\r\n\r\n
\r\n\r\nThis project was co-financed by the European Regional Development Fund under the Operational Programme "Innovative Economy".\r\n',isbn:null,printIsbn:"978-953-51-1734-6",pdfIsbn:"978-953-51-4230-0",doi:"10.5772/59798",price:140,priceEur:155,priceUsd:195,slug:"storage-stability-of-fuels",numberOfPages:278,isOpenForSubmission:!1,isInWos:1,hash:"bc73beb5dc74410e15c8ee19ee4de722",bookSignature:"Krzysztof Biernat",publishedDate:"February 4th 2015",coverURL:"https://cdn.intechopen.com/books/images_new/4751.jpg",numberOfDownloads:14139,numberOfWosCitations:6,numberOfCrossrefCitations:8,numberOfDimensionsCitations:11,hasAltmetrics:0,numberOfTotalCitations:25,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 30th 2014",dateEndSecondStepPublish:"November 20th 2014",dateEndThirdStepPublish:"February 24th 2015",dateEndFourthStepPublish:"May 25th 2015",dateEndFifthStepPublish:"June 24th 2015",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7,8",editedByType:"Edited by",kuFlag:!1,editors:[{id:"155009",title:"Prof.",name:"Krzysztof",middleName:null,surname:"Biernat",slug:"krzysztof-biernat",fullName:"Krzysztof Biernat",profilePictureURL:"https://mts.intechopen.com/storage/users/155009/images/system/155009.jfif",biography:"Krzysztof Biernat Ph.D. (Mech.Eng.) is a professor of the Automotive Industry Institute (PIMOT), acting as President of the Polish Biomethane Council, a Coordinator of Polish Technology Platform for Biofuels, and a member of the Coordinating Committee of Society Cluster of Bioeconomy. He is also a lead expert of the International Renewable Energy Agency and an expert in many operational programs. He specializes in chemical thermodynamics of environmental processes as well as obtaining technologies, quality evaluation, and the use of exploitative liquids, including biofuels, and biorefinery systems. He is an author of above 200 publications in the area of properties and exploitative conditionings of fuels, biofuels, and other liquids as well as environmental protection. He is a member of many national and international scientific societies including the American Chemical Society and American Association for the Advancement of Science.",institutionString:"Łukasiewicz R&D Network - Automotive Industry Institute",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"5",institution:{name:"Cardinal Stefan Wyszyński University in Warsaw",institutionURL:null,country:{name:"Poland"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"768",title:"Petroleum Engineering",slug:"engineering-energy-engineering-petroleum-engineering"}],chapters:[{id:"47905",title:"The Influence of Engine Fuel Manufacturing Processes on Their Performance Properties in Operating Conditions",doi:"10.5772/59800",slug:"the-influence-of-engine-fuel-manufacturing-processes-on-their-performance-properties-in-operating-co",totalDownloads:1593,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Krzysztof Biernat",downloadPdfUrl:"/chapter/pdf-download/47905",previewPdfUrl:"/chapter/pdf-preview/47905",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47911",title:"Criteria for the Quality Assessment of Engine Fuels in Storage and Operating Conditions",doi:"10.5772/59801",slug:"criteria-for-the-quality-assessment-of-engine-fuels-in-storage-and-operating-conditions",totalDownloads:1167,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Krzysztof Biernat",downloadPdfUrl:"/chapter/pdf-download/47911",previewPdfUrl:"/chapter/pdf-preview/47911",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47819",title:"Biofuels in Storage and Operating Conditions",doi:"10.5772/59802",slug:"biofuels-in-storage-and-operating-conditions",totalDownloads:1296,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Krzysztof Biernat",downloadPdfUrl:"/chapter/pdf-download/47819",previewPdfUrl:"/chapter/pdf-preview/47819",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47914",title:"Liquid Fuel Ageing Processes in Long-term Storage Conditions",doi:"10.5772/59799",slug:"liquid-fuel-ageing-processes-in-long-term-storage-conditions",totalDownloads:1999,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Marlena Owczuk and Krzysztof Kołodziejczyk",downloadPdfUrl:"/chapter/pdf-download/47914",previewPdfUrl:"/chapter/pdf-preview/47914",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47919",title:"Corrosiveness of Fuels During Storage Processes",doi:"10.5772/59803",slug:"corrosiveness-of-fuels-during-storage-processes",totalDownloads:2532,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Monika Ziółkowska and Dorota Wardzińska",downloadPdfUrl:"/chapter/pdf-download/47919",previewPdfUrl:"/chapter/pdf-preview/47919",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47921",title:"Autoxidation of Fuels During Storage",doi:"10.5772/59807",slug:"autoxidation-of-fuels-during-storage",totalDownloads:1658,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Joanna Czarnocka, Anna Matuszewska and Małgorzata\nOdziemkowska",downloadPdfUrl:"/chapter/pdf-download/47921",previewPdfUrl:"/chapter/pdf-preview/47921",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47922",title:"A Review of Selected Methods of Measurement Used for the On-Line Analysis of Liquid Fuels",doi:"10.5772/59804",slug:"a-review-of-selected-methods-of-measurement-used-for-the-on-line-analysis-of-liquid-fuels",totalDownloads:1331,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Artur Malinowski, Paweł Wrzosek, Anna Turlej and Dorota\nWardzińska",downloadPdfUrl:"/chapter/pdf-download/47922",previewPdfUrl:"/chapter/pdf-preview/47922",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47923",title:"Analysis of Changes in the Properties of Selected Chemical Compounds and Motor Fuels Taking Place During Oxidation Processes",doi:"10.5772/59805",slug:"analysis-of-changes-in-the-properties-of-selected-chemical-compounds-and-motor-fuels-taking-place-du",totalDownloads:1095,totalCrossrefCites:2,totalDimensionsCites:1,signatures:"Marta Skolniak, Paweł Bukrejewski and Jarosław Frydrych",downloadPdfUrl:"/chapter/pdf-download/47923",previewPdfUrl:"/chapter/pdf-preview/47923",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null},{id:"47924",title:"Environmental Aspects in the Life Cycle of Liquid Biofuels with Biocomponents, Taking into Account the Storage Process",doi:"10.5772/59806",slug:"environmental-aspects-in-the-life-cycle-of-liquid-biofuels-with-biocomponents-taking-into-account-th",totalDownloads:1471,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Izabela Samson-Bręk, Barbara Smerkowska and Aleksandra Filip",downloadPdfUrl:"/chapter/pdf-download/47924",previewPdfUrl:"/chapter/pdf-preview/47924",authors:[{id:"174229",title:"M.Sc.",name:"Dorota",surname:"Wardzińska",slug:"dorota-wardzinska",fullName:"Dorota Wardzińska"}],corrections:null}],productType:{id:"3",title:"Monograph",chapterContentType:"chapter",authoredCaption:"Authored by"}},relatedBooks:[{type:"book",id:"4542",title:"Biofuels",subtitle:"Status and Perspective",isOpenForSubmission:!1,hash:"cbcf6eb3ffef503058cdf579d9d7fc63",slug:"biofuels-status-and-perspective",bookSignature:"Krzysztof Biernat",coverURL:"https://cdn.intechopen.com/books/images_new/4542.jpg",editedByType:"Edited by",editors:[{id:"155009",title:"Prof.",name:"Krzysztof",surname:"Biernat",slug:"krzysztof-biernat",fullName:"Krzysztof Biernat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8150",title:"Elements of Bioeconomy",subtitle:null,isOpenForSubmission:!1,hash:"f5a930b0695ff23259fe96f219ff9a15",slug:"elements-of-bioeconomy",bookSignature:"Krzysztof Biernat",coverURL:"https://cdn.intechopen.com/books/images_new/8150.jpg",editedByType:"Edited by",editors:[{id:"155009",title:"Prof.",name:"Krzysztof",surname:"Biernat",slug:"krzysztof-biernat",fullName:"Krzysztof Biernat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6784",title:"Biofuels",subtitle:"State of Development",isOpenForSubmission:!1,hash:"9a31143f106bba91ce8430f49d3339af",slug:"biofuels-state-of-development",bookSignature:"Krzysztof Biernat",coverURL:"https://cdn.intechopen.com/books/images_new/6784.jpg",editedByType:"Edited by",editors:[{id:"155009",title:"Prof.",name:"Krzysztof",surname:"Biernat",slug:"krzysztof-biernat",fullName:"Krzysztof Biernat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5087",title:"Alternative Fuels",subtitle:"Technical and Environmental Conditions",isOpenForSubmission:!1,hash:"d384e15f7ac163a7323b08fede906b7a",slug:"alternative-fuels-technical-and-environmental-conditions",bookSignature:"Krzysztof Biernat",coverURL:"https://cdn.intechopen.com/books/images_new/5087.jpg",editedByType:"Edited by",editors:[{id:"155009",title:"Prof.",name:"Krzysztof",surname:"Biernat",slug:"krzysztof-biernat",fullName:"Krzysztof Biernat"}],productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"7314",title:"Exploitation of Unconventional Oil and Gas Resources",subtitle:"Hydraulic Fracturing and Other Recovery and Assessment Techniques",isOpenForSubmission:!1,hash:"2eba15587cac74206f978e72a0cef2f9",slug:"exploitation-of-unconventional-oil-and-gas-resources-hydraulic-fracturing-and-other-recovery-and-assessment-techniques",bookSignature:"Kenneth Imo-Imo Eshiet",coverURL:"https://cdn.intechopen.com/books/images_new/7314.jpg",editedByType:"Edited by",editors:[{id:"195037",title:"Dr.",name:"Kenneth Imo-Imo",surname:"Eshiet",slug:"kenneth-imo-imo-eshiet",fullName:"Kenneth Imo-Imo Eshiet"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6466",title:"Shale Gas",subtitle:"New Aspects and Technologies",isOpenForSubmission:!1,hash:"02763c6398f049c222acf6a774dd38ee",slug:"shale-gas-new-aspects-and-technologies",bookSignature:"Ali Al-Juboury",coverURL:"https://cdn.intechopen.com/books/images_new/6466.jpg",editedByType:"Edited by",editors:[{id:"58570",title:"Prof.",name:"Ali",surname:"Al-Juboury",slug:"ali-al-juboury",fullName:"Ali Al-Juboury"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5811",title:"Recent Insights in Petroleum Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"33b7777178f4a179ba475e3e15405427",slug:"recent-insights-in-petroleum-science-and-engineering",bookSignature:"Mansoor Zoveidavianpoor",coverURL:"https://cdn.intechopen.com/books/images_new/5811.jpg",editedByType:"Edited by",editors:[{id:"92105",title:"Dr.",name:"Mansoor",surname:"Zoveidavianpoor",slug:"mansoor-zoveidavianpoor",fullName:"Mansoor Zoveidavianpoor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64729",slug:"erratum-toward-the-development-of-a-monitoring-and-feedback-system-for-predicting-poor-adjustment-to",title:"Erratum - Toward the Development of a Monitoring and Feedback System for Predicting Poor Adjustment to Grief",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64729.pdf",downloadPdfUrl:"/chapter/pdf-download/64729",previewPdfUrl:"/chapter/pdf-preview/64729",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64729",risUrl:"/chapter/ris/64729",chapter:{id:"57127",slug:"toward-the-development-of-a-monitoring-and-feedback-system-for-predicting-poor-adjustment-to-grief",signatures:"Wan Jou She, Laurie Burke, Robert A. Neimyer, Kailey Roberts,\nWendy Lichtenthal, Jun Hu and Matthias Rauterberg",dateSubmitted:"September 5th 2017",dateReviewed:null,datePrePublished:null,datePublished:"October 18th 2017",book:{id:"6456",title:"Proceedings of the Conference on Design and Semantics of Form and Movement",subtitle:"Sense and Sensitivity, DeSForM 2017",fullTitle:"Proceedings of the Conference on Design and Semantics of Form and Movement - Sense and Sensitivity, DeSForM 2017",slug:"proceedings-of-the-conference-on-design-and-semantics-of-form-and-movement-sense-and-sensitivity-desform-2017",publishedDate:"October 18th 2017",bookSignature:"Miguel Bruns Alonso and Elif Ozcan",coverURL:"https://cdn.intechopen.com/books/images_new/6456.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221149",title:"Dr.",name:"Wan Jou",middleName:null,surname:"She",fullName:"Wan Jou She",slug:"wan-jou-she",email:"lave@lavendershe.com",position:null,institution:null}]}},chapter:{id:"57127",slug:"toward-the-development-of-a-monitoring-and-feedback-system-for-predicting-poor-adjustment-to-grief",signatures:"Wan Jou She, Laurie Burke, Robert A. Neimyer, Kailey Roberts,\nWendy Lichtenthal, Jun Hu and Matthias Rauterberg",dateSubmitted:"September 5th 2017",dateReviewed:null,datePrePublished:null,datePublished:"October 18th 2017",book:{id:"6456",title:"Proceedings of the Conference on Design and Semantics of Form and Movement",subtitle:"Sense and Sensitivity, DeSForM 2017",fullTitle:"Proceedings of the Conference on Design and Semantics of Form and Movement - Sense and Sensitivity, DeSForM 2017",slug:"proceedings-of-the-conference-on-design-and-semantics-of-form-and-movement-sense-and-sensitivity-desform-2017",publishedDate:"October 18th 2017",bookSignature:"Miguel Bruns Alonso and Elif Ozcan",coverURL:"https://cdn.intechopen.com/books/images_new/6456.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"221149",title:"Dr.",name:"Wan Jou",middleName:null,surname:"She",fullName:"Wan Jou She",slug:"wan-jou-she",email:"lave@lavendershe.com",position:null,institution:null}]},book:{id:"6456",title:"Proceedings of the Conference on Design and Semantics of Form and Movement",subtitle:"Sense and Sensitivity, DeSForM 2017",fullTitle:"Proceedings of the Conference on Design and Semantics of Form and Movement - Sense and Sensitivity, DeSForM 2017",slug:"proceedings-of-the-conference-on-design-and-semantics-of-form-and-movement-sense-and-sensitivity-desform-2017",publishedDate:"October 18th 2017",bookSignature:"Miguel Bruns Alonso and Elif Ozcan",coverURL:"https://cdn.intechopen.com/books/images_new/6456.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"8964",leadTitle:null,title:"Mites, Ticks and their Impacts on Humans",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tArachnids mites and ticks are joint-legged arthropods (phylum Arthropoda) from class Arachnida having eight legs in adults whereas larvae with three pairs of legs. Many mites are parasites that can be ectoparasites feeding on the outer skin, or endoparasites feeding on the underlying tissues. While some parasitic mites transmit disease causing organisms, many cause diseases themselves including scabies and mange (contagious skin diseases characterized by inflammation, irritation and intense itching). Some mites, such as the chigger are parasitic as larvae, but free living in the nymph and adult stages. Many more mites are free living, which are not parasitic, for instance, house dust mites cause allergies in many people. Ticks are mostly bloodsucking parasites that attach themselves to the outer body of mammals including humans. In addition to injecting poison into the host while sucking blood, ticks can transmit other disease causing pathogens such as bacteria, viruses and protozoa.
\r\n\tBook, “Mites, Ticks and Humans", is written by keeping in vision non-availability of any standard text dealing in different aspects of acarology at one place. Separate chapters in this book are devoted to medical importance of mites and ticks; ectoparasites, endoparasites and disease transmitting mites; classification, biology and epidemiology of dust mites; manifestations, diagnostics and preventions of dust mites allergy; ticks transmission of disease causing pathogens; and measures to mitigate mites and ticks. Book will stimulate interest in the readers for more information about different mites and ticks affecting publics. The knowledge contained in the book may prove as best material for graduate and post-graduate level courses, teachers and researchers in entomology, pestss control advisors, professional entomologists, pesticide industry managers, policy planners, and other experts having interest in mites and ticks.
Acute coronary syndrome (ACS) is a term that describes an acute ischemic insult to the myocardium resulting from sudden reduction in coronary blood flow. The findings on the ECG will help to categorize patients into two major subdivision of major diagnostic and therapeutic consequences [1]:
Patients with acute chest pain and persistent >1 mm ST-segment elevation in ≥2 anatomically contiguous leads. This condition is termed ST-elevation ACS and generally reflects an acute total coronary occlusion. The mainstay of treatment in these patients is immediate reperfusion with primary angioplasty or fibrinolytic therapy [2]. While biomarkers are useful for confirmatory and prognostic purposes, they are not required for the diagnosis of STEMI and should not delay treatment.
Patients with acute chest pain but no persistent ST-segment elevation. This condition is termed non-ST elevation ACS (NSTE-ACS). The ECG may be normal or there may be transient ST-segment elevation, persistent or transient ST-segment depression, T-wave inversion, flat T waves or pseudo-normalization of T waves. The NSTE-ACS can be sub-classified to:
The application of high-sensitivity cardiac troponin measurements in daily clinical practice instead standard troponin assays showed increased detection of MI (4% absolute and 20% relative increase) and decreased diagnosis of unstable angina [5, 6, 7]. In comparison with NSTEMI patients, unstable angina patients do not have necrosis in their myocardial tissue and have a substantially lower risk of death. Unstable angina patients benefit less from intensified antiplatelet therapy and early invasive strategy [5, 6, 7, 8, 9, 10, 11, 12]. NSTEMI encompasses a broad spectrum of ischemic injury to the myocardium, which is detected by elevation of serum cardiac biomarkers. It can be distinguished from unstable angina pectoris by normal serial cardiac biomarkers [1].
NSTEMI is an acute ischemic event causing cardiomyocyte death by necrosis in a clinical setting consistent with acute myocardial ischemia [8]. The leading symptom that initiates the diagnostic and therapeutic cascade in patients with suspected ACS is chest pain but to make a diagnosis of NTEMI, one major criteria is typical rise and gradual fall in cardiac biomarkers (troponin or CKMB) in addition to one or more of the following:
Symptoms of ischemia.
ECG changes.
Imaging evidence of new or presumed new loss of viable myocardium or regional wall motion abnormality.
Intracoronary thrombus detected on angiography or autopsy [8].
The development of myocardial tissue-specific biomarkers and sensitive cardiac imaging techniques allows for early detection of very small amounts of myocardial injury or necrosis. Consequently MI has been redefined to encompass any necrosis in the setting of myocardial ischemia by any of the following possible etiologies [3, 8, 13]:
Type 1 MI: spontaneous MI caused by atherosclerotic plaque rupture, ulceration, fissure, erosion or dissection with resulting intraluminal thrombus in one or more coronary arteries leading to decreased myocardial blood flow and/or distal embolization and subsequent myocardial necrosis. The patient may have underlying severe CAD but in 5–20% of cases there may be non-obstructive coronary atherosclerosis or no angiographic evidence of CAD, particularly in women [8, 10, 11, 14].
Type 2 MI: MI secondary to an increase in oxygen demand or decrease in supply. The myocardial necrosis results from causes other than coronary plaque instability [8]. Mechanisms include coronary artery spasm, coronary endothelial dysfunction, tachyarrhythmias, bradyarrhythmias, anemia, respiratory failure, hypotension and severe hypertension. In addition, in critically ill patients and in patients undergoing major non-cardiac surgery, myocardial necrosis may be related to injurious effects of pharmacological agents and toxins [9].
Type 3 MI: Sudden unexpected cardiac death before cardiac biomarkers obtained.
Type 4a MI: MI associated with percutaneous coronary intervention (PCI) where there is a greater than 5-fold rise in troponin during the first 48 h following the intervention [8].
Type 4b MI: MI associated with stent thrombosis.
Type 5 MI: MI associated with coronary bypass graft surgery (CABG), a greater than 10-fold rise from normal baseline levels in troponin during the first 48 h following the intervention [8].
Cardiovascular disease (CVD) is the number one cause of death worldwide, accounting for 17.5 million deaths per year. Coronary heart disease mortality is decreasing in many developed countries, but it is increasing in developing and transitional countries, partly as a result of increasing longevity, urbanization, and lifestyle changes. Epidemiological data have shown that acute coronary syndrome cases with STEMI appear to be declining and that NSTEMI occurs more frequently than STEMI [15, 16]. In the United States, it is estimated that >780,000 people will experience an ACS each year, and approximately 70% of these will have NSTEMI [17]. Trends from the world’s largest database of patients with ACS show that the percentage of patients with a diagnosis of NSTEMI is rising dramatically [18]. This is likely to be due to the advent of more sensitive assays for myocardial injury, earlier pharmacotherapy, and reperfusion (and prevention) of STEMI [13, 18].
NSTEMI is a result of an acute imbalance between myocardial oxygen demand and supply, most commonly due to a reduction in myocardial perfusion. Type 1 MI is most commonly caused by a non-occlusive thrombus that develops in a disrupted atherosclerotic plaque, and leads to non-occlusive or near-complete thrombosis of a vessel supplying the myocardium.
Plaque rupture usually occurs at the weakest and thinnest part of the atherosclerotic cap (often at the shoulder region). Ruptured plaques contain large numbers of inflammatory cells including monocytes, macrophages, and T lymphocytes [19, 20]. Although one third of occlusions occur at a site with the greatest stenosis, most (66–78%) arise from lesions with <50% stenosis, and <5% arise from lesions exhibiting >70% stenosis [19]. It is thought that the lack of ST elevation is because the infarct does not involve the full thickness of the myocardium (not a transmural infarction). The severity of myocardial damage in NSTEMI depends on:
Duration of ischemia and time to reperfusion
Extent of underlying atherosclerosis
Presence of collateral blood flow to the affected region
Diameter of affected coronary vessel
Degree of occlusion
Presence of other comorbidities (i.e., diabetes, renal failure, or HTN).
Classically it is thought that NSTEMI patients ultimately have a diagnosis of a non-Q-wave MI; however, 25% of patients with NSTEMI and elevated biomarkers go on to develop Q-wave MI in the weeks to follow [21]. In addition, approximately 25% of patients with a diagnosis of NSTEMI have a 100% occlusion of the affected artery on coronary angiography [22].
NSTEMI may also be caused by other mechanisms, such as dynamic obstruction (i.e., focal coronary artery spasm or Prinzmetal angina), severe progressive atherosclerosis, restenosis following percutaneous coronary intervention, recreational drug use (e.g., cocaine or other stimulants), arterial inflammation (i.e., vasculitis), or extrinsic causes leading to myocardial supply–demand mismatch (such as hypotension, hypovolemia, or hypoxia) [1].
Patients presenting with chest pain or discomfort with suspected ACS require urgent evaluation. The clinical spectrum of NSTEMI may range from patients free of symptoms at presentation to individuals with ongoing ischemia, electrical or hemodynamic instability due to large myocardium in jeopardy or cardiac arrest secondary to malignant ventricular ischemia. Therefore, it is essential to establish if the patient has ACS and if so, what is the likelihood the patient will have adverse clinical event [1]. Physicians will need to stratify the patients according to their risk status and according to the initial risk assessment to choose an appropriate management strategy. The initial risk assessment includes the history, examination, ECG, and cardiac biomarkers [1, 23].
Angina pectoris is a kind of pain described as a sensation of tightness, heaviness, aching, burning, pressure, or squeezing typically localized at the retrosternal region. The pain can often radiate to the left arm but may also radiate to the lower jaw, neck, both arms, back, and epigastrium. It is associated with exertion or emotional stress and relieved by rest or administration of sublingual nitroglycerin [1].
In ACS patients other symptoms including sweating, nausea, abdominal pain, dyspnea and syncope may be present. Atypical presentations are also possible and characterized by epigastric pain, indigestion-like symptoms and isolated dyspnea. Atypical complaints are more often observed in the elderly, in women and in patients with diabetes mellitus, chronic renal disease or dementia [24, 25]. The relief of pain at rest increase the probability of myocardial ischemia while the relief of symptoms after nitrates administration is not specific for angina pectoris [25]. In patients presenting with suspected MI to the emergency department, overall, the diagnostic performance of chest pain characteristics for MI is limited [25].
Risk factors increase the likelihood of NSTEMI include: Older age, male gender, family history of CAD, diabetes, hyperlipidemia, hypertension, renal insufficiency, previous manifestation of CAD as well as peripheral or carotid artery disease.
Physical examination is frequently unremarkable in patients with suspected NSTEMI but may reveal HTN or hypotension, the presence of third and fourth heart sounds, and paradoxical splitting of the second heart sound. Cardiac auscultation may reveal a systolic murmur due to ischemic mitral regurgitation, which is associated with poor prognosis [26] or a mechanical complication (i.e. papillary muscle rupture or ventricular septal defect) of a subacute and possibly undetected MI. Signs of heart failure (raised jugular venous pressure, bilateral crepitation on auscultation of the lungs) or cardiogenic shock may also be present, and these signify a worse prognosis.
Resting 12-lead ECG is the first diagnostic test for patients with chest pain and should be performed and interpreted within the first 10 min of the initial admission to the hospital [27]. ECG is critical for the diagnosis of STEMI as the cause for the chest pain, this has a tremendous therapeutic implication for the patient.
While the ECG in the setting of NSTEMI may be normal in more than one-third of patients, a serial ECG at 15- to 30-min intervals should be performed to detect the developing abnormalities. Classic ECG findings of ischemia in NSTEMI include horizontal or down sloping ST depression >0.5 mm and/or symmetrically inverted T waves >2.0 mm (Figure 1) [2, 28]. Standard leads may be inconclusive in some patients and additional leads may be necessary (e.g. in case of left circumflex artery occlusion or right ventricular MI may be detected only in V7–V9 and V3R and V4R, respectively) [8]. If it is possible a comparison with previous ECG’s may be valuable. Diffuse precordial ST depression more pronounced in leads V4–V6 may indicate a culprit lesion located in the mid left anterior descending coronary artery, while changes more evident in leads V2–V3 may be more suggestive of a culprit lesion located in the left circumflex artery [29]. Diffuse ST depression including both precordial and extremity leads associated with ST-elevation ≥1 mm in lead aVR may indicate either left main coronary artery as the culprit lesion or proximal occlusion of the left anterior descending coronary artery in the presence of severe three-vessel CAD [30, 31].
ECG showing ST depression in the inferolateral leads suggestive of inferior-lateral ischemia.
CBC: hemoglobin and hematocrit measurements may help to evaluate a secondary cause of NSTEMI (e.g., acute blood loss, anemia) and to evaluate thrombocytopenia to estimate risk of bleeding.
BUN and serum creatinine: creatinine clearance should be estimated in NSTEMI patients and the doses of renally cleared drugs should be adjusted appropriately. In chronic kidney disease patients undergoing angiography, iso-osmolar contrast agents may be preferred [1, 15].
Serum electrolytes: electrolyte derangements may predispose to cardiac arrhythmias.
Liver function tests: useful if treatment with drugs that undergo hepatic metabolism is considered.
Brain natriuretic peptide (BNP) and N-terminal pro-BNP (NT-pro-BNP): measurement of BNP or NT-pro-BNP may be considered to supplement assessment of global risk in patients with suspected ACS, particularly cardiogenic shock associated with MI type 1 [1].
Lipid profile: this test is indicated in the first 24 h of admission to the hospital to assess for lipid abnormalities and therefore the need for any lipid-lowering therapy.
Clinical assessment,12-lead ECG and biomarkers are crucial for the diagnosis, risk stratification and treatment of patients with suspected NSTEMI. Measurement, preferably, high-sensitivity cardiac troponin, is mandatory in all patients with suspected NSTEMI [7, 8, 9]. Cardiac troponins are more sensitive and specific markers of cardiomyocyte injury than creatine kinase (CK), its MB isoenzyme (CK-MB) and myoglobin. In patients with suspected myocardial ischemia, a dynamic elevation of cardiac troponin above the 99th percentile of healthy individuals indicates MI. Cardiac troponin levels rise rapidly (i.e. usually within 1 h if using high-sensitivity assays) after symptom onset and remain elevated for several days [8, 9].
The use of high-sensitivity assays, has shortened the time interval to the second cardiac troponin, reduced substantially the delay to diagnosis, translating into shorter stays in the emergency department and lower costs [6, 7, 8, 9, 32, 33, 34, 35]. In patients presenting very early, the second cardiac troponin level should be obtained at 3 h, due to the time dependency of troponin release; serial cardiac troponin testing should be pursued if the clinical suspicion remains high or whenever the patient develops recurrent chest pain [36, 37]. The negative predictive value for MI in patients assigned ‘rule-out ‘exceeded 98% [35, 36, 37, 38, 39, 40, 41] used in conjunction with clinical and ECG findings. The positive predictive value for MI in those patients meeting the ‘rule-in’ criteria was 75–80%.
Transthoracic echocardiography is useful to identify abnormalities suggestive of myocardial ischemia or necrosis (i.e. segmental hypokinesia or akinesia). Strain and strain rate imaging can detect subtle reduced regional function in the absence of overt wall motion abnormalities, which improve the diagnostic and prognostic value of conventional echocardiography [42, 43]. Evaluation of left ventricular systolic function by echocardiography, at the indexed hospital admission, is important to estimate prognosis. Echocardiography can help in discrimination of other pathologies including acute aortic dissection, pericardial effusion, aortic valve stenosis, hypertrophic cardiomyopathy or right ventricular dilatation associated with acute pulmonary embolism. Echocardiography is the diagnostic tool of choice for patients with hemodynamic instability of suspected cardiac origin [44].
In patients without ischemic changes on 12-lead ECGs and negative cardiac troponins (preferably high-sensitivity) who are free of chest pain for several hours, stress imaging can be performed during admission or shortly after discharge [1, 45, 46]. The sensitivity and specificity of these tests increase when combined with either nuclear imaging to look for myocardial perfusion defects or echocardiography to assess wall motion abnormalities. Stress imaging is preferred over exercise ECG due to its greater diagnostic accuracy and superior prognostic value [47]. While studies have shown that normal exercise or pharmacological stress echocardiograms have high negative predictive value for ischemia and are associated with excellent patient outcomes ECG [48, 49, 50]. The addition of contrast to improve endocardial border detection and facilitate detection of ischemia [51].
To evaluate the extent of the CAD, a functional assessment using a submaximal exercise testing can be performed at 4 to 7 days after myocardial infarction, while symptom limited testing can be performed at 14 to 21 days post-myocardial infarction, when the patient has been free of active ischemic or heart failure symptoms [52].
Cardiac magnetic resonance (CMR) can be used in the assessment of myocardial perfusion and wall motion abnormalities. Patients presenting with acute chest pain with a normal stress CMR have an excellent short and midterm prognosis [53]. CMR also permits detection of scar tissue (using late gadolinium enhancement) and can differentiate this from recent infarction (using T2-weighted imaging to delineate myocardial edema) [54, 55]. Moreover, CMR can facilitate the differential diagnosis between infarction and myocarditis or Takotsubo cardiomyopathy [56].
Nuclear myocardial perfusion imaging has been shown to be useful for risk stratification in patients with acute chest pain suggestive for ACS. The presence of an area of myocardium that becomes deprived of perfusion during increased myocardial demand and reperfuses on stopping the activity on nuclear imaging stress tests is a reversible defect (Figure 2).
Myocardial nuclear perfusion scan showing anterior, lateral and inferior reversible scan. Coronary angiogram confirmed three vessel disease.
Resting myocardial scintigraphy, can be helpful for the diagnosis of patients presenting with chest pain without ECG changes or elevated cardiac troponins [57]. Combined stress–rest imaging may further enhance assessment of ischemia, while a normal study is associated with excellent outcome [58, 59].
Multidetector computed tomography (MDCT) provide noninvasive evaluation of coronary anatomy and atherosclerosis. Due to the high negative predictive value of coronary computed tomography angiography (CCTA), evidence suggests that CCTA is useful in patients with low to moderate risk of NSTEMI where a normal scan excludes CAD. When compared with the standard care (observation, serial enzymes followed by stress testing) for low-risk patients, CCTA reduced time to diagnosis, reduced length of emergency department stay, and had similar safety [60]. CCTA had high negative predictive values to exclude ACS and excellent outcome in patients presenting to the emergency department with low to intermediate pre-test probability for ACS and a normal coronary CT angiogram [61]. CCTA was proven beneficial in the triage of low- to intermediate-risk patients presenting with acute chest pain to emergency departments without signs of ischemia on ECG and/or inconclusive cardiac troponins. At 6 months follow-up, there were no difference in the incidence of MI, post discharge emergency department visits or rehospitalizations, and no deaths in comparison to traditional management. Also, there were reduction in the cost and length of stay associated with MDCT [60, 62, 63, 64, 65]. But there was an increase in the use of invasive angiography [65]. CCTA is not indicated for patients with high-risk features and it is not useful in patients with known CAD [66]. Other factors limiting CCTA include severe calcifications and tachycardia. CT imaging can effectively exclude other causes of acute chest pain that, if untreated, are associated with high mortality, namely pulmonary embolism, aortic dissection and tension pneumothorax [67].
ACS management requires continuous risk stratification for death or recurrent MI. Quantitative assessment of ischemic risk by means of scores is superior to the clinical assessment alone to further triage and assist in the selection of treatment options [1]. A number of risk scores exist which incorporate a number of variables, the GRACE risk score and the TIMI risk score are examples.
The GRACE risk score provides the most accurate stratification of risk both on admission and at discharge [68, 69]. The GRACE 2.0 risk calculator provides a direct estimation, of mortality while in hospital, at 6 months, at 1 year and at 3 years. The combined risk of death or MI at 1 year is also provided [70]. Variables used in the GRACE 2.0 risk calculation include age, systolic blood pressure, pulse rate, serum creatinine, Killip class at presentation, cardiac arrest at admission, elevated cardiac biomarkers and ST deviation. The TIMI risk score uses seven variables in an additive scoring system: age ≥ 65 years, three or more CAD risk factors, known CAD, aspirin use in the past 7 days, severe angina (two or more episodes within 24 h), ST change ≥0.5 mm and positive cardiac marker [71]. Patients with a TIMI score of 0–2 are low risk, 3–4 are intermediate risk, and 5–7 are high risk. All-cause mortality, rate of MI, and rate of urgent revascularization at 14 days increase in proportion to the number of risk factors present on the TIMI score. It is simple to use, but its discriminative accuracy is inferior to that of the GRACE risk score [1, 71].
The aim of initial evaluation is to relieve pain and ischemia, prevent further thrombosis or embolism, and correct hemodynamic abnormalities and treat life-threatening complication.
All patients should undergo early risk estimation based on the medical history, physical exam, ECG findings, and cardiac markers.
Initial medical therapy is indicated in all patients, with variation in some choices of agent according to risk stratification.
Early revascularization, effective antithrombotic therapy and administration of beta-blockers have reduced the incidence of life threatening arrhythmias in the acute phase of MI to <3%, with most of the arrhythmic events occurring within 12 h of symptom onset [72, 73]. Patients with life-threatening arrhythmias frequently had prior heart failure, low LV ejection fraction (EF < 30%) and triple vessel CAD.
NSTEMI patients at low risk for cardiac arrhythmias require rhythm monitoring for ≤24 h or until coronary revascularization (whichever comes first) in an intermediate or coronary care unit, while individuals at intermediate to high risk for cardiac arrhythmia may require rhythm monitoring for >24 h in an intensive or coronary care unit or in an intermediate care unit, depending on the clinical presentation, degree of revascularization and early post-revascularization course.
All patients require oxygen saturation measurement using pulse oximetry [1]. Although in the past oxygen was routinely given to all patients, there is no evidence to support this practice [74]. Moreover, results of the Air Versus Oxygen in ST-elevation MyocarDial Infarction (AVOID) trial have shown that routine supplemental oxygen may increase myocardial infarct size, and raise rates of recurrent MI and cardiac arrhythmia in patients with ST-elevation MI but without hypoxia. Guidelines now recommend supplemental oxygen therapy only in patients who are hypoxemic (arterial oxygen saturation < 90%), or in those who have respiratory distress or other high-risk features for hypoxemia [1, 15, 75].
The goal of pharmacological anti-ischemic therapy is to decrease myocardial oxygen demand (secondary to a decrease in heart rate, blood pressure, preload or myocardial contractility) or to increase myocardial oxygen supply (by administration of oxygen or through coronary vasodilation).
Pain relief is indicated in the initial management of all patients. Those with ongoing ischemic discomfort should receive a trial of sublingual nitroglycerin (0. 4 mg) every 5 min for a total of three doses. Sublingual nitroglycerin reduces myocardial oxygen demand and enhances myocardial oxygen delivery. Intravenous nitroglycerin is recommended in patients with no symptom relief after sublingual nitroglycerin. Under careful blood pressure monitoring, the dose should be titrated upwards until symptoms are relieved, and in hypertensive patients until blood pressure is normalized, unless side effects (notably headache or hypotension) occur. Beyond symptom control, there is no indication for nitrate treatment [76]. In patients with recent intake of a phosphodiesterase type 5 inhibitor (i.e. within 24 h for sildenafil or vardenafil and 48 h for tadalafil), nitrates should not be administered due to the risk of severe hypotension. Nitroglycerin should not be given if systolic BP is <90 mmHg or there is a concern about right ventricular infarction [77]. If the patient does not respond to nitroglycerin, intravenous morphine can be administered in the absence of any contraindications [1]. Morphine causes vasodilation and may produce reductions in heart rate (through increased vagal tone) and systolic BP to further reduce myocardial oxygen demand. It should be given instead of nitroglycerin when nitroglycerin is contraindicated. Morphine should be used with caution, one randomized, double-blind trial found that morphine delays and attenuates ticagrelor exposure and action in patients with myocardial infarction [78, 79].
Oral beta-blockers are recommended for routine use in all patients unless contraindicated. Beta-blockers competitively inhibit the myocardial effects of circulating catecholamines and reduce myocardial oxygen consumption by lowering heart rate, blood pressure and myocardial contractility. Randomized trials with threatened or evolving MI have shown lower rates of progression to MI with beta-blocker treatment [80].
The beneficial effects of beta-blockers derived from several meta-analyses were a significant 8 and 13% relative risk reduction for in-hospital and first week mortality following MI respectively with no increase in cardiogenic shock [81, 82].
A registry study of NSTEMI patients found that the use of B-Blocker blockers within 24 h of hospital admission in patients at risk of developing cardiogenic shock (i.e. age > 70 years, heart rate > 110 beats/min, systolic blood pressure < 120 mmHg), the observed shock or death rate was significantly increased [83]. Therefore, early administration of beta-blockers should be avoided in these patients if the ventricular function is unknown.
Contraindications include heart rate <60 bpm, systolic BP <100 mmHg, moderate or severe associated left ventricular failure, PR interval on the ECG >0.24 s, second- or third-degree heart block, active asthma/reactive airways disease, severe COPD, hypotension, right ventricular infarction, and cardiogenic shock. Beta-blockers should not be administered in patients with symptoms possibly related to coronary vasospasm or cocaine use, as they might favor spasm by leaving alpha-mediated vasoconstriction unopposed by beta-mediated vasodilation.
The CRUSADE bleeding risk score considered baseline patient characteristics (i.e. female gender, history of diabetes, history of peripheral vascular disease or stroke), admission clinical variables (i.e. heart rate, systolic blood pressure, signs of heart failure) and admission laboratory values (i.e. hematocrit, calculated creatinine clearance) to estimate the patient’s likelihood of an in-hospital major bleeding event [84].
The Acute Catheterization and Urgent Intervention Triage strategy (ACUITY) bleeding risk score was derived from a pooled cohort recruited in the ACUITY and HORIZONS-AMI trials [85]. Six independent baseline predictors were identified including: female gender, advanced age, elevated serum creatinine, white blood cell count, anemia and presentation as NSTEMI or STEMI and one treatment-related variable [use of unfractionated heparin and a glycoprotein IIb/IIIa (GPIIb/IIIa) inhibitor rather than bivalirudin alone]. This risk score identified patients at increased risk for non-CABG-related major bleeds at 30 days and subsequent 1-year mortality. However, it has not been validated in an independent cohort.
Changes in interventional practice, such as increasing use of radial access, reduction in the dose of UFH, use of bivalirudin, diminished use of GPIIb/IIIa inhibitors and administration of more effective inhibitors of the platelet adenosine diphosphate (ADP) receptor P2Y12 (P2Y12 inhibitors), may all modify the predictive value of risk scores. Ischemic and bleeding risks need to be weighed in the individual patient, although many of the predictors of ischemic events are also associated with bleeding complications [84, 85]. Overall, CRUSADE and ACUITY scores have reasonable predictive value for major bleeding in ACS patients undergoing coronary angiography, with CRUSADE found to be the most discriminatory [86].
Aspirin (chewed) is indicated immediately for all patients suspected of having an acute coronary syndrome unless contraindicated or already taken [1]. Aspirin should be continued at a daily maintenance dose thereafter [1]. Aspirin, an irreversible COX-1 inhibitor, suppresses thromboxane A2 production preventing platelet aggregation, and reduces the incidence of death and nonfatal MI in patients with unstable angina or acute MI [87, 88]. Aspirin has been shown to achieve a 30–51% reduction in future coronary events [89]. A meta-analysis suggests that aspirin administration (up to 2 years) is associated with a highly significant 46% odds reduction in major vascular events [90]. There was no difference between higher-dose (300–325 mg/day) and lower dose (75–100 mg/day) aspirin [91].
Clopidogrel (300–600 mg loading and 75 mg/day maintenance dose) is an inactive prodrug that requires oxidation by the hepatic cytochrome P450 (CYP) system to generate an active metabolite. Clopidogrel is a selective and irreversible inhibitor of platelet P2Y12 receptors and thus inhibits ADP-induced platelet aggregation [92, 93]. Dual antiplatelet therapy (DAPT) comprising aspirin and clopidogrel has been shown to reduce recurrent ischemic events in the NSTE-ACS setting compared with aspirin alone [94, 95]. However, up to 10% of patients treated with the combination of aspirin and clopidogrel will have a recurrent ischemic event in the first year after an ACS, with a rate of stent thrombosis of up to 2% [96]. There is substantial inter individual variability in the antiplatelet response to this drug and an increased risk of ischemic and bleeding events in Clopidogrel hypo- and hyper-responders, respectively [97, 98, 99, 100]. There is evidence that key gene polymorphisms are involved in both the variability of active metabolite generation and clinical efficacy of Clopidogrel [101, 102, 103, 104].
Prasugrel (60 mg loading and 10 mg/day maintenance dose) is a prodrug that irreversibly blocks platelet P2Y12 receptors with a faster onset and a more profound inhibitory effect than clopidogrel. In the TRITON-TIMI 38, Prasugrel reduced recurrent CV event in ACS patients scheduled for PCI in comparison to clopidogrel, significantly driven by reduction in MI [105]. There were more severe bleeding complications with prasugrel, due to an increase in spontaneous and fatal bleeds [106]. Based on the marked reduction in definite or probable stent thrombosis observed in the TRITON-TIMI 38 prasugrel should be considered in patients with stent thrombosis despite compliance with clopidogrel therapy [100, 107]. Prasugrel is contraindicated in patients with prior stroke/transient ischemic attack due to evidence of net harm in this group in TRITON-TIMI 38. In addition, the study showed no apparent benefit in patients >75 years of age or with low bodyweight (<60 kg) [105].
Ticagrelor is an oral, reversibly binding P2Y12 inhibitor with a plasma half-life of 6–12 h.
Like prasugrel, ticagrelor has a more rapid and consistent onset of action compared with Clopidogrel, as well as a faster offset of action with more rapid recovery of platelet function [108].
In the PLATO trial, the primary composite efficacy endpoint (death from CV causes, MI or stroke) was significantly reduced with ticagrelor compared with similar reductions for CV and all-cause mortality [109, 110]. There was increased risk of non-CABG-related major bleeds with ticagrelor compared with Clopidogrel but no difference in life-threatening or fatal bleeds [110]. There was a reduction in definite stent thrombosis with ticagrelor in the NSTE-ACS subgroup. In addition to increased rates of minor or non-CABG-related major bleeding events with ticagrelor, adverse effects included dyspnea (without bronchospasm), increased frequency of asymptomatic ventricular pauses and increases in uric acid [109, 111, 112].
All patients should be given dual antiplatelet therapy with a P2Y12 receptor inhibitor in addition to aspirin. If the patient is intolerant of aspirin or it is otherwise contraindicated, a P2Y12 receptor inhibitor can be given instead of aspirin, but two different P2Y12 receptor inhibitors should not be given together. P2Y12 receptor inhibitors can reduce mortality and morbidity, but they are associated with an increased risk of bleeding [113, 114]. Ticagrelor and prasugrel are newer P2Y12 agents, which trials have shown to have a faster onset of action and greater efficacy compared with Clopidogrel [1, 115]. However, the risk of bleeding is also greater with these two P2Y12 agents compared with Clopidogrel [116, 117].
Clinicians need to tailor therapy to strike a balance between a newer agent that may have a faster onset of action and greater antiplatelet effect, but could potentiate bleeding (especially in those with prior TIA or stroke). Regardless of which P2Y12 receptor inhibitor is chosen, a loading dose should be given as soon as possible in most patients and then a maintenance dose continued for a minimum of 12 months [118].
Anticoagulation therapy (subcutaneous low molecular weight heparin, intravenous unfractionated heparin, or the alternative agents fondaparinux or bivalirudin) should be started on earliest recognition of NSTEMI. The anticoagulant is used in conjunction with antiplatelet therapy already started (i.e., aspirin and a P2Y12 receptor inhibitor). If fondaparinux is used during angiography/PCI, guidelines recommend that UFH be used in addition [1].
Anticoagulation should not be given if there are contraindications like major bleeding, history of adverse drug reaction or heparin-induced thrombocytopenia.
The antiplatelet and anticoagulation regimens should be started before the diagnostic angiogram. Triple antiplatelet therapy, in which an intravenous GP IIb/IIIa inhibitor is added to a P2Y12 receptor inhibitor, aspirin, and anticoagulation, can be considered for high-risk patients; however, it should be avoided in patients at high risk of bleeding [1]. Although guidelines recommend the use of GP IIb/IIIa inhibitors in NSTEMI, the level of evidence for their routine use is weak at best, particularly as results from randomized trials are conflicting [119, 120].
Anticoagulation treatment should be added to aspirin and a P2Y12 receptor inhibitor at the earliest recognition of NSTEMI and continued for at least 48 h to hospital discharge and/or until symptoms abide and objective markers demonstrate a trend toward normal [121]. Agents include subcutaneous LMWH, intravenous UFH, or fondaparinux, according to clinician choice.
Once initial management is instigated, the decision should be made as to whether the patient requires treatment using an invasive or noninvasive approach. The decision to pursue an invasive approach or medical management is made on an individual basis [122]. Invasive strategy carries risks but the benefit includes diagnostic accuracy, risk stratification and revascularization. The timing for coronary angiography and the selection of the revascularization modality depend on numerous factors, including clinical presentation, comorbidities, risk stratification, presence of high-risk features specific for a revascularization modality, frailty, cognitive status, estimated life expectancy and functional and anatomic severity as well as pattern of CAD. Guidelines recommend that high-risk patients routinely undergo early (12–24 h) coronary angiography and angiographically directed revascularization if possible unless patients have serious comorbidities, including cancer or end-stage liver disease, or clinically obvious contraindications, including acute or chronic (CKD 4 or higher) renal failure or multi-organ failure [1, 123, 124].
Invasive coronary angiography allows to confirm the diagnosis of ACS related to obstructive epicardial CAD, to guide antithrombotic treatment, identify the culprit lesions and assess the suitability of coronary anatomy for PCI or CABG. Routine invasive strategy in NSTEMI has been shown to improve clinical outcomes and lower risk of death, reduce recurrent ischemic episodes, subsequent rehospitalization and revascularization [125, 126, 127].
Urgent and immediate angiography is indicated if patients do not stabilize with intensive medical treatment [1]. Guidelines recommend that an invasive approach is appropriate if any of the following high-risk features are present [1, 15]:
Recurrent angina or ischemia at rest or with low-level activities despite intensive medical therapy
Rise and fall in cardiac biomarkers (troponin T or I) consistent with MI
New or dynamic ST-T wave changes
Signs or symptoms of heart failure, or new or worsening mitral regurgitation
Hemodynamic instability
Life-threatening arrhythmia
PCI within 6 months
Prior CABG
High-risk score (i.e., TIMI, GRACE)
Mild to moderate renal dysfunction
Diabetes mellitus
Reduced left ventricular function (ejection fraction <40%).
Angiographic patterns of CAD in NSTEMI patients are diverse, ranging from normal epicardial coronary arteries to a severely and diffusely diseased coronary arteries. Up to 20% of patients with NSTE-ACS have no lesions or non-obstructive lesions of epicardial coronary arteries, while among patients with obstructive CAD, 40–80% have multivessel disease [128, 129, 130].
Culprit lesions in the infarct-related artery are more often located within the proximal and mid segments, the left anterior descending coronary artery is the most frequent culprit vessel in both STEMI and NSTEMI-ACS (in up to 40% of patients). Left main coronary artery disease may be the underlying condition in 10% and a failure of bypass graft in 5% [128, 129, 130, 131, 132].
Culprit lesion on coronary angiography usually have features suggestive of acute plaque rupture. Vulnerable plaques are usually consisted from thin-cap fibroatheroma, and when rupture of the plaque happens they are characterized morphologically by the presence of at least two of the following features: intraluminal filling defects consistent with thrombus, plaque ulceration (i.e. presence of contrast and hazy contour beyond the vessel lumen), plaque irregularity (i.e. irregular margins or overhanging edges), dissection or impaired flow [132, 133, 134]. Multiple complex plaques observed in up to 40% of NSTEMI patients with obstructive CAD [132, 134, 135, 136, 137, 138]. One-quarter of NSTEMI patients present with an acute occluded coronary artery and two-thirds of the occlusions are already collateralized at the time of angiographic examination [138, 139].
Identification of the culprit lesion or the differentiation between an acute/subacute and chronic occlusion may sometimes be challenging based solely on angiography data. The additive value of the information from the ECG using lead localization and the regional wall motion abnormalities by Echocardiography can help identify the culprit lesion. Intracoronary imaging like optical coherence tomography can help to identify non-obstructive thin-cap fibroatheroma while vasospasm can be provoked by test such as acetylcholine [140, 141, 142]. The value of Fractional flow reserve (FFR) guided PCI in NSTEMI patient has not been properly addressed. The achievement of maximal hyperemia may be unpredictable in NSTEMI because of the dynamic nature of coronary lesions and the associated acute microvascular dysfunction. As a result, FFR may be overestimated and the hemodynamic relevance of a coronary stenosis underestimated [142].
Routine intervention has been associated with an improved outcome [143, 144, 145, 146] however, the optimal timing of the intervention has not been well established. Early intervention might prevent ischemic events that could occur while the patient is awaiting a delayed procedure [147]. Alternatively, by treating a patient with intensive antithrombotic therapy and delaying intervention for several days, procedure-related complications might be avoided with intervention on a more stable plaque [148]. Thus, the question of when to intervene in patients with acute coronary syndromes without ST-segment elevation has not been definitively answered.
Immediate invasive strategy (<2 h from hospital admission) is recommended in very-high-risk NSTE-ACS patients with intent to perform vascularization because of the poor short- and long-term prognosis if left untreated.
Early invasive strategy (<24 h): Early invasive strategy is defined as coronary angiography performed within 24 h of hospital admission. Multiple studies showed no significant difference between early or delayed intervention groups in the rate of death, MI, stroke or major bleeds [130, 149, 150, 151].
In the early versus delayed invasive intervention in acute coronary syndromes clinical trial, prespecified analyses showed that early intervention improved the primary outcome in the third of patients who were at highest risk (GRACE risk score > 140) but not in the two thirds at low-to-intermediate risk (GRACE risk score ≤ 140) [129]. Early invasive strategy is recommended in patients with at least one high-risk criterion.
Delayed invasive strategy (<72 h): This is the recommended maximal delay for angiography in patients with low to intermediate risk [127, 149].
Patients with no recurrence of symptoms and none of the risk criteria (low risk patient), a non-invasive stress test preferably with imaging for inducible ischemia is recommended before deciding on an invasive strategy [152].
A conservative, early medical management strategy may be appropriate in patients with a low risk score, such subpopulations may not benefit from early invasive management especially low-risk women with NSTEMI [123, 124, 126]. Older patients may be considered at high risk for invasive approach regarding complications, but the benefit may be satisfactory from such approach in this subgroup [153, 154, 155]. Patients in whom an invasive strategy may be withheld by the treating physicians may include very elderly or frail patients, patients with comorbidities such as dementia, severe chronic renal insufficiency, or cancer and patients at high risk of bleeding complication. Ultimately patients care should be individualized and left at the discretion of the treating physician.
In the medically managed NSTE-ACS patients, the CURE study demonstrated that treatment with clopidogrel in addition to aspirin for 3–12 months, significantly lower the primary outcome (a composite of death from CV causes, non-fatal MI or stroke at 1 year) but there were significantly more major bleeds [94].
The association between clopidogrel use and the composite of death or MI was significant among patients presenting with NSTEMI compared with those presenting with unstable angina [156].
In the TRILOGY ACS trial, prasugrel was not associated with a statistically significant reduction in the primary endpoint (death, MI or stroke) but there were more frequent TIMI major and minor bleeding [157]. In the PLATO study, the incidence of the primary endpoint was lower with ticagrelor than with clopidogrel, but at the expense of higher incidence of TIMI major bleeds in the ticagrelor-treated patients [158].
Stent implantation in the setting of NSTE-ACS helps to reduce abrupt vessel closure and restenosis associated with balloon angioplasty and it should be considered the standard treatment strategy (Figure 3 and movies online). New-generation drug eluting stents are recommended over bare metal stents in NSTE-ACS [159, 160, 161]. Dual antiplatelet therapy (DAPT) is recommended for 12 months irrespective of stent type, but DAPT may be extended depending on the number of stents and the total stents’ length used, patients with high risk of ischemic events recurrence and if patient’s bleeding risk is low. The benefit of thrombectomy has not been assessed prospectively in NSTE-ACS but cannot be recommended, considering the lack of benefit observed in STEMI [162].
Angiogram of 54 years old gentleman presented with NSTEMI, ECG showed ST depression in the anterior leads. The angiogram confirmed a severe stenotic lesion in the proximal LAD (A) which stented successfully (B). Video clips of the angiogram available online.
Complications of PCI include PCI-induced MI; coronary perforation, dissection, or rupture; cardiac tamponade; malignant arrhythmias; cholesterol emboli; and bleeding from the access site. Contrast-induced nephropathy is a common and potentially serious complication, especially in patients with baseline impaired renal function [163]. Early and late stent thromboses are catastrophic complications. Radial access, performed by experienced operators, is associated with lower bleeding risk and recommended over the transfemoral access in ACS [164, 165].
In patients with complex, multivessel disease presenting with NSTEMI, the decision whether to do complete vs. incomplete revascularization and weather to do the complete revascularization at the index admission or to stage it is challenging and need to be tailored to age, general patient condition and comorbidities. A complete revascularization strategy of significant lesions should be pursued in multivessel disease patients with NSTE-ACS based on several studies showing the benefit of early intervention when compared with the conservative approach [143, 166, 167]. Also, recent trials have shown a detrimental prognostic effect of incomplete revascularization [168, 169].
Pursuing completeness of revascularization for some patients with complex coronary anatomy may mean increasing the risk of PCI especially in the presence of complex chronic total occlusions or referring to CABG.
The decision to treat all the significant lesions in the same setting or to stage the procedures should be based on clinical presentation, comorbidities, complexity of coronary anatomy, ventricular function, revascularization modality and patient preference.
With respect to outcomes, periprocedural complications of PCI as well as the long-term ischemic risk remain higher in NSTE-ACS than in stable patients, despite contemporary management. Accordingly, the risk of CV death, MI or stroke in NSTE-ACS patients in recent trials was approximately 10 and 15% at 1 and 2 years follow-up, respectively [110, 170]. For ACS patients who underwent PCI, revascularization procedures represent the most frequent, most costly and earliest cause for rehospitalization [171, 172].
Approximately 10% of NSTEMI patients may require CABG during their index hospitalization [173]. The proportion of patient with NSTEMI undergoing CABG for NSTEMI decreased from 2001 to 2009, while the proportion of patients undergoing coronary angiography and PCI markedly increased [174]. CABG in the setting of NSTEMI is challenging mainly because of the difficulties in balancing ischemic and bleeding risks in relation to the timing of surgery and perioperative antithrombotic therapy. In addition, NSTEMI patients present with a higher proportion of surgical high-risk characteristics, including older age, female gender, left main coronary disease and LV dysfunction compared with patients undergoing elective CABG [175].
The main advantages of PCI in the setting of NSTEMI are faster revascularization of the culprit lesion, a lower risk of stroke and the absence of deleterious effects of cardiopulmonary bypass on the ischemic myocardium, on the other hand, CABG may more frequently offer complete revascularization in advanced multivessel CAD. The decision to perform PCI or CABG was left to the discretion of the investigator. A post hoc analysis of NSTE-ACS patients with multivessel CAD included in the ACUITY trial showed that 78% underwent PCI while the remaining patients were treated surgically [176]. There were no differences in mortality at 1 month and 1 year between the two modalities. PCI treated patients experienced lower rates of stroke, MI, major bleeds and renal injury, but had significantly higher rates of unplanned revascularization than CABG during the periprocedural period and at 1 year [177, 178, 179].
While the majority of patients with single-vessel CAD should undergo ad hoc PCI of the culprit lesion, the revascularization strategy in an individual NSTE-ACS patient with multivessel CAD should be discussed in the context of a Heart Team and be based on the clinical status as well as the severity and distribution of the CAD and the lesion characteristics. The SYNTAX score was found to be useful in the prediction of death, MI and revascularization among NSTE-ACS patients undergoing PCI and may help guide the choice between revascularization strategies [180].
Cardiac rehabilitation is a structured program that provides heart attack survivors with the tools, motivation, and support needed to change behavior and increase chance of survival. Typically, cardiac rehabilitation programs use group therapy to supervise and promote beneficial exercise, as well as to provide emotional support. The aims of cardiac rehabilitation are to:
Increase functional capacity
Stop cigarette smoking
Modify lipids and lipoproteins
Decrease body weight and fat stores
Reduce BP
Improve psychosocial well-being
Prevent progression and promote plaque stability
Restore and maintain optimal physical, psychological, emotional, social, and vocational functioning.
Cardiac rehabilitation should be started on discharge and after clearance by an outpatient physician. The basic prescription should include aerobic and weight-bearing exercise 4–5 times per week for >30 min.
Aspirin should be continued indefinitely at a low dose if the patient is tolerant and not contraindicated.
A P2Y12 receptor inhibitor should be continued for up to 12 months. For patients with aspirin allergy, long-term P2Y12 receptor inhibitor use is suggested [1, 181].
Oral beta-blockers should be continued indefinitely, especially in patients with reduced left ventricular function.
All patients with NSTEMI should start high-intensity statin therapy (moderate-intensity if not a candidate for high-intensity statin) in hospital regardless of cholesterol levels, and if there are no contraindications [182]. Two trials demonstrated superior outcomes in patients treated with atorvastatin within 12 h of receiving PCI, and it may provide benefit when given early in NSTEMI [183, 184]. A high-intensity statin is defined as a daily dose that lowers LDL-C by approximately >50%, while a moderate-intensity statin daily dose lowers LDL-C by approximately 30–50%. Statin therapy is particularly important in patients who have hyperlipidemia, diabetes, prior MI, or CAD. Statins inhibit the rate-limiting step in cholesterol synthesis. They may also reduce vascular inflammation, improve endothelial function, and decrease thrombus formation in addition to lowering LDL [185]. The addition of ezetimibe to the statin regimen may also be considered to achieve lower LDL targets [186].
ACE inhibitors should be started in all patients with left ventricular systolic dysfunction (ejection fraction <40%), heart failure, HTN, diabetes, stable chronic kidney disease [1, 15]. They are started after 24 h. The goal BP is at least <140/90 mmHg (including patients with CKD or diabetes) [187].
Aldosterone antagonists should be used in all patients with left ventricular dysfunction (ejection fraction ≤40%), a history of diabetes mellitus, or evidence of congestive heart failure. Aldosterone blockade should not be used in patients with serum creatinine >2.5 mg/dL in men or > 2.0 mg/dL in women, as well as in patients with hyperkalemia (potassium >5.0 mEq/L) [188].
Patients who have experienced NSTEMI have a high risk of morbidity and death from a future event. The rate of sudden death in patients who have had an MI is 4–6 times the rate in the general population [189]. Life-threatening ventricular arrhythmias (sustained VT or VF) occurring after 48 h from the index acute coronary syndrome portend a poor prognosis, and are most frequently associated with left ventricular dysfunction. The benefit of implantable cardioverter-defibrillators, for both primary and secondary prevention, in patients with significant left ventricular dysfunction has been well demonstrated [190, 191]. Implantation for primary prevention should be considered at a minimum of 40 days following hospital discharge based on current recommendations [192].
Data from the era prior to medical therapy and revascularization suggest that the risk of cardiovascular death following an MI in the absence of treatment is approximately 5% per year, with a death rate after hospital discharge in the first year of about 10%. Pharmacotherapy, lifestyle changes, and cardiac rehabilitation are well demonstrated to be beneficial and together are additive in reducing mortality [193].
Patient monitoring after discharge is essential part of patient care. A follow-up should be arranged within the first 1 to 2 weeks of discharge and monthly visits should be scheduled thereafter. Lipids should be monitored at least every 6 months until a target LDL <70 mg/dL is reached in patients who have had an MI or have CAD. The need for follow-up cardiac ultrasounds is at the discretion of the physician. However, cardiac ultrasounds are necessary to evaluate and monitor ventricular function [1].
Smoking cessation, promotion of physical activity and joining the cardiac rehabilitation is extremely helpful. Psychosocial risk factors such as anxiety and depression should be addressed. Depression in particular has been associated with a poor prognosis [194]. All medications should be reviewed at every follow-up visit to encourage patient compliance and optimal dosing [1].
In patients who have undergone direct reperfusion, further noninvasive stress testing or further imaging is indicated only if stenosis of intermediate severity (luminal narrowing of 50–70%) is present in a non-culprit artery. Patients with recurrent ischemic-type pain after reperfusion may need angiography after medical therapy to evaluate for further stenosis or occlusion [195].
All patients, regardless of whether a stent was placed, should be treated with a P2Y12 receptor inhibitor for up to 12 months and low-dose aspirin daily as long as tolerated. This should be given for 1 month after bare-metal stent implantation, 3 months after sirolimus drug-eluting stent implantation, 6 months after paclitaxel drug-eluting stent implantation, and ideally up to 12 months if they are not at high risk for bleeding [195]. A scientific advisory from several major health organizations describes the risks of premature discontinuation of dual antiplatelet therapy in patients with coronary artery stents [196].
Cardiogenic shock may develop in up to 3% of NSTE-ACS patients during hospitalization and has become the most frequent cause of in-hospital mortality in this setting [197, 198, 199]. One or more partial or complete vessel occlusions may result in severe heart failure, especially in cases of pre-existing LV dysfunction, reduced cardiac output and ineffective peripheral organ perfusion. More than two-thirds of patients have three-vessel CAD. Cardiogenic shock may also be related to mechanical complications of NSTEMI, including mitral regurgitation related to papillary muscle dysfunction or rupture and ventricular septal or free wall rupture. In patients with cardiogenic shock, immediate coronary angiography is indicated and PCI is the most frequently used revascularization modality. If the coronary anatomy is not suitable for PCI, patients should undergo emergent CABG. The value of intra-aortic balloon counter pulsation in MI complicated by cardiogenic shock has been challenged [200]. Extracorporeal membrane oxygenation and/or implantable LV assist devices may be considered in selected patients.
We are living in a world of many challenges such as climate changes, polluted environment, resource depletion, and increasing demand for fuel. The use of oil reserves to fulfill our need of fuel has caused many drastic challenges from energy security to change in temperature. Rapid industrialization has increased the demand of petroleum products and consequently has raised the monopoly of few countries, which can manipulate petroleum price and create instability. This may also create environmental problems by emission of greenhouse gases and subsequently effect on climate change. The most important source of energy is petroleum that is largely used in transportation and industries; therefore, viability of liquid fuel is enhanced. As the environmental issues are growing, more research is being conducted to address the problems. The search for alternative source of petrol that is less costly with minimal environmental effects has become the center of attention. For instance, biomass is considered as a sustainable resource that can be utilized in large-scale production of biofuel that can be utilized as an alternative source of fuel and may present solution to environmental problems. Furthermore, relying on fossil fuel could be detrimental as it has been predicted of its depletion by 2050. The total annual primary production of biomass is over 100 billion tonnes of carbon per year, and the energy reserve per metric tonne of biomass is between 1.5E3 and 3E3 kW hours that is sufficient to cater the needs of the world energy requirements [1].
\nBioenergy products like bioethanol, biohydrogen, and biodiesel can be obtained from lignocellulose biomass which is considerably large renewable bioresource and obtained from plants. The term “lignocellulosic biomass” is defined as lignin, cellulose, and hemicellulose that constitute the plant cell wall. Strong cross-linking associations are present between these components that cause hindrance in the breakdown of plant cell wall. Polysaccharides and lignin are cross-linked via ester and ether linkages [2, 3, 4]. Microfibrils that are formed by cellulose, hemicellulose, and lignin help in the stability of plant cell wall structure [5, 6].
\nLignocellulose was first produced from food crop such as corn, oilseed, and sugarcane. But the use of edible feedstock for bioenergy products formation is being discouraged to prevent the rise in food competition. Thus, second-generation biofuels are obtained from plants wastes to avoid competition of land and water resources between energy crops and food crops. Currently, lignocellulose is being produced from wood residues, agricultural residues, food industry residue, grasses, domestic wastes, municipal solid wastes, and nonfood seeds [7, 8, 9]. The lignocellulose wastes (LCW) are largest renewable bioresource reservoir on earth that is being wasted as pre and postharvest agricultural wastes. Thus, many steps need to be adopted for use of these renewable resources for the production of bioenergy products. Recovery of many products like enzymes, methane, activated carbon, lipids, resins, methane, carbohydrates, surfactants, resins, organic acids, ethanol, amino acids, degradable plastic composites, biosorbents, biopesticides, and biopromoters can be achieved by utilizing LCW. The added benefits of using LCW besides recovery of different products are the removal of LCW waste from the environment. Also, utilization of LCW eliminates the use of food for bioethanol production. The US government has planned the production of 21 billion gallon of biofuels by 2022 [2, 5]. Biofuel production from lignocellulosic biomass reduces the emission of greenhouse gases.
\nPretreatment brings physical, biological, and chemical changes to biomass structure; therefore, it is very important to consider the type of pretreatment. In order to break down the hindrance caused by strong association within the cell wall, pretreatment is an important step which can increase the availability of lignocellulosic biomass for cellulase enzymes, their digestibility, and product yield. Before subjection to enzymatic hydrolysis, pretreatment of biomass can increase the rate of hydrolysis by 3–10-fold. Pretreatment of LCW is not an easy step as it seems after the installation of power generator; pretreatment is the second most costly process at industrial level. In crystalline cellulose, the disruption of hydrogen bonds, cross-linked matrix disruption, and increase in porosity as well as surface area of cellulose are the three tasks that are performed via a suitable pretreatment methods. The outcome of pretreatment also differs due to the difference in the ratio of cell wall components [10, 11]. The option to use dilute acid pretreatment method is more effective against poplar tree bark or corn as compared to the same method used for sweet gum bark or cornstalks. Few requirements of an effective, efficient, and economically suitable pretreatment process that including use of cheap chemicals, very less consumption of chemicals, prevention of hemicellulose and cellulose from denaturation, minimal energy requirement and consumption, cost-effective size reduction process, and reactive cellulosic fiber production are the factors that need to be considered for pretreatment. There are several methods of pretreatment that can be divided into four categories, namely, chemical, physical, biological, and physiochemical pretreatment [12, 13, 14, 15].
\nPore size and surface area of lignocellulosic biomass can be increased, whereas crystallinity and degree of polymerization of cellulose can be decreased with the application of physical methods. Physical pretreatments include milling, sonication, mechanical extrusion, ozonolysis, and pyrolysis.
\nOn the inherent ultrastructure of cellulose and degree of crystallinity, milling can be performed to render lignocelluloses more amenable to cellulases. Cellulases are enzyme that catalyze cellulose, but for the catalysis and best results, the substrate availability needs to be enhanced for optimized functioning of the enzymes. Before the subjection of the LCW to enzymatic hydrolysis, milling and size reduction of the lignocellulosic matter should be performed. Milling process has several types like ball milling, colloid milling, vibro-energy milling, hammer milling, and two-roll milling. For wet material, colloid mill, dissolver, and fibrillator are suitable, whereas for dry materials hammer mill, extruder, cryogenic mill, and roller mill are used. For both wet and dry material, ball milling can be used. For waster paper, hammer milling is the most suitable pretreatment option. Enzymatic degradation can be improved by milling as it reduces the degree of crystallinity and material size. Up to 0.2 mm reduction in particle size can be seen by milling and grinding. Reduction in particle size of biomass can be achieved up to a certain limit; beyond that limit reduction in particle size does not effect in the pretreatment procedure. Corn stover with small particle size, i.e., from 53 to 75 μm, is more productive as compared to large particle size corn stover ranging from 475 to 710 μm. The difference in particle size shows that productivity can significantly affect the pretreatment process. Ball milling causes a massive drop in crystallinity index from 4.9 to 74.2% which makes this process more suitable for saccharification of straw at mild hydrolytic conditions with more production of fermentable sugars [12, 16, 17, 18]. For better results of hydrolysis, milling can be used in combination with enzymatic hydrolysis. Mechanical action, mass transfer, and enzymatic hydrolysis can be achieved at the same time when two methods are combined. A number of ball beads in bill mill reactor play a crucial role in the α-cellulose hydrolysis, as less enzyme loading is required, and 100% rate of hydrolysis can be achieved in comparison to pretreatment of biomass that is carried without the use of milling procedure. Highest hydrolysis rate with high yield of reducing sugar was obtained when rice straw was put into fluidized bed opposed jet mill for fine grinding after cutting, steam explosion, and pulverization. For pretreatment of biomass, ball milling is an expensive option in terms of energy consumption, which is a huge disadvantage at industrial scale. Also, incapability of milling for removing lignin makes it a less suitable option as enzyme accessibility to the substrate is reduced in the presence of lignin. Reduction in crystallinity, degree of polymerization, and increase in surface area can be effected by the type of biomass, type of milling used for pretreatment, and duration of the milling process [19, 20, 21].
\nFor improving digestibility and reducing crystallinity, vibratory ball milling is very effective. Low energy consumption has an important advantage of using wet disk milling which produces fibers that improve hydrolysis of cellulose, whereas hammer milling produces finer bundles. Due to this reason milling is not preferred when wet disk milling is available [22, 23]. Other study results of conventional ball and disk milling are compared. With the use of conventional ball milling, maximum yields of xylose and glucose were obtained, i.e., 54.3 and 89.4%, respectively [24]. Wet milling produces less yield, but it has the advantage of not producing inhibitors and very low energy consuming capability. An increase of 110% in enzymatic hydrolysis was achieved when wet milling was combined with alkaline pretreatment. Optimum parameters for wet milling pretreatment of corn stover were 10 mm diameter 20 steel balls, 1:10 solid-to-liquid ratio, 350 rpm/min speed, and 0.5 mm particle size [25] (Figures 1 and 2).
\nColloid milling (Pharmapproach.com).
Hammer milling (Solidswiki.com).
Commonly used method for plant biomass pretreatment is microwave irradiation. This pretreatment method has several advantages that include ease of pretreatment, increased heating capacity, short processing time, minimal generation of inhibitors, and less energy requirement. Microwave irradiation in closed container was first reported in 1984 by team of researchers from Kyoto University, Japan. They treated sugarcane bagasse, rice straw, and rice hulls with microwaves in the presence of water. The conditions used for microwave treatment include glass vessels of 50 mL, 2450 MHz energy, and 2.4 kW microwave irradiation [26]. Classical pretreatment methods were carried out at high pressure and temperatures. Chemical interactions between lignocellulosic material break as a result of high temperature, thus increasing substrate availability to the enzymes. Under high-pressure steam injection or indirect heat injection, high temperature between 160 and 250°C is provided to lignocellulosic material in conventional heating methods. However, in order to prevent temperature gradients, crushing of lignocellulosic material into small particles is needed. To avoid large temperature gradients, microwave is a good choice as it uniformly distributes heat which also avoids degradation of lignocellulosic material into humic acid and furfural. For effective degradation, microwave irradiation is combined with mild alkali treatment. Sugar yield of 70–90% from switch grass was obtained from alkali and irradiation combined pretreatment [27]. As microwave irradiation is performed at high temperature, therefore, closed containers are required to achieve high temperature. Three properties, namely, penetration, reflection, and absorbance are exhibited by microwave. Microwave passes through glass and plastic, absorbed by water and biomass, whereas microwaves are reflected by metals. Based on these properties, microwave reactors can be divided into two types, one that allows the passage of microwaves, whereas the other kind reflects the microwaves. Glass or plastic is the building material of the first type of microwave reactors, whereas the second types of reactors are composed of steel. Through quartz windows, microwaves can enter into the reactor as these are placed in the reactor. Closed, sealable, pressure-resistant glass tube container having gasket made up of Teflon can be used for the high temperature, i.e., 200°C, for microwave irradiation pretreatment. Sensors are used to control and ensure temperature inside the microwave. Teflon-coated sensors are a good choice because of the thermostability, corrosion-free nature, and zero absorbance properties. In a microwave oven, Teflon vessels are used by some scientists due to its advantageous properties [28, 29]. Normally vessel sizes vary from 100 mL to several hundred milliliters. A 650 mL vessel with 318 mm length, connected nitrogen bottle, gauges, and thermometers are installed on the top of the microwave that was designed by Chen and Cheng [30]. Besides the glass vessels and stainless steel tanks with temperature and pressure sensors, automatic controlling system for microwave input and mechanical stirrer are also used (Figure 3).
\nMicrowave irradiation (Researchgate.net).
When materials that can pass through a defined cross section die, it appears out with the fixed definite profile. This is the extrusion process which is known for sugar recovery from biomass. Adaptability to modifications, no degradation products, controllable environment, and high throughput are few advantages related to mechanical extrusion pretreatment process. Single screw extruder and twin screw extruder are two types of extruders.
\nSingle screw extruder is based on three screw elements, forward, kneading, and reverse. With the minimum shearing and mixing, bulk material of varying pitches and lengths can be transported by forward screw element. Prominent mixing and shearing effect is produced by kneading screw elements with weak forward conveying effect, whereas the use of immense mixing and shearing involves material that is pushed back by reverse screw elements. A screw configuration is defined by the arrangement of different stagger angels, lengths spacing, pitches, and positions. Twin screw extruder can accomplish multiple tasks at the same time like mixing, shearing, grinding, reaction, drying, and separation. High enzymatic hydrolysis rates are achieved by the use of single and twin screw extruders. Different parameters like speed of screw, temperature of barrel, and compression ratio can significantly affect recovery of sugars. Short-time extruders provide fast heat transfer, proper mixing, and increased shear. When material passed through the extruder barrel, structure of biomass is disturbed, exposing more surface for enzymatic hydrolysis [31, 32, 33]. During extrusion process, lignocellulosic material can be treated with alkali or acid in order to increase sugar recovery. Acidic treatment is less preferred than alkali because of the corrosion caused by acid to the extruder material. Corrosion problem can be solved by the use of AL6XN alloy for barrel fabrication and screws of extruder. With less carbohydrate degradation and role in the delignification, alkali treatment is suitable for lignocellulosic material. Sodium hydroxide is most commonly used to break ester linkages and solubilization of lignins and hemicelluloses. Alkali treatment can be applied by addition of alkali using volumetric pump into the extruder or by soaking the lignocellulosic material in alkali at room temperature [31, 34, 35] (Figure 4).
\nTwin screw extruder (Researchgate.net).
For the production of bio oil from biomass, process of pyrolysis is used. Pyrolysis is a thermal degradation of lignocellulosic biomass at very high temperature without the presence of oxidizing agent. At temperature ranging between 500 and 800°C, pyrolysis was performed. Rapid decomposition of cellulose resulted in the formation of products like pyrolysis oil and charcoal [36]. Based on temperature, pyrolysis pretreatment process is divided into fast and low pyrolysis. Certain factors affect the end products like biomass characteristics, reaction parameters, and type of pyrolysis. Due to high-value energy-rich product formation, easy transport management retrofitting, combustion, storage, and flexibility in utilization and marketing, thermal industries are adapting to the process of pyrolysis. Presence of oxygen and less temperature increase the efficiency of this process. A study on the bond cleavage rate of cellulose was carried out in the presence of nitrogen and oxygen. During the process of pyrolysis, breakage of 7.8 × 109 bonds/min/g cellulose in the presence of oxygen and breakdown of 1.7 × 108 bonds/min/g cellulose in the presence of nitrogen at 25°C were observed. In order to obtain more efficiency and results, microwave-assisted pyrolysis is preferred due to the microwave dielectric heating [37]. Thermochemical conversion of biomass into biofuels can be performed via three technologies, gasification, pyrolysis, and direct combustion [38]. Different yields of products from pyrolysis are due to different modes of pyrolysis. Bio oil is a mixture of polar organics and water. Pyrolysis is used where bio oil production is required. Fast pyrolysis in a controlled environment leads to the formation of liquid products (fuels). Torrefaction is an emerging technique which is also known as mild pyrolysis. It differs from pyrolysis with reference to thermochemical process that is carried out at temperature range between 200 and 300°C. Partial decomposition of biomass occurs in this process, and ultimate product obtained is terrified biomass. Whereas, in the process of pyrolysis, plant biomass is decomposed into vapor, aerosols, and char. Torrefaction has been categorized into two categories based on dry and wet torrefaction.
\nDry torrefaction needs an inert environment and completely dry biomass and normal atmospheric pressure. Biochar is the major product in this type of biomass pretreatment. Hydrothermal carbonization and hydrothermal torrefaction are other terminologies used for wet torrefaction. Unlike dry torrefaction, pressurized vessel of water is used to carry out the pretreatment. Biomass used for wet torrefaction contains moisture content, but after torrefaction, a drying process is necessary in this type of torrefaction. A pressure between 1 and 250 MPa is required to carry out wet torrefaction. Biomass used during wet torrefaction pretreatment produces hydro-char as a main product [39].
\nIn this method, pores are created in the cell membrane due to which cellulose exposes to such agents that cause its breakdown by entering into the cell. High voltage ranging between 5.0 and 20.0 kV/cm is applied in a sudden burst to biomass for nano- to milliseconds. Sample was placed between two parallel plate electrodes, and the strength of electric field is given as E = V/d, where V and d are voltage and distance, respectively, between plate electrodes. Dramatic increase in mass permeability and tissue rapture occurred on the application of electric field. Electric pulses are applied, generally in the form of square waves or exponential decay. Setup of pulse electric field consisted of pulse generator, control system, data acquisition system, and material handling equipment [40, 41]. At ambient temperatures, the treatment can be performed at low energy. Another advantage of this treatment is the simple design of the instrument. Short duration of pulse time saves the effort and energy [42, 43]. Pulse electric field pretreatment was applied to pig manure and waste activated sludge by Author et al. [44]. As compared to untreated manure and sludge, 80% methane from manure and twofold increase in methane production from sludge were recorded in the study. A PEF system was designed and developed by Kumar et al. [45] that consisted of high-voltage power supply, switch circuit, a function generator, and sample holder. Neutral red dye was used to study the changes in the structure of cellulose by PEF pretreatment. Function generator drives the transistor present in the switching circuit; when pulse is applied by function generator to the switching circuit, switching circuit is turned on. Switching circuit is then transferred to the high voltage across the sample holder. So, by using function generator pulses of desired shape, width and high voltage can be applied to the sample. By using this setup, effects were observed on switch grass and wood. Results showed that at ≥8 kV/cm, switch grass showed high neutral red uptake. At low field strength, structural changes are less likely to occur. Electroporation through pulsed electric field is greatly affected by two parameters, pulse duration and electric field strength. Irreversible electroporation at >4 kV/cm with pulse duration in millisecond and ≥ 10 kV/cm with microsecond pulse duration was observed in Chlorella vulgaris which showed that pulse duration with a difference in micro- and milliseconds range can effect electroporation. Pulse electric field can increase hydrolysis rate by exposing cellulose to catalytic agents [40, 41, 46] (Figure 5).
\nPulse electric field (Intechopen.com).
In this pretreatment, acids are used to pretreat lignocellulosic biomass. The generation of inhibitory products in the acid pretreatment renders it less attractive for pretreatment option. Furfurals, aldehydes, 5-hydroxymethylfurfural, and phenolic acids are the inhibitory compounds that are generated in huge amount in acid pretreatment. There are two types of acid treatments based on the type of end application. One treatment type is of short duration, i.e., 1–5 min, but high temperature > 180°C is used, and the second treatment type is of long duration, i.e., 30–90 min, and low temperature < 120°C is utilized. Due to hydrolysis by acid treatment, separate step of hydrolysis of biomass can be skipped, but to remove acid, washing is required before the fermentation of sugars [43, 47]. For acid pretreatment, such reactors are required that show resistance to corrosive, hazardous, and toxic acids; therefore, acid pretreatment is very expensive. Flow through, percolation, shrinking-bed, counter current rector, batch, plug flow are different types of rectors that have been developed. For enhancing economic feasibility of acid pretreatment, recovery of concentrated acid at the end of the treatment is an important step.
\nTo treat lignocellulosic biomass, concentrated acids are also used. Most commonly used acids are sulfuric acid or hydrochloric acid. In order to improve the process of hydrolysis for releasing fermentable sugars from lignocellulosic biomass, acid pretreatment can be given. For poplar, switch grass, spruce, and corn stover, sulfuric acid pretreatment is commonly used. Reducing sugars of 19.71 and 22.93% were produced as a result of the acid pretreatment of Bermuda grass and rye, respectively. In percolation reactor, pretreatment of rice straw was carried out in two stages using aqueous ammonia and dilute sulfuric acid. When ammonia is used, 96.9% reducing sugar yield was obtained, while 90.8% yield was obtained in case of utilization of dilute acid. Eulaliopsis binate is a perennial grass and yielded 21.02% sugars, 3.22% lignin, and 3.34% acetic acid, and inhibitors in very less amount are produced when treated with dilute sulfuric acid [48, 49]. At 4 wt% concentration of sulfuric acid, pretreatment is preferred because of less cost and more effectiveness of the process. Dilute sulfuric acid causes biomass hydrolysis and then further breakdown of xylose into furfural is achieved. High temperature favors hydrolysis by dilute sulfuric acid [50]. Removal of hemicellulose is important to increase glucose yield from cellulose, and dilute sulfuric acid is very effective to achieve this purpose. It is necessary for an economical biomass conversion to achieve high xylan-to-xylose ratio. One-third of the total carbohydrate is xylan in most lignocellulosic materials. There are two types of dilute acid pretreatments, one is characterized by high temperature, continuous flow process for low solid loadings, and the other one is with low temperature, batch process and high solid loadings. Temperature and solid loadings for the first type are >160°C and 5–10%, respectively, and for the second type, temperature and solid loadings are around<160°C and 10–40%, respectively [51, 52].
\nBesides sulfuric acid and hydrochloric acid, other acids like oxalic acid and maleic acid are also used for the pretreatment of lignocellulosic biomass. Oxalic and maleic acids have high pKa value and solution pH as compared to sulfuric acid. Because of having two pKa values, dicarboxylic acids hydrolyze biomass more efficiently than sulfuric acid and hydrochloric acid. Other advantages include less toxicity to yeast, no odor, more range of pH and temperature for hydrolysis, and no hampering of glycolysis. Maleic acid has khyd/kdeg, due to which hydrolysis of cellulose to glucose is preferred over glucose breakdown. Effects of oxalic, sulfuric, and maleic acid pretreatment on biomass at the same combined severity factor (CSF) were determined [53]. The use of maleic acid produces high concentration of xylose and glucose as compared to oxalic acid.
\nApart from acids, few bases are also used for pretreatment of biomass. Lignin contents greatly affected the result of alkaline treatment. As compared to other pretreatment methods, alkali treatment requires less pressure and temperature and ambient condition, but alkali pretreatment needs time in days and hours. Degradation of sugar in alkali treatment is less than that by acid treatment, and also the removal and recovery of caustic salt are possible and easy in case of alkali treatment. Ammonium, sodium, calcium, and potassium hydroxides are used for alkaline pretreatment, but among these sodium hydroxide is the most commonly used alkaline pretreatment agent, whereas calcium hydroxide is the cheapest yet effective among all other alkali agents for pretreatment. By neutralizing calcium with carbon dioxide, calcium can be recovered easily in form of insoluble calcium carbonate. Using lime kiln technology, calcium hydroxide can be regenerated. Apparatus required for alkali pretreatment is basically temperature controller, a tank, CO2 scrubber, water jacket, manifold for water and air, pump, tray, frame, temperature sensor, and heating element. The first step of pretreatment consists of making lime slurry with water. The next step is spraying of this slurried lime on biomass; after spray, store the biomass for hours or, in some case, days. Contact time can be reduced by increasing temperature [54, 55, 56, 57]. Crystallinity index increases in lime pretreatment because of the removal of lignin and hemicellulose. Structural features resulting from lime pretreatment affect the hydrolysis of pretreated biomass. Correlation of three structural factors, viz., lignin, acetyl content and crystallinity, and enzymatic digestibility, was reported by Chang and Holtzapple [58]. He concluded that (1) regardless of crystallinity and acetyl content, in order to obtain high digestibility, extensive delignification is enough. (2) Parallel barriers to hydrolysis are removed by delignification and deacetylation. (3) Crystallinity does not affect ultimate sugar yield; however, it plays some role in initial hydrolysis. It is evident from these points that lignin content should be reduced to 10% and all acetyl groups should be removed by an effective pretreatment process. Thus in exposing cellulose to enzymes, alkaline pretreatment plays an important role. By increasing enzyme access to cellulose and hemicellulose and eliminating nonproductive adsorption sites, lignin removal can play its role in increasing effectiveness of enzyme.
\nAqueous organic solvents like methanol, acetone, ethanol, and ethylene glycol are used in this method with specific conditions of temperature and pressure. Organosolv pretreatment is usually performed in the presence of salt catalyst, acid, and base. The biomass type and catalyst involved decide the temperature of pretreatment, and it can go up to 200°C. Lignin is a valuable product, and to extract lignin this process is used mainly. Cellulose fibers are exposed when lignin is removed, which leads to more hydrolysis. During organosolv pretreatment, fractions and syrup of cellulose and hemicellulose, respectively, are also produced. There are certain variable factors like catalyst type, temperature, and concentration of solvent and reaction time which affects the characteristics of pretreated biomass like crystallinity, fiber length, and degree of polymerization. Inhibitor formation is triggered by long reaction, high temperature, and acid concentrations [59, 60]. In a study by Park et al. [61], effect of different catalyst was checked for the production of ethanol and among sulfuric acid, sodium hydroxide, and magnesium sulfate, and sulfuric acid was found to be most effective in ethanol production, but for enhancing digestibility the use of sodium hydroxide is proven to be effective. Sulfuric acid is a good catalyst, but its toxicity and inhibitory nature make it less favorite. Organosolv is not a cost-effective pretreatment process because of the high cost of catalysts, but it can be made cost-effective by recovering and recycling of solvents. Solvent removal is important because its presence effects fermentation, microorganism growth, and enzymatic hydrolysis. There is added risk of handling such harsh organic solvents. Acid helps in hydrolysis and depolymerization of lignin. Upon cooling lignin is dissolved in phenol, and in the aqueous phase, sugars are present. Formasolv involving formic acid, H2O, and hydrochloric acid is a type of organosolv in which lignin is soluble and at low temperature process can be carried out. For pretreatment with ethanosolv cellulose, hemicellulose and pure lignin can be recovered, but high pressure and temperatures are required when ethanosolv is used, and less toxic nature of ethanol as compared to other organosolv makes it favorite for pretreatment. Ethanosolv when used in pretreatment effects the enzymatic hydrolysis, so to prevent this low ethanol, water is used [62]. Recovery of ethanol and water reduces the overall cost of the pretreatment. For sugarcane bagasse Mesa et al. [63] used ethanosolv at 195°C for 60 min, and results showed formation of 29.1% sugars from 30% ethanol. Alcohol-based organosolv pretreatment is combined with ball milling by Hideno et al. [24] to pretreat Japanese cypress and observed a synergistic effect on digestibility. 50.1, 41.7, and 48.1% yield of organosolv pulping was obtained from ethylene glycol-water, acetic acid-water, and ethanol-water in a study done by Ichwan and Son [64]. Poplar wood chips were first treated with stream and then with organosolv to separate cellulose, lignin, and hemicellulose. About 88% hydrolysis of cellulose to glucose, 98% recovery of cellulose, and 66% increase in lignin extraction were reported by Panagiotopoulos et al. [65].
\nFor the pretreatment of lignocellulose, scientist took a great interest in using ionic liquids, for decades. Ionic liquids containing cations or anions are a new class of solvents with high thermal stability and polarity, less melting point, and negligible vapor pressure [66, 67]. Normally large organic cations and small inorganic anions compose ionic liquids. Factors like degree of anion charge delocalization and cation structure significantly effect physical, biological, and chemical ionic liquid properties. Interactions between ionic liquids and biomass get affected by temperature, cations and anions, and time of pretreatment.
\nIonic liquids actually compete for hydrogen bonding with lignocellulosic components, and in this competition disruption of network occurs. 1-Ethyl-3-methylimidazolium diethyl phosphate-acetate, 1-butyl-3-methylimidazolium-acetate, cholinium amino acids, cholinium acetate, 1-ethyl-3-methylimidazolium diethyl phosphate-acetate, 1-allyl-3-methylimidazolium chloride, and chloride are ionic liquids used for the treatment of rice husk, water hyacinth, rice straw, kenaf powder, poplar wood, wheat straw, and pine. Among other ionic liquids are imidazolium salts which are most commonly used [42]. 1-Butyl-3-methylimidazolium chloride is used for pretreatment by Dadi et al. [68] who observed a twofold increase in yield and rate of hydrolysis. For the pretreatment of rice straw, Liu and Chen [69] used 1-butyl-3-methylimidazolium chloride also known as (Bmim-Cl) and observed significant enhancement in the process of hydrolysis due to modifications in the structure of wheat straw by Bmim-Cl. Bmim-Cl played role in the reduction of polymerization and crystallinity. A twofold increase in hydrolysis yield from sugarcane bagasse was observed in a study by Kuo and Lee [70] as compared to untreated bagasse. 1-Ethyl-3-methylimidazolium-acetate is used in a study by Li et al. [71] for the pretreatment of switch grass in order to remove lignin at a temperature of 160°C for 3 hours. Results showed 62.9% lignin removal enhanced enzymatic digestibility, and reduced cellulose crystallinity was reported by Tan et al. [72] on palm tree pretreatment with 1-butyl-3-methylimidazolium chloride. Slight changes in composition of biomass occurred after ionic liquid pretreatments although significant changes were observed in the structure of biomass. Ionic liquid pretreatment is less preferred over other techniques because of high thermal and chemical stability, less dangerous conditions for processing, low vapor pressure of solvents, and retaining liquid state at wide range of temperature. Ionic liquids can be recycled easily and are non-derivatizing. Disadvantage of using ionic liquid pretreatment is that noncompatibility of cellulase and ionic liquids results in the unfolding and inactivation of cellulase. At less viscosity cellulose solubilizes at low temperature; that’s why while using ionic liquids, viscosity is an important factor to be considered regarding the energy consumption of the whole process. High temperatures trigger more side reactions and negative side effects like reducing ionic liquid stability [73].
\nOzone pretreatment is a great option for lignin content reduction in lignocellulosic biomass. In vitro digestibility of biomass is enhanced by the application of ozone pretreatment. Inhibitors are not formed in this pretreatment which is a great advantage because other chemical pretreatments produce toxic residues. In ozone pretreatment, ozone acts as an oxidant in order to break down lignin. Ozone gas is soluble in water and being a powerful oxidant, by breaking down lignin, releases less molecular weight, soluble compounds. Wheat straw, bagasse, cotton straw, green hay, poplar sawdust, peanut, and pine can be pretreated with ozone in order to degrade lignin and hemicellulose; however, only slight changes occur in hemicellulose, whereas almost no changes occur in cellulose. Ozonolysis apparatus consists of ozone catalytic destroyer, iodine trap used for testing efficiency of catalyst, oxygen cylinder, ozone generator, three-way valve, ozone UV spectrophotometer, pressure regulation valve, process gas humidifier, vent, and automatic gas flow control valve [40, 41, 74, 75, 76]. Moisture content hugely effects oxidization of lignin via ozone pretreatment as lignin oxidation decreases with increase in the moisture content of biomass. Ozone mass transfer is limited at less water concentration, which ultimately effects its reactivity with biomass. Longer residence time of ozone is caused by the blockage of pores by water film [77]. During ozonolysis, pH of water decreases because of the formation of organic acids. Alkaline media trigger delignification because it removes lignins that are bonded to carbohydrates [78, 79].
\nBiomass delignification is associated with the production of inhibitory compounds. Certain aromatic and polyaromatic compounds are produced as a result of delignification [80]. Structural changes in lignin are observed by Bule et al. [81] in a study; different lignin subunits showed aromatic opening and degradation of β-O-4 moieties in NMR analysis. How do aromatic structures of control- and ozone-pretreated samples differ? A spectrum showed a decrease in aromatic carbon signal concentration. Changes were observed in methoxy groups that suggest the breakdown of ester-linked structure. Different reactor designs are used for the ozone pretreatment of biomass, for example, batch reactor, Drechsel trap reactor, fixed bed reactor, rotatory bed reactor, and multilayer fixed bed reactor. Plug flow reactors are used by most researchers [82]. Heiske et al. [83] compared the characteristics of single layered and multiple layered bed reactors in order to improve the wheat straw conversion to methane. Straw with 16.2% lignin concentration was obtained from single layered reactor, whereas in multiple layered reactor, lignin concentration decreased up to 7.2% at the bottom layer. Due to wax degradation in ozone-pretreated wheat straw, production of fatty acid compounds is observed by Kádár et al. [84]. About 49% lignin degradation was observed when corn stover was pretreated with ozonolysis in a study by Williams [85].
\nAFEX technique belongs to the category of physicochemical pretreatment methods. In this low temperature process, concentrated ammonia (0.3–2 kg ammonia/kg of dry weight) is used as a catalyst. Ammonia is added to biomass in a reactor of high pressure; after 5–45 min of cooking, pressure is released rapidly. Normally temperature around 90°C is used in this process. Ammonia can be recovered and reused because of its volatility. The principle of AFEX is similar to steam explosion. Apparatus for AFEX includes reactor, thermocouple well, pressure gauge, pressure relief valve, needle valve, sample cylinder, temperature monitor, and vent. Rate of fermentation is seen to be improved by AFEX pretreatment of various grasses and herbaceous crops. For treatment of alfalfa, wheat chaff and wheat straw AFEX technology is used. Hemicellulose and lignin cannot be removed by using AFEX technology; hence, small amount of material is solubilized only. Degradation of hemicellulose into oligomeric sugars and deacetylation occur during AFEX pretreatment which is the reason of hemicellulose insolubility. After AFEX pretreatment of Bermuda grass and bagasse, 90% hydrolysis of cellulose and hemicellulose was achieved. Effectiveness of AFEX pretreatment decreases with increase in the lignin content of biomass, for example, newspaper, woods, nutshells, and aspen chips. In case of AFEX pretreatment for newspaper and aspen chips, maximum hydrolysis yield was 40% and 50%, respectively. So for the treatment of biomass with high lignin content, AFEX pretreatment is not a suitable choice.
\nAmmonia recycle percolation (ARP) is another method that uses ammonia. Aqueous ammonia (10–15 wt %) is used in this method. With a fluid velocity of 1 cm/min and temperature of 150–170°C and residence time of 14 minutes, aqueous ammonia passes through biomass in this pretreatment, and ammonia is recovered afterwards. Under these conditions, ammonia reacts with lignin and causes the breakdown of lignin breakdown linkages. Liquid ammonia is used in AFEX technique whereas in ammonia recycle percolation method/technique, aqueous ammonia is used.
\nIn this method, high-pressure saturated steam is used to treat lignocellulosic biomass, and then suddenly pressure is reduced, due to which lignocellulosic biomass undergoes explosive decompression. Initiation temperature of steam explosion 160–260°C and 0.69–4.83 MPa pressure is provided for few seconds to minutes, and then lignocellulosic biomass is exposed and retained at atmospheric pressure for a period of time; this triggers hydrolysis of hemicellulose and at the end explosive decompression, terminated the whole process. Cellulose hydrolysis potential increases due to the cellulose degradation and lignin transformation caused by high temperature. During the steam explosion pretreatment, acid and other acids formed, which played their role in the hydrolysis of hemicellulose. Fragmentation of lignocellulosic material occurs due to turbulent material flow and rapid flashing of material to atmospheric pressure [86, 87, 88]. In steam explosion pretreatment, the use of sulfuric acid or carbon dioxide decreases time, temperature, and formation of inhibitory products and increases hydrolysis efficiency that ultimately leads to complete removal of hemicellulose. Steam explosion pretreatment is not that effective for pretreating soft woods; however, acid catalyst addition during the process is a prerequisite to make the substrate accessible to hydrolytic enzymes. By using steam, targeted temperature can be achieved to process the biomass without the need of excessive dilution. Sudden release of pressure quenches the whole process at the end and also lowers the temperature. Particulate structure of biomass gets opened by rapid thermal expansion which is used to terminate the reaction. Steam explosion gets affected by certain factors like moisture content, residence time, chip size, and temperature. By two ways optimal hydrolysis and solubilization of hemicellulose can be achieved; either use high temperature and short residence time or low temperature and high residence time. Low energy requirement is a great advantage of steam explosion pretreatment, whereas in mechanical pretreatment 70% more energy is required as compared to steam explosion pretreatment in order to obtain the same, reduced particle size. So far steam explosion pretreatment with addition of a catalyst is tested and came closest to scaling up at commercial level due to its cost-effectiveness. In Canada, at Iogen demonstration plant, steam explosion pretreatment is used at a pilot scale. For hardwood and agriculture residues, steam explosion pretreatment is a very effective pretreatment process.
\nSupercritical carbon dioxide explosion treatment falls in the category of physiochemical pretreatment. Scientists had tried to develop a process cheaper than ammonia fiber explosion and a process which would operate at temperature lower than stream explosion temperature. In this process, supercritical carbon dioxide is used that behaves like a solvent. Supercritical fluids are compressed at room temperature above its critical point. When carbon dioxide is dissolved in water, carbonic acid is formed which causes less corrosiveness due to its special features. During the process, carbon dioxide molecules enter into small pores of lignocellulosic biomass due to its small size. Carbon dioxide pretreatment is operated at low temperature which helped in prevention of sugar decomposition by acid. Cellulosic structure is disrupted when carbon dioxide pressure is released which ultimately increased the accessibility of the substrate to the cellulolytic enzymes for the process of hydrolysis [11, 40, 41, 43]. Dale and Moreira [89] used carbon dioxide pretreatment for alfalfa and observed 75% theoretical release of glucose. Zheng et al. [90] performed experiments to show comparison among ammonia explosion, steam pretreatment, and carbon dioxide pretreatment of recycled paper and sugarcane bagasse. The results showed that carbon dioxide explosion pretreatment is cost-effective than AFEX.
\nHot compressed water is another terminology used for this method of treatment. High temperature (160–220°C) and pressure (up to 5 MPa) are used in this type of pretreatment in order to maintain the liquid state of water. However, chemicals and catalysts are not used in liquid hot water pretreatment method [42]. In this method, water in liquid form remains in contact with lignocellulosic biomass for about 15 min. In this treatment pressure is used to prevent its evaporation, and sudden decompression or expansion in this pretreatment process is not needed. This method has proved to be very effective on sugarcane bagasse, wheat and rye straw, corncobs, and corn stover. Different terms like solvolysis, aqueous fractionation, aquasolv, and hydrothermolysis are used by different researchers to describe this pretreatment method [42, 60, 91]. Based on biomass flow direction and water flow direction into reactor, liquid hot water pretreatment can be performed in three different ways. The first method is co-current pretreatment, which is carried out by heating biomass slurry and water at high temperature, holding it for a controlled residence time at pretreatment conditions, and finally applying cool environment. The second method involves the countercurrent pretreatment that engages pumping of hot water against biomass at controlled conditions. The third method is the flow-through pretreatment, which can be carried out by the flow of hot water through lignocellulosic biomass which acts like a stationary bed.
\nTo investigate the effect of liquid hot water pretreatment, a study was conducted by Abdullah et al. [92] that determined the different hydrolysis rates of cellulose and hemicellulose. Two steps of optimization of various conditions were considered. The first step was performed at less severity for hydrolyzing hemicellulose, whereas the second step was performed at high severity for cellulose depolymerization. Disadvantage of liquid hot water pretreatment is high energy consumption requirement for downstream process because of the involvement of large amount of water. However, the advantage of this process is that chemicals and catalysts are not required and no inhibitor is formed [60].
\nIn this pretreatment method, oxygen/air and water or hydrogen peroxide is used to treat biomass at high temperatures (>120°C) for half an hour at 0.5–2 MPa pressure [11, 93]. This pretreatment method is also used for the treatment of waste water and soil remediation. This method has proven to be very effective for pretreatment of lignin enriched biomass. Certain factors like reaction time, oxygen pressure, and temperature effect the efficiency of wet oxidation pretreatment process. Water acts like acid at high temperature, so it induces hydrolysis reaction as hydrogen ion concentration increases with increase in temperature which ultimately decreases the pH value. Pentose monomers are formed as a result of hemicellulose breakdown in wet oxidation pretreatment, and oxidation of lignin occurs, but cellulose remains least affected. There are certain reports on the addition of alkaline peroxide or sodium carbonate. The addition of these chemical agents help in bringing down temperature reaction and reduce the formation of inhibitory compounds. Efforts to improve the degradation of hemicellulose at high temperature lead to the formation of inhibitory compounds like furfural and furfuraldehydes. However, amount of the production of inhibitors in wet oxidation pretreatment is certainly less than that of liquid hot water pretreatment or steam explosion method. There is extremely less possibility of using this process at industrial scale because of two reasons. One is the combustible nature of oxygen, and the other is the high cost of hydrogen peroxide used in the process [94].
\nSPORL stands for sulfite pretreatment to overcome recalcitrance of lignocellulose, and this technique is used for pretreatment of lignocellulosic biomass [95]. SPORL is performed in two steps. The first step involves treatment of biomass with magnesium or calcium sulfite for the removal of lignin and hemicellulose fractions. The second step involves the reduction in size of pretreated biomass via mechanical disk miler. Effect of SPORL pretreatment was studied by Zhu et al. [22, 23] on spruce chips by employing conditions like temperature 180°C, half an hour time duration, 8–10% bisulfite, and 1.8–3.7% sulfuric acid. By employing these conditions, more than 90% substrate was converted to cellulose when cellulase of 14.6 FPU and 22.5 CBU β-glucosidase was used in hydrolysis. Low-yield inhibitors like hydroxymethyl furfural (HMF) (0.5%) and furfural (0.1%) were produced during this process. These percentages are far less as compared to acid-catalyzed steam pretreatment of spruce. In another study, SPORL-pretreated Popular NE222, beetle-killed lodgepole pine, and Douglas fir were purified. Low contents of sulfur and molecular mass were obtained with high phenolic derivative production [96].
\nSPORL pretreatment on switch grass with temperature ranging between 163 and 197°C, 3–37 min time duration, 0.8–4.2% sulfuric acid dose, and 0.6–7.4% sodium sulfite dose was performed by Zhang et al. [97]. The results with enhanced digestibility by the removal of hemicellulose due to sulfonation and decreased hydrophobicity of lignin were obtained. SPORL yielded 77.3% substrate as compared to 68.1% for dilute acid treatment and 66.6% through alkali pretreatment. When sodium sulfite, sodium hydroxide, and sodium sulfide were used in SPORL pretreatment of switch grass, an improved digestibility of switch grass was achieved. When SPORL treatment was applied with optimized conditions, 97% lignin and 93% hemicellulose were removed from water hyacinth, and 90% hemicellulose and 75% lignin were achieved for rice husk [98].
\nConventional methods for chemical and physical pretreatments require expensive reagents, equipment, and high energy. On the other hand, biological pretreatment requires live microorganisms for the treatment of lignocellulosic material, and this method is more environment friendly and consumes less energy. There are certain microorganism present in nature that exhibit cellulolytic and hemicellulolytic abilities. White-rot, soft-rot, and brown fungi are known for lignin and hemicellulose removal with a very little effect on cellulose. White rot is able to degrade lignin due to the presence of lignin degrading enzymes like peroxidases and laccases. Carbon and nitrogen sources are involved in the regulation of these degrading enzymes [41]. Cellulose is commonly attacked by brown rot, whereas white and soft rot target both lignin and cellulose contents of plant biomass. Commonly used white-rot fungi species are Pleurotus ostreatus, Ceriporiopsis subvermispora, Ceriporia lacerata, Pycnoporus cinnabarinus, Cyathus cinnabarinus, and Phanerochaete chrysosporium. Basidiomycetes species including Bjerkandera adusta, Ganoderma resinaceum, Trametes versicolor, Fomes fomentarius, Irpex lacteus, Lepista nuda, and Phanerochaete chrysosporium are also tested, and these species showed high efficiency for delignification [41, 99].
\nPretreatment of wheat straw was studied by Hatakka [100]. The results showed 13% conversion of wheat straw into sugars by Pleurotus ostreatus in duration of 5 weeks, whereas Phanerochaete sordida and Pycnoporus cinnabarinus showed almost the same conversion rate but in less time. For degradation of lignin in woodchips and to prevent cellulose loss, cellulase-less mutant of fungus Sporotrichum pulverulentum was developed [101]. Delignification of Bermuda grass by white-rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus was studied that resulted in 29–32 and 63–77% improvement in delignification [102]. During the secondary metabolism in fungus P. chrysosporium, two lignin degrading enzymes, lignin peroxidase and manganese-dependent peroxidase, are produced in response to carbon and nitrogen limitation. Extracellular filtrates of various white-rot fungi contain these two enzymes.
\nSupporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.
",metaTitle:"IntechOpen Women in Science Program",metaDescription:"Supporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\\n\\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\\n\\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\\n\\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\\n\\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\\n\\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\\n\\nAdvantages of Publishing with IntechOpen
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\n\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\n\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\n\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\n\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\n\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5318},{group:"region",caption:"Middle and South America",value:2,count:4830},{group:"region",caption:"Africa",value:3,count:1469},{group:"region",caption:"Asia",value:4,count:9372},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14789}],offset:12,limit:12,total:108346},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{},books:[{type:"book",id:"6926",title:"Biological Anthropology",subtitle:null,isOpenForSubmission:!0,hash:"db6aa70aa47f94b3afa5b4951eba6d97",slug:null,bookSignature:"Dr. Alessio Vovlas",coverURL:"https://cdn.intechopen.com/books/images_new/6926.jpg",editedByType:null,editors:[{id:"313084",title:"Dr.",name:"Alessio",surname:"Vovlas",slug:"alessio-vovlas",fullName:"Alessio Vovlas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6931",title:"Personality Disorders",subtitle:null,isOpenForSubmission:!0,hash:"cc530c17b87275c5e284fcac8047d40e",slug:null,bookSignature:"Dr. Catherine Athanasiadou-Lewis",coverURL:"https://cdn.intechopen.com/books/images_new/6931.jpg",editedByType:null,editors:[{id:"287692",title:"Dr.",name:"Catherine",surname:"Athanasiadou-Lewis",slug:"catherine-athanasiadou-lewis",fullName:"Catherine Athanasiadou-Lewis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6934",title:"Sexual Ethics",subtitle:null,isOpenForSubmission:!0,hash:"44731b106aa0d1ab5c64a7394483c7d5",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/6934.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6937",title:"Subcultures and Lifestyles",subtitle:null,isOpenForSubmission:!0,hash:"870d7f9f5ac0d8068a64507ef2fd0e3c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/6937.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6940",title:"E-Services",subtitle:null,isOpenForSubmission:!0,hash:"0dd6e0f6c0a6d3be53af40ae99a1529d",slug:null,bookSignature:"Dr. Sam Goundar",coverURL:"https://cdn.intechopen.com/books/images_new/6940.jpg",editedByType:null,editors:[{id:"280395",title:"Dr.",name:"Sam",surname:"Goundar",slug:"sam-goundar",fullName:"Sam Goundar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6947",title:"Contemporary Topics in Graduate Medical Education - Volume 2",subtitle:null,isOpenForSubmission:!0,hash:"4374f31d47ec1ddb7b1be0f15f1116eb",slug:null,bookSignature:"Dr. Stanislaw P. Stawicki, Michael S. S Firstenberg, Dr. James P. Orlando and Dr. Thomas John Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/6947.jpg",editedByType:null,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6972",title:"Soybean for Human Consumption and Animal Feed",subtitle:null,isOpenForSubmission:!0,hash:"4bc6f95dc8630c9a8be84bb46286c445",slug:null,bookSignature:"Dr. Aleksandra Sudarić",coverURL:"https://cdn.intechopen.com/books/images_new/6972.jpg",editedByType:null,editors:[{id:"21485",title:"Dr.",name:"Aleksandra",surname:"Sudarić",slug:"aleksandra-sudaric",fullName:"Aleksandra Sudarić"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6997",title:"Amphibians",subtitle:null,isOpenForSubmission:!0,hash:"56a54f7a7f42b3e90257f5c8859a52ed",slug:null,bookSignature:"Associate Prof. Suman Pratihar",coverURL:"https://cdn.intechopen.com/books/images_new/6997.jpg",editedByType:null,editors:[{id:"223034",title:"Associate Prof.",name:"Suman",surname:"Pratihar",slug:"suman-pratihar",fullName:"Suman Pratihar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7003",title:"Herbs and Spices",subtitle:null,isOpenForSubmission:!0,hash:"1f33df17010fa5e54988c44e32db2b40",slug:null,bookSignature:"Dr. Muhammad Akram",coverURL:"https://cdn.intechopen.com/books/images_new/7003.jpg",editedByType:null,editors:[{id:"275728",title:"Dr.",name:"Muhammad",surname:"Akram",slug:"muhammad-akram",fullName:"Muhammad Akram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7016",title:"Cardiovascular Risk Factors in Pathology",subtitle:null,isOpenForSubmission:!0,hash:"7937d2c640c7515de372282c72ee5635",slug:null,bookSignature:"Ph.D. Alaeddin Abukabda",coverURL:"https://cdn.intechopen.com/books/images_new/7016.jpg",editedByType:null,editors:[{id:"307873",title:"Ph.D.",name:"Alaeddin",surname:"Abukabda",slug:"alaeddin-abukabda",fullName:"Alaeddin Abukabda"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7025",title:"Honey, Propolis and Royal Jelly",subtitle:null,isOpenForSubmission:!0,hash:"937380806bea25e744d4d3b2298b8479",slug:null,bookSignature:"Prof. Banu Yucel and Dr. Sibel Silici",coverURL:"https://cdn.intechopen.com/books/images_new/7025.jpg",editedByType:null,editors:[{id:"191429",title:"Prof.",name:"Banu",surname:"Yucel",slug:"banu-yucel",fullName:"Banu Yucel"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems - Design, Modeling, Simulation and Analysis",subtitle:null,isOpenForSubmission:!0,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:null,bookSignature:"Dr. Tien Manh Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:null,editors:[{id:"210657",title:"Dr.",name:"Tien",surname:"Nguyen",slug:"tien-nguyen",fullName:"Tien Nguyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:33},{group:"topic",caption:"Business, Management and Economics",value:7,count:10},{group:"topic",caption:"Chemistry",value:8,count:30},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:67},{group:"topic",caption:"Environmental Sciences",value:12,count:12},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:36},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:132},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:13},{group:"topic",caption:"Technology",value:24,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Insectology",value:39,count:1},{group:"topic",caption:"Genesiology",value:300,count:1},{group:"topic",caption:"Machine Learning and Data Mining",value:521,count:1},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:866},popularBooks:{featuredBooks:[{type:"book",id:"7640",title:"Perspective of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:"8b85a9957fad5206369eadf0c1ffa27d",slug:"perspective-of-carbon-nanotubes",bookSignature:"Hosam El-Din Saleh and Said Moawad Mohamed El-Sheikh",coverURL:"https://cdn.intechopen.com/books/images_new/7640.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam El-Din",middleName:"M.",surname:"Saleh",slug:"hosam-el-din-saleh",fullName:"Hosam El-Din Saleh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7612",title:"Electrospinning and Electrospraying",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"77e9708250507395a4bea2c17d012982",slug:"electrospinning-and-electrospraying-techniques-and-applications",bookSignature:"Sajjad Haider and Adnan Haider",coverURL:"https://cdn.intechopen.com/books/images_new/7612.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7646",title:"Scientometrics Recent Advances",subtitle:null,isOpenForSubmission:!1,hash:"86bbdd04d7e80be14283d44969d1cc32",slug:"scientometrics-recent-advances",bookSignature:"Suad Kunosic and Enver Zerem",coverURL:"https://cdn.intechopen.com/books/images_new/7646.jpg",editors:[{id:"88678",title:"Prof.",name:"Suad",middleName:null,surname:"Kunosic",slug:"suad-kunosic",fullName:"Suad Kunosic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7404",title:"Hysteresis of Composites",subtitle:null,isOpenForSubmission:!1,hash:"8540fa2378dbb92e50411cfebfb853a6",slug:"hysteresis-of-composites",bookSignature:"Li Longbiao",coverURL:"https://cdn.intechopen.com/books/images_new/7404.jpg",editors:[{id:"260011",title:"Dr.",name:"Li",middleName:null,surname:"Longbiao",slug:"li-longbiao",fullName:"Li Longbiao"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4406},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7640",title:"Perspective of Carbon Nanotubes",subtitle:null,isOpenForSubmission:!1,hash:"8b85a9957fad5206369eadf0c1ffa27d",slug:"perspective-of-carbon-nanotubes",bookSignature:"Hosam El-Din Saleh and Said Moawad Mohamed El-Sheikh",coverURL:"https://cdn.intechopen.com/books/images_new/7640.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam El-Din",middleName:"M.",surname:"Saleh",slug:"hosam-el-din-saleh",fullName:"Hosam El-Din Saleh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7612",title:"Electrospinning and Electrospraying",subtitle:"Techniques and Applications",isOpenForSubmission:!1,hash:"77e9708250507395a4bea2c17d012982",slug:"electrospinning-and-electrospraying-techniques-and-applications",bookSignature:"Sajjad Haider and Adnan Haider",coverURL:"https://cdn.intechopen.com/books/images_new/7612.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7646",title:"Scientometrics Recent Advances",subtitle:null,isOpenForSubmission:!1,hash:"86bbdd04d7e80be14283d44969d1cc32",slug:"scientometrics-recent-advances",bookSignature:"Suad Kunosic and Enver Zerem",coverURL:"https://cdn.intechopen.com/books/images_new/7646.jpg",editors:[{id:"88678",title:"Prof.",name:"Suad",middleName:null,surname:"Kunosic",slug:"suad-kunosic",fullName:"Suad Kunosic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editedByType:"Edited by",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8747",title:"Asphalt and Asphalt Mixtures",subtitle:null,isOpenForSubmission:!1,hash:"6083f7c9881029f1e033a1e512af7e20",slug:"asphalt-and-asphalt-mixtures",bookSignature:"Haitao Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8747.jpg",editedByType:"Edited by",editors:[{id:"260604",title:"Prof.",name:"Haitao",middleName:null,surname:"Zhang",slug:"haitao-zhang",fullName:"Haitao Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editedByType:"Edited by",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8292",title:"Oral Health by Using Probiotic Products",subtitle:null,isOpenForSubmission:!1,hash:"327e750e83634800ace02fe62607c21e",slug:"oral-health-by-using-probiotic-products",bookSignature:"Razzagh Mahmoudi",coverURL:"https://cdn.intechopen.com/books/images_new/8292.jpg",editedByType:"Edited by",editors:[{id:"245925",title:"Dr.",name:"Razzagh",middleName:null,surname:"Mahmoudi",slug:"razzagh-mahmoudi",fullName:"Razzagh Mahmoudi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editedByType:"Edited by",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8347",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3d7024a8d7d8afed093c9c79ec31f15a",slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",bookSignature:"Lulu Wang and Liandong Yu",coverURL:"https://cdn.intechopen.com/books/images_new/8347.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Dr.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editedByType:"Edited by",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editedByType:"Edited by",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editedByType:"Edited by",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1068",title:"Menopausal and Geriatric Gynecology",slug:"menopausal-and-geriatric-gynecology",parent:{title:"Obstetrics and Gynecology",slug:"obstetrics-and-gynecology"},numberOfBooks:3,numberOfAuthorsAndEditors:60,numberOfWosCitations:1,numberOfCrossrefCitations:2,numberOfDimensionsCitations:13,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"menopausal-and-geriatric-gynecology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8584",title:"Molecular Bases of Endometriosis",subtitle:"The Integration Between Research and Clinical Practice",isOpenForSubmission:!1,hash:"9cc793fe99169a1dc09ad735d5d0955f",slug:"molecular-bases-of-endometriosis-the-integration-between-research-and-clinical-practice",bookSignature:"Giovana Aparecida Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/8584.jpg",editedByType:"Edited by",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5984",title:"Menopause",subtitle:"A Multidisciplinary Look at",isOpenForSubmission:!1,hash:"8608e36ebed0f1f01881486213b5f7df",slug:"a-multidisciplinary-look-at-menopause",bookSignature:"Juan Francisco Rodriguez-Landa and Jonathan Cueto-Escobedo",coverURL:"https://cdn.intechopen.com/books/images_new/5984.jpg",editedByType:"Edited by",editors:[{id:"45702",title:"Dr.",name:"Juan Francisco",middleName:null,surname:"Rodríguez-Landa",slug:"juan-francisco-rodriguez-landa",fullName:"Juan Francisco Rodríguez-Landa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1751",title:"From Preconception to Postpartum",subtitle:null,isOpenForSubmission:!1,hash:"d424b9faf7ae0d3d2ec8bcba61766a4c",slug:"from-preconception-to-postpartum",bookSignature:"Stavros Sifakis and Nikolaos Vrachnis",coverURL:"https://cdn.intechopen.com/books/images_new/1751.jpg",editedByType:"Edited by",editors:[{id:"33248",title:"Dr.",name:"Stavros",middleName:null,surname:"Sifakis",slug:"stavros-sifakis",fullName:"Stavros Sifakis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"33797",doi:"10.5772/28644",title:"Operative Vaginal Deliveries in Contemporary Obstetric Practice",slug:"operative-vaginal-deliveries-in-contemporary-obstetric-practise",totalDownloads:8216,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"from-preconception-to-postpartum",title:"From Preconception to Postpartum",fullTitle:"From Preconception to Postpartum"},signatures:"Sunday E. Adaji and Charles A. Ameh",authors:[{id:"74801",title:"Dr.",name:"Sunday",middleName:null,surname:"Adaji",slug:"sunday-adaji",fullName:"Sunday Adaji"},{id:"86877",title:"Dr.",name:"Charles",middleName:"Anawo",surname:"Ameh",slug:"charles-ameh",fullName:"Charles Ameh"}]},{id:"33782",doi:"10.5772/31858",title:"Who Selects Obstetrics and Gynecology as a Career and Why, and What Traits Do They Possess?",slug:"who-selects-obstetrics-andgynecology-as-a-career-and-why-and-what-traits-do-they-possess-",totalDownloads:8462,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"from-preconception-to-postpartum",title:"From Preconception to Postpartum",fullTitle:"From Preconception to Postpartum"},signatures:"Bruce W. Newton",authors:[{id:"89032",title:"Dr.",name:"Bruce",middleName:"W.",surname:"Newton",slug:"bruce-newton",fullName:"Bruce Newton"}]},{id:"56195",doi:"10.5772/intechopen.69786",title:"Depression and Serotonergic Changes during the Climacteric and Postmenopausal Stages: Hormonal Influences",slug:"depression-and-serotonergic-changes-during-the-climacteric-and-postmenopausal-stages-hormonal-influe",totalDownloads:597,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"a-multidisciplinary-look-at-menopause",title:"Menopause",fullTitle:"A Multidisciplinary Look at Menopause"},signatures:"Rosa Isela García-Ríos, Armando Mora-Pérez and Cesar Soria-\nFregozo",authors:[{id:"174653",title:"Dr.",name:"Rosa Isela",middleName:null,surname:"García-Ríos",slug:"rosa-isela-garcia-rios",fullName:"Rosa Isela García-Ríos"},{id:"174654",title:"Dr.",name:"Cesar",middleName:null,surname:"Soria-Fregozo",slug:"cesar-soria-fregozo",fullName:"Cesar Soria-Fregozo"},{id:"198327",title:"Dr.",name:"Armando",middleName:null,surname:"Mora-Perez",slug:"armando-mora-perez",fullName:"Armando Mora-Perez"}]}],mostDownloadedChaptersLast30Days:[{id:"56181",title:"Psychological and Social Aspects of Menopause",slug:"psychological-and-social-aspects-of-menopause",totalDownloads:1122,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"a-multidisciplinary-look-at-menopause",title:"Menopause",fullTitle:"A Multidisciplinary Look at Menopause"},signatures:"Iqbal Afridi",authors:[{id:"203383",title:"Prof.",name:"Iqbal",middleName:null,surname:"Afridi",slug:"iqbal-afridi",fullName:"Iqbal Afridi"}]},{id:"56195",title:"Depression and Serotonergic Changes during the Climacteric and Postmenopausal Stages: Hormonal Influences",slug:"depression-and-serotonergic-changes-during-the-climacteric-and-postmenopausal-stages-hormonal-influe",totalDownloads:597,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"a-multidisciplinary-look-at-menopause",title:"Menopause",fullTitle:"A Multidisciplinary Look at Menopause"},signatures:"Rosa Isela García-Ríos, Armando Mora-Pérez and Cesar Soria-\nFregozo",authors:[{id:"174653",title:"Dr.",name:"Rosa Isela",middleName:null,surname:"García-Ríos",slug:"rosa-isela-garcia-rios",fullName:"Rosa Isela García-Ríos"},{id:"174654",title:"Dr.",name:"Cesar",middleName:null,surname:"Soria-Fregozo",slug:"cesar-soria-fregozo",fullName:"Cesar Soria-Fregozo"},{id:"198327",title:"Dr.",name:"Armando",middleName:null,surname:"Mora-Perez",slug:"armando-mora-perez",fullName:"Armando Mora-Perez"}]},{id:"56061",title:"Menopause in Nonhuman Primates: A Comparative Study with Humans",slug:"menopause-in-nonhuman-primates-a-comparative-study-with-humans",totalDownloads:635,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"a-multidisciplinary-look-at-menopause",title:"Menopause",fullTitle:"A Multidisciplinary Look at Menopause"},signatures:"María de Jesús Rovirosa-Hernández, Marisela Hernández González,\nMiguel Ángel Guevara-Pérez, Francisco García-Orduña, Abril de los\nÁngeles Aguilar-Tirado, Abraham Puga-Olguín and Brisa Patricia\nVásquez-Domínguez",authors:[{id:"174651",title:"Dr.",name:"Abraham",middleName:null,surname:"Puga-Olguín",slug:"abraham-puga-olguin",fullName:"Abraham Puga-Olguín"},{id:"203584",title:"Dr.",name:"Ma De Jesus",middleName:null,surname:"Rovirosa Hernandez",slug:"ma-de-jesus-rovirosa-hernandez",fullName:"Ma De Jesus Rovirosa Hernandez"},{id:"203585",title:"MSc.",name:"Francisco",middleName:null,surname:"García-Orduña",slug:"francisco-garcia-orduna",fullName:"Francisco García-Orduña"},{id:"203586",title:"Dr.",name:"Marisela",middleName:null,surname:"Hernández-González",slug:"marisela-hernandez-gonzalez",fullName:"Marisela Hernández-González"},{id:"203587",title:"Dr.",name:"Abril De Los Ángeles",middleName:null,surname:"Aguilar-Tirado",slug:"abril-de-los-angeles-aguilar-tirado",fullName:"Abril De Los Ángeles Aguilar-Tirado"},{id:"206508",title:"Dr.",name:"Miguel Angel",middleName:null,surname:"Guevara-Pérez",slug:"miguel-angel-guevara-perez",fullName:"Miguel Angel Guevara-Pérez"},{id:"206510",title:"Dr.",name:"Brisa",middleName:null,surname:"Vásquez-Domínguez",slug:"brisa-vasquez-dominguez",fullName:"Brisa Vásquez-Domínguez"}]},{id:"56089",title:"Use of Phytoestrogens for the Treatment of Psychiatric Symptoms Associated with Menopause Transition",slug:"use-of-phytoestrogens-for-the-treatment-of-psychiatric-symptoms-associated-with-menopause-transition",totalDownloads:832,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"a-multidisciplinary-look-at-menopause",title:"Menopause",fullTitle:"A Multidisciplinary Look at Menopause"},signatures:"Erika Estrada-Camarena, Carolina López-Rubalcava, Brenda Valdés-\nSustaita, Gabriel Sinhue Azpilcueta-Morales and Eva María\nGonzález-Trujano",authors:[{id:"114710",title:"Dr.",name:"Erika",middleName:null,surname:"Estrada-Camarena",slug:"erika-estrada-camarena",fullName:"Erika Estrada-Camarena"},{id:"200969",title:"Prof.",name:"Carolina",middleName:null,surname:"López Rubalcava",slug:"carolina-lopez-rubalcava",fullName:"Carolina López Rubalcava"},{id:"200970",title:"MSc.",name:"Brenda",middleName:null,surname:"Valdés Sustaita",slug:"brenda-valdes-sustaita",fullName:"Brenda Valdés Sustaita"},{id:"200971",title:"BSc.",name:"Gabriel",middleName:null,surname:"Azpilcueta",slug:"gabriel-azpilcueta",fullName:"Gabriel Azpilcueta"},{id:"207957",title:"Prof.",name:"Eva",middleName:null,surname:"Gonzalez-Trujano",slug:"eva-gonzalez-trujano",fullName:"Eva Gonzalez-Trujano"}]},{id:"65889",title:"Progesterone Resistance and Adult Stem Cells’ Genomic and Epigenetic Changes in the Puzzle of Endometriosis",slug:"progesterone-resistance-and-adult-stem-cells-genomic-and-epigenetic-changes-in-the-puzzle-of-endomet",totalDownloads:288,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"molecular-bases-of-endometriosis-the-integration-between-research-and-clinical-practice",title:"Molecular Bases of Endometriosis",fullTitle:"Molecular Bases of Endometriosis - The Integration Between Research and Clinical Practice"},signatures:"Manuela Cristina Russu",authors:[{id:"219629",title:"Distinguished Prof.",name:"Manuela Cristina",middleName:null,surname:"Russu",slug:"manuela-cristina-russu",fullName:"Manuela Cristina Russu"}]},{id:"33785",title:"Environmental Electromagnetic Field and Female Fertility",slug:"environmental-electromagnetic-field-and-female-fertility",totalDownloads:2021,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"from-preconception-to-postpartum",title:"From Preconception to Postpartum",fullTitle:"From Preconception to Postpartum"},signatures:"Leila Roshangar and Jafar Soleimani Rad",authors:[{id:"82600",title:"PhD.",name:"Leila",middleName:null,surname:"Roshangar",slug:"leila-roshangar",fullName:"Leila Roshangar"},{id:"82975",title:"Prof.",name:"Jafar",middleName:null,surname:"Soleimani Rad",slug:"jafar-soleimani-rad",fullName:"Jafar Soleimani Rad"}]},{id:"33797",title:"Operative Vaginal Deliveries in Contemporary Obstetric Practice",slug:"operative-vaginal-deliveries-in-contemporary-obstetric-practise",totalDownloads:8216,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"from-preconception-to-postpartum",title:"From Preconception to Postpartum",fullTitle:"From Preconception to Postpartum"},signatures:"Sunday E. Adaji and Charles A. Ameh",authors:[{id:"74801",title:"Dr.",name:"Sunday",middleName:null,surname:"Adaji",slug:"sunday-adaji",fullName:"Sunday Adaji"},{id:"86877",title:"Dr.",name:"Charles",middleName:"Anawo",surname:"Ameh",slug:"charles-ameh",fullName:"Charles Ameh"}]},{id:"64475",title:"Proteomics Research and Its Possibility of Application in Endometriosis",slug:"proteomics-research-and-its-possibility-of-application-in-endometriosis",totalDownloads:240,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"molecular-bases-of-endometriosis-the-integration-between-research-and-clinical-practice",title:"Molecular Bases of Endometriosis",fullTitle:"Molecular Bases of Endometriosis - The Integration Between Research and Clinical Practice"},signatures:"Ningning Wang",authors:[{id:"262055",title:"Prof.",name:"Ningning",middleName:null,surname:"Wang",slug:"ningning-wang",fullName:"Ningning Wang"}]},{id:"33782",title:"Who Selects Obstetrics and Gynecology as a Career and Why, and What Traits Do They Possess?",slug:"who-selects-obstetrics-andgynecology-as-a-career-and-why-and-what-traits-do-they-possess-",totalDownloads:8462,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"from-preconception-to-postpartum",title:"From Preconception to Postpartum",fullTitle:"From Preconception to Postpartum"},signatures:"Bruce W. Newton",authors:[{id:"89032",title:"Dr.",name:"Bruce",middleName:"W.",surname:"Newton",slug:"bruce-newton",fullName:"Bruce Newton"}]},{id:"33788",title:"Post Abortion Care Services in Nigeria",slug:"post-abortion-care-services",totalDownloads:2805,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"from-preconception-to-postpartum",title:"From Preconception to Postpartum",fullTitle:"From Preconception to Postpartum"},signatures:"Echendu Dolly Adinma",authors:[{id:"80548",title:"Dr.",name:"Echendu",middleName:null,surname:"Adinma",slug:"echendu-adinma",fullName:"Echendu Adinma"}]}],onlineFirstChaptersFilter:{topicSlug:"menopausal-and-geriatric-gynecology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10080",title:"Vortex Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"ea97962e99b3e0ebc9b46b48ba5bea14",slug:null,bookSignature:"Dr. Zambri Harun",coverURL:"https://cdn.intechopen.com/books/images_new/10080.jpg",editedByType:null,editors:[{id:"243152",title:"Dr.",name:"Zambri",middleName:null,surname:"Harun",slug:"zambri-harun",fullName:"Zambri Harun"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8771",title:"Raman Scattering",subtitle:null,isOpenForSubmission:!0,hash:"1354b3097eaa5b27d9d4bd29d3150b27",slug:null,bookSignature:"Dr. Samir Kumar and Dr. Prabhat Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/8771.jpg",editedByType:null,editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10073",title:"Recent Advances in Nanophotonics-Fundamentals and Applications",subtitle:null,isOpenForSubmission:!0,hash:"aceca7dfc807140870a89d42c5537d7c",slug:null,bookSignature:"Dr. Mojtaba Kahrizi and Ms. Parsoua Abedini Sohi",coverURL:"https://cdn.intechopen.com/books/images_new/10073.jpg",editedByType:null,editors:[{id:"113045",title:"Dr.",name:"Mojtaba",middleName:null,surname:"Kahrizi",slug:"mojtaba-kahrizi",fullName:"Mojtaba Kahrizi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9284",title:"Computational Aeroacoustics",subtitle:null,isOpenForSubmission:!0,hash:"7019c5e5985faef7dc384c87dca5c8ef",slug:null,bookSignature:"Prof. Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/9284.jpg",editedByType:null,editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",middleName:null,surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"onlineFirst.detail",path:"/online-first/different-pretreatment-methods-of-lignocellulosic-biomass-for-use-in-biofuel-production",hash:"",query:{},params:{chapter:"different-pretreatment-methods-of-lignocellulosic-biomass-for-use-in-biofuel-production"},fullPath:"/online-first/different-pretreatment-methods-of-lignocellulosic-biomass-for-use-in-biofuel-production",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()