\r\n\tGenerally, two main techniques are considered for WPT systems: the near-field and the far-field radio-frequency (RF) methods. Inductive and/or capacitive coupling are two types of near-field method operation. However, this technique is only capable of transferring power over short distances. In contrast, with WPT based on the far-field RF technique (referred to as far-field WPT), where power is transmitted by electromagnetic radiation, the transition of electrical energy over longer distances is made possible, at the cost of lower efficiencies. This feature makes the far-field method an attractive WPT option.
\r\n\tSome interests have been referenced in recent years towards low profile, low power, energy efficient and self-sustainable sensor networks. Many applications and devices are, nowadays, used for identification, tracking and inventory management. A major technology enabling these applications is Radio Frequency Identification (RFID), where a tag, that can be applied to or incorporated into a product, animal or person, is used for identification purposes using radio waves.
\r\n\tTo further promote the development of this area, we invite researchers to contribute original research papers on recent advances in the design and performance analysis of micro- and millimeter-wave systems that employ the concepts of WPT.
Control of cross-infection has been a subject of interest to the dentistry area over the last few decades, due to the concern about the transmission of infectious-contagious diseases, such as AIDS, hepatitis, tuberculosis, pneumonia, and herpes, between the dental patients and dental personnel and the dental office and dental prosthesis laboratory (Codino & Marshall, 1976; Infection control in the dental office, Council on Dental Materials and Devices, 1978; Sande et al., 1975). This concern began in the 1970s, when the microorganism Mycobacterium\n\t\t\t\ttuberculosis was isolated in patients’ molds (Ray & Fuller, 1963) and it was found that Mycoplasma pneumoniae was transmitted to laboratory technicians when they performed wear on contaminated dentures (Sande et al., 1975). Several items, such as instruments (Tarantino et al., 1997), dental burs (Rizzo, 1993), impressions (Abdelaziz et al., 2004), gypsum casts (Berg et al., 2005; Davis et al., 1989), dental appliances (Rohrer & Bulard, 1985), and others are often heavily contaminated with microorganisms from saliva and blood. Powell et al. (1990) also observed that 67% of all the materials received in the laboratories, among them crowns, molds wax records, and dentures, were contaminated with pathogenic microorganisms. The constant exposure of dental personnel and instruments to saliva and blood in virtually every procedure is an ever present hazard and potential contributor to the transmission of infection. Therefore, the use of an inadequate disinfection procedure in the handling of dental materials not only places the unwary staff at risk, but also results in a high level of avoidable cross-contamination.
Dental practitioner has a legal and ethical responsibility to prevent infections in patients and staff members and an interest in protecting her-himself from contracting a disease from a patient. The Centers for Disease Control and Prevention of the United States (Kohn et al., 2004) have recommended sterilization and disinfection procedures to guarantee the safety of dental treatment in the dental health care settings. Typical methods of sterilization and disinfection include dry heat at 160 to 180ºC for two hours, wet steam under pressure at 121ºC for at least 15 minutes (autoclaving), immersion in chemical solutions, gamma radiation, and ethylene dioxide gas. However, these methods can be time-consuming and some of them require special and costly equipment, knowledgeable operative personnel, and constant surveillance. In order to overcome these limitations, microwave irradiation has been recommended as a practical physical sterilization method (Cottone et al., 1991) that is as effective as autoclaving (Tate et al., 1995). The lethal effects of a high frequency electric field on microorganisms was first described in 1925 (Kahler, 1929) and the destructive effects of strong radio-frequency fields on microorganisms were investigated in 1954 (Brown & Morrison, 1954). In fact, there are studies that have pointed out microwaves as a method for disinfecting food (Culkin & Fung, 1975), contact lenses (Hiti et al., 2001; Rohrer et al., 1986), laboratory microbiologic materials (Border & Rice-Spearman, 1999; Latimer, 1977), items of intimate clothing contaminated with Candida albicans (Friedrich & Phillips, 1988), hospital garbage (Hoffman & Hanley, 1994), coloring matter used in the cosmetic industry (Jasnow, 1975), and instruments used in medicine (Rosaspina et al., 1994). Hence, interest in this area has been maintained and in 1985 the technology was applied to the sterilization of dental appliances (Rohrer & Bulard, 1985).
In dentistry, microwave irradiation has been used for several purposes, including disinfection of toothbrushes (Nelson-Filho et al., 2011; Spolidorio et al., 2011), tongue scrapers (Spolidorio et al., 2011), instruments (Tarantino, 1997), contaminated gauze (Border & Rice-Spearman, 1999; Cardoso et al., 2007), dental burs (Fais et al., 2009; Rizzo, 1993), composite polishing instruments (Tate et al., 1995, 1996), molds made from elastomers (Abdelaziz et al., 2004), and gypsum casts (Berg et al., 2005; Davis et al., 1989). Furthermore, microwave irradiation has been widely accepted for polymerizing acrylic resin (Ilbay et al., 1994), drying gypsum products and investment materials (Hersek et al., 2002; Luebke & Chan, 1985; Luebke & Schneider, 1985; Tuncer et al., 1993), and as a post-polymerization treatment for reducing the residual monomer contents of polymerized acrylic resins and its cytotocixity (Jorge et al., 2009; Nunes de Mello et al., 2003). Besides these purposes, some relevant applications of microwave energy in the dentistry field are the disinfection of removable dentures (Dovigo et al., 2009; D.G. Ribeiro et al., 2009; Rohrer & Bulard, 1985; Sanitá et al., 2009; Silva et al., 2006) and the use of this disinfection method to treat patients with oral candidiasis (Banting & Hill, 2001; Neppelenbroek et al., 2008; Webb et al., 2005).
Although the lethal action of microwaves on microorganisms is well established in the literature, the mechanism of destruction of microwaves is not completely understood. While some studies sustain that the effect of microwave irradiation on microorganisms is directly of thermal character (Fitzpatrick et al., 1978; Jeng et al., 1987; Yeo et al., 1999), others claim that the killing of the organisms probably also results from the non-thermal effects of microwaves (Carrol & Lopez, 1969; Culkin & Fung, 1975; Olsen, 1965; Rohrer et al., 1986). In order to attempt these mechanisms of destruction of microwaves, many different microwave regimes have been tested and advocated (Banting & Hill, 2001; Neppelenbroek et al., 2008; Rohrer & Bulard, 2001; Sanitá et al., 2009). Efficacy of microwave irradiation seems to be associated with the vehicle in which the dentures are immersed, the time of exposure, the level of power of the microwave oven, and the type of microorganisms. In addition, when selecting a disinfection procedure, its effect on the physical and mechanical properties of the irradiated materials must be carefully considered. Thus, the establishment of different protocols must be essential to each particular case, with the goal of achieving consistent sterilization without harming dental materials.
Based on the given information, the purposes of this chapter are: 1. to explain and describe the range of applications of microwave irradiation in dentistry field; 2. to review the microbiological effectiveness and recommended protocols of microwave irradiation; 3. to show the mechanisms of action of the microwaves on the microorganisms; and 4. to discuss the effects of microwave irratiation on the properties of dental materials and appliances.
The recognition of the potential for transmission of numerous infectious microorganisms during dental procedures has led to an increased concern for infection control in dental practice. Approaches to the clinical use of microwaves for preventing cross-infection have shown relevant results. Devices and instruments used in dental offices have been identified as a source of cross-contamination among patients and from patients to dental personnel. With this in mind, investigations were undertaken to explore the efficacy of microwave irradiation in disinfecting dental mirrors (Tarantino et al., 1997) and handpieces (Rohrer & Bulard, 1985). In addition, dental burs, which may become heavily contaminated with necrotic tissues, saliva, blood, and potential pathogens during use, can also be sterilized by microwave irradiation (Fais et al., 2009; Rizzo, 1993; Rohrer & Bulard, 1985). In order to prevent cross-infection, microwave energy can also be used to the disinfection of finishing and polishing instruments (Tate et al., 1995, 1996). As any another device used in dental offices, finishing and polishing instruments routinely come into contact with patient’s saliva and blood and may also act as a source of cross-contamination. In accordance with the studies of Tate et al. (Tate et al., 1995, 1996), these dental devices can be effectively sterilized by microwave irradiation.
Another common dental procedure that may cause cross-infection, especially between patients and dental laboratory personnel, is the making of impressions. Previous studies showed that the majority of impressions arriving at a dental laboratory were contaminated with bacteria and other microorganisms (Egusa et al., 2008; Powel et al., 1990; Ray & Fuller, 1963; Sande et al., 1975; Sofou et al., 2002), irrespective of whether they had been exposed to a disinfectant procedure or merely rinsed with tap water (Sofou et al., 2002). The study of Egusa et al. (2008) showed an extensive contamination of alginate impressions with oral streptococci, staphylococci, Candida spp., methicilin resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. These results indicate that a large number of microbes are retained on impression materials and are viably transferred onto the surface of stone casts. In fact, it has been shown that microorganisms can be transferred from impressions to gypsum models (Egusa et al., 2008; Leung & Schonfeld, 1983) and that the dental casts are potential sources of microbial transmission (Egusa et al., 2008; Leung & Schonfeld, 1983; Sofou et al., 2002). Also, even a cast from a properly disinfected impression may subsequently become contaminated by a technician or clinician. Considering all these information, microwave irradiation has been suggested to the disinfection of both impressions (Abdelaziz et al., 2004) and dental casts (Berg et al., 2005; Davis et al., 1989). The clinical relevance of impressions and dental casts microwave disinfection is that this procedure can be performed quickly and repeatedly, without the use of toxic, pungent, or allergenic chemicals. However, the disinfection of impression materials hinders possible cross-contamination only at the time the cast is poured. Because casts become contaminated after the intra-oral adjustments of dental appliances, they must be regarded as the major vehicle for cross-contamination and should be disinfected using microwave energy throughout all phases of the dental treatment.
Another application of microwave irradiation in preventing cross-infection is the disinfection of disposable materials. Although there is little scientific support for this purpose, some reports documented the disinfection of contaminated gauze and swabs (Border & Rice-Spearman, 1999; Cardoso et al., 2007) with the use of microwave irradiation. Cardoso et al. (2007) and Border & Rice-Spearman (1999) demonstrated that a short period of exposure of contaminated gauze pieces and swabs to microwave energy (30 seconds) inhibit the growth of pathogenic microorganisms. The authors suggested that microwave oven could be used instead of an autoclave in a variety of clinical and research settings because the procedure is rapid and the equipment cost is minimal.
Among the purposes of microwave energy in cross-infection prevention, one of the most important is the disinfection of removable dentures. In addition to its contamination by the oral microorganisms, it has been reported that dentures are contaminated at various stages during their fabrication (Verran et al., 1996; Wakefield, 1980; Williams et al., 1985) and are capable of transmitting microorganisms to other materials, dental equipments, laboratory, and technicians (Kahn et al., 1982). Microscopic studies have also demonstrated that a biofilm similar to that formed on natural teeth is present on dentures (Budtz-Jorgensen & Theilade, 1983). Large quantity of Candida spp. (Budtz-Jorgensen & Theilade, 1983) and some bacterial species associated with systemic diseases have been found in removable dentures, with predominance of gram-positive bacteria, as Staphylococcus spp., Streptococcus spp., and Actinomyces spp. (Chau et al., 1995; Glass et al., 2001a; Monsenego, 2000). Gram-negative species, such as Neisseria perfava, P. aeruginosa, Klebsiella pneumoniae, and Enterobacter cloacae, have also been identified (Henderson et al., 1987; Latimer, 1977). In fact, in vivo studies (D.G. Ribeiro et al., 2009; Rossi et al., 1996) found C.\n\t\t\t\talbicans, S. aureus, Streptococcus mutans, and MRSA on the surfaces of dentures from patients, with C. albicans having the highest prevalence in these biofilms. Therefore, the denture can function as a reservoir of microorganisms, enabling the transmission of diseases in the dental office and from it to the prosthetic laboratories. Manipulation of dentures in the different dental procedures may also disseminate the microorganisms throughout the environment in the form of aerosols (Clifford & Burnett, 1995). These pathogens may be inhaled by the dentist, assistants, and laboratory technicians, resulting in cross-infection between patients and dental personnel. In the context of denture microwave disinfection, the first studies were performed in order to demonstrate the effectiveness of microwave irradiation in inactivating microorganisms adhered to complete dentures (Thomas & Webb, 1995; Rohrer & Bulard, 1985; Webb et al., 1998). Using several protocols, positive results were obtained by in vitro and in vivo studies, proving that microwave energy can be an effective method in the disinfection of dentures (Dovigo et al., 2009; Glass et al., 2001b; D.G. Ribeiro et al., 2009; Sanitá et al., 2009; Silva et al., 2006). Thus, performing microwave disinfection of a removable denture before it is transferred to a dental laboratory, and immediately before it is returned to the patient, provides a measure of infection control for all parties.
In the course of time, the fit of dentures progressively declines as a result of time-dependent changes in the supporting tissue. In this context, hard chairside reline acrylic resins or soft denture liners are proposed for permanent or temporary improvement of denture fit. These auto-polymerizing acrylic resins allow the clinician to reline a removable prosthesis directly in the mouth in intimate contact with a large area of oral mucosa. Although such liners improve the denture fit and offer comfort to some edentulous and partially edentulous patients, these materials may present a source of other problems. One of their greatest disadvantages is the ongoing task of hygiene maintenance. Denture reline materials, especially the soft liners, have been found to be more prone to microbial adhesion than acrylic resin base materials because of their surface texture and higher porosity (Nikawa et al., 1992). The rougher surface of a prosthesis with a soft liner exhibits greater colonization by C. albicans when compared with a conventional acrylic resin denture (Wright et al., 1985). As a result, the oral mucosa is more susceptible to infections. A study evaluated the effectiveness of microwave disinfection on three hard chairside reline resins and observed a consistent sterilization after microwave exposure (Neppelenbroek et al., 2003). In other investigations (Dixon et al., 1999; Mima et al., 2008), microwave irradiation resulted in sterilization of a hard chairside reline resin and soft denture liners contaminated by four pathogenic microorganisms. It is also important to emphasize that disinfection by microwaves promotes inactivation of the pathogenic microorganisms present on both the surface and inside the pores of the acrylic materials (Chau et al., 1995; Dixon et al., 1999).
By being a reservoir of pathogens, the tissue surface of the acrylic resin denture enhances the infective potential of microorganisms and favors the appearance of oral infections (Budtz-Jorgensen, 1990). Oral candidiasis, represented by denture stomatitis in denture wearers, is one of the most common manifestations of disease associated with the use of removable dentures. Denture stomatitis is mainly caused by microorganisms of the Candida genus and normally affects the palate of approximately 65% of denture wearer patients (Chandra et al., 2001). This infection is characterized by the presence of multiple hyperemic points in the mucosa subjacent to the removable dentures of patients and, in more advanced cases, diffused erthymatous areas and papillary hyperplasia of the palate may also be observed (Newton, 1962). Considering that microbial adherence and colonization on dental prostheses favor the appearance of denture stomatitis, the cleansing and disinfection of dentures is fundamental to prevent this disease. Recent studies have suggested denture disinfection by microwave irradiation for the treatment of denture stomatitis. The microwave regimes established in laboratorial studies provided the baseline for subsequent clinical trials. Banting & Hill (2001) conducted the first study that evaluated the effectiveness of microwave energy for denture disinfection as a co-adjuvant in the treatment of denture stomatitis. The authors observed that the method was effective in the reduction of the clinical signs of infection. These findings are in agreement with those found by Webb et al. (2005) a few years later. A more recent study conducted by Neppelenbroek et al. (2008) also evaluated the effectiveness of complete denture disinfection by microwave energy in the treatment of patients with denture stomatitis. In agreement to Banting & Hill (2001) and Webb et al. (2005), it was observed that disinfection of the dentures by microwaves was effective for the treatment of denture stomatitis (Neppelenbroek et al., 2008). Investigations are still being carried out to evaluate the effectiveness of microwave irradiation in the treatment of denture stomatitis (Silva et al., 2008; Vergani et al., 2008). Further tests have been performed in order to evaluate the effectiveness of denture irradiation in the treatment of diabetic denture wearer patients with denture stomatitis, showing promising outcomes (Sanitá et al., 2010, 2011). Based on the above mentioned clinical studies, the use of microwaves has shown important results for the treatment of denture stomatitis. This disease is one of the most frequent opportunistic infections found in denture wearers, including the diabetic patients, and it may extend regionally and result in a systemic infection that is associated with high mortality rates (Colombo et al., 1999; Meunier-Carpentier et al., 1981). Hence, the prevention of colonization of the oropharynx is critically important in preventing systemic infections due to Candida.
A recent study has shown that pathogenic microorganisms can adhere in toothbrushes and tongue scrapers made from stainless steel- and polystyrene-based injection-moulded plastic (Spolidorio et al., 2011). Thus, toothbrushes and tongue scrapers become contaminated after use and, if not properly disinfected, may be a reservoir of microorganisms that maintain their viability for a significant amount of time, ranging 24 hours to 7 days (Nelson-Filho et al., 2006). Microbial survival promotes reintroduction of potential pathogens in the oral cavity or dissemination to other individuals when cleaning devices are stored together or shared (Ankola et al., 2009). Hence, these cleaning devices should be regularly disinfected. With this in mind, investigations have demonstrated the efficacy of microwave irradiation for disinfection of toothbrushes and tongue cleaners (Nelson-Filho et al., 2011; Spolidorio et al., 2011), suggesting that this may be a practical and low-cost alternative method of disinfection that can be easily used in the oral hygiene care practices.
This section of the chapter describes the several applications of microwave energy in dentistry field. The use of microwave irradiation for rapid disinfection of different dental materials and appliances may be an important tool in the context of the prevention of cross-infection in dental practice. In addition, there is sufficient scientific evidence that the use of this physical method of denture disinfection is effective in the treatment of denture stomatitis.
The microbiological effectiveness of microwave irradiation has been documented in the literature and the effectiveness seems to be directly related to the protocol adopted. When defining a microwave irradiation protocol, the parameters to be considered are: the time of exposure; the level of power of the microwave oven; the material to be irradiated; the vehicle in which the material is immersed, and the type of microorganisms that colonize the material. Considering these parameters and the several applications of microwave energy in dentistry field, different protocols of microwave irradiation are available and have been tested.
There are some studies that evaluate microwave irradiation for the disinfection of dental air turbine handpieces (Rohrer & Bulard, 1985), mirrors (Tarantino et al., 1997), burs (Fais et al., 2009; Rizzo, 1993; Rohrer & Bulard, 1985), and finishing and polishing instruments (Tate et al., 1995, 1996). In the study of Rohrer & Bulard (1985), handpieces contaminated with a mixture of four aerobic bacteria (Staphylococcus epidermis, S. aureus, K. pneumonia, Bacillus subtilis, Clostridium histolyticum) and C. albicans were consistently sterilized with an exposure of 10 minutes at 720W to microwave irradiation when the materials were attached to a three-dimensional rotating device. These authors also observed that handpieces contaminated by both polio type 1 and herpes simplex type 1 viruses were consistently sterilized after an exposure to microwave irradiation. Another in vitro investigation proved that dental mirrors contaminated with S. aureus, B. subtilis, and Bacillus stearothermophilus can be sterilized by microwave irradiation at 600W for 4 minutes, with the instruments immersed in an aldehyde solution (Tarantino et al., 1997). A microwave regime of 10 minutes at 720W is sufficient to sterilize carbide and diamond burs contaminated with a mixture of S. aureus, K. pneuminiae, and B. subtilis (Rohrer & Bulard, 1985). In another effective protocol, carbide burs are individually placed in a loosely capped test tube with 10 mL of distilled water, transferred to the right lateral position inside the microwave oven, and then exposed to 5 minutes at 600W (Fais et al., 2009). A similar protocol consisting of 6 minutes of irradiation at 750W (Tate et al., 1995, 1996) can be adopted when disinfecting finishing and polishing instruments (Enhance finishing cups, L.D. Caulk Co., Milford, DE, USA and Min-Identoflex fine cups, Centrix Inc., Shelton, CT, USA).
Likewise, 10 minutes of irradiation at high power can sterilize customized impressions made from both vinyl polysiloxane (Cinch Platinum, Parkell, Farmingdale, NY, USA) and polyether (Impregum F, 3M ESPE AG Dental Products, Seefeld, Germany) rubber impression materials (Abdelaziz et al., 2004). Microwave irradiation can also be used for gypsum casts disinfection (Berg et al., 2005; Davis et al., 1989). In the studies of Davis et al. (1989) and Berg et al. (2005), molds were contaminated with pathogenic microorganisms and the stone casts obtained were submitted to microwave irradiation. While Serratia marcescens cells on casts were inactivated by microwave irradiation at 900W for 1, 5 or 20 minutes (Davis et al., 1989), S. aureus and P. aeruginosa were killed after 5 minutes of irradiation (Berg et al., 2005). Microwave irradiation was ineffective in killing B. subtilis transferred to stone casts (Davis et al., 1989). Although a complete inactivation was not obtained, the gypsum casts submitted to microwaves for 20 minutes exhibited less growth than the samples irradiated for shorter times (Davis et al., 1989).
There are also two available protocols for the microwave disinfection of disposable materials, such as swabs and gauze. Cardoso et al. (2007) used stock cultures of Escherichia coli, S. aureus, S. epidermidis, P. aeruginosa, and C. albicans to contaminate gauze and swabs. Thereafter, the materials were placed into autoclave bags, sealed, and irradiated for 30 seconds at 1000W. This time/power regime was efficient in the sterilization of the disposable materials tested. When a lower power was used (650W), 30 seconds of microwave irradiation were also sufficient to sterilize gauze contaminated with the same pathogenic bacteria and fungi (Border & Rice-Spearman, 1999). With the regard of oral cleaning devices, disinfection of toothbrushes contaminated with a suspension containing S. mutans was obtained after exposure to microwaves for 7 minutes at 1100W (Nelson-Filho et al., 2011). However, the results from another study demonstrated that toothbrushes and tongue scrapers contaminated with C. albicans, S. aureus, and S. mutans were effectively disinfected after 1 minute of microwaving at 650W (Spolidorio et al., 2011).
Given the efficacy of microwave disinfection, much attention has been focused on the use of this method for denture decontamination. Various studies have been conducted to determine the most suitable time/power protocol when using microwave irradiation to disinfect dentures. Some studies have used home microwave ovens for the inactivation of pathogenic microorganisms, such as those recommended by the Handbook of Disinfectants and Antiseptics (Cole & Robison, 1996). Among these microorganisms, there are those considered indicators of sterilization, such as S. aureus (gram-positive bacteria), P. aeruginosa (gram-negative bacteria), and B. subtilis (sporulated aerobic microorganisms). In this context, Rohrer & Bulard (1985) investigated the possibility of using microwave irradiation to sterilize dentures and concluded that 8 minutes of irradiation at 720W were sufficient to sterilize the dentures contaminated with a mixture of five bacteria and a fungus. To obtain these results, the authors attached the dentures to a three dimensional rotating device. However, such device is not commercially available or practical for use by dentists or health care facilities. Ten years later, Thomas & Webb (1995) observed that an unmodified domestic microwave oven could be used in the disinfection of dentures. They also demonstrated that sterilization of dentures inoculated with C. albicans and Streptococcus gordonii could be achieved at 2, 4, 6, 8, and 10 minutes exposure times at high setting (650W) (Webb et al., 1998). Likewise, using an unmodified domestic microwave oven with a rotating table, Baysan et al. (1998) observed that microwave irradiation at 650W for 5 minutes promoted a reduction in the quantity of C. albicans and S. aureus present in resilient relining materials. The study of Meşe & Meşe (2007) also investigated the effect of microwave energy on the growth of C. albicans in resilient relining material and verified the reduction in the colony counts of the fungus after dry exposure to microwaves for 5 minutes (650W). The results obtained with the aforementioned microbiological studies, in which the test specimens or dentures were irradiated in a dry state, are variable with regard to the effectiveness of disinfection by microwaves. Since irradiation in water provides uniform heating of the materials, Dixon et al. (1999) suggested immersing the samples in water during exposure to microwaves. This procedure was considered adequate for eliminating microorganisms, including those located inside the pores. The authors inoculated C. albicans in resilient reliners and a heat-polymerized resin and showed that the specimens immersed in water during irradiation were completely disinfected after 5 minutes at maximum power, while those not immersed in water were only partially disinfected after the same time of exposure. Bearing in mind these results, Neppelenbroek et al. (2003) evaluated the effectiveness of a home microwave oven for the inactivation of S. aureus, P. aeruginosa, B. subtilis, and C. albicans present in three reline resins. The contaminated samples were immersed in 200 mL of sterile distilled water and irradiated for 6 minutes at 650W. It was observed that all the test specimens were sterilized after irradiation, as no microbiological growth was noticed after the irradiated specimens had remained incubated for 7 days. Silva et al. (2006) evaluated the same protocol for disinfecting simulated complete dentures and observed that the lethal action varied according to the microorganisms tested. While complete disinfection was achieved for the dentures contaminated with S. aureus and C. albicans, those contaminated with P. aeruginosa and B. subtilis showed little, but detectable, microbial growth. The different results from those of Neppelenbroek et al. (2003) are probably related to the larger surface area of the complete dentures, given that the number of microorganism colonies on the acrylic resin surface is proportional to the total area involved. In addition, this difference could be related to the microorganisms tested. A greater resistance of B. subtilis to microwaves has been reported (Davis et al., 1989; Najdovski et al., 1991) and these results are probably related to the sporulation capacity of B. subtilis. Bacterial spores are metabolically inactive and particularly resistant to situations of stress, such as heating and radiation. Microwaves promote heating of the test specimens and water in which they are immersed, thus there is the possibility of spore formation during this procedure (Najdovski et al., 1991).
A more recent study (Mima et al., 2008) showed that the experimental protocols advocated by Dixon et al. (1999), Neppelenbroek et al. (2003), and Silva et al. (2006) could be used with lower exposure times. Test specimens contaminated with four microorganisms (S. aureus, P. aeruginosa, B. subtilis, and C. albicans) were immersed in water and submitted to microwave irradiation (650W) at different exposure times (5, 4, 3, 2, and 1 minutes). It was observed that all the test specimens irradiated for 3, 4, and 5 minutes were completely disinfected after microwave irradiation. When the time of irradiation was reduced to 2 minutes, the samples contaminated with C. albicans were completely disinfected while those inoculated with S. aureus, P. aeruginosa, and B. subtilis demonstrated microbial growth. When submitted to sterilization by humid heat, bacterial cells are inactivated at higher temperatures than fungal cells (Pelczar et al., 1993). Therefore, irradiation for at least 2 minutes promoted sufficient water heating to inactivate C. albicans but not the bacteria. Moreover, the yeast cells are larger than those of the bacteria (Verran & Maryan, 1997). Therefore, one could suppose that the C. albicans cells contained more water in their composition than did the other microorganisms tested, and therefore, they had been more susceptible to microwave irradiation. In spite of this in vitro study has evaluated small size test specimens that had surfaces with vitreous characteristics, differently from those observed clinically, its results indicated that the protocol should be evaluated in other experimental conditions. Therefore, laboratorial investigations were performed to evaluate the effectiveness of this protocol in the disinfection of dentures contaminated by several microorganisms. Sanitá et al. (2009) demonstrated that simulated complete dentures inoculated with different Candida spp. (C. albicans, Candida tropicalis, and the intrinsically resistant Candida glabrata, Candida dubliniensis, and Candida krusei) were completely disinfected by microwave irradiation for 3 minutes at 650W. Similar results have been reported for complete dentures contaminated with S. aureus and P. aeruginosa (Dovigo et al., 2009).
Given the promising results, some protocols were tested in clinical trials to evaluate the effectiveness of microwave irradiation in disinfecting patients’dentures (Glass et al., 2001b; D.G. Ribeiro et al., 2009). In one study, fragments of dentures that had been worn for periods ranging from 12 days to 48 years were immersed in a chemical solution (MicroDent Sanitizing and Cleaning System®) and exposed to microwaves for 2 minutes (Glass et al., 2001b). This method showed positive results for denture decontamination, considering that no microbial growth was observed on the fragments. In addition, the study of D.G. Ribeiro et al. (2009) showed that 3 minutes of irradiation at 650W resulted in complete inactivation of the biofilm present on dentures of 30 patients. It emerged also from this study that a lower reduction in the count of microorganisms (C. albicans, S.\n\t\t\t\taureus, and S. mutans) was observed when a lower time of exposure was used (2 minutes).
In terms of treating denture stomatitis, Banting & Hill (2001) conducted the first clinical study that evaluated the effectiveness of microwave energy for denture disinfection as a co-adjuvant treatment. This study was performed in 2001, when the effective protocol of 3 minutes at 650W had not yet established. Patients received topical antifungal medication (nystatin/ three times a day) for 14 days and had their dentures irradiated (850W for 1 minute) on three different days (1st, 5th and 10th day). The authors observed that the method was effective in the reduction of the clinical signs of infection and of the invasive forms of C. albicans (pseudohyphas) adhered on the surfaces of the dentures. In another clinical study, microwave disinfection of dentures (10 minutes at 350W) in a daily basis during one week reduced the palatal inflammation and the numbers of Candida on cultures from the palates and dentures of patients (Webb et al., 2005). A more recent study (Neppelenbroek et al., 2008) also evaluated the effectiveness of denture microwave disinfection in the treatment of patients with denture stomatitis. The microwave treatment protocol adopted was 6 minutes of irradiation of the complete dentures at 650W, three times a week for 30 days. It was verified that disinfection of the dentures by microwaves was effective for the treatment of denture stomatitis and for the reduction of the mycelial forms of Candida spp. In agreement to Banting & Hill (2001), these authors also observed that the levels of recurrence of C. albicans on the internal surfaces of the dentures and the supporting mucosa were significantly reduced in the patients whose dentures were microwaved (Neppelenbroek et al., 2008). Other clinical investigations have been carried out to evaluate the effectiveness of microwave irradiation in the treatment of denture stomatitis. A modification on the protocol proposed by Neppelenbroek et al. (2008) was evaluated by Vergani et al. (2008) and Silva et al. (2008). These authors demonstrated that denture microwave irradiation for 3 minutes at 650W, three times weekly for 14 days, is able to reduce the clinical signs of denture stomatitis on the palatal mucosa and the Candida colonization on complete dentures. Further clinical evaluations have also been conducted in order to evaluate the effectiveness of this protocol in the treatment of diabetic denture wearer patients with denture stomatitis (Sanitá et al., 2010, 2011). It was observed that microwave disinfection of complete dentures, by itself, was as effective as nystatin, the more conventional topical antifungal medication, in reducing the Candida counts and the clinical signs of denture stomatitis infection in patients with diabetes mellitus.
Based on the aforementioned studies, it can be seen that several regimes of microwave irradiation in relation to time/power are available. The protocol must be selected in accordance to the specific application of the microwave energy. Regardless these parameters, microwave irradiation is a potentially effective method for inactivating various microbial species present on dental materials, many of which are related to oral pathologies.
While the inhibitory effect of microwave irradiation on microorganisms is being researched extensively, how microwave brings about this effect has been a matter of discussion. Some authors believe that microorganism inactivation by microwave irradiation is explained by a thermal effect (Fitzpatrick et al., 1978; Jeng et al., 1987; Yeo et al., 1999). Nevertheless, several studies suggest that, in addition to the heat generated around the microorganisms, there are other mechanisms resulting directly from the interaction of the electromagnetic field (Carrol & Lopez, 1969; Culkin & Fung, 1975; Olsen, 1965; Rohrer et al., 1986). Various mechanisms have been suggested to explain the nature of the so called non-thermal theory. Depending on the chemical composition of the microorganisms and the surrounding medium, the microbial cells may be selectively heated by the microwaves (Carrol & Lopez, 1969; Hiti et al., 2001; Yeo et al., 1999). Therefore, a certain frequency of microwave energy may be absorbed by certain fundamental biological molecules, such as the nucleic acids (Rohrer et al., 1986). Moreover, the level of molecular response from the biological system to the quantity of thermal energy may also explain the non-thermal effect of microwaves (Carrol & Lopez, 1969). The structural changes in the more peripheral layer around the biological macromolecules may alter their stability and function, and, consequently, these molecules may be denatured in an irreversible manner (Culkin & Fung, 1975). Studies have also demonstrated that the exposition of bacterial suspensions to microwave irradiation caused reduction on viable cell counts and increased the leaching of DNA and protein (Woo et al., 2000). These results suggest that microwaves caused changes in structural integrity and permeability of cell membrane and cell wall that have detrimentally affected the cell metabolism and lead to cell death (Campanha et al., 2007; Carrol & Lopez, 1969; Culkin & Fung, 1975; Olsen, 1965). Campanha et al. (2007) verified that leveduriform suspensions submitted to microwave irradiation at 650W for 6 minutes presented significantly lower cell count values and a larger number of substances released in comparison with the non-irradiated suspensions. The distinction between integral and non-integral cells was made based on the entry of methylene blue coloring into the cells, which is an indirect form of evaluating the cell membrane and wall integrity. Disintegrated cells were found in the irradiated suspension, indicating an alteration in the permeability or integrity of these structures. Moreover, the cells of this suspension lost their characteristic refringence, in spite of preserving their ellipsoidal leveduriform morphology. It was also demonstrated that after irradiation by microwaves, the release of electrolytes (K+, Ca++) and nucleic acids was significantly higher in the irradiated suspensions than that from the non-irradiated (Campanha et al., 2007). However, despite of cell inactivation, the optic density and cell concentration were not altered in comparison with those of the control suspensions, indicating that cells were not completely lysed. Irrespective of the mechanism of microwaves on pathogenic microorganisms being thermal or non-thermal, it is known that the effect of inactivation occurs mainly in the presence of water, this being an important factor for sterilization in microwave ovens. Freeze-dried or dry organisms are unlikely to be affected, even when submitted to prolonged exposures, indicating that humidity plays an important role in microwave energy absorption (Dixon et al., 1999; Watanabe et al., 2000). The water molecules present in the medium or inside the cells, being diploid, interact with the electromagnetic field of the microwaves. Consequently, numerous intermolecular collisions may occur and this vibration produces heating (Najdovski et al., 1991). This increase in temperature may cause protein and DNA denaturation (Ponne & Bartels, 1995). The consistent results from several studies, in which strains were completely inactivated when microwave irradiation was carried out with the specimens immersed in water, confirm this hypothesis.
According to scanning electron microscopic (SEM) studies (Neppelenbroek et al., 2003; Mima et al., 2008), microwave irradiation not only inactivated C. albicans, but also removed the nonviable yeast cells from resin surface. In this case, the irradiation was performed with the resin specimens immersed in water and, since water started to boil after approximately 1.5 minutes of irradiation, the movement of the water particles probably removed microbial cells from the resins. Verran & Maryan (1997) reported that the larger yeasts cells are more easily dislodged from acrylic resin surfaces compared with smaller bacteria. Considering the information discussed above, it can be concluded that, the nature of the lethality of the microwave irradiation for microorganisms may be a combination of thermal and non-thermal effects.
Several investigations have focused on finding the adequate microwave parameters for microbial inactivation and cross-infection control. Different irradiation protocols have proved to be remarkably effective for disinfection of dental prostheses and other materials frequently used in dental practice. However, to enable this method of disinfection to be safely recommended, it is important to clearly demonstrate that it does not exert deleterious effects on the physical and mechanical properties of the materials submitted to microwaves. For this reason, studies have been conducted to examine the effect of microwave disinfection on dental instruments and burs, impressions, gypsum products, acrylic resins, denture lining materials, and artificial teeth.
Rohrer & Bulard (1985) exposed dental air turbine handpieces to microwaves for 2, 4, 6, 8, 10, and 15 minutes (720W). After 25 cycles of 10 minutes, the dental handpiece tested showed no decrease in the pressure reading and no apparent alteration in sound or cutting power. Another study (Tate et al., 1996) evaluated instrument performance of two composite finishing and polishing systems before and after three cycles of microwave irradiation (6 minutes at 750W). The sample surfaces were examined with a profilometer after the finishing procedure and the results demonstrated that the systems tested can be submitted to microwave irradiation at least three times without affecting performance. Questions have also been raised about the effects of microwave regimens on the microscopic characteristics, durability, and strength of dental burs, which can have their sharpness and ability to effectively cut tooth structure altered. The effect of sterilization with microwaves on diamond burs was evaluated by Rizzo (1993). The author evaluated the dental burs by viewing them under stereomicroscope before and after sterilization cycles. It was found that no damage was present after 15 cycles. The possible influence of microwave irradiation on the cutting capacity of carbide burs was also investigated (Fais et al., 2009). The burs were used to cut glass plates in a cutting machine set for 12 cycles of 2.5 minutes each and, after each cycle, they were exposed to microwave irradiation for 5 minutes at 600W. The cutting capacity of the burs was determined by a weight-loss method. Compared to the control conditions, the microwaved burs showed a statistically significant decrease in their cutting capacity. Thus, microwave irradiation requires further investigations before final recommendations can be made for disinfection of carbide burs.
Microwave disinfection of rubber impressions was also suggested by some authors as an alternative approach of controlling microbial transmission. In this context, the reproducibility of rubber impressions after microwave irradiation (10 minutes/720W) has been evaluated and the results compared with other disinfection methods (Abdelaziz et al., 2004). Microwave sterilization had a small effect on accuracy of impressions and this procedure has been recommended as a suitable technique for sterilizing rubber impressions. Another application of microwaves in dentistry is the disinfection of gypsum casts. Although there are no studies evaluating the disinfection protocols on the properties of gypsum materials, the effect of drying casts by microwaves has been described. In this context, microwave irradiation of gypsum casts has been tested as to its effect on the resistance to fracture (Hersek et al., 2002; Luebke & Schneider, 1985; Tuncer et al., 1993) and hardness (Luebke & Chan, 1985). In general, the results indicated an improvement in these properties. However, there was some concern that a decrease in the compressive strength and the appearance of cracks or porosities in the surface might occur when gypsum casts were exposed to irradiation with a very high power (1450W). Other physical and mechanical properties, such as abrasion resistance and dimensional stability, should be performed to confirm the clinical applicability of this procedure.
One of the main applications of microwaves in dentistry is to disinfect dental prosthesis. A large number of investigations have been published in the past and recent years concerning its effectiveness and limitations. Laboratorial investigations aimed at identifying if microwave exposure affects the surface hardness of the denture base acrylic resins, relining materials, and artificial denture teeth. The hardness of a material is the result of the interaction of several properties, such as ductility, malleability, and resistance to cutting, and, therefore, hardness tests may be used as an indicator of these properties (Anusavice, 1996). Also, the hardness of materials is related to its resistance to local plastic deformation. Two universal types of microhardness test, Vickers and Knoop, are standard methods for measuring hard surfaces, while the Shore A measures hardness in terms of the elasticity of the material. It has been demonstrated that the Vickers hardness of a heat-polymerizable acrylic resin was not changed after different times of exposure to microwaves (6, 5, 4, 3, 2, and 1 minutes) at 650W (Machado et al., 2009; D.G. Ribeiro et al., 2008)..The Knoop hardness values of a denture base resin were also not changed after two cycles of microwave disinfection for 6 minutes at 690W (Sartori et al., 2008). In addition, no alterations in the Shore A hardness values were detected after microwave irradiation (3 minutes/500W) of resilient relining materials (Pavan et al., 2007). Other studies showed, however, increased hardness of denture base materials associated with microwave irradiation. Polyzois et al. (1995) evaluated two microwave disinfection protocols on the hardness of test specimens of a heat-polymerizable resin (3 or 15 minutes at 500W). Both protocols provided an increase in microhardness values. Similar findings were described by Machado et al. (2005) for two resilient relining materials submitted to seven irradiation cycles for 6 minutes (650W). D.G. Ribeiro et al. (2008) evaluated the effect of different times of exposure to microwaves (5, 4, 3, 2, and 1 minutes/ 650W) on the hardness of four reline materials and the findings suggested that the disinfectant method promoted an increase in the hardness of the reline resins. The increase in microhardness values after microwave disinfection may be related to the increase in temperature during the irradiation procedure. Arab et al. (1989) reported an increase in hardness values when heat-polymerizable resins were immersed in water heated to 100ºC. Similarly, an increase in Vickers hardness of a reline resin after heat treatment in a water bath at 55ºC for 10 minutes has been reported (Seó et al., 2007a). These results may be attributed to the reduction in the level of residual monomer, as a result of the complementary processes of polymerization (Lamb et al., 1983; Sideridou et al., 2004) and diffusion of residual monomer, both favored by the increase in water temperature during microwave irradiation.
Besides the acrylic denture base resins, dentures also comprise artificial teeth. For this reason, the effect of microwave disinfection on the surface hardness of artificial teeth commonly used for denture construction was also evaluated (Campanha et al., 2005). Two microwave disinfection cycles of 6 minutes each (650W), preceded or not by immersion in distilled water for 90 days, were tested. From these experiments, a reduction in surface hardness of the artificial denture teeth was observed after microwave irradiation. It seems that the high temperature associated with the movements of the molecules probably caused an increase in the speed of diffusion of the water molecules into the polymer, facilitating the movement of the polymeric chains during performance of the hardness (Takahashi et al., 1998). Thus, it is feasible that the reduction in hardness after irradiation is related to water sorption rather than to microwave irradiation. In fact, the teeth from the group that was microwaved after 90 days of water saturation presented no significant alteration in hardness after disinfection. Since microwave disinfection involves the exposition of dentures to water at high temperature, it has been hypothesized that this may affect the bond strength between the artificial teeth and the acrylic resin from which dentures are made. Results from a study evaluating the effect of microwave disinfection (6 minutes/650W) on the bond strength of two types of denture teeth to three acrylic resins showed that microwave disinfection did not adversely affect the bond strength of all tested materials, with the exception of one tooth/resin combination (R.C. Ribeiro et al., 2008). In another study microwave irradiation for 3 minutes at 650W promoted a reduction in the impact strength of the tooth/acrylic resin interface, which could be explained by the increase in the degree of conversion of self-polymerizing resin, reducing the cohesion at the interface of the samples (Consani et al., 2008a).
The effects of microwave irradiation on other surface properties, such as roughness and porosity, have also been investigated. According to Allison & Douglas (1973), smoother surface retain a smaller quantity of biofilm, thus avoiding the proliferation of microorganisms on the acrylic surface of dentures. Surface roughness is an important characteristic of dental materials and, therefore, there is a direct correlation between the values of roughness and bacterial adherence. Moreover, according to Yannikakis et al. (2002),.the presence of pores may reduce the mechanical properties of acrylic resin, as well as interfere in denture hygiene. It seems that the effect of microwave irradiation on a denture’s surface roughness and porosity depends on the time of exposure, number of cycles, and the type of denture resin used. Novais et al. (2009) investigated the occurrence of porosity on the surface of four self-polymerizable acrylic resins and one heat-polymerizable resin, after two or seven cycles of microwave disinfection (6 minutes/ 650W). The number of pores found in two out of five resins remained similar after microwaving, while a reduction in porosity was observed in two resins after seven disinfection cycles. In these cases, it was suggested that the high temperatures may have been attained during exposure to microwaves, which led to a greater degree of conversion and continuation of polymerization. Seven cycles of microwave disinfection increased the number of pores in one material. According to the authors, this material presented a high level of residual monomer and, therefore, a probable explanation for the increase in the number of pores in this resin was related to monomer vaporization. Another investigation also showed that the use of microwave energy can modify the surface texture of acrylic resins (Sartori et al., 2006). It was reported that two microwave disinfection cycles (6 minutes at 690W) promoted an increase in surface roughness of an acrylic resin. However, only one material was evaluated and the effect of reduced exposure times on surface roughness was not investigated.
From the literature, it seems that microwave disinfection can play a role in promoting changes in denture materials. The flexural strength of five chairside reline resins and one denture base resin were evaluated after two and seven cycles of microwave disinfection at 650W for 6 minutes (Pavarina et al., 2005). The flexure strength of three resins presented significant increase in strength values. In contrast, two reline resins presented reduced flexure values after microwave irradiation. The heating provided by each of the seven cycles of microwave disinfection may have increased the absorption of water of some of the evaluated materials, resulting in a reduction in the flexural strength values. In view of these results, shorter times of exposure to microwaves, and their effects on the flexural strength of acrylic resins, were investigated and the findings showed that the flexural strength of four reline materials and one heat-polymerizable resin was not detrimentally affected after 5, 4, 3, 2, and 1 minutes of microwave irradiation at 650W (D.G. Ribeiro et al., 2008). Indeed, the disinfection method was capable of significantly increase the flexural strength of one reline resin. A similar result was described elsewhere after a disinfection cycle for 3 minutes at 650W (Consani et al., 2008b). In addition, another investigation (Polyzois et al., 1995) observed that the flexural properties of a heat-polymerizable resin remained unaltered after the use of a low power (500W) associated with a long exposure time (15 minutes). However, in this study the samples were irradiated in a dry condition, a procedure that has been shown to be less effective for microbiological inactivation. In a more clinically relevant approach, the effect of denture microwave disinfection on the maximum fracture load, deflection at fracture, and fracture energy of intact and relined denture bases was evaluated. After exposed to microwave irradiation for 7 days (6 minutes/650W), the strength of the denture bases was similar to the strength of those immersed in water for 7 days (Seó et al., 2008).
An aspect that has also been investigated is the influence of microwave disinfection on bond strength between resilient liners and denture base acrylic resin. Test specimens made of resilient resins bonded to a denture base resin were submitted to microwave disinfection for two and seven irradiation cycles of 6 minutes at 650W (Machado et al., 2005). Microwave disinfection did not compromise the adhesion of resilient liners to the denture base resin. In a subsequent study, seven microwave disinfection cycles (6 minutes/650W) did not decrease the torsional bond strength between two hard reline resins and a denture base resin (Machado et al., 2006). Therefore, in general, the use of microwaves for denture disinfection does not appear to have any negative effect on the bond strength of reline materials frequently used in dental practice. Recently, a clinical study (R.C. Ribeiro et al., 2009) also reported the color stability of a hard chairside reline resin after microwave disinfection.
Another important aspect that should be considered prior to the selection of a disinfection procedure is the maintenance of adequate adaptation between the denture base and residual ridge. Clinically, this characteristic is fundamental both for denture retention and the preservation of the supporting tissues. Changes in denture base adaptation could act as one of the causes of alveolar bone loss and be indirectly responsible for decreasing the retention and stability of the denture (De Gee et al., 1979). A denture that exactly reproduces the supporting tissue may assure a uniform distribution of forces on the largest possible area of surface. Thus, analyses of the effect of microwave disinfection on the dimensional stability of denture bases resins have been conducted. Burns et al. (1990) aimed to determine the possible influence of microwaving on the dimensional stability of heat-polymerizable, self-polymerizable, and light-polymerizable resins. Test specimens were fabricated and submitted to measurements of mass and length before and after microwave irradiation (15 minutes/ 650W). The results showed that all the materials maintained dimensional stability after the disinfection procedure. In another study, microwave disinfection (3 or 5 minutes at 650W) promoted small, clinically insignificant dimensional changes on test specimens of a heat-polymerizable resin (Polyzois et al., 1995). Contrasting results were obtained in the study of Gonçalves et al. (2006), who evaluated the effect of two or seven cycles of microwave disinfection (6 minutes/ 650W) on the linear dimensional change of four reline resins and one denture base resin. Three of the evaluated resins presented significant alteration in the linear dimensional after disinfection. In spite of the positive and negative findings found by these different studies, all of the presented results cannot be extrapolated directly to a clinical situation, since the test specimens used did not simulate the dimensions and shape of denture bases. Standardized dentures were fabricated in the study of Thomas & Webb (1995) in order to evaluate the effect of microwaves on their dimensional stability. After 10 minutes of exposure to microwaves at 604W, some of the areas measured in the dentures presented significant shrinkage or expansion. Similarly, Sartori et al. (2008) observed that the disinfection cycles of 6 minutes (690W) could compromise the dimensional stability of denture base resins. In another study, however, a lower power setting (331W) decreased the occurrence of dimensional changes when the dentures were microwaved for 6 minutes (Thomas & Webb, 1995). The protocol of 6 minutes/ 650W of microwave irradiation was also tested for the dimensional stability of denture bases (Seó et al., 2007b). Repeated disinfection cycles were performed (two and seven) and an increase in shrinkage was observed both in intact bases and bases relined with heat-polymerizable resins. As the bases were immersed in water during irradiation, the results could be related to the possible occurrence of complementary polymerization as a result of water heating. In another investigation, the use of the same microwave power (650W), but with irradiation for 3 minutes, promoted no deleterious effects on the adaptation of denture bases (Consani et al., 2007). In fact, the authors observed that microwave irradiation improved the adaptation of bases in some experimental conditions. Pavan et al. (2005) also suggested that use of shorter irradiation times preserves the dimensional stability of dentures. The authors fabricated 30 denture bases that were submitted to irradiation for 3 minutes/500W or 10 minutes/ 604W. No dimensional alteration was observed in the bases irradiated for 3 minutes. Taken together, the results from all the cited studies suggest that short microwave irradiation times should be used, so that the adaptation of denture bases to subjacent tissue is not changed. Recently, Basso et al. (2010) performed a clinical evaluation of the effect of 3 minutes of microwave irradiation at 650W once or three times a week on the linear dimensional stability of complete dentures. Measurements were taken before the first microwave disinfection (baseline) and after each week of disinfection. Furthermore, the dentures were monitored clinically. Three times weekly irradiation showed significantly higher shrinkage in all evaluated weeks. This result could be attributed to the heating generated by microwave irradiation in an already polymerized material. Even though three microwave disinfections showed statistically significant greater shrinkage, the clinical evaluation did not reveal any change. Therefore, the authors suggested that microwave irradiation can be used clinically for the disinfection of dentures and treatment of denture stomatitis.
Given the information above, it is clear that discordant results have been published regarding the risks of denture microwave disinfection. It seems that the occurrence of negative effects on physical and mechanical properties of dentures depends on the microwave protocol tested and type of material evaluated. It also seems that the use of short exposure times could minimize the occurrence of harmful effects on the dental prostheses. Taking all the results into account it would seem that the microwave regime of 3 minutes at 650W is adequate for denture disinfection without causing significant detrimental effects on the denture materials.
According to the information discussed in this chapter, there is scientific evidence to support the efficacy of microwave irradiation in preventing cross-infection and treating denture stomatitis. Several protocols of irradiation were described and discussed, and the microbiology effectiveness of microwave energy was clearly demonstrated. Regardless of all the parameters used, we can concluded that microwave disinfection is an effective, quick, easy, and inexpensive versatile tool that can be performed by dentists, assistants, technicians, patients and/or their caregivers to inactivate microorganisms. In addition, the use of a microwave oven does not require special storage and does not induce resistance for fungi or other microorganisms. Thus this method may have an important potential use in dental offices, dental laboratories, and institutions and hospitals in which patients are treated, especially those wearing removable dentures.
Numerous studies had been done by researchers to analyze the basic of EDA responses as indicators via employing various methods and techniques of measurement since long time ago. However, results and hypotheses of several such studies were rather conflicting. These investigations were apparently lost of sight by later investigators, and many of the same errors and conflicting results have appeared in later studies. The purpose of this review was to advance the understanding of simultaneous recordings of EDA parameters at the same skin site and show its advantages over sequential or alternate recordings.
To reach our goal in this chapter, a brief introduction about the skin, which is one of the most complex organs of the human body, should be depicted.
The human skin is a complex and a large organ (in terms of both weight and surface area) that covers the body and forms a remarkable protective barrier against the external environment [1, 2]. It is facilitating to regulate the core body temperature and water balance via bloodstream to the exterior of the body [3].
EDA responses are frequently used as the peripheral indicators of sympathetic activation. The EDA measurement by psychophysiologists is basically concerned with sweat gland activity that is psychologically induced. Different internal and external stimuli cause mental stress; as a result, sweat glands produce various amounts of sweat that are propelled up to the sweat ducts and hence result in different EDA responses. Numerous models have been proposed to explain how these peripheral mechanisms are associated to the electrical activity of the skin and to the transient increases in EDA parameters evoked by external stimuli. According to Edelberg [4] one can account for the several EDA phenomena, including alteration in tonic skin conductance level (SCL) and phasic skin conductance response (SCR) amplitude, with a model based completely on the sweat glands [4]. As noted by Edelberg [5], one should not be surprise that an organ with such vital and dynamic functions continuously receives signals from control centers in the brain, and the author suggested that “we can listen in on such signals by taking advantage of the fact that their arrival at the skin is heralded by measurable electrical changes that we call electrodermal activity” (p. 368).
In order to clearly understand how EDA is linked to the sweat glands, it is useful to imagine the sweat ducts as a set of variable resistors with parallel connection. Sweat columns will rise in the ducts with different amounts and different sweat gland numbers, depending on the level of the sympathetic nervous system activation. As the ducts are filled through sweating, there is a more conductive path through the relatively resistant stratum corneum layer. As the sweat level further rises, the resistance in that variable resistor is further lowered. Changes in the sweat level in the ducts alter the values of the variable resistors and thus yield observable changes in EDA [3].
Electrical bioimpedance is a measure of how well the biological tissues such as the skin impede alternating current flow at different frequencies. Electrical impedance has two components: the resistive and the reactive parts. Mathematically, the electrical impedance (Z) is expressed as a complex number by the sum of the resistance (R) and the reactance (X):
Electrical impedance is the ratio between the voltage and current. When a known current is applied to a material, the impedance is found by measuring the voltage between the electrodes and dividing it by the current. However, in many cases, applying a known voltage to the material and measuring the resulting current between the electrodes are more practical. The measured current then becomes inversely proportional to the impedance. This quantity is called electrical admittance (Y), which allow current to flow. It is also expressed as a complex number with two components: conductance (G) and susceptance (B):
Both the X and B are dependent on the frequency (F) of the applied current through the material and only can be measured by alternating the direction of the current. B is proportional to this frequency, and the electrical capacitance (C) of the material can be calculated from Eq. (3).
Electrical impedance spectroscopy (EIS) is applying a sinusoidal voltage or current to the sample under test to calculate impedance parameters within a wide range of frequencies, where frequency-dependent electrical properties of biological tissues can be detected. Therefore, EIS has been proven as an effective technique for noninvasive tissue characterization in medical, biomedical, and biological applications [6]. The real part of the impedance is associated with resistive pathways across the tissues, which is typically large at low frequencies but decreases with increasing frequency, whereas the imaginary part of the impedance is associated with capacitive pathways, which decreased (not noticeable) at high frequencies [7].
EDA is the preferred term for changes in electrical properties of the skin. It is a set of physiological parameters of sympathetic nervous system activity, and it has been used for physiological measurements due to a strong link with the autonomous activity [8]. However, the EDA phenomenon and its appearance are not sufficiently clarified yet [9, 10]. EDA is measured from the eccrine glands, which cover most of the body. In addition, they are concentrated in the palmar and plantar dermatomes, and, therefore, these are known to be the best sites for measuring EDA [11, 12]. Mainly, there are two categories of electrodermal recordings, namely, endosomatic and exosomatic measurements. In endosomatic measurements, only potential differences originating in the skin itself are recorded without using any external source of current. In exosomatic measurements, externally very small amount of current [either alternating current (AC) or direct current (DC)] is applied to the skin. This is frequently used to measure SC, and in some recently published studies, it is also used to measure skin susceptance. EDA signals are a manifestation of the eccrine sweat gland activity that is innervated by the autonomic nervous system, primary by the sudomotor nerves [13]. When the sudomotor nerves stimulate the sweat production, indeed the SC changes as a result of sweat secretion and alterations in ionic permeability of sweat gland membranes [5, 11, 14].
EDA is composed of two basic components (Figure 1): tonic (level) and phasic (response), each with various time scales and relationships with the stimuli. Tonic EDA is represented by SCL which represents the slow-changing baseline level of the SC and skin potential level (SPL) which represents the slow-varying baseline level of the SP. Alterations in the SCL are thought to reflect slow changes in the autonomic nervous system dynamics. Phasic EDA is specified by a fast varying component, known as the SCR and skin potential response (SPR). Both EDA phenomena, tonic (SCL and SPL) and phasic (SCR and SPR), are generated under autonomous nerve control of the active organs of the skin [15], which is reflecting the elicited response of the eccrine sweat glands to external stimuli [11, 14]. Some recent evidences suggest that these two components depend on various neural mechanisms [16] and, consequently, both carry relevant and non-redundant information about the autonomic nervous system dynamic activity [14]. EDA is employed in a broad range of experimental setups since it is a relatively straightforward measurement providing valuable information on the autonomic nervous system response to a wide range of externally applied stimuli. Particularly, SC analysis is commonly used to quantify the levels of arousal related with cognitive and emotional processes [3, 14, 17, 18].
Basic components of EDA.
In spite of sweating being basically a means of thermoregulation, sweat glands located on the plantar and palmar surfaces perhaps evolved to increase grip and enhance sensitivity, possibly more responsive to psychologically stimuli than to thermal stimuli [3, 5, 11, 14]. This relationship between EDA, psychological stimuli, and autonomic nervous system makes this physiological signal broadly popular in neuroscience research studies, including quantification of arousal levels during cognitive and emotional processes, information processing, and clinical research examining predictors and correlates of normal and pathological behavior [3, 17, 18, 19], such as psychopathology, personality disorders, and neuropsychology [14].
The study of the electrical changes and properties of the human skin began over 100 years ago [3]. Since then, various terms have been utilized to describe this phenomenon including psychogalvanic skin response, skin resistance response, skin conductance response, skin potential response, and EDA. Historically, the most widely used term to label this phenomenon was the galvanic skin response (GSR). However, in 1966, EDA was first introduced by Johnson and Lubin as a common term for all electrical phenomena in the skin, including all passive and active electrical properties which can be traced back to the skin and its appendages [11].
Neumann and Blanton [20] thoroughly reviewed the history of EDA research, which dates back to experiments performed in 1849 by du Bois-Reymond in Germany. In his experiments, du Bois-Reymond used a zinc sulfate solution to put either hands or feet in it and consequently observed that an electrical current going from the limb at rest to the other one was contracted voluntarily. However, du Bois-Reymond considered that the observed phenomenon was due to muscle action potentials [11].
Hermann and Luchsinger from Switzerland in 1878 were the first to experimentally show a connection between sweat gland activity and flow of current in the skin. They observed that an electrical stimulation of the sciatic nerve in the curarized cat caused sweat secretion and an electric current in the footpad on the same side of body [11]. Three years later, the voluntary movement experiment that was performed by du Bois-Reymond more than 30 years ago was repeated by Hermann. It was found that palms and fingers showed greater skin current than other sites of the body such as the wrist and elbow areas due to the greater concentration of sweat glands and therefore stronger sweating in that regions [20]. In 1879 Vigouroux was the first who observed that psychological factors are related to EDA. He measured changes in skin resistance (SR) that changed in parallel with the amount of anesthesia in hysterical patients. In addition, he presumed that both phenomena were dependent upon central processes, but he did not believe that the swift changes in SR observed by himself could be resulted by local processes in the skin itself [11].
The pioneering studies of electrodermal phenomena, however, have been done by Fere (1888) and Tarchanoff (1889) [3, 11]. Fere by employing an external direct current observed reduction in SR following emotional stimulation in hysterical patients [11]. Tarchanoff could measure changes in skin electrical potential between two electrodes connected to the skin surface without the aid of any external electromotive force. He supposed that the EDA phenomena observed by him were due to sweat gland activity, which is dependent on the secretory nerve action. He observed that, even at rest, the current flow from regions of high concentration in sweat glands to those poor in them. In contrast, Fere assumed that decrease in SR following stimulation was due to a decrease in blood flow of the skin, i.e., resulted from partial displacement of the blood peripheral resistance by the lower interstitial fluidity resistance [3, 11].
In 1928 and 1929, a decisive contribution to the investigation of the origins of endosomatic EDA was made by Gildemeister and Rein. They for the first time restricted the locus of SP origin to only one of the two recording sites by injuring the skin under the other electrode, where no SP of its own could develop [11]. In 1930 the sweat glands were identified as the seat of the “psychogalvanic phenomena” by McClendon and Hemingway. In the same year (1930), a palmar galvanic test was used for indicating sweat secretion by Wang and Lu. Later EDA measurements became a common mechanism within the field of psychophysiology [19, 21].
SC units were strongly supported by Darrow [22] as well as Lykken and Venables [23] as being sufficient with respect to physiological models of the peripheral mechanisms of EDA. An electrical model of the skin was proposed by Edelberg [24] after having performed EDA research for more than 10 years, which takes into account the existence of polarization capacitances [11]. Using this background, psychophysiological aspects of several EDA components in details were first established by Edelberg [5] including parameters which were subsequently focused on [11].
Nowadays EDA measurement is regarded as “one of the most widely used response systems in the history of psychophysiology” [3] (p. 159). In addition, over the last decades, the areas for application of EDA have been steadily widened such as in the field of engineering psychophysiology as well as in neurology [11]. As EDA is a generic reference that subsumes all methods of measuring the electrical activity of the skin, it is the preferred term to label this phenomenon [25].
Some authors tried to measure EDA parameters at the same skin site, but such parameters were sequentially recorded.
Venables and Sayer [26] had determined the relationship between the SC and SP, by means of two measuring systems. The idea was to record both EDA parameters at the same skin (palm and inner surface of the left arm), but not simultaneously. They stated that due to the disturbance in the measurement of SP created by the presence of the impressed voltage used to measure SC, the two measures were not taken simultaneously. It was found that the two measures are related, although not so highly as to make them equivalent [26].
The role of sweat gland activity in the mediation of SC and SP levels was investigated by Venables and Martin [27]. Both SP and SC were recorded at the same skin site (tips of the fore, middle, and ring fingers of each hand), but not simultaneously [27].
Turpin and Siddle [28] presented effects of series of auditory stimuli on the sequential SCR and SPR recordings. Bipolar recording of SC was accomplished by attaching electrodes on the medial phalanx of the index and second fingers of the non-preferred hand of the subject. Unipolar recording of SP was made by placing electrodes on the medial phalanx of the third finger of non-preferred as the active site, while the reference site was a point two thirds of the distance from the wrist to the elbow on the volar surface of the forearm [28].
Articles presented here are associated with authors, who tried to measure EDA parameters simultaneously, but not at the same skin site, i.e., EDA parameters were recorded alternately.
Wilcott [29] had recorded SR (SC) and SP simultaneously contralateral from the left and right-palm-upper-arm locations to study the correlation between both these EDA parameters. He obtained significant correlations between the SC and the SP amplitudes. Regarding the possibility of recording EDA parameters at the same skin site, Wilcott claimed that simultaneous measurement of EDA parameters is impossible and stated that “As it is of course not possible to record the two types of bioelectrical activity (e.g., SC and SP) from the same skin area simultaneously, they were recorded alternately from the same skin area and simultaneously from different skin areas” [29].
To elucidate mechanisms underlying the appearance of the diphasic potential (SP) curve, SC and SP simultaneously from the palm and the dorsum of the hand were recorded by Yokota et al. [30]. SC and SP simultaneously from the palm and the dorsum of the hand were recorded by Yokota et al. [30]. Sequence recording of SC and SP was applied so as to enable a comparison of the results with each other. When the SP was recorded simultaneously with SC from different parts of the same palm, diphasic potential curve changes usually corresponded to larger resistance changes [30].
According to Edelberg and Burch [31], both SC and SP are widely used as indicators of autonomic activity in psychological and pharmacological investigations, but the many fundamental controversies to be found in the literature testify to the questionable reliability of these measures [31]. In addition to the external stimuli and central excitatory state, various outside factors constitute a third category of variables (skin temperature, current density, electrode composition and size, contact medium, and electronic circuitry) affecting SP and SC responses. These factors are difficult to control, when comparisons between SP and SC are to be made separately (recording each of which at certain time). However, when they are compared simultaneously, effect of such variables can be canceled out [31].
Relations between simultaneously recorded SC and SP changes are obtained at high and low levels of bodily excitation by Darrow [22]. Electrodes were connected to the palm and the wrist of both hands in order to simultaneously record SC and SP between two opposite sites.
Burstein et al. [32] reported simultaneous recording of SR (SC) and SP responses generated by different psychological stimuli. The aim was to show effects of such stimuli on responses of both EDA parameters and to determine the significance of the different wave forms of skin potential [32]. SC responses were recorded from middle and index fingers of the left hand, and SP responses were recorded from the right ear lobe and the right index finger. They found that both SC and SP are highly effective in assessing differential emotional responses. However, total SP yields slightly more significant results than does the SC measure. They finally suggested that the skin potential response merits further investigation because the qualitative differences in its wave forms may be of special significance [32].
Hupka and Levinger [33] recorded palmar SC and SP simultaneously with nonpolarizing electrodes, connected to the thenar eminence of the right and left palm and on the dorsal right or left forearm. Authors aimed to investigate whether the SPR negativity remains a constant correlation with the SCR during different conditions of passivity and motor activity [33].
SC and SP were recorded simultaneously from opposite hands during a stress period and a subsequent prolonged relaxation by Lykken et al. [34]. Their aim was to investigate certain interrelationships between concurrent measures of SC and SP through employing a simple equivalent circuit model of steady-state electrodermal phenomena [34].
The correlation of change measures and prestimulus level in SC and SP and the amount of correlation between SP and SC measures were studies by Gaviria et al. [35]. SP and SC were recorded in a sequence at two different skin sites.
The effect of repeated stimuli on reader and nonreader child with respect to physiological orienting response patterns in the autonomic nervous system was investigated by Hunter et al. [36]. Authors aimed to fined difference between those two groups through simultaneously recording SC and SP. For SC recording electrodes were placed to the volar pads of the first and third fingers, and for SP recordings the active electrode was placed on the volar pad of the middle finger, and the reference electrode was placed on the forearm; thus both SC and SP are recorded simultaneously at two different skin sites [36].
In order to investigate possible differences between healthy subjects and unhealthy (schizophrenic) subjects, Patterson and Venables [37] recorded SC and SP at the same time but at two different skin sites by two different measuring systems. Electrodes for SC recording were attached on the medial phalanges of the first and second fingers of both hands and for SP were placed on the hypothenar eminence of the right hand and an abraded surface of the right arm [37].
The validity of SC and SP for preliminary cystic fibrosis screening has been demonstrated by Williamson et al. [38]. Electrodes for SC recording were attached to the palmar surface of the fingers. For the measurements of SP, the active electrode was being placed on the palmar surface of the distal middle phalanx of the hand [38]. Discriminant analysis using the two best EDA measures (SC and SP) for assignment of experimental group membership yielded 92.7% correct classification of the actual group membership. However, both SP and SC recordings were necessary to obtain such accuracy, since reclassifications of participants by discriminant analysis using only the six SC or the six SP measures lowered the percentage of correct classifications to 77% for SC and 86% for SP. Authors stated that it would simplify clinical procedures to use only the SP or only the SC measures to distinguish between group (health and unhealthy) subjects, because only one hand would be recorded and scored [38]. However, according to their results, recording more than one EDA parameters at the same time would lead to more meaningful results.
Collet et al. [39] showed neutral and emotionally loaded pictures to some test subjects in order to evoke happiness, surprise, anger, fear, sadness, and disgust. The EDA signals measured were SC, SP, and SR. For EDA recordings electrodes were placed at different skin sites. For SC measurement electrodes were attached to the second phalanx of the fourth and fifth digits of the non-dominant hand; for SP active electrode was attached to the hypothenar eminence, and the reference electrode was attached to the wrist, and finally for SR recording, electrodes were placed on the second phalanx of the index and the third digit of the non-dominant hand [39].
SR (SC) and SP and some other physiological parameters were recorded simultaneously at various skin sites by Ismaili et al. [40], to analyze the relationship between self-report hedonic evaluations and the physiological expression of emotion in response to odorants. Second phalanx of the index and the third digit of the non-dominant hand were selected for SC recording. For SP recording, the active electrode was placed on the hypothenar eminence, and the reference electrode was placed 10 cm higher on the wrist.
Shiihara et al. [41] examined the validity of long-term SC recordings by comparing such recordings with simultaneously recorded SP at two different skin sites. SC was recorded through placing electrode on the middle phalanx of the second and fourth fingers, and SP was recorded via attaching electrodes between the thenar eminence of the palm and the lower portion of the upper arm. Both EDA parameters were recorded simultaneously during sleep.
In a recent study, SC and SP have been recorded simultaneously at different skin sites to evaluate the mental workload during driving by Kajiwara [42]. Author stated that in order to simultaneously measure the SC and SP, the SC was measured on the left arm, and the SP was measured on the right arm.
As noted, earlier studies such as [29] have claimed that simultaneous measurements of EDA parameters are impossible. However, this hypothesis was later criticized and lost ground due to new explanations and newest trends and techniques.
Montagu in [43] performed measurements (SC and SP) on the same skin site simultaneously and continuously through the same pair of electrodes. Montagu aimed to study effects of variety of conditions (different external stimuli) on the simultaneous recordings of SC and SP at a single reacting area.
Grimnes [44] performed DC SP or SC, AC SC, and skin capacitance (i.e., SS) measurements on the same skin site simultaneously by using the three-electrode system. Author pointed out that the examination of the influence of sweat duct cannot be done without also recording the parallel values of the skin admittance. Also he reported that the sensitivity of the DC conductance to a certain reflex intensity is larger than that of the AC SC.
Qiao et al. [45] developed a method for simultaneously recording SC and SS at the same skin site via using a three-electrode lock-in amplifier measuring system. It is indicated that the use of AC excitation is necessary for recording SS.
The exogenous (SC) and endogenous (SP) responses in order to acquire a better understanding of the underlying mechanisms were compared by Jabbari et al. [46]. Both SCR and SPR were simultaneously recorded in the palms using the same electrodes. Authors reported independent information and correlation between SC and SP.
Grimnes et al. [47] developed a special recording system for combining SC with SP recordings from an active electrode at a palmar site together with a large indifferent electrode connected to a physiological NaCl bath in which the forearm was immersed. Their recording system used a small AC current, enabling the SC and SP to be recorded simultaneously at the same site. Authors reported that it is possible to measure the SP and skin AC SC simultaneously at the same skin site in a low-noise system. Authors pointed out that both the measuring systems that are used by Grimnes [44] and Montagu [43] had the demerit that the recording electrode must supply the necessary charge/discharge current to the blocking capacitor with changing DC voltages. This also introduced a time constant specified by the capacitance and the resistance of the recording electrode [47].
Pabst et al. [48] designed a measuring system for simultaneously recording AC SC and DC SC at the same skin site and same electrode. Authors aimed to examine the similarities and differences between the AC and DC methods of EDA recording under the same conditions. The measuring system consisted of two bipolar electrodes, which were placed at the thenar and hypothenar sites of the dominant hand.
This type of recording must be done with AC exosomatic, since with DC exosomatic, SS could not be measured.
Jabbari et al. [9] developed a measuring system where DC current was replaced by a small AC current. They aimed to record SC, SP, and SS simultaneously at the same skin site. Three electrodes were placed to the skin, two measuring electrodes and one reference electrode [9]. They confirmed that it is possible to measure SP and skin AC SC simultaneously at the same skin site. In addition, they regarded recording SP and SC simultaneously with the same electrode as significant because of the often large skin site dependence of levels and response waveforms [9].
Tronstad et al. [8] used a new method to record SC, SP, and SS simultaneously at the same electrode. Their aim was to investigate the difference between waveform of SC and SP in a new way by comparing their temporal peak differences. It was a PC-based EDA recording system for simultaneous recording of skin admittance (SC and SS) and SP at the same electrode. For recoding EDA parameters, three electrodes were employed, a measuring electrode placed on hypothenar, a reference electrode placed on apex of elbow, and a current sink electrode placed on the underarm.
The effect of some external stimuli on simultaneous recordings of SC, SP, and SS at the same skin site has been investigated by Bari et al. [49]. Authors confirmed that the three EDA parameters (SC, SP, and S) could be measured simultaneously under the same electrodes. Each of such EDA parameters showed different wave forms depending on their relation with the tissue under investigation.
Figure 2 shows an example of a setup for simultaneously measuring SP, SC, and SS at the same skin site. It is a PC-based EDA system for recording EDA by means of skin admittance and SP simultaneously at the same electrode on the same skin site. It consists of one measuring electrode (ME), one reference electrode (RE), and a current sink electrode (CE).
An example of a setup for simultaneously recording SP, SC, and SS at the same skin site.
In order to make direct comparisons between different EDA recording methods or parameters, techniques for simultaneously recording EDA using the same skin site are required, since EDA responses cannot be compared and/or correlated when lonely or separately measured.
Some authors such as [11] suggested a measuring method dependent on continuously switching (sequentially) between AC (SC) and DC (SP) recording methods, which allows the same site to be used for recording both SC and SP. However, this recording method has drawback that the switching skin to a different EDA coupler will always result in an adaptation of the gain process, dependent on the filter characteristics of the amplifier system, which constitutes a time-consuming procedure. In addition, the subject will seat or stay for longer time in order to record EDA parameters one by one, which lead to nuisance of the subject, and may in turn affect EDA signals (as EDA is associated with the psychophysiological state of the subject).
Also some other authors suggested another parallel-like (alternately) recordings of SC and SP measurements on contralateral sites [11]. But, this way of recording has disadvantage that the EDA parameters are not recorded at the same skin site. It has been pointed out that each active skin site may give rise to various types of EDA responses and that basic EDA levels all depend on the measuring system. So, measuring at the same electrode is significant because both EDA components (levels and response) are largely dependent on skin site as already mentioned above [47]. Besides the alternate method is inconvenient as both hands of the test subject are connected with the electrodes. In addition, to measure both SC and SP, at least four electrodes connected with two setups are required, which take economical cost. On the other hand, simultaneously employing only three electrodes that are placed on the same skin on a single hand makes it preferable and convenient where the subject will seat for shorter period than the other traditional recording methods. From an economic point of view, its cost is lower since one setup is used for recording all EDA parameters, and fewer electrodes are employed than other methods.
Simultaneous method also has another important advantage over the rest of the methods, which could be achieved when AC exosomatic current method is used. Through this method in addition to SC and SP, the SS could be recorded simultaneously at the same skin site as well. This means that EDA measurements can be simultaneously appropriate with additional psychophysiological measures, as it may provide further insights into the sweat gland physiology, which makes it particularly useful for clinical applications. Technically based upon this method, voltage sensing is converted from analog to digital, and utilizing a low measuring frequency with phase-sensitive rectification guarantees genuinely constant voltage or current and enables the minimization of measurement errors as well. Moreover, this recording method enables detection of variations in the reference site potential, thereby checking to which extent the reference site is electrodermally inactive, which is a requirement for accurate SP recording. Therefore, it is very suitable for physiological research.
The scope of applications will be primarily related to those studies recently conducted using the EDA measurement simultaneously. The use of simultaneous measurement of EDA in psychology, physiology, and medicine is widespread and constantly increasing due to its advantages. It is widely accepted that both AC and DC components (parameters) can be accurately measured.
Tronstad et al. [50] employed the system presented in Tronstad et al. [8], for the simultaneous recording of SC, SP, and SS at the same skin site. The aim of the study was to assess how accurately sweat production can be estimated based on combining the skin electrical properties. According to the authors, results of sweating estimation were significantly improved by the addition of SS and SP recordings to the SC recording only.
In a study [51], changes in SCR, SPR, and SSR were evaluated as a result of sequences of electrical (painful) stimuli with different intensities by using simultaneous system of EDA measurement. EDA responses as results of painful stimuli were recorded from 40 healthy volunteers. They reported that EDA responses significantly changed (increased) with respect to the intensity of the stimuli. Both SCR and SSR showed linear relationship with the painful stimuli. It was found that the EDA responses, particularly SCR (p < 0.001) and SSR (p = 0.001), were linearly affected by the intensity of the painful stimuli. Authors mentioned that EDA responses, in particular SCR, may be used as a useful indicator for assessment of experienced pain in clinical settings.
The same system mentioned above was used in another study [52], with the aim of exploring the influence of relative humidity on EDA levels and also the responses. A total of 10 healthy subjects were exposed to environments of low and high RH while EDA measures were recorded, including cognitive, visual, and breathing stimuli for evoking electrodermal responses of different origins. EDA levels and responses were compared between the two humidity levels for all stimuli and all EDA measures. It was found that EDA levels, in particular for SC and SS, were significantly increasing during high humidity exposure but that the change in EDA responses (SC, SS, and SP) was not statistically significant (p > 0.05, paired t test). Authors concluded that ambient humidity influences the recording of EDA levels and is important to consider when these parameters are used, but is not important in the recording or analysis of EDA responses.
The purpose of the chapter review was to view the trends in the methods and attempts made to develop them for recording EDA parameters. It was focused on the major methods (through some published literatures) used for recording EDA parameters. In addition, identifying the advantages of simultaneously recording EDA parameters at the same skin sites over sequential and alternate methods. Even though sequential or alternate recording methods certainly have advantages in some routine work, simultaneous recording method must be considered for future EDA research, since this measuring system can realize measurement of various EDA parameters on the human skin, at the same skin site and same time, which is required for accurate EDA research studies as well as clinical applications. This will in turn undoubtedly lead us to technological and clinical advancements in the treatment of other neurophysiological disorders. Therefore, simultaneous recording method is superior to sequential and alternate recording methods.
The authors declare no conflict of interest.
AC | alternating current |
B | susceptance |
C | electrical capacitance |
CE | current sink electrode |
DC | direct current |
EDA | electrodermal activity |
F | frequency |
G | conductance |
GSR | galvanic skin response |
ME | measuring electrode |
PC | personal computer |
R | resistance |
RE | reference electrode |
RH | relative humidity |
SC | skin conductance |
SCL | skin conductance level |
SCR | skin conductance response |
SP | skin potential |
SPL | skin potential level |
SPR | skin potential response |
SS | skin susceptance |
SSL | skin susceptance level |
SSR | skin susceptance response |
SR | skin resistance |
X | reactance |
Y | electrical admittance |
Z | electrical impedance |
Yuri Gagarin was the first human to travel into space in 1961, and subsequently, more than 500 people have followed. We have learned so much since then, however, there are many questions that remain unanswered. The Humans in Space program seeks to facilitate the creation of new knowledge that will help find solutions to these questions through the development of a first-of-its-kind and more complete library of open access space life sciences and related areas knowledge.
",metaTitle:"Humans in Space Program",metaDescription:"In 1961 Yuri Gagarin was the first human to travel to space. Since then, more than 500 people followed, but as much as we have learned so far, a lot of questions still remain unanswered. Humans in Space program wants to help find the answers to these questions.",metaKeywords:null,canonicalURL:"/page/about-humans-in-space-program",contentRaw:'[{"type":"htmlEditorComponent","content":"At the heart of enabling space innovation, growth and ambition is education and access to field-specific, state-of-the-art knowledge, which in turn stimulates ideas and innovation, and inspires the next generation of space scientists, engineers and researchers.
\\n\\nHumans in Space Program will showcase the research, ideas and expertise that will facilitate advancements in space life sciences knowledge.
\\n\\nThe program will:
\\n\\nThe mission of the Humans in Space Program is to create a unique, open-access reservoir of knowledge in the area of space life science, based on an interdisciplinary and comprehensive approach that will promote interaction between world-leading experts, academics and researchers. With education and the global dissemination of research at its core, the program will be an ambitious collection of experts, high-quality literature and lectures.
\\n\\nWithin the first 5 years, the program will:
\\n\\nDrawing from the extensive network of space scientists, academics, researchers, collaborators and mentors associated with its partners, the program will lay the foundations for a web of knowledge that will grow and nurture future generations of scientists, engineers, thought leaders and explorers.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"At the heart of enabling space innovation, growth and ambition is education and access to field-specific, state-of-the-art knowledge, which in turn stimulates ideas and innovation, and inspires the next generation of space scientists, engineers and researchers.
\n\nHumans in Space Program will showcase the research, ideas and expertise that will facilitate advancements in space life sciences knowledge.
\n\nThe program will:
\n\nThe mission of the Humans in Space Program is to create a unique, open-access reservoir of knowledge in the area of space life science, based on an interdisciplinary and comprehensive approach that will promote interaction between world-leading experts, academics and researchers. With education and the global dissemination of research at its core, the program will be an ambitious collection of experts, high-quality literature and lectures.
\n\nWithin the first 5 years, the program will:
\n\nDrawing from the extensive network of space scientists, academics, researchers, collaborators and mentors associated with its partners, the program will lay the foundations for a web of knowledge that will grow and nurture future generations of scientists, engineers, thought leaders and explorers.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}},{id:"6495",title:"Dr.",name:"Daniel",middleName:null,surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6495/images/1947_n.jpg",biography:"Daniel Eberli MD. Ph.D. is a scientific physician working in the translational field of urologic tissue engineering. He has a medical degree from the Medical School in Zurich, Switzerland, and a Ph.D. in Molecular Medicine from Wake Forest University, Winston Salem, NC. He currently has a faculty position at the Department of Urology at the University Hospital Zurich, where he devotes half of his time to patient care. He is a lecturer at the Medical School of Zurich and the Swiss Federal Institute of Technology. Together with his research team, he is working on novel biomaterials for bladder reconstruction, improving autonomic innervation, cellular treatment of incontinence and tracking of stem cells.",institutionString:null,institution:{name:"University Hospital of Zurich",country:{name:"Switzerland"}}},{id:"122240",title:"Prof.",name:"Frede",middleName:null,surname:"Blaabjerg",slug:"frede-blaabjerg",fullName:"Frede Blaabjerg",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Aalborg University",country:{name:"Denmark"}}},{id:"50823",title:"Prof.",name:"Hamid Reza",middleName:null,surname:"Karimi",slug:"hamid-reza-karimi",fullName:"Hamid Reza Karimi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Milan",country:{name:"Italy"}}},{id:"22128",title:"Dr.",name:"Harald",middleName:null,surname:"Haas",slug:"harald-haas",fullName:"Harald Haas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Edinburgh",country:{name:"United Kingdom"}}},{id:"80399",title:"Dr.",name:"Huosheng",middleName:null,surname:"Hu",slug:"huosheng-hu",fullName:"Huosheng Hu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Essex",country:{name:"United Kingdom"}}},{id:"107729",title:"Prof.",name:"Joachim",middleName:null,surname:"Maier",slug:"joachim-maier",fullName:"Joachim Maier",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Max Planck Institute for Solid State Research",country:{name:"Germany"}}},{id:"51995",title:"Dr.",name:"Juan A.",middleName:"A.",surname:"Blanco",slug:"juan-a.-blanco",fullName:"Juan A. Blanco",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/51995/images/1076_n.jpg",biography:"Dr. Blanco is an Assistant Professor at the Public University of Navarre. His work is focused on the development and evaluation of ecological models to simulate the influences of management, climate and other ecological factors on tree growth. He is currently collaborating with research teams from Canada, Taiwan, USA, Spain, Cuba, and China in using ecological models to explore the effects of climate change, atmospheric pollution and alternative forest practices in natural and planted forest in boreal, temperate and tropical forests. His research has been applied in mining to optimize reclamation plans, in forestry to assess the potential for carbon sequestration and by government agencies to define local guidelines for long-term sustainable forest management. Among other topics related to forest ecology, Dr. Blanco has studied the influence of climate variations on tree growth and estimated the possible ecological consequences of climate change in forest ecosystems. He has also co-authored the first book dedicated exclusively to the use of hybrid ecological models in forest management, entitled “Forecasting Forest Futures” (Earthscan, London), edited three books on Climate Change effects, mitigation and adaptation (InTech, Rijeka), and three more on Forest Ecosystems, Biodiversity and Tropical Forests (InTech, Rijeka).",institutionString:null,institution:{name:"Universidad Publica De Navarra",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5311},{group:"region",caption:"Middle and South America",value:2,count:4814},{group:"region",caption:"Africa",value:3,count:1465},{group:"region",caption:"Asia",value:4,count:9355},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14773}],offset:12,limit:12,total:14778},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"5"},books:[{type:"book",id:"7901",title:"Cocoa",subtitle:null,isOpenForSubmission:!0,hash:"bd93f97ceb11fd901da97e54a700270d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7901.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8795",title:"Reptiles",subtitle:null,isOpenForSubmission:!0,hash:"839705a75a74ec1ee60f481628d59046",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8795.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8105",title:"Ocean Epipelagic Fish",subtitle:null,isOpenForSubmission:!0,hash:"afda9c695b64a42d94ce14a71ba29be3",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8105.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8058",title:"Flora and Fauna of Mexico",subtitle:null,isOpenForSubmission:!0,hash:"c8bfa21c387827e30636c3051eb04b30",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8058.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8493",title:"Meat and Nutrition",subtitle:null,isOpenForSubmission:!0,hash:"2650311fc3de37679f550fa97c5ae607",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8493.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7763",title:"Symmetry",subtitle:null,isOpenForSubmission:!0,hash:"43717cfff404e41e2959f31e1c3c173f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7763.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Vegetarianism and Veganism",subtitle:null,isOpenForSubmission:!0,hash:"7974912539901a8ea2e7c4b5c1b34069",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8108",title:"Citrus",subtitle:null,isOpenForSubmission:!0,hash:"323198bd2227ad627206f0e347ae9121",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8108.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8065",title:"Solanum lycopersicum",subtitle:null,isOpenForSubmission:!0,hash:"57d11760537a5fceaa0ac6ce54c15191",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8065.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8549",title:"Marsupials",subtitle:null,isOpenForSubmission:!0,hash:"187f837a89f89055c73478da63fb8e41",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8549.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7032",title:"Sea Urchins",subtitle:null,isOpenForSubmission:!0,hash:"cf1501a535fa08bdb36c3806d8b9cf82",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/7032.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8469",title:"Alternative Crops",subtitle:null,isOpenForSubmission:!0,hash:"36fc7c49de6d8d540620f986d3e68ced",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/8469.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:33},{group:"topic",caption:"Business, Management and Economics",value:7,count:9},{group:"topic",caption:"Chemistry",value:8,count:28},{group:"topic",caption:"Computer and Information Science",value:9,count:27},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:75},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:39},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:143},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:7},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:26},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:14},{group:"topic",caption:"Technology",value:24,count:11},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Intelligent System",value:535,count:1},{group:"topic",caption:"Osteology",value:1414,count:1},{group:"topic",caption:"Polymer Chemistry",value:1415,count:1}],offset:12,limit:12,total:106},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4385},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1176",title:"Cellular Physiology",slug:"cellular-physiology",parent:{title:"Neurogastronomy",slug:"neurogastronomy"},numberOfBooks:2,numberOfAuthorsAndEditors:76,numberOfWosCitations:23,numberOfCrossrefCitations:13,numberOfDimensionsCitations:50,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"cellular-physiology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5485",title:"The Amygdala",subtitle:"Where Emotions Shape Perception, Learning and Memories",isOpenForSubmission:!1,hash:"5f5b1c2a89185e92e721290beabdc2e8",slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",bookSignature:"Barbara Ferry",coverURL:"https://cdn.intechopen.com/books/images_new/5485.jpg",editedByType:"Edited by",editors:[{id:"139945",title:"Dr.",name:"Barbara",middleName:null,surname:"Ferry",slug:"barbara-ferry",fullName:"Barbara Ferry"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1592",title:"Neuroscience",subtitle:"Dealing With Frontiers",isOpenForSubmission:!1,hash:"438fef28742bb47d3a4c39e053551c6c",slug:"neuroscience-dealing-with-frontiers",bookSignature:"Carlos M. Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/1592.jpg",editedByType:"Edited by",editors:[{id:"35182",title:"Dr.",name:"Carlos M.",middleName:null,surname:"Contreras",slug:"carlos-m.-contreras",fullName:"Carlos M. Contreras"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"32399",doi:"10.5772/36092",title:"Brain Energy Metabolism in Health and Disease",slug:"brain-energy-metabolism-in-health-and-disease",totalDownloads:8310,totalCrossrefCites:1,totalDimensionsCites:9,book:{slug:"neuroscience-dealing-with-frontiers",title:"Neuroscience",fullTitle:"Neuroscience - Dealing With Frontiers"},signatures:"Felipe A. Beltrán, Aníbal I. Acuña, María Paz Miró and Maite A. Castro",authors:[{id:"107041",title:"Dr.",name:"Maite A",middleName:null,surname:"Castro",slug:"maite-a-castro",fullName:"Maite A Castro"},{id:"109692",title:"Mr.",name:"Felipe A",middleName:null,surname:"Beltran",slug:"felipe-a-beltran",fullName:"Felipe A Beltran"},{id:"109695",title:"Mr.",name:"Aníbal",middleName:"I.",surname:"Acuña",slug:"anibal-acuna",fullName:"Aníbal Acuña"},{id:"109696",title:"Ms.",name:"Maria Paz",middleName:null,surname:"Miro",slug:"maria-paz-miro",fullName:"Maria Paz Miro"}]},{id:"32393",doi:"10.5772/34852",title:"The Neurochemical Anatomy of Trigeminal Primary Afferent Neurons",slug:"the-neurochemical-anatomy-of-trigeminal-primary-afferent-neurons",totalDownloads:3918,totalCrossrefCites:0,totalDimensionsCites:7,book:{slug:"neuroscience-dealing-with-frontiers",title:"Neuroscience",fullTitle:"Neuroscience - Dealing With Frontiers"},signatures:"Nikolai E. Lazarov",authors:[{id:"101891",title:"Prof.",name:"Nikolai",middleName:null,surname:"Lazarov",slug:"nikolai-lazarov",fullName:"Nikolai Lazarov"}]},{id:"54323",doi:"10.5772/67586",title:"Inner Design Technology: Improved Affect by Quadrato Motor Training",slug:"inner-design-technology-improved-affect-by-quadrato-motor-training",totalDownloads:636,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Patrizio Paoletti, Joseph Glicksohn and Tal Dotan Ben-Soussan",authors:[{id:"191040",title:"Ph.D.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan"},{id:"195042",title:"Prof.",name:"Joseph",middleName:null,surname:"Glicksohn",slug:"joseph-glicksohn",fullName:"Joseph Glicksohn"},{id:"195043",title:"Ms.",name:"Patrizio",middleName:null,surname:"Paoletti",slug:"patrizio-paoletti",fullName:"Patrizio Paoletti"}]}],mostDownloadedChaptersLast30Days:[{id:"54675",title:"The Key Role of the Amygdala in Stress",slug:"the-key-role-of-the-amygdala-in-stress",totalDownloads:1285,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Diego Andolina and Antonella Borreca",authors:[{id:"190318",title:"Dr.",name:"Diego",middleName:null,surname:"Andolina",slug:"diego-andolina",fullName:"Diego Andolina"},{id:"192832",title:"Dr.",name:"Antonella",middleName:null,surname:"Borreca",slug:"antonella-borreca",fullName:"Antonella Borreca"}]},{id:"54565",title:"The Role of the Amygdala in Regulating the Hypothalamic-Pituitary-Adrenal Axis",slug:"the-role-of-the-amygdala-in-regulating-the-hypothalamic-pituitary-adrenal-axis",totalDownloads:2516,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Joseph Weidenfeld and Haim Ovadia",authors:[{id:"190851",title:"Ph.D.",name:"Haim",middleName:null,surname:"Ovadia",slug:"haim-ovadia",fullName:"Haim Ovadia"},{id:"192823",title:"Prof.",name:"Joseph",middleName:null,surname:"Weidenfeld",slug:"joseph-weidenfeld",fullName:"Joseph Weidenfeld"}]},{id:"55211",title:"The Amygdala and Anxiety",slug:"the-amygdala-and-anxiety",totalDownloads:1284,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Sergio Linsambarth, Rodrigo Moraga-Amaro, Daisy Quintana-\nDonoso, Sebastian Rojas and Jimmy Stehberg",authors:[{id:"144923",title:"Dr.",name:"Jimmy",middleName:null,surname:"Stehberg",slug:"jimmy-stehberg",fullName:"Jimmy Stehberg"},{id:"194182",title:"Ph.D. Student",name:"Rodrigo",middleName:null,surname:"Moraga-Amaro",slug:"rodrigo-moraga-amaro",fullName:"Rodrigo Moraga-Amaro"},{id:"194183",title:"M.Sc.",name:"Sergio",middleName:null,surname:"Linsambarth",slug:"sergio-linsambarth",fullName:"Sergio Linsambarth"}]},{id:"54301",title:"Revisiting the Role of the Amygdala in Posttraumatic Stress Disorder",slug:"revisiting-the-role-of-the-amygdala-in-posttraumatic-stress-disorder",totalDownloads:1032,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Gina L. Forster, Raluca M. Simons and Lee A. Baugh",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"195109",title:"Dr.",name:"Raluca",middleName:null,surname:"Simons",slug:"raluca-simons",fullName:"Raluca Simons"},{id:"195110",title:"Dr.",name:"Lee",middleName:null,surname:"Baugh",slug:"lee-baugh",fullName:"Lee Baugh"}]},{id:"54963",title:"The Human Amygdaloid Complex: Cellular Architecture and Dopaminergic Innervation",slug:"the-human-amygdaloid-complex-cellular-architecture-and-dopaminergic-innervation",totalDownloads:784,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"María García‐Amado and Lucía Prensa",authors:[{id:"191571",title:"Ph.D.",name:"Maria",middleName:null,surname:"Garcia-Amado",slug:"maria-garcia-amado",fullName:"Maria Garcia-Amado"},{id:"195253",title:"Dr.",name:"Lucia",middleName:null,surname:"Prensa",slug:"lucia-prensa",fullName:"Lucia Prensa"}]},{id:"55483",title:"Amygdala and Emotional Modulation of Multiple Memory Systems",slug:"amygdala-and-emotional-modulation-of-multiple-memory-systems",totalDownloads:840,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Jarid Goodman, Christa McIntyre and Mark G. Packard",authors:[{id:"190956",title:"Dr.",name:"Mark",middleName:null,surname:"Packard",slug:"mark-packard",fullName:"Mark Packard"},{id:"193276",title:"Dr.",name:"Jarid",middleName:null,surname:"Goodman",slug:"jarid-goodman",fullName:"Jarid Goodman"},{id:"193277",title:"Dr.",name:"Christa",middleName:null,surname:"McIntyre",slug:"christa-mcintyre",fullName:"Christa McIntyre"}]},{id:"54746",title:"Computational Models of the Amygdala in Acquisition and Extinction of Conditioned Fear",slug:"computational-models-of-the-amygdala-in-acquisition-and-extinction-of-conditioned-fear",totalDownloads:774,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Guoshi Li",authors:[{id:"191728",title:"Dr.",name:"Guoshi",middleName:null,surname:"Li",slug:"guoshi-li",fullName:"Guoshi Li"}]},{id:"55539",title:"Human Amygdala in Sensory and Attentional Unawareness: Neural Pathways and Behavioural Outcomes",slug:"human-amygdala-in-sensory-and-attentional-unawareness-neural-pathways-and-behavioural-outcomes",totalDownloads:1006,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Matteo Diano, Alessia Celeghin, Arianna Bagnis and Marco\nTamietto",authors:[{id:"193692",title:"Dr.",name:"Marco",middleName:null,surname:"Tamietto",slug:"marco-tamietto",fullName:"Marco Tamietto"},{id:"194265",title:"Dr.",name:"Matteo",middleName:null,surname:"Diano",slug:"matteo-diano",fullName:"Matteo Diano"},{id:"194266",title:"Dr.",name:"Alessia",middleName:null,surname:"Celeghin",slug:"alessia-celeghin",fullName:"Alessia Celeghin"},{id:"194267",title:"Ph.D. Student",name:"Arianna",middleName:null,surname:"Bagnis",slug:"arianna-bagnis",fullName:"Arianna Bagnis"}]},{id:"54612",title:"Looping Circuits: Amygdalar Function and Interaction with Other Brain Regions",slug:"looping-circuits-amygdalar-function-and-interaction-with-other-brain-regions",totalDownloads:739,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Diana Peterson",authors:[{id:"191871",title:"Ph.D.",name:"Diana",middleName:null,surname:"Peterson",slug:"diana-peterson",fullName:"Diana Peterson"}]},{id:"54244",title:"The Key Amygdala-Hippocampal Dialogue for Adaptive Fear Memory",slug:"the-key-amygdala-hippocampal-dialogue-for-adaptive-fear-memory",totalDownloads:1132,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"the-amygdala-where-emotions-shape-perception-learning-and-memories",title:"The Amygdala",fullTitle:"The Amygdala - Where Emotions Shape Perception, Learning and Memories"},signatures:"Aline Desmedt",authors:[{id:"190128",title:"Dr.",name:"Aline",middleName:null,surname:"Desmedt",slug:"aline-desmedt",fullName:"Aline Desmedt"}]}],onlineFirstChaptersFilter:{topicSlug:"cellular-physiology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"onlineFirst.detail",path:"/online-first/electrodermal-activity-simultaneous-recordings",hash:"",query:{},params:{chapter:"electrodermal-activity-simultaneous-recordings"},fullPath:"/online-first/electrodermal-activity-simultaneous-recordings",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()