tumors (GIST). The most recent FDA revision on this drug label, from 2012, indicates imatinib mesylate for the treatment of all diseases mentioned above, as well as for: adult patients with relapsed or refractory Ph chromosome positive acute lymphoblastic leukemia (ALL); adult patients with myelodysplastic/myeloproliferative diseases (MDS/MP) associated with PDGFR gene re-arrangements; adult patients with aggressive systemic mastocytosis (ASM) without the D816V c-Kit mutation or with c-Kit mutational status unknown; adult patients with hypereosinophilic syndrome (HES) and/or chronic eosinophilic leukemia (CEL) who have the FIP1L1PDGFRα fusion kinase (mutational analysis or FISH demonstration of CHIC2 allele deletion) and for patients with HES and/or CEL who are FIP1L1-PDGFRα fusion kinase negative or unknown status; adult patients with unresectable, recurrent and/or metastatic dermatofibrosarcoma protuberans (DFSP); and, adjuvant treatment of adult patients following complete gross resection of c-Kit positive GIST.
Dasatinib is a KI of Bcr-Abl, SRC family, c-Kit, ephrin type-A receptor 2 (EPHA2) and PDGFRβ developed to overcome the imatinib-resistance observed in relapsed patients with accelerated phase or blast crisis phase CML [28]. It was approved by FDA in 2006 and is predicted, based on modeling studies, to bind to multiple conformations of ABL kinase. It was initially approved for the treatment of patients with chronic, accelerated, myeloid or lymphoid blast phase CML with resistance or intolerance to prior therapy including imatinib mesylate, as well as for the treatment of adults with Ph chromosome-positive ALL resistant or intolerant to prior therapy. The 2012 label review for this drug also includes its indication for the treatment of newly diagnosed adults with Ph chromosome-positive CML in chronic phase.
Nilotinib hydrochloride monohydrate was approved by FDA in 2007 for the treatment of chronic and accelerated phase Ph chromosome-positive CML adult patients which have developed resistance or intolerance to prior therapy that included imatinib. In 2012, apart from these previous indications, nilotinib hydrochloride monohydrate has also been indicated for the treatment of newly diagnosed adult patients with Ph chromosome-positive CML in chronic phase.
In 2006 FDA approved sunitinib malate, a multi-kinase inhibitor targeting several receptor tyrosine kinases (RTK), such as PDGFR-α and -β, VEGFR-1,-2 and -3, c-Kit, Fms-like tyrosine kinase-3 (FLT3), colony stimulating factor receptor Type 1 (CSF-1R) and the glial cell-line derived neurotrophic factor receptor (RET). At its first approval, sunitinib malate was indicated for the treatment of GIST after disease progression or intolerance to imatinib mesylate; and, for the treatment of advanced RCC, this based on the partial response rates and duration of responses observed for this drug. On the latest FDA review on sunitinib malate indications, in 2012, it was included the indication for the treatment of progressive, well-differentiated pancreatic neuroendocrine tumors (NET) in patients with unresectable locally advanced or metastatic disease.
In 2009, FDA approved the multi-kinase inhibitor pazopanib hydrochloride targeting VEGFR-1,-2 and -3, PDGFR-α and –β, fibroblast growth factor receptor (FGFR)-1 and -3, c-Kit, interleukin -2 receptor inducible T-cell kinase (Itk), leukocyte-specific protein kinase (Lck), and transmembrane glycoprotein receptor tyrosine kinase (c-Fms). At its first approval, pazopanib hydrochloride was indicated for the treatment of RCC patients, and at its latest label review, in 2012, it was also indicated for the treatment of patients with advanced soft tissue sarcoma (STS) who have received prior chemotherapy, except for patients with adipocytic STS or GIST, for which pazopanib hydrochloride’s efficacy has not been proved.
During the year of 2011, two KIs with different targets and indications have been approved by FDA. Firstly, vandetanib a KI with multiple targets, including VEGFR and EGFR, has been approved for the treatment of symptomatic or progressive medullary thyroid cancer (MTC) in patients with unresectable locally advanced or metastatic disease. Also, crizotinib was approved for the treatment of patients with anaplasic lymphoma kinase (ALK) -positive locally advanced or metastatic NSCLC. There was no indication review for this drug so far.
In early 2012, the VEGFR-1, -2 and -3 inhibitor axitinib was approved by FDA. This KI was capable of decreasing VEGF-mediated endothelial cell proliferation and growth both in vitro and in animal models. It is indicated for the treatment of advanced RCC patients after failure of previous systemic therapy.
One of the most promising KI under trial is PKC412/midostaurin. It is a N-Benzoil derivative capable of inhibiting classical protein kinase C (PKC) α, β, γ and the calcium-dependent PKCs δ, ε, η, as well as TK pathways [29]. In 2001, Propper and colleagues published a phase I and pharmacokinetics study on this compound [30]. This study engaged 32 subjects with different types of tumor, which were either refractory to conventional therapy or unresponsive to standard treatment, exposed to seven doses of PKC412/midostaurin (12.5 mg/day – 300 mg/day). From this study it was concluded the PKC412/midostaurin has had as main toxicity nausea/vomiting and fatigue, with significant side effects as diarrhea, anorexia, and headache. A dose-related suppression on circulating lymphocyte and monocyte number was observed after 28 days of treatment. The overall conclusion of this work was that PKC412/midostaurin at 150mg/day would be well tolerated chronically. Currently, 7 active clinical trials using PKC412/midostaurin as single drug or in combination with others can be assessed at the Clinical Trial Search engine from National Cancer Institute [31], as well as, at the U.S. National Institute of Health clinical trial database [32].
Among studies using PKC412/midostaurin in combination with other drugs, two trials from Novartis (CPKC412A2114 and CPCK412AUS06T) evaluate the combined therapy of PKC412/midostaurin with the epigenetic drugs 5-azacytidine and decitabine, respectively. The first trial has been carried out with refractory or relapsed ALL and MDS patients’ under 18 years old; the second has been carried out with newly diagnosed or relapsed AML patients over 60 years old. Also from Novartis, a trial (NCT01477606) evaluates PKC412/midostaurin in several combinations with the epigenetic drug cytarabine and the anthracycline daunorubicin, or as single agent, for the treatment of AML patients which express the RTK FLT3-ITD. From the Washington University of Medicine, a study (NCT01161550) evaluated the combination of PKC412/midostaurin with either epigenetic drug cladribine or cytarabine in AML patients. Furthermore, PKC412/midostaurin has been evaluated on a collaborative trial (NCT01174888) from Novartis and Millennium Pharmaceuticals, Inc. in combination with bortezomib (a proteasome inhibitor), mitoxantrone hydrochloride (an anthracenedione), etoposide (a topoisomerase inhibitor) or cytarabine (an epigenetic drug) for the treatment of patients with relapsed or refractory AML. Finally, PKC412/midostaurin has been tested in combination with radiation therapy and 5-fluorouracil for the treatment of patients with advanced rectal cancer in a study (NCT01282502) sponsored by the Massachusetts General Hospital. As a single agent, PKC412/midostaurin has been tested by Novartis (NCT00866281) for the treatment of relapsed or refractory pediatric patients with AML and ALL. Of interest, by the time this chapter was written, all the above mentioned trials were recruiting participants.
Icotinib has been approved by the State Food and Drug Administration from China, in 2011, under the trade name of Conmana (Beta Pharma Inc.), but it was not yet approved by FDA. It is a reversible EGFR KI capable of inhibiting growth of tumor cell overexpressing EGFR, which underwent two phase I studies reported in 2011 [33, 34]. Both studies demonstrated that icotinib is safe and well tolerated by NSCLC patients and shows positive clinical anti-tumor activities.
PI3K inhibitors target the p110 catalytic subunit of PI3K, and may be divided into two groups, isoform-specific inhibitors or pan-PI3K inhibitors; the latter can inhibit all class IA PI3Ks. In this way, they block the signal transduction through the PI3K/AKT/mTOR pathway exerting antiproliferative effects. The first-generation of PI3K inhibitors included wortmannin, an irreversible PI3K inhibitor isolated from Penicillium wortimannin, and LY294002, a synthetic and reversible PI3K inhibitor. However there are limiting features for their clinical use, which involve low selectivity for PI3K isoforms, poor solubility and toxicity in animals [35, 36].
Several other PI3K inhibitors have been developed in an attempt to overcome these initial limitations. Firstly, CAL-101 has 14 trials on phase I, II or III registered [37]. From these 11 are active, and evaluate either safety or efficacy of the drug alone or in combination with others, for the treatment of indolent non-Hodgkin lymphoma (NHL), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), follicular lymphoma, small lymphocytic lymphoma (SLL), Hodgkin lymphoma, AML, among others. On the other hand, AMG 319 has only one phase I trial registered on the same data base. This trial is currently recruiting patients with hematologic malignancies. Moreover, XL147 has been on nine clinical trials which evaluate its safety and efficacy, alone or in combination, for the treatment of lymphoma, as well as, several solid tumors such as BC, NSCLC and ovarian cancer (OVCA), among others. Furthermore, GDC-0941 has been on 12 clinical trial, nine of which active. From these, a phase I trials evaluate its effect on solid tumors such as BC and NSCLC, as well as in NHL. Two phase II trial are also active, one with NSCLC patients and the other with BC patients. Other PI3K inhibitor, BYL719, has been on five active phase I and II trials with patients with several solid tumors. Additionally, PX-866 has been on seven pahse I and II trials, five of which active, also for the treatment of solid tumors. Lastly, BKM-120 has been on 43 trials, 42 active, evaluating its effects mostly on solid tumors, such as BC, NSCLC, endometrial carcinoma and glioblastoma, among others [32, 38, 39]. Compounds specifics for a given isoform can be used at lower doses avoiding side effects. Moreover, these isoform-specific compounds have achieved good results in certain cancers. For instance, a specific p110β inhibitor was shown to be more effective in PTEN-deficient cancer [40], whilst it was suggested that PI3K inhibitor specific for p110α might block angiogenesis [41]. However, it is believed that inhibition of one single isoform can lead to activation of another as a compensatory mechanism [42].
As previously mentioned, Raf inhibitors have shown good results on clinical trials. Among these, dabrafenib has been tested as sigle agent or in combination for the treatment of cancer patients, mainly with melanoma. Also, a phase III randomized trial has recently been completed, however the early results have not been relieased by the time this chapter was concluded [43]. Moreover, RAF-265 is currently under phase I and II clinical trials with malignant melanoma patients. This compound is a potent inhibitor of Raf with a highly selective profile and inhibits all 3 isoforms of RAF, as well as mutant BRAF, with high potency [44]. Additionaly, XL281, a specific inhibitor of RAF kinases, including the mutant form of BRAF, and has finished Phase I testing [45].
Although MEK mutations are rare in human cancer, MEK inhibitors have been developed as a therapeutic strategy to combat B-RAF inhibitor resistance by targeting downstream effectors. To date, these MEK inhibitors have shown poor efficacy and activity in the clinic. However, with the emergence of resistance to B-RAF therapy, and a higher than previously thought frequency of somatic MEK mutations, these inhibitors are finding renewed clinical use [13].
Several MEK inhibitors have been identified and are ubdergoing clinical trials: i.e. PD184352 (CI-1040), selumetinib (AZD6244, ARRY-142886), PD0325901, GDC-0973/XL518, trametinib (GSK1120212), MEK162 (ARRY-438162). Worth noticing, most of the known MEK inhibitors are noncompetitive (ie, they do not bind to the ATP–binding site of the kinase) [14]. Despite ATP-biding pockets are highly conserved among human kinases [15], structural analysis of demonstrates tha it harbors a unique site adjacent to the ATP binding site [16]. Thus, biding of inhibitos to this unique MEK site explain the high degree of specificity of the MEK inhibitors compared to other kinase inhibitors with competitive activity.
PD184352 is an orally active highly selective and potent chemical inhibitor of MEK1/2 and was the first MEK inhibitor to enter clinical trials. Selumetinib is the second MEK inhibitor to go into clinical trial after the first MEK inhibitor, CI-1040, demonstrated poor clinical efficacy. Selumetinib is a benzimidazole derivative with reported nanomolar activity against the purified MEK1 enzyme. Through a series of studies using preclinical cell cultures and animal models, it was shown that Selumetinib suppresses the growth of melanoma cells through the induction of cytostasis, but Selumetinib has a limited ability to induce apoptosis or block angiogenesis [17, 18].
Akt inhibition promotes decreasing cancer cell survival and proliferation by preventing signal transduction through its downstream effectors as mTOR. Target Akt is an interesting pharmacological approach due to the Akt activation in consequence of the feedback loop release when mTOR is inhibited. Within this group, we can mention allosteric Akt inhibitors (mK2206), Akt catalytic sites inhibitors (PX316, GSK690693, AT-13148, A-443654) and lipid-based phosphatidylinositol (perifosine, triciribine) [32, 36, 39].
The allosteric Akt inhibitors act preventing the translocation of Akt to the plasma membrane, a crucial step for the activation of this molecule, and are more specific for one Akt isoform than the Akt catalytic sites inhibitors which can target all AKT isoforms [42]. Perifosine, the best-characterized Akt inhibitor, is a lipid-based antitumor agent that inhibits Akt Pleckstrin homology (PH) domain preventing the Akt recruitment to the cell membrane and its activation. Perifosine has shown great efficacy in vitro and in vivo against several human cancers such as breast, ovarian, multiple myeloma and glioma and has been tested in clinical trials [30, 32].
The ATP-competitive inhibitors of mTOR (TORKinhibs) directly inhibit the mTOR kinase activity affecting both mTORC1 and mTORC2. Thus, resulting in antiproliferative effects by decreasing protein synthesis, inducing cell cycle arrest, and inhibiting angiogenesis in several cancer cell lines [22]. Many TORKinhibs have been developed, including Torin1, Torin2, PP242, PP30, KU0063794, WAY-600, WYE-687, WYE-354, XL-388, INK-128, AZD-2014, AZD8055 and OSI-027. Some of them are currently being tested in human subjects with hematological malignancies, glioma and advanced solid tumors in phase I trials [3, 21, 32].
TORKinhibs have achieved better results than rapamycin and rapalogs. This is due to the additional inhibition of mTORC2, which prevents Akt phosphorylation at S473, and also can inhibit mTORC1 with a higher potency. It has been postulated that complete inhibition of mTORC1 is responsible for this enhanced response to treatment, overcoming the limitations of rapamycin. However, it has been found that loss of feedback on PI3K results in activation of downstream effectors other than Akt. Furthermore, these drugs induce phosphorylation of Akt at residue T308, mediated by PDK-1, configuring a resistance mechanism that requires a different therapeutic approach [18, 22, 46].
A strategy to overcome the limitations of rapalogs and TORKinhibs is to target two molecules in the PI3K/Akt/mTOR pathway, PI3K and mTOR. The dual PI3K/mTOR inhibitors include NVP-BEZ235, BGT226, XL765, SF1126, GDC-0980, PI-103, PF-04691502, PKI-587, and SK2126458. These drugs inhibit the catalytic activity of mTOR, targeting both mTORC1 and mTORC2 like the TORKinhibs, beyond that they also inhibit PI3K catalytic subunit. Thus, they act on two fronts in the PI3K/AKT/mTOR signaling pathway decreasing cell proliferation, angiogenesis, apoptosis, and inducing cell cycle arrest [21, 47].
The dual PI3K/mTOR inhibitors have demonstrated a greater antitumor efficacy than rapamycin but also have increased toxicity. Nevertheless, some of them are in phase I/II clinical trials for the treatment of lymphoma, glioma, advanced and refractory solid tumors and presented overall good tolerability [8]. Their potent antitumor effect can be explained by the inhibition of AKT phosphorylation at two sites, S473 and T308, blocking downstream signaling more efficiently than rapamycin/rapalogs and TORinhibs alone, as demonstrated in preclinical studies of NVPBEZ-235 and PI-103 [3, 22, 47].
Due to its ability to regulate gene transcription, histone acetylation has been increasely studied. Histone deacetylases (HDACs) are a group of enzymes that, in conjunction with histone acetyltransferases (HATs), regulate the acetylation status of histone tails. HATs acetylate lysine residues on histone tails resulting in neutralization of their charge and decreased affinity for DNA [48].
There are 18 HDACs, which are classified according to functional and phylogenetic criteria [49]. They are divided into Zn2+-dependent (class I, II and IV), Zn2+-independent and NAD-dependent (classIII) enzymes. Most inhibitors currently under development as anti-cancer agents target class I, II and IV enzymes [50].
There are numerous studies demonstrating that HDACs and HATs also regulate acetylation of nonhistone proteins, including transcription factors, chaperone proteins, and signaling molecules involved in cancer development and progression, such as the tumor suppressor p53 [51]. Furthermore, these enzymes are often overexpressed in various types of cancers, compared with the corresponding normal tissues, and their overexpression is correlated with a poor prognosis [52], because they can drive the silencing of tumor suppressor genes or activation of oncogenes [53].
Over recent years, it has been found that the epigenetic silencing of tumor suppressor genes induced by overexpression of HDACs plays an important role in carcinogenesis, above all in hematological cancers [54]. Thus, HDAC inhibitors (HDACi) have emerged as promising accessory therapeutic agents for multiple human malignancies, as, through their action, tumor suppressor gene expression can be restore, cell differentiation can be induce, and both intrinsic and extrinsic apoptotic pathways can be activated [55]. Also, by targeting HDAC6, for example, these inhibitors can stimulate cell cycle arrest, autophagy, and anti-angiogenic effects, can induce oxidative injury, and interfere with tubulin assembly, and cause disruption of the aggregosome pathways [50].
Several HDACi derived both from natural or synthetic sources have been identified. These compounds share a common pharmacophore containing a cap, a connecting unit, a linker and a zinc binding group that chelates the cation in the catalytic domain of the target HDAC [56]. Thus, this class of inhibitors can be separated into several structurally distinct classes according to their chemical structure [53, 57], and each agent varies in its ability to inhibit individual HDACs.
Regarding short chain fatty acids class, valproate (valproic acid, VPA) has been used as an anticonvulsant for three decades, and has only recently been recognized as an HDAC inhibitor. It specifically targets 2 of the 4 classes of HDACs: class I, subclasses Ia and Ib, and class II, subclass IIa. Within subclass IIa, HDAC9 is an exception to this modulation, being activated by VPA, which is also true for HDAC11 [58]. Butyrate, also a short chain fatty acid, naturally produced by bacterial fermentation in the colon, has been designated as the most potent fatty acid in arresting cell proliferation [59].
Another class of these inhibitors includes hydroxamic acids. In this group, vorinostat (SAHA) and panobinostat (LBH 589) are the most extensively studied drugs. The latter is currently under phase II/III clinical trials, and the former has been approved by FDA for the treatment of relapsed and refractory cutaneous T-cell lymphoma [60]. Vorinostat represents the second generation of the polar-planar compounds and is a relatively selective inhibitor for class I HDACs; that is, by inhibiting HDAC-1, −2, −3 and −8, but also with mild activity against class II HDAC-6, −10 and −11 [61]. However, vorinostat lacks activity against class II HDAC-4, −5, −7 and −8. Belinostat, other compound of this group, has shown efficacy as monotherapy, and has been the basis for the first pivotal phase I trial of this agent to treat relapsed or refractory peripheral T-cell lymphoma [62]. Belinostat’s anticancer effect is thought to be mediated through multiple mechanisms of action, including the inhibition of cell proliferation, induction of apoptosis, inhibition of angiogenesis, and induction of differentiation [63]. Moreover, it has been demonstrated that resminostat inhibits proliferation and induces apoptosis in multiple myeloma cells [64]. HDACi PCI-24781 has been shown to enhance chemotherapy-induced apoptosis in multidrug- resistant sarcoma cell lines [65]. Givinostat is currently being tested on three trials, but none of these on neoplasias [32], and JNJ-26481585 shows results in blood malignancies in phase I trial as monotherapy and in combination with proteasome inhibitor (bortezomib).
On benzamides, entinostat (MS-275) is an isotype-selective synthetic benzamide derivative HDACi with predominant class I inhibition. Entinostat has been investigated in patients with advanced refractory acute leukemias, mainly acute myeloid leukemia [66]. Whereas, mocetinostat is well-tolerated and exhibits favorable pharmacokinetic and pharmacodynamic profiles indicating target inhibition and clinical responses. It induces cell death and autophagy, synergizes with proteasomal inhibitors and affects non-histone targets, such as microtubules [67]. Yet, mocetinostat shows selectivity for HDAC I/II. It has been used in clinical trials mostly for hematological malignancies, such as AML, CML, NHL and refractory Hodgkin disease, where it has shown very encouraging results [68].
Regarding cyclic tetrapeptides, romidepsin (ISTODAX®) shows potential as a new agent, having revealed remarkable activity in the treatment of T-cell lymphomas in preclinical studies and early-phase clinical trials. In 2006, it was approved by FDA for the treatment of CTCL in patients who have received at least one prior systemic therapy [69].
Preclinical studies in cell lines and animal models, HDACi have been proven to be very successful as single-modality agents for the treatment of a variety of cancers. Thus, several structurally different HDACi have been used in numerous clinical trials to test their toxicity and effectiveness [32]. The most common adverse effects associated with HDAC inhibitors include thrombocytopenia, neutropenia, diarrhea, nausea, vomiting and fatigue. Extensive studies have been performed to determine whether HDAC inhibitors are associated with cardiac toxicities. Until now, there is little conclusive evidence to determine whether some or all HDAC inhibitors cause electrocardiac changes [70].
Mechanisms of resistance to HDACi are not well elucidated; however it’s believed that it may reflect drug efflux, epigenetic alterations, stress response mechanisms and anti-apoptotic, and pro-survival mechanisms [71]. In this context, it is known that DNA hyper-methylation may cause resistance to HDACi, inducing compact nucleosomes, blocking the access to acetylases, which leads to tumor suppression genes silencing [49].
HDACi have revealed promise in the clinic but there is clearly space for improvement of therapeutic index. One way to achieve greater clinical efficacy is to use HDACi in combination with other chemotherapeutic agents [53, 72]. There have been numerous preclinical and clinical studies examining rational combinations of HDACi with many current therapies for the treatment of hematological and solid malignancies [60]. Indeed, it has been described that HDACi have synergistic or additive effect with different anticancer agents, including radiation therapy, chemotherapy, hormonal therapies and new targeted agents.
Regarding HDACi in combination with radiotherapy, these inhibitors, including vorinostat, TSA, valproic acid and PCI-24781, enhance the radiosensitivity of cancer cells [73]. Chemotherapeutic agents with additive or synergistic effects with HDACi therapy includes: antitubulin agent (docetaxel) [74]; topoisomerase II inhibitors (doxorubicin, etoposide, and ellipticine) [75, 76]; and DNA cross-linking reagent (i.e. cisplatin) [77].
HDACi combinations with hormonal therapy are also possible. In this context, clinical trials are in progress for BC and prostate cancer (PC). As a monotherapy, the HDACi vorinostat has not shown effectiveness in metastatic BC and PC [78]. On the other hand, preclinical studies have demonstrated that HDACi potentiates the antitumor activity of tamoxifen in a variety of ER-positive BC cell lines [79]; whereas in PC the addition of an HDACi to the antiandrogen bicalutamide have resulted in a synergistic increase in cytotoxicity on hormone-sensitive and resistant preclinical models [80].
Recent studies showed that the combination of some of the specific RTK-targeted therapies with HDCAi can represent a novel way for suppressing tumor growth. Combined therapies with transtuzumab [81], erlotinib and gefitinib [82], sorafenib [83], everolimus [84], imatinib [85], heat shock protein-90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin [86] and bortezomide, a proteasome inhibitor [87], have been studied. The obtained data indicate that, although preclinical studies demonstrated a benefit, it is too early to know whether this combination will prove more beneficial than treatment with RTK pathway inhibitors alone.
Hematological malignancies appear to be particularly sensitive to HDACi therapy. There are well over 100 clinical trials ongoing with HDACi as monotherapy or in combination therapy for several carcinomas. The available results for these clinical trials have recently been reviewed [50]. As mentioned, vorinostat and romidepsin have been approved by FDA for the treatment advanced and refractory cutaneous T-cell lymphoma (CTCL). The clinical value of HDACi in other malignancies remains to be determined.
Poly ADP ribose polymerases (PARPs) are a family of 17 proteins pooled together based on their structural similarity, specifically, they are composed by two ribose moieties and two phosphates per polymer unit [88]. Known since 1963, these enzymes function is to catalyses the polymerization and formation of highly negatively charged poly ADP ribose chains on target proteins, therefore modifying their action [89]. Furthermore, PARPs contain three zinc finger motifs which bind with high affinity to DNA breaks and triggers the enzyme’s catalytic module and synthesis of negatively-charged, branched polymers of poly(ADP-ribose) (PAR) from NAD+ [90]. Currently, PARP 1 and PARP 2 are the best understood of these proteins and their key role is to maintain genomic integrity, in particular the repair of single strand DNA lesions and breaks, using the base excision repair (BER) pathway [91]. Moreover, PARPs are also involved in activating apoptosis on both caspase dependent or independent fashion; however this PARP hole is not yet fully understood and will not be discussed in this chapter [92].
Durkacz and colleagues proposed, in 1980, that modulating PARP-1 might augment the effect of alkylating chemotherapy [93]. So far the modulation of its activity by stimulation or inhibition can be applied in therapy or prevention of several pathologies including cardiac infarct [94], septic shock [95], diabetes [96], inflammation [97], neurodegenerative disorders [98], and acute necrotizing pancreatitis [99]. Lately a new potential strategy for therapy has emerged, the PARP inhibitors, using the synthetic lethality and exploiting tumor-specific genetic alterations. Synthetic lethality is defined as the premise, whereby, deletion of one of two genes independently has no effect on cellular viability, whereas, simultaneous loss of both genes is lethal [100]. It has become clear that the genomic instability of some tumor cells allows PARP inhibitors to have selectivity for the tumor cells over normal cells, what explains why this class of drugs shows fewer side effects as a single agent. Taken together, inhibition of these enzymes and, therefore, the BER pathway causes persistence of single strand breaks (SSBs) leading to cell death. Also, PARP inhibitors, when in combination with cytotoxic agents, prevent repair of SSBs caused by these agents in cells with underlying homologous recombination (HR) defects [101].
It has been shown that cancer cells with mutations in the breast and ovarian susceptibility genes BRCA1 and BRCA2 are extremely sensitive to small molecule inhibitors of PARP-1 [102, 103]. Thus, PARP inhibitors have raised as a promise in phase I and phase II clinical trials for the treatment of BRCA1/2-deficient breast, ovarian and prostate tumors [104-106]. However, a recently completed phase III study combining PARP inhibition with chemotherapy did not generate the anticipated survival gains; suggesting that additional, as yet unidentified, molecular factors may influence the in vivo anti-tumor effectiveness of this class of drugs [107, 108].
Some PARP inhibitors, targeting both PARP-1 and PARP-2, were recently under clinical development, which include Pfizer’s PF 01367338 (AG014699), AstraZeneca’s olaparib (AZD2281, KU-0059436), Sanofi-Aventis’ iniparib (BSI 201) and Abbott Laboratories’ veliparib (ABT 888) [109].
The first agent analyzed clinically was AG014699 (the phosphate salt of AG14361), in 2003. Publications described preclinical data for 39 OVCA cell lines (without reporting BRCA status of these cell lines) with AG014699 as single-agent or in combination (with carboplatin, doxorubicin, gemcitabine, paclitaxel, or topotecan) using combination index/isobologram analysis for multiple drug effect analysis. The investigators noted a concentration-dependent efficacy across the different cell lines to different degrees. The greatest impact appears to be in combination with carboplatin, topotecan, and doxorubicin. Therefore, an initial phase I was conducted with temozolide (TMZ), both given for 5 days in 28-day cycles, with patients with solid tumors. A subsequent phase II study with melanoma patients has been reported. Overall, there was modest activity with significant myelosuppression. The study started using one-half standard dose (100 mg/m2) of TMZ and AG014699 was escalated to PARP inhibitory dose (PID) as evaluated from peripheral blood mononuclear cell (PBMCs). The PID, defined as at least 50% of decrease in PARP activity 24 hours after dosing, was determined to be 12 mg/m2 and at this dose there was 74-97% inhibition of peripheral blood mononuclear cells (PBMCs) PARP. The mean terminal half-life was 7.4-11.7 hours. The PARP in the PBMCs recovered at least 50% function by 72 hours after dosing. The dose limiting toxicity (DLT) for the highest dose level tested of 18 mg/m2 in combination with standard dose TMZ and lead to myelosuppression [110]. The phase II study evaluated the efficacy of AG014699 at 12 mg/m2 with TMZ at 200 mg/m2 in 40 chemotherapy-naive patients with advanced multiple melanoma. Myelosuppression was more significant in the phase II trial than seen in the phase I trial. It was reported several signs of toxicity besides fatigue and nausea: 12% grade four thrombocytopenia, 15% neutropenia, and one death from febrile neutropenia. There were four partial responses (PRs), four prolonged stable diseases, and 10 patients were too early to evaluate at the time of the report [111].
Olaparib is an oral PARP inhibitor (IC50 = 4.9 nM for PARP 1) extensively studied for BRCA tumors treatment in combination or as single agent. In a phase I trial, olaparib was given at days 1-4, cisplatin at day 3, and gemcitabine at days 3 and 10, every 21 days. As toxicities effects, five of six patients experienced grade three or four thrombocytopenia. Two PRs were reported in 1 pancreatic cancer and 1 NSCLC patient [112]. Another phase I, this time focusing olaparib as single-agent, enrolled 60 patients with solid tumors, including 22 BRCA mutation patients. This study supported the synthetic lethality concept. Patients were treated at escalating doses and duration. Doses of 10 mg QD 2 out of 3 weeks to 600 mg BID continuously were evaluated. The initial cohort was not restricted to BRCA-deficient patients but was enriched for this population. In the expansion cohort, patients had to have BRCA mutation to enroll and were treated at 200 mg BID continuously. Eight PRs, by response evaluation criteria in solid tumors (RECIST), were observed out of the 15 patients with BRCA mutation-related advanced OVCA group. All the responses in OVCA were seen in BRCA mutated tumors [105].
Iniparib (BSI 201 or 4-iodo-3-nitrobenzamide) is a prodrug which irreversibly inhibits PARP-1 and it is the first PARP inhibitor to show survival advantage in triple-negative breast cancer (TNBC) patients. It has entered in phase III study despite the fact its active metabolite is still unknown. Iniparib is given intravenously twice a week. The phase I study included 23 patients with solid tumors. The concentration that brought about efficacy in preclinical models was 20-30 ng/mL, so achievable levels were well over the preclinical efficacious levels. The 2.8 mg/kg dose caused PARP inhibition in PBMCs by more than 50% with the first dose. Subsequent dosing increased the amount of PARP inhibition to more than 80%. Six of the 23 heavily pretreated patients had stable disease for at least 2 months (up to over 9 months in 1 patient) [113].
Veliparib has been shown to be a potent inhibitor of PARP, as well as, to have a good bioavailability. In pre-clinical studies veliparib potentiated TMZ, platinum agents, cyclophosphamide, and radiation in syngeneic and xenograft tumor models [114]. Combined with topotecan, veliparib has showed significant myelosuppression. The original schedule was topotecan at days 8 and 2-5 at 1.2 mg/m2, and veliparib 10 mg BID at days 1-7. The schedule was changed to topotecan at days 1-5 when 0.9 mg/m2 of it was not tolerated [115]. Furthermore, PARP inhibitors also augmented the effect of irradiation in vivo, as shown in mouse colon cancer xenograft model, where combined therapy increased survival from 23 days with radiation alone to 36 days. One subject also presented complete remission (CR) [108].
Unfortunately, as well as for other therapies, resistance to PARP inhibitors has already been reported. A possible explanation for that would be that a second mutation, a compensatory mutation or a crossover could reestablish the wild-type BCRA protein, reversing the BCRA deficiency [109]. Additionally, upregulation of p-glycoprotein efflux pump, 53BP1 silencing 53BP1 and increased expression of PARP by the tumor have also been shown as a resistance mechanism for PARP inhibitors [116]. Nevertheless, overcoming this resistance could be achieved by: a third mutation on BCRA, which converts the cell back to the mutated form; a mutation that inhibits HR; downregulation of the P-glycoprotein pump; or, upregulation of 53BP1. Recently 6-thioguanine (6-TG) has been shown to be active in cells resistant to PARP inhibitors in BRCA2 deficient tumors [117].
Despite the difficulties encountered by physicians and patients in the fight against cancer, we are currently witnessing an ever growing spectrum of new targets and strategies to combat this disease. Considering that an optimal therapy for cancer would be developed based on specific aspect of each patient, target therapies appear as important alternatives to overcome the hurdles presented by currently available strategies. Moreover, as different molecules can be targeted at once, in combination or not with conventional therapies, issues associated to resistance are thought to be milder than with chemotherapy alone. Altogether, we consider that target therapy brings the possibility of increasing patients’ overall survival, quality of life, and, maybe, could point to the possibility of vanquishing this disease.
Spinocerebellar Ataxia (SCA) is well known to be an autosomal dominant progressive disease that significantly affect quality of life [1]. Despite the many types of SCA based on genetic code variations, which are reflected in varying severity of symptoms, studies have shown that balance problem remained to be the mainstay reason in quality of life reductions [2]. Due to the appearance of all these symptoms, it is still a challenge in prioritizing problems to be managed in order to provide the best impact. One common language that is generally used as a functioning concept in physical medicine and rehabilitation field, is known as the International Classification of Functioning, Disability, and Health (ICF) concept [3]. Several investigations had shown that utilizing this concept in rehabilitation would substantially enhance success due to better prioritization of problems. Although rehabilitation had been demonstrated to be a cornerstone in ataxia therapy, reports about ICF in SCA rehabilitation is still very much lacking [4].
While rehabilitation could alleviate several symptoms of SCA, many concerned if these therapies could match the speed of natural progression in this disease [4, 5]. As a general overview of rehabilitation interventions, it could be majorly divided into technique based rehabilitation exercises, and the utilization of modalities [2, 6, 7]. Exercises are then more specifically classified to each professionals in the rehabilitation team, namely physiotherapist, occupational therapist, and speech therapist. Each of the rehabilitation team play an essential part towards the holistic care of SCA subjects, and hence has to be well apprehended. On the other hand, modern therapy modalities have emerged as adjuncts to conventional therapy [8, 9]. These newer modalities are targeted to improve neuroplasticity in SCA subjects as the residual brain potential towards better functioning [10]. Therefore, this chapter is dedicated to review the comprehensive management of SCA from the physical medicine and rehabilitation point of view.
Over the years there seem to be growing evidence on the language of physical medicine and rehabilitation, especially in defining disability and its impact to both the individual and the society they live. The most recent terminology utilizes the International Classification of Functioning, Disability and Health (ICF) concept [3]. The ICF concept is a supplement of the 10th revision of International Statistical Classification of Diseases and Related Health Problems by World Health Organization (ICD X), that comprehensively describes an individual’s health condition while still accounting their performance in community [3]. This concept could then ease physiatrists in creating both treatment goals and therapy focus which are tailor made for the individual.
Utilizing ICF in the daily practice requires the use of several core sets which are specified for the disease, but this however has been a challenge as not all diseases have their specific core sets published. As SCA have no specific core set yet, it is then recommended for physiatrist to adapt to an existing core set which has similar properties, and chronic stroke core set would seem most fitting to an ongoing central neurological disorder [11]. Aside from utilizing the core set, it is important to focus on some components of the ICF concept that could become the focus of the treatment plan, emphasizing on setting achievable goals by using several measuring tools.
In a glance it could be seen that the ICF concept starts with describing the body structure and body function after stating the diagnosis [3]. Afterwards, activity and participation should be listed as to describe the individuals’ challenges in performing activity of daily living or even in the community level [3]. The next subsection of ICF involves description of environmental factors that would affect the individual, be it from physical environment or the community they are involved in [3]. Last but not least, personal factors should be addressed as well, knowing that adherence and motivation would affect the success of a rehabilitation program.
The focus of body structure in spinocerebellar ataxia is obviously the cerebellum, in the spinocerebellum (center) portion. It is known that the spinocerebellum gathers a large volume of sensory information from the peripheral organs, as well as relaying information from the motor cortex [12, 13]. Etiologically this is caused by autosomal dominant mutation on the SCA gene, and this would disrupt the connection between multiple layers of cerebellum [1]. Prior studies had shown that severity of symptoms would correlate to the cerebellar areas involvement, and differs between various types of SCA [2, 7, 14]. Ultimately these changes result in functional disturbances as well as learning difficulties [15, 16].
One of the main body function disorders in SCA that should be addressed is balance and postural control [9, 17]. Consistently studies had shown that balance is disturbed both during static and dynamic, hence implies difficulty in performing effective gait, and maintaining standing position [9, 18, 19]. Since cerebellum also becomes a relay center for agonist and antagonistic complimentary contractions, it is natural to see that spinocerebellum lesion would affect effective voluntary muscle contractions, which could also present as central hypotonia [4, 6]. As discussed earlier, learning difficulties in SCA would span its impact from impaired conditional skill learning, up until reduced ability in adapting changes from environment [15, 16]. All these errors in cerebellar signaling would also result in poor coordination, as there are several mismatches in relaying sensory information to produce an effective motor response, as well as poor intra-limb coordination in spinocerebellum damage [20, 21]. Limited study are available in exploration of autonomic function disorder, and it was reported that overactive bladder is most commonly seen in SCA 2 [22]. Therefore, despite the local extent of damage in body structure, the functional impact is notoriously destructive.
Having the body function described, it could be inferred that there would be a wide range of activity and participation disorders in SCA patients. One of the most reported problem in activity would be gait efficacy, as the lesion will interfere limb advancing patterns, as well as poor alternative terrain adaptability [8, 19]. Despite the inferior quality of life in motor control, the patients could still communicate as there are supposedly no barrier in this [23]. Even so, several studies revealed that cognitive impairments are found in SCA with varying severity [15, 16]. A number of studies have also reported that difficulty in verbal memory, learning, and fluency are commonly seen [16, 24]. These cognitive disorders would sum into a restriction in several community participation, but motor abilities still remained to inflict the most significant effect to quality of life in SCA [25]. Reports have mentioned the involvement of visuospatial and executive functioning abilities being reduced in SCA3, as it may correlate with reduced cerebellar perfusion [16]. Learning abilities in particular, were consistently shown to be retained in prodromal SCA2, as neural plasticity may still be prominent with Brain Derived Neurotrophic Factor playing its role, and other parts of the brain compensating for the functional deficit [15]. These evidences of preserved learning abilities in progressive disorders, must be recognized in the highest priority, knowing it would be the key to efficient rehabilitation for SCA cases [26, 27, 28].
The main environmental factor issues that was addressed for SCA is the difficulty to walk on varying level terrains [13, 29, 30]. It should be remembered that stable walking in varying level terrains require several functions ranging from cognition, vision, limb control, and balance. Severe fatigue was also seen in 69% of SCA patients, and thus different SCA types would result in different lesion focus and function disorder [31]. Moreover, since learning abilities are also compromised, a combination of these symptoms would ultimately result in terrain adaptation barriers [1, 4]. These should be identified in each patients, and correlated to their living environment in order to formulate an effective intervention.
Depression were consistently reported in several studies on SCA, and this could correlate significantly with quality of life [22, 30]. As mentioned previously that mobility is the main concern, depression levels were also seen lower in those subjects with better mobility [6, 25]. Even when other causes of depression may revolve around memory and learning ability disorders, most SCA subjects would have learning difficulty in limb control, which becomes a vicious cycle and a hazard for them to perform well in mobile activities of daily living [5]. Therefore, early detection of depression is important, especially in the personal factors subsection of ICF.
Although physical medicine and rehabilitation approach to SCA might differ between studies, it’s observable that the main focus is always towards body function, activity and participation. This focus is generally uncommon to be seen in the published studies, since most of these studies would focus on exploring various types of SCA, such as SCA1, SCA2, SCA3, SCA6 and SCA7 that are commonly found in the community [1, 7, 14, 27]. Shortly put, rehabilitative approach to SCA would place its greatest weigh on identifying disorders of body function through physical examination, rather than determining the SCA type through genetic testing [6]. In any case, each individual must receive tailor made interventions even when they are in the same SCA type.
In response to the stated functional problems, various rehabilitation strategies have been implemented and studied over the years [2, 6, 7]. Surely mobility and balance interventions have been one of the main focus in SCA studies, however through time, studies have widened their range of focus into endurance, cognition, and speech [30]. Rehabilitation strategies may be a combination of several mode of interventions, such as exercise, physical modality, and sensory stimulation [9, 14, 27].
Comprehensive examination is required prior to these interventions, as each patients should receive tailormade intervention, and thus not all of these strategies are administered to all patients. Through utilization of ICF conceptual analysis, then clinicians should focus on body function problems identified in SCA patients, as shown on Table 1 that depicts the common functional problems seen in SCA subtypes. This subsection will discuss these strategies in detail to give an overview of what is being studied in the published studies.
No | Function | SCA Type |
---|---|---|
1 | Sensory and Motor Cortex [13] | 6 |
2 | Ataxia & Cognition [15] | 2 |
3 | Falls, Balance Impairment, & Functional Mobility [29] | 1, 2, 3, 6 |
4 | Non-motor & Extracerebellar [22] | 2 |
5 | Cognitive [24] | 6 |
6 | Action perception cerebellar recruitment [26] | 6 |
7 | Dystonia [32] | 1, 2, 3, 6 |
8 | Cognitive & Socio-cognitive [16] | 1, 2, 3, 6, 7 |
9 | Clinical & Genetic of Brain MRI Changes [33] | 1, 2 |
10 | Motor & Cognitive – brain volume [34] | 7 |
11 | Autonomic Function [35] | 2 |
12 | Non ataxic manifestations [36] | 2 |
13 | Dysphagia [37] | 3, 6 |
Spinocerebellar functional problems in common SCA types.
Majority of the published studies have mentioned how physiotherapy plays a big role in mobility interventions of SCA patients, be it through conventional therapy or through exergames and virtual reality [9]. Since physiotherapy intervention is primarily focused on achieving better gait control, it would naturally revolve on improving balance, strength, endurance, and posture simultaneously [18, 27]. This finding has resulted into a more focused exercise sessions in the recent studies, aiming mainly on trunk balance, as these would be positively reflected in significant improvement of Scale for the Assessment and Rating of Ataxia (SARA) score [19, 38].
Although there are no published guidelines on SCA mobility exercise, several published studies from Cuban Centre for the Research and Rehabilitation of Hereditary Ataxia (CIRAH) had effectively shown the benefits of intensive neurorehabilitation as they have conducted [18, 27]. The whole therapy lasted for four hours per day, five days per week, lasting for 12 weeks in total, hence to the authors’ knowledge, this is the longest exercise duration seen per day. Daily tasks include both physiotherapy and occupational therapy interventions, with several breaks in between to restore both energy and training focus. It could be resumed that majority of the exercises given in CIRAH’s daily tasks include static balance improvement, and positional changes, all to improve trunk control and complement daily living tasks being trained by occupational therapists. Another important component that should be noted is the coordination exercises, which trains intra-limb coordination [18, 27]. These sets of exercises had proven to be very effective in improving cerebellar symptoms, as reflected in constant improvement of SARA scores of both SCA subjects in early prodromal stage and SCA2 diagnosed 11 years mean post onset [18, 27].
Other studies had utilized shorter sessions as compared to the CIRAH neurorehabilitation schedule, but all these had shown significant improvement of SARA scores. One such study reported that partial Body Weight Supported Treadmill Training could improve balance significantly, and general positive trend in improving mobility, endurance, and quality of life [19]. It could be possible that these studies alike are more focused on providing intervention in trunk control, which is parallel to the fact that trunk ataxia has better prognosis as compared to limb incoordination in SCA. Another concern lies that there are controversies in the outcome measurement of SARA scores, as they are very sensitive in detecting cerebellar symptoms, but not for extracerebellar symptoms. Despite those controversies, SARA scores could still be utilized as it correlates closely to functional abilities, and thus would pertain to be an effective evaluation tool in SCA studies.
Additionally, consistent evidence revealed that trunk ataxia could have better rehabilitation prognosis as compared to limb ataxia [8, 39]. The main problem persists that the rate of degeneration at every year must be matched with beneficial gains from exercise, and thus effective regimens would be the primary choice as a rehabilitation goal. The natural progression of SARA score in SCA is noted to be 0.6 to 2.5 points per year, whereas it was shown in most studies how training would effectively reduce SARA at least by one point, displaying clinical importance of these interventions [5].
It could be acknowledged that maintaining the provided gains from exercise is of importance in degenerative disorder [2, 6]. Several recent studies had revealed how exergames (exercise games) and immersive virtual reality would be able to fill up this shortfall in conventional therapy [8, 9]. Exergames here are considered adjuvant to the traditional physiotherapy, and could never replace their roles in ataxia rehabilitation [9]. An important feature in exergames that should be highlighted, is the fact that there are rapidly changing environment, thus demands an accurate anticipation from the ataxic cases, providing excellent gains to the sensorimotor system [9]. These anticipation were shown to correlate with real life situations, and could effectively maintain exercise effects throughout longer period [8, 9].
Proper choosing of modalities would benefit SCA subjects in different stages, where early stages could follow high demand competitive sporting exergames such as ping-pong, badminton and squash [8]. These exergames and virtual reality should be performed on elastic carpet, as it’s shown to give additional benefits in improving coordination and postural control through proprioceptive feedback. More severe ataxia would not allow them to play on competitive exergames, and would obtain greater advantage from good postural control. Games such as tightrope walk, which requires the user to maintain a specific position while still advancing forward, had been reported to effectively enhance both static and dynamic balance [8]. On the other hand, mild to moderate stages would benefit from conventional coordinative physiotherapy and severe stages though have no clear guidelines yet [9]. Hence it’s shown how exergames would play its best role in early stages, and also to maintain the gains accrued from conventional physiotherapy. As stated previously that studies had shown how mobility learning mechanisms may still be preserved in SCA cases, these newer therapies would then be targeted to hone these adaptive skills and apply them to their daily situations.
While many studies had shown how trunk control could have many exercise options, improving limb control has been shown as a big challenge in SCA subjects. It was also reported that good intra limb control is best seen in walking analysis, observing their coordination in performing effective transition from single and double leg stance [19]. Several studies had shown that static cycling would be an effective intervention to improve intra limb control [20, 21]. A controlled trial comprising of four week long cycling exercise was reported to restore the ability in modulating H-reflex inhibition, and is also correlated with better functional performances [40]. Although the impact was not as major as their healthy control counterpart, it could be seen that cycling would present itself as a potential exercise option for improving coordination in SCA subjects [40]. Added effects of endurance and strength gains through stationary cycling has also been reported, especially in mobility disorder patients such as cerebral palsy [41].
Postural exercise approach are generally based on “re-learning” strategies of destabilizing responses, that anticipatory movements are trained in various environments, as well as honing of sensorimotor reflexes in the light of preserved plasticity [9, 13]. Postural instability would also lead to chronic low back pain, and thus stretching must also be given in order to alleviate these before and after training sessions [9]. One voxel based study had shown 2 weeks of postural training would lead to improvement of balance, which was maintained for 3 months after training. Additionally, gray matter volume would also increase, and interestingly it is on the non-affected areas, meaning to say that targeted plasticity lies in the cerebral areas to compensate their cerebellar loss [28]. The study had mentioned that dorsal premotor cortex obtained the most compelling change, as they project to primary motor cortex and cerebellum, all of which are involved in movement planning and motor learning. Both patients and controls demonstrated an increase in gray matter volume in temporal association areas, this may be due to the requirement of performing sequential actions, which would in turn stimulates procedural memories in both hippocampus and basal ganglia. Cerebellar changes post exercise are not seen in cerebellar degenerative disorders as expected, but is significantly seen in healthy controls, with parallel increase in visuospatial and temporal inputs. These would then show how interventions towards premotor cortex growth should be the main goal of exercise in SCA subjects in preserving mobility [28].
Besides physiotherapy interventions, occupational therapy is another important modality within the attempts of improving quality of life in SCA subjects [9, 42]. As mentioned previously, occupational therapy is usually incorporated with physiotherapy courses [18]. In the big picture, they should be given after warm up stretches to obtain better postural control during the specific exercises. In the published studies, mainly occupational therapy intervention would have a one hour duration, and this addition have been proven effective in improving both SARA and Functional Independence Measure (FIM) scores. The program itself consists of basic activity of daily living exercises, which are essentially a part of the FIM and Barthel Index Scoring sheet. Some of the examples include dressing activities such as tying shoelaces, buttoning shirts; tabletop instrumental activities for instance inserting sewing needles, drawing, cutting paper figures, using keyboards; and finally communication activities like reading texts out loud, commenting and interpreting verbal and textual information [18].
Despite the promising effects, studies focusing on occupational therapy as an individual therapy is still lacking due to the progressive nature of the disease, thus could only be shown as an additive effect to the proven effective physiotherapy. A study had shown that occupational therapy would improve Hamilton scores for depression in SCA3, and this improvement was independent from its confounders [42]. So far there are no studies yet on occupational therapy being a home program, but it could be speculated that more frequent practices would eventually trigger better quality synapses in the brain, leading to a more superior functional improvement. Therefore, aside from improving the functional abilities, it could also be inferred that occupational therapy would enhance self-confidence, alleviates depressive mood, and thus forecasts better participation [9, 42].
In order to fully complement the comprehensive care of SCA patients, speech and language pathology should be addressed to achieve well-being [23]. However, there are very few studies that discusses this, since only few types of ataxia that has bulbar involvement and thus results in dysphagia due to excess salivation [43]. A study had shown and compared how dysphagia is more severe in SCA3, whereas mild dysphagia is seen in SCA6 [37]. Possible treatment options would depend on related problems, but mostly rehabilitation targets is to increase willingness and independence [23, 43]. At the same time, swallowing exercise would also aim in cueing patients to gain self-recognition in their swallowing process, thus triggering anticipatory self-evaluation [23, 43]. Since cognition is also an identified problem in SCA, this could also be identified by the speech and language pathologist, and self-corrections cueing prove to be effective [23]. In a more severe cases, safe swallowing practice along with appropriate dietary modification may be done in order to prevent aspiration [23]. Despite the scarcity of studies, a Cochrane review on speech disorder treatment for hereditary ataxia revealed that all the rehabilitative interventions have been reported as safe, and hence should be recommended in the comprehensive care [43].
Clinicians should always remember that neuroplasticity plays a big role in alleviating SCA cerebellar signs, as proven in SCA2 subjects [10]. Unfortunately, there are still no reported significant effect on non-ataxia signs [28]. It also appears that SCA2 subjects may have more progressive disorders, and thus 24 weeks of therapy was suggested, whereas for other types such as SCA6 and SCA31, 4 weeks of training may already show better SARA score improvements [27]. Thus, the extent of affected area in the cerebellum would correlate directly to the progressiveness, hence would warrant different sets of rehabilitation strategy. Recognizing the neuroplasticity potential of SCA individuals would assist clinicians in identifying therapy focus, as well as motivating patients and family members to improve exercise adherence.
Although there is no general guideline on this, rehabilitation strategies would adhere to functional disorder basis, that each strategy is given only when the disorder is identified [1, 6, 9]. Due to the progressive nature of the disease though, it is also plausible to administer the intervention even when the disorder have not emerge, knowing the fact that it may alleviate functional deterioration in the future. Two things that should be remembered are that fatigue may be one of the limitation in performing all the available strategies, and secondly, maintenance in quality of life must always be upheld [30]. Despite not many studies focused on quality of life, clinical experiences showed that progressive disease rehabilitation interventions should emphasize on giving life to the rest of the years, rather than adding years to the remaining life.
Aligned with their natural progression of disease, rehabilitation goals in degenerative ataxias would differ significantly from acquired ataxias. It was shown that acquired ataxias such as in stroke cases, would come with focal ischemia, ergo a better prognosis as compared to the diffuse lesion in SCA [1, 44]. Additionally, the degenerative process of SCA is of the highest concern, therefore it must be addressed and evaluated with valid measuring tools. Several subjects that were focused in prior studies include functional abilities, mobility function, balance, endurance, and quality of life [30].
Ataxia specific tools such as SARA and Inventory of Non-Ataxia Symptoms (INAS) are most commonly utilized in many studies [45, 46]. The SARA score is designed to assess cerebellar symptoms semiquantitatively, and exclusively only SCA subjects were tested during the validation process. The SARA score ranges from 0 to 40, higher number showing more severe ataxia, the values then reflect eight physical examination items each with specific numeric scores. Physical examination of gait, stationary standing, and sitting position are observed, with a cut off of maintaining 10 second stationary position without difficulty as sufficient. One common bulbar component of SCA being speech production is also evaluated, and will be scored worst if the subject could only do unintelligible speech during normal conversation. Last but not least, performance of coordination tests namely finger chase, nose to finger test, dysdiadochokinesia, and heel shin test are graded with a score of 4 as the worst performance. As could be seen in these scored items, all of these are included in the general rehabilitation examination of cerebellar symptoms, and therefore this score is very much applicable in daily practice. Consistently it was shown that SARA score would correlate closely to symptom severity, and thus could be practically used to evaluate the efficacy of rehabilitation program [45].
With that being said, the main limitation of SARA would be that other scorings are required in the light of addressing extracerebellar symptoms. Therefore, the same research group had devised INAS score which could quantify the presence and severity of non-ataxia neurological symptoms [46]. The inventory consists of 30 items that is divided into two main section, the first spans widely from addressing cerebellar oculomotor signs, spinal reflexes, upper and lower motor neuron signs through physical examination. The second section on the other hand, lists the possible symptoms that the patient might bring about, such as double vision, dysphagia, urinary dysfunction, cognitive impairment, and other related findings that have not been listed. Similarly, the INAS scoring was also validated by utilizing SCA subjects with varying types, namely SCA1, SCA2, SCA3, and SCA6. Among these SCA types, it was reported that SCA1 and SCA2 presents extracerebellar symptoms along with the baseline ataxia, thus they are good candidates for the INAS, while SCA6 being purely cerebellar would play its role as control. The summation of the score is called INAS count, in which they have concluded that both INAS and INAS count shows good reproducibility, but unsatisfactory responsiveness over extended period due to the wide variation of measurement [46]. However it was clearly shown that INAS is an excellent supplement to the SARA score for SCA subjects.
Other studies had also shown that in very early ataxia stages, both SARA and INAS are ineffective in prodromal stage [18]. Functional test alternatives such as tandem gait for 5 meter test was suggested to be used, as it is very sensitive to changes post rehabilitation [18]. The tandem gait itself is a complex task which may not be performed well by all SCA subjects, therefore traditional balance assessments such as Berg Balance Scale (BBS) [17, 25, 44]. The BBS consist of 14 item list, with an ordinal scale of 0 to 4, higher number meaning better balance function. The main categories in the item list revolves around maintenance of stationary position, transfer, and change of position while performing simple activities. Summation of all the scores for less than 45 would indicate greater risks of falling [47]. In cases that the BBS is not used in total, the components could also be used individually to monitor a specific progression within therapy evaluation.
Another study had also utilized the timed up and go (TUG) test to evaluate balance and function in degenerative ataxia subjects [20, 21]. In several rehabilitation trials, TUG test are well preferred due to their ease of examination, quantification of results in seconds, and finally their best representation to daily living tasks. However in cases of SCA, probably the complete TUG test might not always be performable due to high risk of fall. Several studies had also utilized expanded TUG test, which divides the full TUG test into segments measured by milliseconds, namely sit to stand, gait 1, turning, gait 2, and stand to sit [48, 49]. By separating these components, physiatrists would have a better view on which component are hindering the subject in achieving good TUG performance, and at the same time, would be able to assess improvements more accurately. Although the expanded TUG have not been utilized in SCA studies, it has been commonly used in other chronic neurological cases such as stroke, and hence should be recommended for future studies on degenerative ataxia [48].
Aside from TUG test, a more comprehensive functional test tool such as functional independence measure (FIM) are commonly used in SCA studies [25]. The utilization of FIM had expanded the view on functional activities and illustrate their level of independence in those activities. The FIM tool comprise of several components such as bowel, bladder control, transfer, locomotion, social participation, communication and also self-care activities [50, 51]. These components will then be graded from 1 to 7, when value of 6 and above shows complete dependence, scores 3 to 5 shows moderate dependence, and lastly below 3 shows full dependence. Therefore, this tool would be best used when the subjects are not fully independent, and other individuals such as caregivers are involved. Naturally FIM would have a ceiling effect when the patient is fully independent, and there are no additional scoring for the performance quality.
In SCA subjects it was reported that reduction of 1 point in FIM score would be significantly reflected in 4.49 point decrease in the physical functioning of Short Form 36 (SF-36) score [25]. In the light of SF-36, it is the most commonly used tool to assess quality of life in SCA subjects. As the name implies, this tool has 36 questions which covers eight domains of health, for instance limitations in physical activities, social activities, role function, pain, emotional problem, mental health, fatigue, and finally general health perceptions [52]. Various ordinal options in each questions should firstly be calculated through a formula to obtain domain scores. This finding then reveals how FIM could also be used to assess overtime changes that would complement the changes in other ataxia specific tools, in which better mobility correlates with greater quality of life [25, 53].
In relationship to quality of life, fatigue is pretty much prevalent and thus is essential to note. Aside from SF-36 that touches on the fatigue concept, the fatigue severity scale (FSS) is a specific 9 item scale which measures fatigue in a 1 to 7 scale, 7 being strongly agree with the fatigue item being stated [31]. Accomplishing the FSS requires only 5 minutes, but the questions would not accurately direct the underlying functional disorder beneath, especially in chronic cases where fatigue is evident. Therefore, both cardiovascular and respiratory specific tools must be administered separately in order to evaluate through time. There are a selected number of studies that discuss the changes of cardiorespiratory attributes through evaluation of maximum oxygen consumption (VO2 max), six minute walk test (6MWT), peak expiratory flow (PEF), and maximum inspiratory pressure (MIP) [21, 38, 54].
Evaluation of VO2 max is done by performing ramped ergometer exercise stress testing, while 6MWT could be performed with assistance if the subjects are unable to [21]. With all these limitations, it could be possible that evaluation of cardiovascular function will not be optimal owing to the natural progression of the disease and obstacles in maintaining stationary position. On the contrary, respiratory function has shorter examination time, allowing better examination compliance [54]. A recent study had shown how examination of both PEF and MIP are safe to be performed in SCA2 subjects, when better respiratory function seemed to correlate well with Activity of Daily Living scales, and ataxia specific SARA scales [54]. Additionally, the study had also reported that one third of the subjects complained of dyspnea, with interpretation of restrictive pulmonary disease. It is speculated that the restriction may be caused by the lack of coordination of the respiratory muscles, ultimately resulting in reduced chest expansion [54]. On the other point of view, postural control exercises would be able to improve diaphragmatic excursion, and thus provide attempts in correcting respiratory dysfunction [55, 56, 57]. Therefore, it is only possible that physiotherapy interventions to manage ataxia related symptoms also alleviate respiratory symptoms, thus very mild respiratory dysfunction that could be reported.
Being a progressive degenerative disease, physical medicine and rehabilitation have an important role in alleviating symptoms as well as improving quality of life in Spinocerebellar Ataxia [4]. Initial analysis of SCA begins with identifying the ICF concept, in which body structure being cerebellum, and several body function problems such as postural control and intra-limb control should firstly be addressed [8]. These underlying disorders would lead to below par daily living performance, further leading to restriction in participation, and might also result in depression [25, 30]. Nevertheless it should be remembered that there is a natural progression of functional decline, which is unavoidable in SCA [1]. Therefore, rehabilitation goals are generally focused in maintaining functional capacity, as well as improving social participation and quality of life [4].
Achieving the aforementioned rehabilitation goals could be done through several interventions, but it was shown that physiotherapy exercise sessions focused in improving posture, balance, and gait had proven to be the most effective. Duration of session generally lasts for 1 hour or more, but it should be preceded with stretching to ease pain and provide better proprioceptive feedback [18]. In order to enhance retaining of the exercise gains, proper choices of virtual reality and exergames could be done [8, 9]. Most studies have also incorporated occupational therapy that rehearses daily living activities, and it’s seen to correlate well with quality of life [42]. Simultaneously, speech therapy would also play its role in SCA by managing communication and swallowing disorders that are present in several types of SCA [43]. Several valid outcome measuring tools have been shown effective to monitor changes over time, and it should be remembered that these measures could assess specific components that are being trained [22, 30]. In conclusion, effective rehabilitation approach should comprise of all the previously mentioned components, while always being validated by specific outcome measure tools. In addition to that, further studies should devise a guideline for general rehabilitation of SCA through validated trials.
The authors declare no conflict of interest.
The corresponding author would like to mention a note of thanks to the ever-supporting wife, Gisca Meiviana, for all her constant encouragement during the process of authoring this book chapter, and for being an amazing life partner throughout.
IntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"14"},books:[{type:"book",id:"10666",title:"Noble Metals Recent Advanced Studies and Applications",subtitle:null,isOpenForSubmission:!0,hash:"7322b325b1276e2b4185a7db798d588a",slug:null,bookSignature:"Dr. Mousumi Sen",coverURL:"https://cdn.intechopen.com/books/images_new/10666.jpg",editedByType:null,editors:[{id:"310218",title:"Dr.",name:"Mousumi",surname:"Sen",slug:"mousumi-sen",fullName:"Mousumi Sen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10668",title:"Sustainable Concrete",subtitle:null,isOpenForSubmission:!0,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:null,bookSignature:"Prof. Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editedByType:null,editors:[{id:"144691",title:"Prof.",name:"Hosam",surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:null,isOpenForSubmission:!0,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:null,bookSignature:"Dr. Fahmina Zafar, Dr. Anujit Ghosal and Dr. Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:null,editors:[{id:"89672",title:"Dr.",name:"Fahmina",surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10670",title:"Properties and Applications of Alginates",subtitle:null,isOpenForSubmission:!0,hash:"062083e53cc5c808af597de6426cea06",slug:null,bookSignature:"Dr. Irem Deniz, Dr. Esra Imamoglu and Dr. Tugba Keskin Gundogdu",coverURL:"https://cdn.intechopen.com/books/images_new/10670.jpg",editedByType:null,editors:[{id:"204855",title:"Dr.",name:"Irem",surname:"Deniz",slug:"irem-deniz",fullName:"Irem Deniz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10941",title:"Ferrite",subtitle:null,isOpenForSubmission:!0,hash:"f6a323bfa4565d7c676bc3733b4983b0",slug:null,bookSignature:"Dr. Maaz Khan",coverURL:"https://cdn.intechopen.com/books/images_new/10941.jpg",editedByType:null,editors:[{id:"107765",title:"Dr.",name:"Maaz",surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:16},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1028",title:"Hemodynamics",slug:"hemodynamics",parent:{title:"Hematology",slug:"hematology"},numberOfBooks:2,numberOfAuthorsAndEditors:16,numberOfWosCitations:12,numberOfCrossrefCitations:2,numberOfDimensionsCitations:7,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"hemodynamics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7042",title:"Highlights on Hemodynamics",subtitle:null,isOpenForSubmission:!1,hash:"ab4cb86baa2cadb67630b31257cb04b2",slug:"highlights-on-hemodynamics",bookSignature:"Theodoros Aslanidis",coverURL:"https://cdn.intechopen.com/books/images_new/7042.jpg",editedByType:"Edited by",editors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1653",title:"Hemodynamics",subtitle:"New Diagnostic and Therapeutic Approaches",isOpenForSubmission:!1,hash:"2cf4b686414a77f0c867007f5062914f",slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",bookSignature:"A. Seda Artis",coverURL:"https://cdn.intechopen.com/books/images_new/1653.jpg",editedByType:"Edited by",editors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"36116",doi:"10.5772/36263",title:"The Evaluation of Renal Hemodynamics with Doppler Ultrasonography",slug:"the-evaluation-of-renal-hemodynamics-with-renal-doppler-ultrasonography",totalDownloads:11001,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Mahir Kaya",authors:[{id:"107675",title:"Dr.",name:"Mahir",middleName:null,surname:"Kaya",slug:"mahir-kaya",fullName:"Mahir Kaya"}]},{id:"36121",doi:"10.5772/34272",title:"Carnosine and Its Role on the Erythrocyte Rheology",slug:"carnosine-and-its-role-on-the-erythrocyte-rheology",totalDownloads:1872,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"A. Seda Artis and Sami Aydogan",authors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"},{id:"110016",title:"Prof.",name:"Sami",middleName:null,surname:"Aydogan",slug:"sami-aydogan",fullName:"Sami Aydogan"}]},{id:"36119",doi:"10.5772/36876",title:"How Ozone Treatment Affects Erythrocytes",slug:"how-ozone-treatment-affects-erythrocytes",totalDownloads:3902,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Sami Aydogan and A. Seda Artis",authors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"},{id:"110016",title:"Prof.",name:"Sami",middleName:null,surname:"Aydogan",slug:"sami-aydogan",fullName:"Sami Aydogan"}]}],mostDownloadedChaptersLast30Days:[{id:"62838",title:"Introductory Chapter: Hemodynamic Management. The Problem of Monitoring Choice",slug:"introductory-chapter-hemodynamic-management-the-problem-of-monitoring-choice",totalDownloads:537,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"highlights-on-hemodynamics",title:"Highlights on Hemodynamics",fullTitle:"Highlights on Hemodynamics"},signatures:"Theodoros Aslanidis",authors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis"}]},{id:"36119",title:"How Ozone Treatment Affects Erythrocytes",slug:"how-ozone-treatment-affects-erythrocytes",totalDownloads:3900,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Sami Aydogan and A. Seda Artis",authors:[{id:"99453",title:"Dr.",name:"Aise Seda",middleName:null,surname:"Artis",slug:"aise-seda-artis",fullName:"Aise Seda Artis"},{id:"110016",title:"Prof.",name:"Sami",middleName:null,surname:"Aydogan",slug:"sami-aydogan",fullName:"Sami Aydogan"}]},{id:"36116",title:"The Evaluation of Renal Hemodynamics with Doppler Ultrasonography",slug:"the-evaluation-of-renal-hemodynamics-with-renal-doppler-ultrasonography",totalDownloads:10998,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Mahir Kaya",authors:[{id:"107675",title:"Dr.",name:"Mahir",middleName:null,surname:"Kaya",slug:"mahir-kaya",fullName:"Mahir Kaya"}]},{id:"62847",title:"Cerebral Hemodynamics in Pediatric Hydrocephalus: Evaluation by Means of Transcranial Doppler Sonography",slug:"cerebral-hemodynamics-in-pediatric-hydrocephalus-evaluation-by-means-of-transcranial-doppler-sonogra",totalDownloads:455,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"highlights-on-hemodynamics",title:"Highlights on Hemodynamics",fullTitle:"Highlights on Hemodynamics"},signatures:"Branislav Kolarovszki",authors:[{id:"92436",title:"Associate Prof.",name:"Branislav",middleName:null,surname:"Kolarovszki",slug:"branislav-kolarovszki",fullName:"Branislav Kolarovszki"}]},{id:"63370",title:"Functioning of the Cardiovascular System of Women in Different Phases of the Ovarian-Menstrual Cycle",slug:"functioning-of-the-cardiovascular-system-of-women-in-different-phases-of-the-ovarian-menstrual-cycle",totalDownloads:389,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"highlights-on-hemodynamics",title:"Highlights on Hemodynamics",fullTitle:"Highlights on Hemodynamics"},signatures:"Olena Lutsenko",authors:[{id:"225667",title:"Mrs.",name:"Olena Ivanivna",middleName:null,surname:"Lutsenko",slug:"olena-ivanivna-lutsenko",fullName:"Olena Ivanivna Lutsenko"}]},{id:"62523",title:"Influence of Branching Patterns and Active Contractions of the Villous Tree on Fetal and Maternal Blood Circulations in the Human Placenta",slug:"influence-of-branching-patterns-and-active-contractions-of-the-villous-tree-on-fetal-and-maternal-bl",totalDownloads:339,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"highlights-on-hemodynamics",title:"Highlights on Hemodynamics",fullTitle:"Highlights on Hemodynamics"},signatures:"Yoko Kato",authors:[{id:"249827",title:"Prof.",name:"Yoko",middleName:null,surname:"Kato",slug:"yoko-kato",fullName:"Yoko Kato"}]},{id:"36122",title:"Soluble Guanylate Cyclase Modulators in Heart Failure",slug:"soluble-guanylate-cyclase-modulators-in-heart-failure",totalDownloads:1598,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Veselin Mitrovic and Stefan Lehinant",authors:[{id:"111559",title:"Dr.",name:"Stefan",middleName:null,surname:"Lehinant",slug:"stefan-lehinant",fullName:"Stefan Lehinant"}]},{id:"62149",title:"3D Numerical Study of Metastatic Tumor Blood Perfusion and Interstitial Fluid Flow Based on Microvasculature Response to Inhibitory Effect of Angiostatin",slug:"3d-numerical-study-of-metastatic-tumor-blood-perfusion-and-interstitial-fluid-flow-based-on-microvas",totalDownloads:356,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"highlights-on-hemodynamics",title:"Highlights on Hemodynamics",fullTitle:"Highlights on Hemodynamics"},signatures:"Gaiping Zhao",authors:[{id:"172001",title:"Ph.D.",name:"Gaiping",middleName:null,surname:"Zhao",slug:"gaiping-zhao",fullName:"Gaiping Zhao"}]},{id:"36118",title:"Hemodynamics Study Based on Near-Infrared Optical Assessment",slug:"hemodynamics-study-based-on-near-infrared-optical-assessment",totalDownloads:2352,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Chia-Wei Sun and Ching-Cheng Chuang",authors:[{id:"116138",title:"Dr",name:"Chia-Wei",middleName:null,surname:"Sun",slug:"chia-wei-sun",fullName:"Chia-Wei Sun"}]},{id:"36120",title:"Regulation of Renal Hemodyamics by Purinergic Receptors in Angiotensin II -Induced Hypertension",slug:"regulation-of-renal-hemodynamics-by-purinergic-receptors-in-angiotensin-ii-induced-hypertension",totalDownloads:1323,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hemodynamics-new-diagnostic-and-therapeutic-approaches",title:"Hemodynamics",fullTitle:"Hemodynamics - New Diagnostic and Therapeutic Approaches"},signatures:"Martha Franco, Rocío Bautista-Pérez and Oscar Pérez-Méndez",authors:[{id:"113134",title:"Dr.",name:"Martha",middleName:null,surname:"Franco",slug:"martha-franco",fullName:"Martha Franco"}]}],onlineFirstChaptersFilter:{topicSlug:"hemodynamics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"onlineFirst.detail",path:"/online-first/international-classification-of-functioning-health-and-disability-icf-conceptual-approach-towards-sp",hash:"",query:{},params:{chapter:"international-classification-of-functioning-health-and-disability-icf-conceptual-approach-towards-sp"},fullPath:"/online-first/international-classification-of-functioning-health-and-disability-icf-conceptual-approach-towards-sp",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()