Commonly Used Fracturing Fluid pH buffering chemicals.
\r\n\tThe Biomechatronic book will cover all health-related areas of mechatronic systems with emphasis on medical and health-related areas of mechatronic system components. The book will generally include the following areas: Biomechanics applications, Biomaterial systems, Mechatronic systems, Sensor systems, Control systems, Actuator systems.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"2a8b3299bd359d430bc9b5bfc54f9cdf",bookSignature:"Dr. Sezgin Ersoy and Dr. Ishak Ertugrul",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10029.jpg",keywords:"Biosensors, Mechatronics, Biomechatronics, Biosystem, Control, Control system, Bioactuators, Intelligent orthosis prosthesis, Implants, Upper and lower limb rehabilitation robots, Biomechanics applications",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 14th 2019",dateEndSecondStepPublish:"November 4th 2019",dateEndThirdStepPublish:"January 3rd 2020",dateEndFourthStepPublish:"March 23rd 2020",dateEndFifthStepPublish:"May 22nd 2020",remainingDaysToSecondStep:"a year",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"156004",title:"Associate Prof.",name:"Sezgin",middleName:null,surname:"Ersoy",slug:"sezgin-ersoy",fullName:"Sezgin Ersoy",profilePictureURL:"https://mts.intechopen.com/storage/users/156004/images/system/156004.png",biography:"Sezgin Ersoy is an Associate Professor of Mechatronics Engineering and Material Science. After graduating from Marmara University, he became a faculty member at the same university. His publications include a variety of efforts to understand changes in automotive mechatronics, polymer science and biomedical technologies. He was granted fellowship at the TUBİTAK at Bourgogne University ISAT and spent one year as a visiting fellow there to study several projects between 2014 through 2015. He is the author of chapter Science Education in a Rapidly Changing World, USA 2011, and the author in Acoustic Properties of Bio Materials, Stuttgart, 2010. He has two science national awards and is an Editorial Member of several scientific journals.",institutionString:"Marmara University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Marmara University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:{id:"312857",title:"Dr.",name:"Ishak",middleName:null,surname:"Ertugrul",slug:"ishak-ertugrul",fullName:"Ishak Ertugrul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-salesforce/0033Y00002qK768QAC/Profile_Picture_1570004147352",biography:"Dr. Ertugrul completed his PhD in Mechatronics Engineering at Marmara University. He studied Nanotechnology and Control in his Ph.D. and completed his doctorate education in June 2019. He has published international studies, specifically in the field of MEMS-based sensor and actuator fabrication and characterization by the additive manufacturing method. He is currently working as an Assistant Professor at Muş Alparslan University.",institutionString:"Marmara University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Marmara University",institutionURL:null,country:{name:"Turkey"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"287827",firstName:"Gordan",lastName:"Tot",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/287827/images/8493_n.png",email:"gordan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8883",title:"Autonomous Vehicle and Smart Traffic",subtitle:null,isOpenForSubmission:!1,hash:"841c82c0bf27716a7c800bc1180ad5de",slug:"autonomous-vehicle-and-smart-traffic",bookSignature:"Sezgin Ersoy and Tayyab Waqar",coverURL:"https://cdn.intechopen.com/books/images_new/8883.jpg",editedByType:"Edited by",editors:[{id:"156004",title:"Associate Prof.",name:"Sezgin",surname:"Ersoy",slug:"sezgin-ersoy",fullName:"Sezgin Ersoy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"44660",title:"Fracturing Fluid Components",doi:"10.5772/56422",slug:"fracturing-fluid-components",body:'The water used for hydraulic fracturing is a critical component of the fluid. It must be carefully quality controlled as describe in the Quality Control Chapter. Typically the water is filtered to 50μ (microns) for propped fracturing treatments and to 2μ for frac and pack treatments. Fresh water is normally used but there are gelling agents available for seawater. The main disadvantage of seawater is the presence of Sulfate which can interact with connate reservoir water causing sulphate scales to form and provides a sulfur source for Sulfate reducing bacteria. The use of post frac flowback water is becoming common especially for slickwater fracs. When flowback water is used to manufacture crosslinked gels care must be taken because the water may contain residual breaker.
KCl or an organic clay stabilizer is added to the base fluid to prevent the water from interacting with the reservoir mineralogy. KCl is typically added at a concentration of 2% but can be added at concentrations as high as 8% depending on laboratory testing results. Most testing on the commercially available organic clay stabilizers, which are typically some form of Quaternary Amine compound, has found them to be ineffective at the normal concentrations recommended. KCl is unique in its ability to stabilize clays and is much more effective than other inorganic salts such as NaCl, CaCl2 etc.
These materials are added to water to manufacture what is called “slickwater”. They are added to reduce the friction generated as the fluid is pumped down the well tubulars. FR’s are typically added to the frac fluid at a concentration of 0.25 to 2 gal/1000 gal. Figure 1 shows a comparison of the friction when pumping water, FR “Slickwater” and Guar “Waterfrac”. There are several forms of FR which are also shown in Figure 1. They are:
Chemical Structure of various Friction Reduction (FR) agents and a comparison of friction pressure for water containing only 2% KCl vs. water containing 2% KCl and 2 gallons per 1000 gallons (FR) and 10# Guar pumped down 4 ½” 11.5# 4” ID casing.
PAAc which is a non-toxic synthetic high molecular weight polymer of acrylic acid. The material is sold as either a white solid or as a 50% active dispersion of the solid in mineral oil which makes it easy to disperse and solublize in water. The molecule is very sensitive to divalent cationic ions (cations) such as Ca, Mg, Fe etc. and will quickly precipitate if used in hard water. Other uses for PAAc include adsorbents for disposable diapers, ion exchange resins, adhesives and as thickeners’ for pharmaceuticals, cosmetics and paints.
PAAm is formed from acrylamide subunits. It is non-toxic however unpolymerized acrylamide is a neurotoxin and if the PAAm is not properly manufactured it can contain some un-polymerized acrylamide. As a solid PAAM is slower to hydrate than PAAc but is less sensitive to divalent cations. It is typically delivered to the field as a 50% active suspension of PAAM emulsified in mineral oil. The PAAm polymer is quite difficult to break and is used to gel 15% HCl so is damaging to the reservoir rock and proppant pack when used. When used in Slickwater fracturing Carman and Cawiezel [19] have reported successful breaker optimization for the material. Other uses for PAAm include flocculants for wastewater treatment and papermaking, as a soil conditioner and for making soft contact lens.
PHPAis the most common friction reducer available. It is made by reacting sodium acrylate with acrylamide so that approximately 30 % of the acrylamide groups are in the hydrolyzed form. This improves the solubility in water, makes the polymer more compatible with cationic minerals and and is commonly marketed as a 50% active dispersion in mineral oil. Because it is widely used in industry as a flocculant for water and paper manufacture it is the least expensive FR and therefore the most widely used.
AMPS is chemically structured so that the molecule is less susceptible to precipitation by cationic mineral salts which may be present in hard water or to high temperatures. It is also stable at a wide range of pH so that it is functional in energized fluids that contain CO2. The Sulfonate character of the polymer also makes it active as a scale inhibitor. It is typically marketed as a 50% active emulsion. Other uses for AMPS include electrocardiogram gels, plasticizers for concrete and as coagulants in water treatment processes.
These materials are added to the fracturing fluid to increase the viscosity. This increases the fracture width so it can accept higher concentrations of proppant, reduces the fluid loss to improve fluid efficiency, improves proppant transport and reduces the friction pressure. The chemical structure of some gelling agents also allow for crosslinking. The viscosity of a gelling agent in solution is a function of its molecular weight. The viscosity increases with increasing chain length and concentration. Figure 2 shows how this occurs. For slick water the polymer concentration should be below the Critical Overlap Concentration C*, for crosslinked gels the ideal range is between the C* and the Critical Entanglement Concentration C**. When the concentration exceeds the C**a process call sineresis occurs in which the gel is over-crosslinked and water is “squeezed” out of the gel matrix. As water is removed from the polymer mixture as fluid loss occurs in the fracture the concentration of polymer increases dramatically causing damage to the proppant conductivity.
Intrinsic Viscosity of a Solution as a Function of the Polymer Concentration
Guar and its derivatives HydroxyPropyl Guar (HPG), CarboxyMethyl Guar (CMG) and CarboxyMethylHydroxyPropyl Guar (CMHPG) are the most common gelling agents used for fracturing. As shown in Figure 3 Guar [Cyamopsis tetragonoloba] is a natural glactomannan gum of the Legume family which is mostly grown in India. Beckwith[1] provides a very nice summary of guar and reports that in 2012 the industry used about 25,000 tons of guar a month at a wholesale cost of $1,723 US/100 kg ($7.83/lb).
Guar
After harvesting the seed coat and germ are removed to form what is called a Guar Split. This Guar Split is ground to form guar powder. This process is shown diagrammatically in Figure 4. The chemical structure of guar (See Figure 5) is unique in that it can be readily crosslinked through the cis-hydroxyl functionality shown in Red and easily broken through the acetyl linkages shown in Blue. When Guar is broken it leave a 6 to 10% insoluble residue. To reduce this insoluble residue, improve the high temperature stability and improve the crosslinking performance in low pH fluids such as CO2 the molecular structure of guar is chemically modified with Propylene Oxide to form HPG and with Monochloric Acetic Acid to form CMG or CMHPG. The chemical process is shown in Figure 6.
The process of manufacturing Guar Powder
The chemical structure of Guar
The formulation of HPG, CMG and CMHPG from Guar
Chemical Structure of HydroxyPropyl Guar (HPG)
Chemical Structure of CarboxyMethyl Guar (CMG) and CarboxyMethylHydroxy Propyl Guar (CMHPG)
When using Guar or its derivatives the fluid loss control mechanism is “wall-building – i.e. C-III” in that when the base fluid leaks off the polymer is deposited on the rock face forming a filter cake. The initial leakoff is quite rapid and is called “Spurt”. Once a filter cake forms the leak-off becomes a function of the square root of time as described in the companion paper on Fracturing Fluids.
When mixing dry powered Guar, care must be taken to avoid “fisheyes by adjusting the pH of the base water to above 7 and using a high energy mixer to allow proper dispersion. Once the polymer is dispersed the pH is adjusted to just below 6 to allow hydration. Most modern commercially packaged powered Guar systems contain a buffer package that automatically adjusts the pH of the water as the powder is added to prevent fisheyes. When packaged systems are hydrated the pH of the base water needs to be near neutral and a high energy mixer used. Care must also be taken when using very cold water (<60°F) because the rate of solution for the buffer packages can be affected. Guar emulsified in mineral oil as a 50% active material is also commonly used.
HEC and CarboxyMethylHydroxyEthyl Cellulose (CMHEC) are derivatives of cellulose which is the most common organic compound on Earth. About 33% of all plant matter is a cellusosan organic compound with the formula (C6H10O5)n, a polysaccharide consisting of a linear chain of several hundred to over ten thousand linked glucose units. As with Guar, Cellulose can be reacted with Propylene Oxide and/or Monochloric Acetic Acid to produce HEC or CMHEC. The chemical makeup of HEC and CMHEC is shown in Figure 9. The base cellulose used to make HEC and CMHEC comes mainly from cotton which is 90% cellulose. HEC and CMHEC are non-toxic and hypoallergenic and are widely used as a viscosifer and emulsion stabilizer in ice cream, K-Y Jelly, toothpaste, cosmetics, laxatives, diet pills, water-based paints, textile sizing and paper.
Because HEC and CMHEC is 100% soluble in water and contain very little insoluble residue they are used where conductivity is the main driver for design. This is in applications such as gravel packing and Frac/Packing. The fluid loss mechanism is “Viscosity- Controlled – i.e. C-II”. To control fluid loss the polymers are used to produce very viscous linear gels. However above 60 to 80 lb of polymer/1000 gallons of water it becomes difficult to mix. Because the hydroxyls in HEC are in the trans- position (See Figure 9) it cannot be crosslinked and can only be used as a linear gel. The addition of the Carboxy Methyl group in CMHEC provides a crosslinking site so it can be crosslinked using the same mechanisms described for Guar.
Chemical Structure of Hydroxyethyl Cellulose (HEC) and Carboxy Methyl Hydroxy Ethyl Cellulose (CMHEC)
VES are polymer free aqueous based fracturing fluids that generate their viscosity through the association of surfactant molecules (Figure 10). As the concentration of surfactant is increased the molecules reach a point where they form aggregates called micelles where the hydrophobic tails form the core of the aggregate and the hydrophilic heads are in contact with the surrounding aqueous liquid. This occurs at a point called the Critical Micelle Concentration (CMC). As the concentration of micelles increase they become entangled with one another at C* as shown in Figure 10. Typically this point is at about 4 to 6% by weight of surfactant. Anionic, cationic and zwitterionic surfactants are used to formulate VES fluids. The main advantage of these fluids is that they are non-damaging to the fracture conductivity. Fluid loss is “Viscosity- Controlled – i.e. C-II” which make the fluids particularly appropriate for Frac and Pack applications. Breaking is accomplished by overflushing with a Mutual Solvent, using an encapsulated electrolyte or by dilution. The main disadvantage these fluids have is their strong surfactant base which makes them incompatible with many reservoir fluids. The surfactants are so strong they have been known to upset even very high API condensate type hydrocarbons.
Structure of a Viscoelastic Surfactant Thickener
Foam/polyemulsions are fluids that are composed of a material that is not miscible with water. This could be Nitrogen, Carbon dioxide or a hydrocarbon such as Propane, diesel or condensate. These fluids are very clean, have very good fluid loss control, provide excellent proppant transport and break easily simply via gravity separation. PolyEmulsions are formed by emulsifying a hydrocarbon such as Condensate or Diesel with water such that the hydrocarbon is the external phase. The viscosity is controlled by varying the hydrocarbon/water ratio. Foams made with Nitrogen or Carbon dioxide is generally 65 to 80% (termed 65 to 80 quality) gas in a water carrying media which contains a surfactant based foaming agent. Sometimes N2 or CO2 are added at a lower concentration (20 to 30 quality) to form “Energized Fluids”. This is done to reduce the amount of water placed on the formation and to provide additional energy to aid in load recover during the post-frac flow back period. Nitrogen can dissipate into the reservoir quite quickly so fluids energized with N2 should be flowed back as soon as the fracture is closed. CO2, under most conditions, is in a dense phase at static down hole conditions (prior to the well being placed on production), so is less susceptible to dissipation. CO2 does dissolve in crude oil so will act to reduce the crude viscosity which, again, improves cleanup and rapid recovery. When N2/CO2 are added is qualities greater than 90% the resulting mixture is termed a mist with a “0” viscosity. This quality is normally not used in fracturing. The main disadvantage of these fluids is safety i.e. pumping a gas at high pressure or in the case of polyemulsions and gelled Propane, pumping a flammable fluid. CO2 has an additional hazard in that it can cause dry ice plugs as pressure is reduced. These fluids are generally also more expensive and the gases may not be available in remote areas.
Oil based fluids are used on water-sensitive formations that may experience significant damage from contact with water based fluids. The first frac fluid used to fracture a well used Palm Oil as the gelling agent, Naphthenic Acid as the crosslinker and gasoline at the base fluid. Today most crosslinked oil based fracturing fluids use an aluminum phosphate-ester chemistry[5] that was originally developed to gel hydraulic oils. The aluminum phosphate-esters form a three dimensional structure similar to that described in the VES section. Because the aluminum will attract any polar species the presence of water in the base oil/crude will cause excess viscosity and will adversely affect the thermal stability of the fluid. Breaking of the fluid is accomplished by buffering the pH which causes the association between the base oil and the ester to break down. Although some crude oils have particulate which could build a filter cake, fluid loss is generally considered to be “Viscosity- Controlled – i.e. C-II”. There are some disadvantages in using gelled oils. Gelling problems can occur when using high viscosity crude oils or crude oils which contain a lot of naturally occurring surfactants. When using refined oils such as diesel the cost is very high and the oil must be collected at the refinery before any additives such as pour point depressants, engine cleaning surfactants etc. are added. Also there are greater concerns regarding personnel safety and environmental impact, as compared to most water-fluids.
Crosslinkers are used to increase the molecular weight of the polymer by crosslinking the polymer backbone into a 3D structure as shown in Figure 11. This increases the base viscosity of the linear gel from less than 50 cps into the 100’s or 1000’s of cps range. This crosslinking also increases the elasticity and proppant transport capability of the fluid.
Crosslinking Mechanism of Borate onto Guar
For guar and CMHEC based gels, Boron and several metals including Titanium and Zirconium are used as crosslinkers. In addition to these materials Iron, Chromium and Aluminum will crosslink guar but are not commonly used. Iron is a major contaminant for fracturing fluids and is one of the metals that must be carefully controlled during the QC process to prevent premature crosslinking. Each crosslinker has a unique reaction requirement and behavior.
Borate in the form of Boric Acid, slowly soluble salts of Ca and Mg and Organic Borate complexes is, by far, the most common crosslinker in use today. Borate crosslinked fracturing fluids can be applied across a wide range of treating conditions and are resistant to shear degradation. Figure 11 shows diagrammatically how the borate complexes with Guar. As the figure shows the Borate source forms a tetrahedral form of the borate ion when the pH of the base fluid is above about 8.2. These borate ions complexes with the hydroxyl functionality on the polymer causing a 3 dimensional network to be formed which tremendously increases the molecular weight and viscosity. Once this mechanism is understood several things become apparent.
The crosslinking is a function of pH which means it can be formed or reversed simply by adjusting the pH. Borate crosslinked fluids are manufactured in the field by mixing the base polymer in water at a pH above 7, adjusting the pH to below 6 and adding in the borate crosslinker and any other additives. During pumping a buffer, usually caustic, is added at the blender which brings the pH above 8 and the crosslink is formed. This also means the process can be reversed simply by dropping the pH below 8 with acid. Cement is a particularly troublesome contaminant when proppant transports are used to also transport cement because the cement raises the pH to 14 which causes premature crosslinking.
The optimum borate crosslinker efficiency is at a pH of about 10.5.
Because the crosslink is in equilibrium it can be broken by shear in the tubing and will quickly build the crosslink again once the shear is dropped.
Any polymer which has hydroxyls in the cis position can be crosslinked with Borate. These include Guar and all of its derivatives and CMHECellulose.
Titanium and zirconium crosslinkers were originally developed for manufacturing explosive gels[14]. Because Borate crosslinked systems were limited to temperatures below 250°F and pH’s above 8 metallic crosslinked fluids were developed to broaden that range. The crosslinkers are manufactured in the form of a metal ligand or chelant using various complexing agents including TEA (Triethanol Amine), LA (Lactic Acid) and AA (Acetylacetone) [15]. When the chelant complex is exposed to water the metal becomes active and crosslinking can occur. Once exposed to water the ionic metal starts to oxidize and if left will become inactive. Both Zirconium and Titanium have coordination numbers of +4 so they form a strong covalent rigid bond with the polymers cis hydroxyls as shown in Figure 12. The various complexing agents allow the crosslinker to become active under a range of time, temperature and pH conditions. Titanium and Zirconium crosslinked fluids can be manufactured that are stable at pH levels from 3.5 to 10.5 and up to temperatures of 350°F. When compared to Borate crosslinked fluids metallic crosslinked fluids have several advantages/disadvantages.
The metallic crosslink is a strong covalent bond which makes the crosslink susceptible to high shear rates. Once the bond is broken it will not heal as a Borate crosslink will. To prevent shear degradation the crosslink time should always be delayed to about 2/3 of the pipe time.
Because it takes time for the metal to interact with the polymer the crosslink time can be delayed. The type of ligand used to complex the metal controls the delay time. Sometimes it is quite difficult to achieve any delay particularly at a pH < 5.
Metallic crosslinked polymer systems can be built that cover a broad range of pH conditions so they can be used in CO2 based fracturing fluids. They are also much more stable at high temperatures.
Because of the permanent nature of the metallic crosslink, the molecular weight of the broken gel residue is much greater than that formed from linear or borate crosslinked gels. This causes a greater degree of proppant pack damage and conductivity loss.
Any polymer which has hydroxyls in the cis position can be crosslinked with Metallic crosslinkers. These include Guar and all of its derivatives and CMHECellulose.
Crosslinking Mechanism for Metallic (Ti+4 and+4 Zr) Crosslinkers onto Guar
Breakers are added to the fracturing fluid to reduce the molecular weight of the various polymers used. This reduces the viscosity and facilitates the blowback of residual polymer which allows for cleanup of the proppant pack. The inappropriate use or ineffective breakers can cause significant damage in the proppant pack and a reduced PI. Ideally these materials would be totally inactive during the treatment and then instantly “spring to action” when pumping stops, rapidly breaking the fluid back to a low viscosity preparing the fracture and formation for flow. This is very difficult to achieve as the breaker activity is very dependent on fluid temperature which varies with time. The three general types of breakers are Oxidizers, Acid and Enzymes.
Oxidizer breakers include Ammonium persulfate, Sodium persulfate, and Calcium and Magnesium peroxides. They work by cleaving the acetyl linkages in the polymer backbone as shown in Figure 13[6]. Ammonium persufate [(NH4)2S2O8] and Sodium persulfate (Na2S2O8) are very strong oxidizers which forms a free Oxygen radical when the temperature exceeds 125°F. These free radicals attach the backbone of the polymer strand and break it down into its constitutive sugars. If left in the fracture these residual sugars will cook and form insoluble precipitates resulting in conductivity damage[7]. This is the reason flow back of the fractured well is suggested as soon as the fracture is known to be closed. Both Calcium and Magnesium peroxide (CaO2 and MgO2) release Oxygen when they come in contact with water. The breaking action is controlled by the solution rate of the peroxide into the water. They are not affected by temperature as much at the persulfates and are used for low temperature applications. The free radical oxidation is not specific to the polymer backbones and the materials will spend on any available free radical acceptor such as a gel stabilizer. All of these materials are strong oxidizing agents and will produce a very active fire when exposed to organic material. They are used in industry for applications such as a water disinfectant, bleach and pickling agents for metals.
Oxidative Breakers and their action on Guar
The main disadvantage of oxidizing breakers is both how well they work and how fast they work is a function of the amount of chemical added. Figure 14 shows that a concentration of 0.5 lb/1000 gal of persulfate breaker will break the polymer viscosity back to the viscosity of water but will damage the proppant pack so that only 20% of the original conductivity remains. If we want to get the maximum retained permeability we need to go to concentrations of 10 to 12 lb/1000 gallons which will break the fluid viscosity instantly. To counteract this and retard the release of the persulfate encapsulated breakers were developed. There are two types of encapsulated breakers available. The release rate of the breaker in the first type is controlled by hydrostatic pressure, elevated temperatures and the pH of the fracturing fluid[10]. The second method of release is by crushing the capsule coating as the fracture closes. Because these encapsulated breakers require conditions similar to those in the fracture i.e. closure or hydrostatic pressure they are difficult to test for QC purposes in the field and to date no field test has been developed to quantify their activity in the field.
Gel Cleanup vs Breaker Loading (after [9])
Acids such as HCl or Acetic acid will attach the polymer back bone and break the gel similar to oxidizing breakers but they are much less selective and can cause considerable amount of insoluble material to be formed. They are generally used to try and clean fractures that are believed to be damaged by a job where sufficient breaker was not used or the gel is believed to not be broken. They also work by reversing the crosslink in Borate crosslinked systems. They are typically used after a job has been completed and placement becomes the main issue.
Enzymes are protein molecules that act as organic catalysts that attach and digest the polymer at specific sites along the polymer backbone. Because they are catalysts they are not “used up” during the breaking process and persist until there is no polymer present to digest. Typical enzymes that are used include hemicellulase, cellulose, amylase and pectinase. These enzymes are susceptible to thermal degradation and denaturing when exposed to very high or very low pH so are limited to mild temperatures below 150°F (66°C) and fluid pH’s between 4 and 9. Recent work by Brannon and Tjon-Joe-pin have developed proprietary GLSE (Guar Linkage Specific Enzymes) that are reported to work at temperatures more than 300°F[8]. Figure 15 shows diagrammatically how enzymes work and the degradation of the molecular weight of HPG with time as it is digested by Hemicellulase.
Degradation of Guar by Hemicellulase Enzymes
Viscosity stabilizers are added to the fracturing fluids to reduce the loss of viscosity at high reservoir temperatures. The two most common stabilizers are methanol (used at 5 to 10% of the fluid volume) and Sodium thiosulfate[16]. These materials will extend the temperature range of guar based fluids to over 350°F. Thiosulfate is the more effective of the two and is less hazardous to handle. These materials act as free radical scavengers that are present in the base water. An example would be free oxygen. Without the stabilizers these free radicals can naturally oxidize the polymer as described in the breakers section. Because breakers are free radical generators and these materials are free radical scavengers they should not be run at the same time.
Buffers adjust the pH of the base fluid so that dispersion, hydration and crosslinking of the fracturing fluid polymers can be engineered. Because some buffers dissolve slowly they can be used to delay crosslinking for a set period of time to reduce friction in the tubing. Typically this delay time is adjusted so that crosslinking occurs at about 2/3 of the pipe time i.e. when the fluid is about 2/3 of the way to the top perforation. The use of the proper buffer package also improves the high temperature capability of Borate crosslinked fluids and reduces the amount of polymer need to get good viscosity[17]. Table 1 shows some commonly used buffer components.
Sodium Bicarbonate | \n\t\t\tFormic Acid | \n\t\t
Sodium Carbonate | \n\t\t\tFumaric Acid | \n\t\t
Sodium Hydroxide | \n\t\t\tHydrochloric Acid | \n\t\t
Monosodium Phosphate | \n\t\t\tMagnesium Oxide | \n\t\t
Commonly Used Fracturing Fluid pH buffering chemicals.
Surfactants/Mutual solvents are added to the fracturing fluids to reduce the surface tension of the fracturing fluid to improve fluid recovery and compatibility between the fracturing fluid and the formation matrix or formation fluids. Lab tests are used to determine the type and loading level of surfactant to be used. The primary goals of a surfactant are to leave the rock surface water wet, act as an emulsion preventer or as a defoamer and reduce the surface tension. In very dry gas wells the water in the frac fluid can shift the relative permeability to the water side and form a “water block” that reduces gas flow. An example of how a proper formulation can reduce this effect is shown in Figure 16. Typically if a well is producing any water this “water block” effect is minimal. EGMBE (ethylene glycol monobutyl ether) used at 10 gal/1000 and BGMBE (butylene glycol monobutyl ether) used at 5 gal/1000 are common mutual solvents.
Residual Permeability to Dry Gas of a 0.5 md Berea Sandstone Core
Biocides/Bactericides are added to minimize the enzymatic attack of the polymers used to gel the fracturing fluid by aerobic bacteria present in the base water. If not controlled the growth of micro-organisms will quickly degrade the polymer to a non-functional level. In addition biocides and bactericides are added to fracturing fluids to prevent the introduction of anaerobic sulfate reducing bacteria (SRB) into the reservoir. These bacteria can “sour” a well and produce corrosive hydrogen sulfide gas. They can also produce a black, slimy “biofilm” in wells that produce water which will block production. Quaternary amines, amides, aldehydes and Chlorine dioxide are effective biocides used in the industry[12]. The use of ultraviolet (UV) light as a disinfectant for fracturing water is also used[18]. A good functional bactericide not only kills the bacteria but also inactivates the enzymes that the bacteria release. Bacteria also mutate so can become resistant to a particular bactericide if used continuously i.e. use a variety of bactericides to provide protection.
Castor (Ricinus communis L.) is a nonedible vegetable oil seed crop cultivated all over the world. It grows well in the wet tropics to the subtropical dry region with an optimum temperature of 20–25°C [1]. Though Ethiopia is considered as the probable center of origin, its cultivation is mostly concentrated in Asia, about 92.2% of the total production [2]. India is the largest producer and exporter of the castor oil (
Castor (Ricinus communis L.) is a species of annual or perennial flowering plant which belongs to the spurge family Euphorbiaceae, monotypic genus Ricinus, and Ricininae subtribe. It is a fast-growing and suckering shrubby tree which reaches the size of 5–12 m. It is commonly known as veranda (Bengali), arandi (Hindi), era-gach (Assamese), castor and castor oil plant (English), wonderboom (Dutch), ricin (French); Rizinus and Palma Christi (German), Fico d’inferno (Italy), and ricino (Portuguese).
Castor is generally distributed in tropical, subtropical, and warm-temperate regions of the world. It is very commonly found in fellow land, roadside, and compounds in rural and urban areas and also common along seasonally dry rivers in altitudes between 400 and 2700 m. The probable center of origin for castor is Northeastern Africa, i.e., Ethiopia and Somalia [5], and it has four centers of diversity, viz., (a) Ethiopian-Eastern African, (b) Northwest and Southwest Asia and Arabian peninsula (c), subcontinent of India, and (d) China [3]. It is currently naturalized across the African continent, the Atlantic coast to the Red Sea, Tunisia to South Africa, and islands in the Indian Ocean. It is also widely cultivated and naturalized in tropical and subtropical regions of America and Asia and temperate areas of Europe [6].
Leaves: The long-stalked and simple glazing leaves are 15–45 cm long; alternate and palmate with 5–12 deep lobes with serrate leaf margins (Figure 1); lobes acuminate, membranous, oblong to linear; 1–3-cm-long stipules united to a sheathing bud, deciduous; and petiole 3.5–50 cm long, round [7].
Different leaf colors are observed in castor, which start off as dark reddish purple or bronze when young and turn into dark green, sometimes with a reddish tinge as they mature. In some varieties, the leaves are really green from the start, whereas in others, a pigment suppresses the green color of all chlorophyll-bearing parts, leaves, stems, and young fruits so that they remain a dramatic purple to reddish brown color throughout the whole life of the plant.
Flower: The flowers are burgeoned in an erect terminal panicle-like inflorescence, which consists of cymes, usually glaucous, later-appearing lateral by overtopping, up to 40 cm long. The flowers are unisexual, regular, with short pedicel, 1–1.5 cm in diameter; the calyx with 3–5 lobes; corolla absent; male flowers toward the base of the inflorescence with many stamens in branched bundles; and female flowers relatively few in number and remain toward the apex of the inflorescence with early caducous sepals, three-celled superior ovary, usually soft spiny, style 3, red or green, 2-cleft [7].
Fruit: Fruits are ellipsoid to subglobose, usually three-lobed smooth or spiny capsule (Figure 2), 1.5–2.5 cm long, brown, dehiscing in three cocci each opening by a vulva and one-seeded [8].
Seed: Seed is ellipsoid, 9–17 mm long, compressed with a brittle, mottled, glaring seed coat with distinct caruncle at the base, endosperm copious, white, and cotyledons thin [8].
Seedling: Seedlings are grown by epigeal seed germination; cotyledons petioled, broadly oblong up to 7 cm long, flat with entire margins; and first leaves opposite [8] (Figures 1 and 2).
(a) Castor plant, (b) leaf, (c) inflorescence, (d) seedling, (e) root. Source: The above pictures were collected from Habiganj, Sylhet, Bangladesh.
Castor fruit and seeds, (a) spiny fruit, (b) spineless fruit. Source: the above pictures were collected from Habiganj, Sylhet, Bangladesh.
In angiosperms, the flowers are the reproductive structures which are most varied physically and show a correspondingly great diversity in the methods of reproduction. It reproduces by following a mixed pollination system, which prefers selfing by geitonogamy and, at the same, outcrossing by anemophily and entomophily. Under natural condition more than 80% cross-pollination occurs. Flowering may occur within 6 months after seed germination. The flowers of castor are normal monoecious, i.e., it bears pistillate flower on the upper part of the raceme and staminate on the lower part [9]. The proportion of pistillate and staminate flowers among racemes can vary both within and among genotypes and also influenced by the environment. The percentage of pistillate flowers in normal monoecious varieties is highest on the first racemes and decreasing subsequently on developed racemes. The number of staminate flowers is proportionally increased with the decrease in pistillate flowers [10]. The probable cause of this variation is mainly temperature in different season. Moderate temperature in spring and early summer promotes female flower, while high temperature in mid and late summer promotes male flower. Femaleness is highest in young plants with a high level of nutrition, and maleness is highest in older plants with a low level of nutrition [11]. After opening, a male flower releases viable pollen grains for 1–2 days, and shedding of pollen occurs in the morning. The temperature between 26 and 29°C and relative humidity of 60% is the best environmental conditions for pollen dispersal which may vary according to cultivar. Before the opening of the female flowers, male flowers reach its maturity, and anthesis usually occurs in a short period of time [12]. Therefore, the pistillate flowers that open and become receptive get a large source of pollen. After the opening of the flower, the stigma remains fully receptive for few hours, but there is a difficulty for pollination to occur promptly after the opening of the flower. Depending on the environmental condition, the stigma may remain receptive for 5–10 days [13].
Castor, a ruderal species, can be grown in tropical and subtropical regions as a perennial plant and in temperate regions as annual plant. It is a long day plant, and for normal growth and development, a day length of about 12–18 hours is required. It is found from sea level to altitudes of about 2000 m with an optimum of 300–1500 m, and its cultivation is restricted to countries lying between 40°N and 40°S latitudes, but in Russia, a few varieties are grown even up to 52°N latitude [8], and in India it is being cultivated up to an altitude of 2500 m. Its cultivation is restricted up to 500 m where frost is common during cropping season. For obtaining better yield, a frost free-growing period of about 140–190 days is highly essential depending on variety. It is deep rooted and fairly drought-resistant crop which requires annual rainfall of 250–750 mm. A moderate temperature of 20–25°C [1] and low relative humidity with clear sunny days are highly favorable for better yield. For germination, a soil temperature of 12–18°C is suitable. It is sensitive to high relative humidity and temperature above 40°C and below 15°C, which yields a negative impact on yield [14].
Castor can be grown well on fairly deep, moderately fertile, slightly acidic, and well-drained sandy loam soils. Heavy clays with poor drainage and marshy soils are not suitable for castor cultivation. The soil with low water holding capacity, pH > 9 and pH < 4, electrical conductivity (EC) >4 dS/m, and exchangeable sodium percentage (ESP) >20% is not suitable for castor cultivation. Moderately fertile soils are preferable than excessive fertile because excessive fertility favors vegetative growth in the expense of seed yield [14].
Land preparation is an essential step to prepare soil favorable for cultivation, to control weed, and to conserve soil moisture. Castor requires moist and well-pulverized loose top soil for better seed germination and early growth. It is done by three to four deep plowings followed by two to three harrowing to break the clods and leveling the field. Ridging is recommended in dry areas where the total rainfall is low [8].
To cover one hectare of land, a seed rate of 10–12 kg is recommended, but it varied upon cultivars and sowing method. The seed rate will be 8–10 kg/ha for hand dibbling and for intercropping; it depends on sowing proportion component crops. The spacing of castor plantation varies with growth habit, duration of variety, and sowing time. Early and medium duration cultivars are sown at a closer spacing of 90 cm × 45 cm, and long duration cultivars are sown at a wider spacing of 90 cm × 60 cm under rainfed condition. 90 cm × 60 cm spacing is favorable under irrigated condition. However, under late sown situation, a narrow spacing (60 cm × 60 cm) is practiced to realize higher yields [14].
Castor is generally propagated through seeds and sown during June and July. However, it can be cultivated year-round under irrigated condition. Under rainfed conditions, the seeds are sown by plow furrow, and the seeds are dibbled by maintaining proper spacing under irrigated condition. The emergence of seedling is easy due to its epigeal seed germination behavior. Deep sowing (8–10 cm) is recommended in light soils under rainfed conditions, and shallow sowing (6–8 cm) is preferable under irrigated condition and heavy soils [14].
Although castor can tolerate moisture stress, it performs well to irrigation. If castor expertizes moisture stress during seedling to flowering stage, it shows poor performance. If irrigation facilities are available, two to three irrigations should be given during this critical stage. If only one irrigation is available, it should be given at flowering stage. No irrigation should be given during maturity stage because it delayed maturity and also influences new vegetative growth [14]. During the season of high rainfall, proper drainage facilities should be provided to avoid water stagnancy.
Weed management is the most important intercultural operation in any crop cultivation as it impacts on overall yield by competing for nutrients, fertilizer, manure, light, and water. The critical period of crop-weed competition is the 50–60 days after sowing (DAS). After land preparation by deep plowing followed by harrowing, the crop needs two weedings and hoeings either manually or mechanically at 25 and 50 days after sowing. Chemical control like weedicides is also effective in controlling weeds. Preplant incorporation of fluchloralin or preemergence application of pendimethalin at 1 kg/ha is an effective control measure of grasses and broad-leaved weeds. One of these weedicide along with one hoeing at 50 days after sowing may be effective in controlling weeds in castor [14].
As castor is a tall statured crop, it is being cultivated as shade crop for turmeric and also grown as trap crop for pests. It can be cultivated as sole crop in rotation with wheat and linseed. Groundnut, black gram, green gram, sorghum, pearl millet, cowpea, pigeon pea, and cotton can be grown along with castor. Intercropping of castor with pigeon pea extenuate the occurrence of Spodoptera litura [14]. In rainfed condition, intercropping of castor with green gram or black gram in a 1:2 ratio and, in irrigated condition, intercropping of castor with onion in a 1:2 ratio by maintaining 1.5 × 1 m spacing are recommended.
The application of manures and fertilizer in appropriate time and dose assured better crop growth and yield. More fertilizers are required for hybrids and irrigated crop than variety and rainfed crop. Before final land preparation 15–20 t/ha well-decomposed farm yard manure (FYM) should be applied in both irrigated and rainfed condition for supplying nutrients as well as for moisture conservation. Under rainfed condition, the recommended dose of both N and P2O5 fertilizers is 40 kg/ha. At the time of sowing, all P fertilizer with 50% N fertilizer should be applied, and the remaining N fertilizer should be top dressed after first weeding. Under irrigated condition, both P2O5 and K2O are required at a dose of 40 kg/ha, and N fertilizer may be required at 150 kg/ha. These N fertilizers should be applied at three splits at sowing, first hoeing and preflowering stages. As a source of P fertilizer, single superphosphate is more preferable because Ca and S fertilizers are also applied [14].
Capsule borer (Dichocrocis punctiferalis) and semilooper (Achaea janata) can be controlled by dusting BHC 10% in early stages or spraying 0.1% carbaryl on the crop. To protect the crop from seedling blight, water logged and low-lying areas should be avoided. To prevent the occurrence of root rot and Alternaria blight, castor seed should be treated with thiram or agrosan GN at 3 g/kg seed. In the latter stage of Alternaria blight of castor, foliar application of carbamates or copper-based fungicide may be effective. In preventing castor wilt, treatment with carbendazim + Trichoderma at 10 g/kg seed + soil application of Trichoderma has been found most effective. Seed treatment with Trichoderma viride and FYM and neem cake application has also found effective in decreasing the occurrence of Alternaria blight [14].
The annual type of castor requires about 4–9 months to mature depending on the variety, and the perennial type may continue bearing for 10–15 years. Improved varieties with non-shattering capsule should be harvested as soon they are fully dry, but shattering type capsules are harvested when the capsule turn greenish to yellowish [8]. The central spike on the main rachis matures first than the spike on side branches start maturing. Therefore, two to three pickings may be needed for harvesting the crop because all the spikes do not mature at the same time. Harvesting of immature capsules should be avoided as it has negative impacts on oil content. After harvesting, the capsule should be sun dried for 4–5 days, and finally threshing and winnowing are done by manually or mechanically [14].
The yield of castor may vary from 1 to 3 tons of seed/ha depending on agroclimatic conditions, crop management practices, and the hybrid or variety used [8]. The percentage of oil is 37% and seed cake 63%.
Naturally all forms of castor are diploid and its chromosome number is 2n = 2x = 20 [15]. In nature, crossing of castor occurs freely and produce fertile progeny. Commonly 5–50% outcrossing occurs naturally, but in some dwarf cultivars, it may be ranged 90–100%. Male-sterile and female-sterile lines have been also identified which have a great value in breeding improved varieties [7]. Due to highly outcrossing nature, a great phenotypic variation is observed in characters such as stem color, epicuticular wax (bloom wax), plant height, presence of spines in capsules, branching behavior, leaf shape, sex expression, seed color, and response to environmental condition [16, 17]. It is also possible to exploit genetic polymorphism for quantitative traits in breeding programs [18, 19]. Mass selection of castor is effective when the traits under selection are highly heritable. This selection technique performs more effectively with self-fertilization of selected plants to impede cross-pollination and controlled selection technique to minimize environmental variation [20]. It is also an effective technique for increasing the frequency of pistillate castor plants of the NES type [21]. Cultivars developed by mass selection are Kavkazskaya (in the former USSR), IAC-38 and BRS Energia (in Brazil), and Conver and Kansas (in the United States) [22, 23]. Back cross method has been used to transfer monogenic traits such as dwarf plant stature, spineless capsules, stem color, bloom, non-shattering, plant height, and resistant to wilt. Pedigree selection has been used to select high-yielding families and individual plant within the families. Subsequent progeny test for oil content and resistant to Fusarium wilt was done by Fernández-Martínez and Velasco [22] and developed wilt resistant cultivar Fioletovaya. Individual plant selection followed by progeny test was used to develop cultivar Guarany in Brazil [24]. In India, several cultivars with tall and late maturation such as HC 1 to HC 8, EB 16 A, EB 31, S-20, Junagadh 1, Punjab castor 1, Rosy, and MC 1 were developed by using this method [25]. Recurrent selection has effectively decreased the plant height in the cultivar Guarani by successive cycle of selection and recombination of selected lines or individual plants [26, 27]. Hybridization involving single, double, or triple crosses is being used to combine desired traits from different sources. The first commercial hybrid of castor was GCH 3 which was developed in India [3]. A number of other castor cultivars exist to which “Hale” and “Lynn” are dwarf cultivars in the United States, mainly used as pollen parent in hybrid production. Other well-known cultivars are “Rica” and “Venda” in France and “T-3,” “CS-9,” “SKI-7,” and “GCH” series of hybrids in India [8].
Castor oil is the mostly used and economically important seed oil in the world. Castor seed comprises about 40–55% oil, and kernel contains 64–71% oil which is the highest among all cultivated oil crops (Table 1). Castor oil is a unique vegetable oil due to high ricinoleic acid content (84.2–94%) which is a monounsaturated and 18-carbon fatty acid. Ricinoleic acid is exceptional from other fatty acids because it has a hydroxyl functional group on the 12th carbon that makes it more polar than other fats. The chemical reactive capacity of the alcohol group also approbates chemical derivatization that is almost impossible with other seed oils. Castor oil is a valuable chemical in feedstock due to its ricinoleic acid content and underling a high price than other seed oils. Besides ricinoleic acid content, some other fatty acids are present in castor oil, which are presented in Table 2.
Crops | Average seed oil percentage | Oleic acid | Linoleic acid | Linolenic acid | Ricinoleic acid |
---|---|---|---|---|---|
Nonedible oil crop | |||||
Castor | 40–55% | 2–6% | 1–5% | 0.5–1% | 85–95% |
Jatropha | 35–40% | 21.8–44.7% | 31.49–47.8% | 0.2% | — |
Pongamia pinnata | 30–40% | 44.5–71.3% | 10.8–24.75% | 2.9–6.3% | — |
Edible oil crop | |||||
Canola | 42% | 57.59–61.41% | 15.3–22.3% | 10.8–13% | — |
Linseed | 38% | 20.6–23.6% | 19–22% | 41.9–53.1% | — |
Sunflower | 48% | 27–36% | 52–67% | — | — |
Soybean | 18% | 27.3–29.7% | 43–56% | 4.6–11.4% | — |
Palm | 52% | 20.3–24.7% | 0.7–1.8% | — | — |
Name of acids | Carbon number | Average percentage range |
---|---|---|
Saturated fatty acid | — | 1–2.5% |
Unsaturated fatty acid | — | 97.5–98.3% |
Ricinoleic acid | 18:1 | 84.2–95% |
Oleic acid | 18:1 | 2.8–5.5% |
Linoleic acid | 18:2 | 4.3–7.3% |
Linolenic acid | 18:3 | 0.2–0.5% |
Stearic acid | 18:0 | 0.9–1.2% |
Palmitic acid | 16:0 | 0.7–1.3% |
Dihydroxystearic acid | 18:0 | 0.3–0.5% |
Others | — | 0.2–0.5% |
Salimon et al. [34] identified five major triacylglycerol in castor seed oil. These were triricinolein (RRR), diricinoleoylstearoylglycerol (RRS), diricinoleoyloleoylglycerol (RRO), diricinoleoyllinoleoylglycerol (RRL), and diricinoleoylpalmitoyl-glycerol (RRP). They also first reported the per cent composition of triacylglycerol present in castor seed oil (Table 3) by using high performance liquid chromatography (HPLC) with evaporative light scattering detector (ELSD).
Triacylglycerol | Composition (%) |
---|---|
Triricinolein (RRR) | 84.1 |
Diricinoleoylstearoylglycerol (RRS) | 8.2 |
Diricinoleoyloleoylglycerol (RRO) | 5.6 |
Diricinoleoyllinoleoylglycerol (RRL) | 1.2 |
Diricinoleoylpalmitoyl-glycerol (RRP) | 0.9 |
Major triacylglycerols and their composition in castor seed oil.
Source: Salimon et al. [34].
The physical and chemical properties of castor oil includes moisture content, density, refractive index, fire point, flash point, smoke point, cloud point, pour point, viscosity, color, pH, turbidity, lipid content, free fatty acids, acid value, saponification value, unsaponifiable matter, peroxide value, iodine value, cetane number, and calorific value, and their probable range is presented in Table 4. The difference in the value of these properties may be due to environmental factor which influences the growth and productivity of the seed. The moisture content of the crude oil lies between 0.2 and 0.31%, which indicates low moisture content that is the characteristics of good shelf life. The density ranges between 0.946 and 0.950 g/cm3, which can be further reduced by esterification for application as biodiesel. The refractive index indicates the level saturation of the oil. The fire point, flash point, smoke point, cloud point, and pour point give evidence of good combustion quality as biofuel. The viscosity range (0.305–0.545 cps) indicates that the oil is light and highly unsaturated. The low levels of pH (5.8) notify the presence of modest amount of free fatty acid in the oil, which is a good indicator for utilization of oil in soap making. The free acids and acid value express the level of oxidative deterioration of the oil through enzymatic or chemical oxidation. However, the fatty acids can be transformed to edible oil through refining of crude oil and will also improve its quality for industrial use. The saponification value (182.9–327.4 mgKOH/g) expresses the relative length of fatty acid chain.
Properties | Average value range |
---|---|
Moisture (%) | 0.2–0.31 |
Density (g/cm3) | 0.946–0.950 |
Refractive index at 25 C | 1.47 |
Fire point (°C) | 254.8–257.2 |
Flash point (°C) | 222.9–227.1 |
Smoke point (°C) | 214–216 |
Cloud point (°C) | 3 |
Pour point (°C) | 2 |
Viscosity (cps) | 0.305–0.545 |
pH | 5.8 |
Turbidity | 4–6 |
Lipid content (%) | 43.3–47.8 |
Free fatty acids | 3.4–7.21 |
Acid value (mg/g) | 4.9–14.42 |
Saponification value (mgKOH/g oil) | 182.9–327.4 |
Unsaponifiable matter | 3.4 |
Peroxide value (meq/kg) | 10.2 |
Iodine value (wijj’s value) | 57.93–59.35 |
Cetane number | 55.9 |
Calorific value (MJ/Kg) | 36.25 |
Abayeh et al. [40] reported that oil with high saponification value could be used as raw materials for soaps and cosmetics. Iodide value could be used to determine the total number of double bond present in the oil, which indicates the susceptibility of oil to oxidation. The peroxide value appraises the rancidity of the oil during storage process. Cetane number indicates the ignition quality, and calorific value represents the measures of available energy of fuel. All of these physical and chemical properties of castor oil established it as a good source of lubricant and biofuel and to be used for industrial purpose.
The endosperm of castor seed contains a group of closely related toxic glycoproteins (ricin), ricinoleic acid, and the alkaloid ricinin. The seed cake of castor contains the toxic compound ricin, but castor oil does not contain ricin because it is insoluble in oil, and if remains it can be expelled in the refining process [3]. The toxic properties of castor seeds had been noticed since ancient times and its toxicity to human has recently been reported [41, 42]. Castor seed were used in classical Egyptian and Greek medicine and were delineated in Sanskrit medicine (Sushruta Ayurveda) from the sixth century BC [41]. More than 750 cases of accidental or deliberate intoxication have been reported in human [43]. The lethal dose in adults may be considered as four to eight seeds, but children are susceptible to small amount of seeds. An acceptable rate (0–0.7 mg/kg body weight) of daily castor oil consume for man has been established by the combined Food and Agriculture Organization (FAO) and World Health Organization (WHO) Expert Committee on Food Additives. Ricin creates health problem by damaging the ribosomes, which produce all of the protein needed by a cell and if the proteins cannot be produced cell may dies [4]. The symptom of ricin ingestion may be appeared up to 36 hours but generally start within 2–4 hours. This symptom includes a burning sensation in the mouth and throat, abdominal pain, diarrhea, fever, nausea, vomiting, incoordination, drowsiness, and hematuria. Severe dehydration, drop in blood pressure, and reduced urination have occurred within several days. If immediate treatment is not taken, vascular collapse and death may occur within 3–5 days; however, in most patients, full recovery can be possible [43].
The other toxic protein in castor seed is RCA (Ricinus communis agglutinin) which agglutinates red blood cells. When RCA is injected into the blood stream, it causes a person’s blood to coagulate [4]. Toxicity also occurs in animals when they ingest broken seed or break the seed by chewing, but intact seed does not release toxin, it passes through the digestive tract [44]. Toxicity may vary to different animal at different dose. The toxin produced from castor seed is also used as natural insecticide and fungicide.
Ricinus communis shows antimicrobial activity against dermatophytic and pathogenic bacterial strains such as Streptococcus progenies, Staphylococcus aureus, as well as Klebsiella pneumonia and Escherichia coli. The result revealed that the petroleum ether and acetone extract inhibit microbial activity, whereas ethanolic extract has antibacterial activity only on higher concentration [45]. Different solvent extracts of root of Ricinus communis (200 mg/ml) occupy antimicrobial activity by utilizing well diffusion method against pathogenic microorganism such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhimurium, Proteus vulgaris, Bacillus subtilis, Candida albicans, and Aspergillus niger. The hexane and methanol extracts possess highest antimicrobial activity, while aqueous extracts have no significant antimicrobial activity [46].
It is concluded that seed extract of castor shows significant antioxidant activity by using lipid peroxidation method by ferric thiocyanate and free radical scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and hydroxyl radicle produced from hydrogen peroxide. Those diseases which are caused by oxidative stress can be reduced by high antioxidant function of Ricinus communis seeds at low concentration. Methyl ricinoleate, ricinoleic acid, 1,2-octadecadienoic, and methyl ester are the chemical compound present in castor for which it shows antioxidant activity [47]. The leaf and stem extract of castor contains flavonoids, which show antioxidant activity [48, 49].
The oil that is extracted from the seed of Ricinus communis has the potentiality to prevent ulcer at a dose of 500 mg/kg and 1000 mg/kg, but 1000 mg/kg is more effective against ulceration caused by pylorus ligation, aspirin, and ethanol in rats. It is shown that the antiulcer activity of Ricinus communis is due to the cytoprotective action of drug or corroborant of gastric mucosa that ameliorate the mucosal protection [50].
Ethanolic extract of root of Ricinus communis shows significant effect in reducing the glucose level of fasting blood. An experiment was conducted on diabetic rats that showed that the glucose level was reduced from an initial level of 386 ± 41 mg/dl to 358 ± 33, 293 ± 28, 191 ± 25, 133 ± 29, 96 ± 20, and 79 ± 16 mg/dl on the 2nd, 5th, 7th, 10th, 15th, and 20th days, respectively. The fasting blood glucose became normal on the 20th days. Castor showed statistically similar result in alkaline phosphatase, serum bilirubin, creatinine, serum glutamate oxaloacetate transaminase, serum glutamate pyruvate transaminase, and total protein which was observed even after the administration of the extract at a dose 10 g/kg body weight. The extraction is also effective for total lipid profile and liver and kidney functions. Thus, Ricinus communis is considered as a powerful phytomedicine for diabetics [51].
The methanolic extract of castor root possesses anti-inflammatory and free radical scavenging activity. It was studied in Wistar albino rats in which oral administration of methanolic extract at a dose of 250 and 500 mg/kg body weight showed significant (p < 0.001) anti-inflammatory activity in carrageenin-induced hind paw edema model. The oral administration of the extract at the dose 500 mg/kg body weight also showed significant (p < 0.001) anti-inflammatory activity in cotton pellet granuloma model. The methanolic extract also showed free radical scavenging activity by suppressing lipid peroxidation initiated by carbon tetrachloride and ferrous sulfate in rat liver and kidney homogenates. The extract augments the free radical scavenging activity of stable radical 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), nitric oxide, and hydroxyl radical in in vitro assay methods [52].
The crude extract of root bark of castor possesses analgesic activity in tail flick response model to radiant heat at a dose of 250 mg/kg [53]. The ethanolic extract of fruit pericarp of castor contains typical CNS stimulant and neuroleptic effects. The stimulant effects such as exophthalmus, hyperreactivity (evidence by tremors or by the pinna and grip strength reaction), memory improvement, and clonic seizures seem to be due to the presence of alkaloid ricinine, which is considered as a main toxic compound in the extract. Animals that died after being treated with extract showed similar signs; they all died by clonic seizures, which were followed by apparent breathing arrest. On the other hand, compounds other than ricinine may cause neuroleptic-like effects of extract because ricinine is not responsible for reducing locomotor function or catalepsy in mice [54].
In spite of being a poisonous compound, ricin possesses the potentiality to prevent tumor and has been used in cancer research and chemotherapy during recent years. One of the most important uses of ricin is in the manufacturing of immunotoxins where the protein ricin is jointed to monoclonal antibodies. In vitro technique was used to produce these antibodies which have a protein receptor site that identify the specific target cells in the tumor. The protein antibody joined together and resulting compound is known as immunotoxin. For the treatment of a cancer patient, the deadly toxin can be carried at the site of tumor by arming these antibodies with ricin. Thus, castor has the most significant use in the treatment of tumor or cancer cell due to the presence of ricin. It kills only the target tumor cell without damaging other in the patient [55].
The methanolic extract of seeds of castor plant has a positive preliminarily phytochemical test for steroid as well as alkaloids. The pituitary gland releases gonadotropins by both positive and negative feedback mechanism due to sex hormones, and also the pituitary gland inhibits the release of luteinizing hormone and follicle-stimulating hormone. This is due to estrogen and progesterone fall a cumulative effect in luteal phase of menstrual cycle. Thus, it helps the inhibition of maturation follicle in the ovary and prevents ovulation. As sex hormone is a steroidal compound, methanol extract of castor seed contains steroids; it produces antifertility effect [56, 57].
The compound ricin show lipolytic function by using different substrates such as (a) one analogue of triacylglycerol, BAL-TC4 (b), different chromogenic substrates such as p-NP esters of aliphatic short to medium chain acids, and (c) monomolecular films of a pure natural diacylglycerol, DC10, in emulsion and in a membrane-like model. An experiment was conducted that revealed that ricin of Ricinus communis acts as lipase and possesses the ability to hydrolyze different lipid classes as well as phospholipid (important constituent of cellular membrane). The lipolytic activities are maximum at pH 7.0 in the presence of 0.2 M galactose. The action of ricin on membrane phospholipid occurred by phospholipase A1 activity which may be regarded as minor activity of lipase [58].
The ethanolic leaf extract of castor at 250/500 mg/kg body weight possesses hepatoprotective activities. This is because of their inhibitory activities of an increase in the function of serum transaminase, level of liver lipid per oxidation, protein, and glycogen, and the activities of acid and alkaline phosphatase in the liver initiated by carbon tetrachloride (CCl4) are increased. The extract also treated the depletion of glutathione level and adenosine triphosphatase functions in the CCl4-induced rat liver. Flavonoids are present in the ethanolic extract which possess membrane-stabilizing and antiperoxidative effects. Ricinus communis also increases regenerative and reparative ability of liver because of the presence of flavonoids and tannins. Duo to the presence of N-demethyl ricinine in the leaves of Ricinus communis, it showed anticholestatic and hepatoprotective activity against paracetamol-induced hepatic damage. The whole leaves of Ricinus communis have the potentiality to defend against liver necrosis and fatty changes generated by CCl4, while the glycoside and cold aqueous extract give protection against liver necrosis and fatty changes, respectively [59, 60, 61, 62].
Castor oil is effective for injury healing. It produces antioxidant activity and inhibits lipid peroxidation. The compound, which is responsible for inhibiting lipid per oxidation, is supposed to increase viability of collagen fibrils by increasing the strength of collagen fibers, increasing the circulation, and preventing cell damage by promoting DNA synthesis. Tannins, flavonoids, triterpenoids, and sesquiterpenes have astringent and antimicrobial properties, which repair wound portion and increase the epithelialization. An observation showed that castor oil healed the wound area by reducing the scar area and epithelialization time in excision wound model. A comparison study showed that 10% w/w concentration has better wound healing property than 5% w/w concentration [63].
There are some compounds present in the root extract of castor plant which is very important for the treatment of asthma, because it has anti-allergic and cell-stabilizing ability. Saponins present in the extract possess mast cell-stabilizing effect, and flavonoids have smooth muscle relaxant and bronchodilator function. The apigenin- and luteolin-like flavonoids normally restrict basophil histamine release and neutrophils beta glucuronidase release and show anti-allergic activity in vivo. Another study showed that ethanolic extract of Ricinus communis reduces milk-induced leukocytosis and eosinophilia and possesses anti-asthmatic activity as flavonoids and saponins are present [64].
The immunomodulatory compound generally increases the immune response of the human body against different pathogens by activating the nonspecific immune system. The phagocytosis is the engulfment of microorganisms by leucocytes which is one of the main protective mechanisms of the organism. The final step of phagocytosis is the intracellular killing of microorganism by the neutrophils. The leaves of Ricinus communis contain tannins, which increase the phagocytic function of human neutrophils and thus produce immunomodulatory effect [65].
Experiments were conducted to see the biocompatibility and potentiality of Ricinus communis polyurethane (RCP) to regenerate the bone. Result revealed that Ricinus communis polyurethane is mixed with calcium carbonate and phosphate which promote matrix mineralization and are biocompatible materials [66]. The biological properties of RCP are improved by incorporating alkaline phosphate to it with subsequent incubation in synthetic body fluid [67]. The benefit observed in RCP as compared to demineralized bone is that the former has slow reabsorption process [68].
Castor oil has been used to develop low pour point lubricant base stocks by synthesizing acyloxy castor polyol esters [69]. Due to having low pour point property, it provides full lubrication to the equipment in cold environment [70]. An interesting study by Singh revealed that castor oil-based lubricant has the luscious potentiality to be used as smoke pollution reducer. In his research he used a biodegradable two-stroke (2 T) oil, which is a popular variety of lubricating oil and was used on two-stroke engines in scooters and motorcycles. The lubricant comprises tolyl monoesters and performance additives but no miscibility solvents. The result revealed that it decreased smoke by 50–70% at a 1% oil/fuel ratio [71]. Castor oil also can be used as car engine lubricant. A modified version of castor oil lubricant comprising 100 parts of castor oil and 20–110 parts of a chemically and thermally stable, low viscosity blending fluid, soluble in castor oil showed its potential to be used as a lubricant for refrigeration system [72]. In spite of having its use as DOT 2 rating brake fluid, castor oil lubricant is considered as obsolete types of brake fluid and is not used in the modern vehicles [73].
Food grade castor oil is used in the food industry. It can be used as food additives such as flavor and food color and as a mold inhibitor and in packaging. In the foodstuff industry, polyoxyethylated castor oil is also used [74]. The white, large seed of castor are an important source of food condiment called “Ogiri” in the southeastern part of Nigeria [75].
For synthesizing the renewable monomers and polymers in the castor oil and its derivatives are used [76]. To produce the vulcanized and urethane derivatives, castor oil was polymerized with sulfur and diisocyanates, respectively [77]. In other study, by sequential mode of synthesis, full-interpenetrating polymer networks (IPNs) were prepared using epoxy and castor oil-based polyurethane (PU) (Raymond and Bui [78]). Similar to the aforementioned study, a series of two components IPN of the modified castor oil-based PU and polystyrene were prepared by sequential method [79]. IPN is also known as polymer alloy and is considered as one of the fastest growing research areas in the field of polymer blends in the last two decades [79]. As a root-end filling material, castor oil polymer has been shown to possess sealing ability. Root-end filling material is the root-end preparation filled with experimental materials, and it provides an apical seal to prevent the bacterial movements and its diffusion from root canal system to peripheral tissues [80]. One of the most common applications using castor oil is biodegradable polyesters [81]. The first synthetic condensation polymers are polyesters which are environmentally safe and friendly. This is also useful in biomedical field as well as elastomers and packaging materials [82, 83]. Castor can be combined with other monomers with a view to produce an array of copolymers. Again these copolymers provide materials with different properties which find use in products ranging from solid implants to in situ injectable hydrophobic gel [81].
Castor oil is used to produce soaps and waxes [30]. In a study by Dwivedi and Sapre [84], they utilized castor oil in total vegetable oil greases. Total vegetable oil greases are those in which both lubricant and gallant are formed from vegetable oil. In their study, they utilized a simultaneous reaction scheme to produce sodium and lithium greases from castor oil.
Castor oil can be used in producing coatings and paints. For useful paintings and furniture oil application, castor oil is dehydrated by monoconjugated oil-maleic anhydrite adducts [85]. Castor oil is utilized as coating application by converting the hydroxyl functionalities of castor oil to β-ketoesters using t-butyl acetoacetate [86]. Advanced surface coating materials were synthesized from castor oil-based hyperbranched polyurethanes (HBPUs) which is a highly branched macromolecule [87]. Most recently, Allauddin et al. [88] synthesized a high-performance hybrid coating by using a methodology that consists of introducing hydrolyzable-Si-OCH3 groups onto castor oil that have been used for the development of PU/urea-silica hybrid coating.
There are two by-product produced from the castor seed, i.e., husks and meal. Lima et al. [89] reported that the blend of castor meal and castor husks can be used as fertilizer, which is effective for substantial plant growth when it is applied up to a dose of 4.5% (in volume) of meal. But when the dose exceeds 4.5%, the plant growth is retarded and even the plant may die [89].
Besides the above uses, the Ricinus communis is used for different purposes. The oil is used in coating fabrics and other protective covering, in the production of typewriter and printing inks. Castor oil is also used in textile dyeing. The hydrogenated oil is useful for the production of polishes, carbon paper, candles, crayons, etc. The cellulose from stem is used to prepare cardboard, paper, etc. Polyoxyethylene hydrogenated castor oil is also useful for the manufacture of vitamin A and vitamin C, eye drop, and oral nitroglycerine sprays [90].
The extraction of castor oil from castor seed can be done by either mechanical pressing or solvent extraction or a combination of both. After harvesting, the seeds are dried to split open the seed hull so that kernel can be collected easily. Extraction process starts with the dehulling of seeds, and this can be done either manually by hands or mechanically with the help of a castor seed dehuller. After dehulling the seed, foreign materials such as sticks, stems, leaves, sand or dirt are removed by using a series of revolving screens or reels. After cleaning, the kernels are heated in a steam jacketed press to eliminate moisture, and then these cooked kernels are dried; this hardening will help in extraction.
A hydraulic press or oil expeller is used to remove oil from castor kernels. This mechanical extraction is done at low temperature which recovers only about 45% oil from the castor seeds. Higher temperature can increase the extraction efficiency up to 80% of the available oil which can be done by using high-temperature hydraulic press. The extraction temperature can be maintained by circulating of cold water through the pressing machine that is responsible for cold pressing of kernels. Cold-pressed castor oil contains low acid and iodine content and is lighter in color than the castor oil which is solvent extracted. After extraction, the oil is collected and filtered, and the filtered materials are mixed with fresh kernels for repeat extraction. The extraction process is repeated for several times by bulking of filtered material with new material and oil is collected. The by-product is finally removed from the press as seed cake. This seed cake contains about 10% of castor oil [1]. The remaining oil in seed cake can be obtained by crushing the seed cake and subjected to solvent extraction.
The solvent extraction of castor oil can be done by using Soxhlet extractor. About 300 ml of solvent such as hexane, heptane, or petroleum ether is poured in a round-bottom flask, and 10 g of crushed castor kernel packed with oil tissue or filter paper is placed in a thimble and inserted into the center of the extractor. The extractor then is fixed on the round-bottom flask, and a condenser is placed on the top of the extractor. Then the fitted apparatus is placed in a heating mantle and heated (50–60°C) to boil the solvent. When the solvent starts to boil, the vapor rises through the vertical tube into the condenser at the top. The vapor condensed and dripped into the thimble at the center. The extract seeps through the pores of the thimble and fills the siphon tube where it flows back down into the round-bottom flask [91]. The extraction process is continued for 8 hours, and after that, the extract with solvent in the round-bottom flask is subjected to rotator evaporator to recover the solvent from the extracted oil. The weight of extracted oil should be recovered for further determination.
The transesterification process is the reaction of a triglyceride with an alcohol to produce ester and glycerol. A triglyceride has a glycerine molecule as its base with three long chain fatty acids annexed. The characteristics of the fat are determined by the nature of the fatty acids subsumed to the glycerine which affects the characteristics of the biodiesel. In the production of biodiesel, vegetable oil in the form of triglycerides reacts with small chain alcohol (methanol, ethanol, propanol, etc.) in the presence of homogeneous catalyst such as base (KOH, NaOH) or acid (HCl, H2SO4, H3PO4) or heterogeneous catalyst as zeolites or biocatalyst as enzymes. The process is also called alcoholysis. When methanol is used, it is called methanolysis, and esters that are produced in methanolysis are called fatty acid methyl esters (FAMEs), and in case of ethanol, the process is termed as ethanolysis, and the esters produced in this process are called fatty acid ethyl esters (FAEEs) [92]. The transesterification is a reversible reaction, so alcohol must be added in excess to ensure the reaction in the right direction (Figure 3).
Transesterification reaction.
For transesterification about 25 ml of oil was kept in three-necked round-bottom flask and heated to 65°C. Then, the required quantity of methanol and catalyst (KOH) is added with stirring system. The experiment was continued for 3 hours and then the sample was monitored by running TLC to ensure the completion of reaction. After cooling, two layers were differentiated by separatory funnel, the upper layer is methyl ester (biodiesel), and the lower layer is glycerol. Produced methyl ester could be purified by successive rinse with 2.5% (w/w) H2SO4 and distilled water. NaCl was used to avoid emulsion during washing process. The washed methyl ester should be treated with anhydrous sodium sulfate to eliminate excess water. It was then filtered and dried by heating at low temperature (60°C) for 30 minutes [93].
After extraction of oil by using oil expeller, there still remain impurities in the extracted oil which can be removed through filtration process. Large- and small-sized particulates, any dissolved gases, acids, or even water can be removed by using filter press. Crude oil of castor seed is pale yellow or straw in color, but it can be made colorless or near colorless by refining and bleaching. The crude of castor seed also has a discrete odor which can also be deodorized during refining process [1].
Following filtration of crude oil of castor, it is subjected to refining process to eliminate impurities such as colloidal matter, phospholipids, excess free fatty acids, and coloring agents. Removal of these impurities prevents deterioration during long-term storage. The refining process includes several steps such as degumming, neutralization, bleaching, and deodorization, and sometimes winterization should be performed for efficient oil refining [1].
Degumming is performed to reduce the phospholipids and metal content of the crude oil of castor. The forms of phospholipids found in crude castor oil are lecithin, cephalin, and phosphatidic acids [94], and these phosphatides can be classified as hydratable and nonhydratable [95]. For efficient removal of these phosphatides, a suitable degumming procedure such as water degumming, acid degumming, and enzymatic degumming has to be implemented. Generally crude vegetable oil contains about 10% of nonhydratable phosphatides [95] which may vary depending on several factors such as type of seed, quality of seed, and condition applied during milling operation. Water degumming process can be followed to remove hydratable phosphatides, and nonhydratable phosphatides can only be eliminated by applying acid or enzymatic degumming procedures [95].
Neutralization is the process of removing excess free fatty acids (FFAs) from the degummed oil. The FFA content is high in old seeds, which are stored for more than 1 year with high moisture content [96]. The degummed castor oil is refined by chemical refining or alkali neutralization which abates the content of FFAs, oxidation products of FFAs, residual proteins, phosphatides, carbohydrates, traces of metals, and a part of pigments. The alkali neutralization is done by treating degummed castor oil with an alkali solution (2% caustic soda) at temperature between 85 and 95°C with continuous stirring for about 45–60 minutes [97]. At this stage the alkali reacts with FFAs and converts them into soap which has a higher specific gravity than the neutral oil and tends to settle at the bottom. The oil can be differentiated either by gravity separation or by using commercial centrifuges. The separated oil is then washed with hot water to remove soap, alkali solution, and other impurities [98]. For batch neutralization of castor oil, it needs four to six times hot water wash so as to reduce the level of soap below 100 ppm [97]. The oil, thus obtained, is dried in vacuum dryer and transferred to the bleaching process.
After degumming and neutralization, the castor oil that appeared is clear and liquid, but it may still contain colored bodies, natural pigments, and antioxidants (tocopherols and tocotrienols). However, bleaching, an adsorption process, is used to remove such colored pigments and phospholipids. Bleaching of castor oil can be done under vacuum at about 100°C, and continuously stirring the oil with appropriate amount activated earths and carbon [91]. The activated earths are clay ores that consist of minerals such as bentonite and montmorillonite. About 2% bleaching earth and carbon are required in the bleaching process to produce desirable light-colored oil. In this process, colored particles, soap, and phosphatides are adsorbed by the activated earth and carbon. A commercial filter is used to remove the activated earth and carbon. The spent earth and carbon thus obtained contains about 20–25% oil content [99]. This retained oil in earth can be recovered by boiling the spent earth in water or by solvent extraction method. The oil that is recovered from the spent earth is highly colored with high FFA and high peroxide content usually more than 10 mg KOH/g and 20 meq/kg, respectively [100].
Deodorization is vacuum distillation processes that carry away relatively volatile components that produce undesirable flavor, color, and odors in fat and oils. To produce pharmaceutical grade castor oil, deodorization is necessary, but in other cases, this process is not essential as it is a nonedible vegetable oil [101, 102]. Deodorization is generally under high vacuum and temperature above 250°C to expel undesirable odor caused by ketones, aldehydes, sterols, triterpene alcohols, and short chain fatty acids [98]. Pharmaceutical grade castor oil is deodorized under low temperatures (150–170°C) and high vacuum for 8–10 hours to hydrolysis of hydroxyl group ricinoleic acid [103].
Most vegetable oils contain high concentration of waxes, fatty acids, and lipids which is subjected to winterization before final use. Winterization is the process where waxes are crystalized and eliminated by a filtering process to avoid clouding of liquid fraction at cooler temperatures [1].
For the development of high-yielding varieties of castor understanding, the genetics of economically important traits is most important. Different morphological and qualitative traits are controlled by one or few genes and their additive, dominant, and epistatic effects, which make it more difficult to develop high-yielding varieties. Stem color of castor is controlled by epistatic interaction of two genes “M” and “G” [104] and tall plant shows dominance over dwarf plant due to a monogenic factor. Particularly the inheritance of sex expression is important in the development of hybrids. There are three types of pistillate line, i.e., N, S, and NES, which could be used for hybrid production. In the N type, the occurrence of only female flowers is controlled by a recessive gene (ff); in the S type, the production of only female flower is controlled by a polygenic complex with dominant and epistatic effects; and in the NES type, the induction of female is also controlled by a recessive gene (ff), but sexual reversion occurs when the air temperature is more than 31°C [105, 106, 107]. The seed yield and seed oil content are usually inherited by quantitative manner. Some important characters such as the number of nodes before flowering, number of racemes per plant, and seed oil content are controlled by additive genetic effect [108, 109]. Other traits such as length of primary raceme, number of capsules per racemes, and seed weight are also additively inherited [110, 111, 112]. Early maturity is an another important character for castor cultivation in tropical areas or regions of short growing seasons where multiple crops are cultivated, but it shows negative correlation with high seed yield which is the main hindrance in the development of early maturing variety [113]. Genetic transformation of castor also remains challenging as it is averse to proficient regeneration of durable and transformed plant. The callus culture of castor for regeneration of plant has been problematic due to the lack of proper protocol which restricted the development of transgenic cultivars [114]. The most important global challenge in castor breeding is the development of cultivars that facilitate mechanical harvest. The success of perennial and indeterminate type castor is limited than annual and determinate type. The selection dwarf and non-branching type castor plant is hardly possible due to high genotype versus environment interaction.
The most important challenges in castor cultivation are management of disease and pest incidence. Several disease occurrences were noticed in castor; among these gray mold (Botryotinia ricini), vascular wilt (Fusarium oxysporum f. sp. ricini), and charcoal rot (Macrophomina phaseolina) are the major diseases. Some other disease causes epidemic condition depending on the genotype and environmental conditions such as the leaf spot caused by the fungus Alternaria ricini and Cercospora ricinella and the bacteria Xanthomonas axonopodis pv. ricini. Among these Alternaria ricini is the most important because it is a seed-borne disease and causes seedling blight and pod rot with the loss of seed yield up to 70% [3]. Several plant parasitic nematodes are noticed on castor, but they do not cause severe damage [115]. Among these reniform nematodes, Rotylenchulus reniformis is the most important because it predisposes castor to the infection of Fusarium oxysporum [116]. Gray mold is considered as the most serious disease worldwide, but a few studies have been conducted recently on this disease [117]. Resistant varieties cannot be developed through breeding programs, but a few genotypes moderately tolerant to this disease have been identified [5]. Further studies have been needed for the management Botryotinia ricini. The occurrence of vascular wilt can be managed through varietal resistance, seed treatment, and crop rotation. Charcoal rot or Macrophomina root rot can be managed through cultivar resistance, but crop rotation and organic matter rectification can abate the severity of this disease [118].
The major insect pests that cause significant damage are castor semilooper (Achaea janata), castor shoot borer (Conogethes punctiferalis), capsule borer (Dichocrocis punctiferalis), tobacco caterpillar (Spodoptera litura), red hairy caterpillar (Amsacta spp.), and leaf miner (Liriomyza trifolii) [16, 119]. In Brazil, the major insect pests of castor are stink bug (Nezara viridula); leafhopper (Empoasca spp.); defoliator including armyworm (Spodoptera frugiperda), semilooper (Achaea janata), and black cutworm (Agrotis ipsilon); and the mites Tetranychus urticae and Tetranychus ludeni [120, 121]. Cotton lace bug (Corythucha gossypii) was also noticed as a pest of castor in Colombia. The integrated pest management program with pesticides and crop rotation, insect traps, neem extract can be used to manage the insect pests of castor [119].
After the extraction of oil from castor seed, it produces castor meal as a by-product, which contains a toxic compound ricin. This ricin content is about 1 to 5% of the weight of the castor meal remaining after oil extraction [122, 123]. Small quantities of castor meal can be easily detoxified, but no commercial or industrial level detoxification process has been successfully implemented yet. In early 1934, it was demonstrated that by boiling for 2 hours, castor meal could be detoxified. Several other methods for castor meal detoxification have been investigated later which includes short but repeated boiling, autoclaving, steam heating, fermentation, ionizing radiation, and mixing castor meal with tannin-rich meal of Sal seed (Shorea robusta) and the addition of sodium hypochlorite, alkali, or acid substances [3]. Both ricin and allergens was detoxified simultaneously by adding calcium hydroxide followed by extrusion [124]. At present, the addition of lime is the simplest and effective method of ricin detoxification. Probably the high pH is responsible for the denaturation of ricin [125, 126, 127]. The economics and access to commercial castor production can be improved through the development of industrial process of castor detoxification, but the impediment is high-energy costs for processing the meal, decreased in feed quality of processed meal, and the absence of proper methods to promptly and cheaply quantify the residual ricin in the meal [3].
According to FAOSTAT, during 2014, the average world production of castor oilseed was 1.95 million tons that was harvested from an area of 1.44 million hectare, of which 92.2% was concentrated in Asia, mostly in India. India ranked first in the production of castor oil seed that was about 1.73 million tons followed by Mozambique (0.069 million ton), China (0.04 million ton), Brazil (0.038 million ton), and Myanmar (0.011 million ton). In Bangladesh, it is only 266 tons, which is too much lower compared to India, Mozambique, and China. India is the highest exporter of castor oil accounting for more than 90% of the castor oil exports, while the United States, European countries, and China are the major importer, accounting for more than 84% of the imported castor oil [128]. Harvested area, production, and yield of the top 10 castor oil seed producers during 2014 are presented in Table 5.
Country | Harvested area (million hectare) | Production (million ton) | Yield (ton/ha) |
---|---|---|---|
India | 1.04 | 1.733 | 1.666 |
Mozambique | 0.184 | 0.069 | 0.375 |
China | 0.046 | 0.040 | 0.870 |
Brazil | 0.063 | 0.038 | 0.591 |
Myanmar | 0.014 | 0.011 | 0.782 |
Ethiopia | 0.005 | 0.011 | 2.000 |
Paraguay | 0.008 | 0.009 | 1.125 |
Vietnam | 0.008 | 0.007 | 0.875 |
South Africa | 0.010 | 0.006 | 0.607 |
Angola | 0.016 | 0.004 | 0.253 |
Harvested area, production, and yield of the top 10 castor oil seed producers during 2014.
Source: FAO [2].
The global consumption of castor is increased, but the current production of castor is not increasing at sufficient rate. Future research strategies play an important role in the world production of castor. International collaboration between scientific communities is needed for the development of solution to the main constraints to castor production, processing, and marketing. Although some locally adapted variety and hybrids are developed, an integrated plant improvement strategy needs to be developed for further progress. A closer interaction between plant breeders, molecular biologists, plant pathologists, plant physiologists, and entomologists is needed for speeding up the research activities. Both the quality and quantity of castor oil can be improved by using biotechnological innovations and genetic engineering. The castor genome draft should be used as map for introducing molecular markers in castor breeding. Improved coordination of germplasm bank helps in the standardization of evaluation method and increase the exchange of accession in breeding programs. The development of non-shattering, dwarf, and high-yielding cultivar with additional improvement in machinery and agronomic practices will allow the prompt transition of castor to mechanized production [129]. Breeding of castor for resistance or tolerance to disease and insect pest is also important for the production of good-quality castor oil seed. Another major concern is the development of castor cultivar with low ricin, low ricinin, low allergen, and low RCA content [41, 42, 130]. Accurate detection and detoxification of castor toxin in feed and biological samples remain a challenge to the commercial use of castor meal in animal rations. The use of castor oil for biodiesel production is problematic due to its high viscosity and high cost of production and refining. However, castor has a tremendous potentiality as a source of bioenergy and industrial feedstock with high oil content, unique fatty acid composition (ricinoleic acid), and a wide range of adaptation under drought and saline condition.
Castor is an underutilized nonedible oil crop species that has a variety of application, but it is promising for its high oil content particularly as a potential source of renewable energy. It is also used in the production of pharmaceuticals, lubricants, hydraulic and brake fluid, polymer materials, coating, and fertilizer. It also contains toxic compounds that are ricin, ricinin, and RCA. The development of high-yielding varieties, detoxification castor meal, and control of insect pests are the major challenges.
The authors acknowledge the support of Bangabandhu Sheikh Mujibur Rahman of the Agricultural University, Gazipur, Bangladesh, for providing all research inputs and bearing the cost of the project. The authors would like to thank BSMRAU authority for their support.
There is no conflict of interest regarding the publication of the chapter.
You have been successfully unsubscribed.
",metaTitle:"Unsubscribe Successful",metaDescription:"You have been successfully unsubscribed.",metaKeywords:null,canonicalURL:"/page/unsubscribe-successful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5758},{group:"region",caption:"Middle and South America",value:2,count:5220},{group:"region",caption:"Africa",value:3,count:1711},{group:"region",caption:"Asia",value:4,count:10348},{group:"region",caption:"Australia and Oceania",value:5,count:895},{group:"region",caption:"Europe",value:6,count:15755}],offset:12,limit:12,total:118014},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8"},books:[{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization",subtitle:null,isOpenForSubmission:!0,hash:"3478d05926950f475f4ad2825d340963",slug:null,bookSignature:"Dr. Youssef Ben Smida and Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:null,editors:[{id:"311698",title:"Dr.",name:"Youssef",surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10697",title:"Raman Spectroscopy",subtitle:null,isOpenForSubmission:!0,hash:"6e2bfc19cc9f0b441890f24485b0de80",slug:null,bookSignature:"Dr. Marianna V. Kharlamova",coverURL:"https://cdn.intechopen.com/books/images_new/10697.jpg",editedByType:null,editors:[{id:"285875",title:"Dr.",name:"Marianna V.",surname:"Kharlamova",slug:"marianna-v.-kharlamova",fullName:"Marianna V. Kharlamova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10700",title:"Titanium Dioxide",subtitle:null,isOpenForSubmission:!0,hash:"d9448d83caa34d90fd58464268c869a0",slug:null,bookSignature:"Dr. Hafiz Muhammad Ali",coverURL:"https://cdn.intechopen.com/books/images_new/10700.jpg",editedByType:null,editors:[{id:"187624",title:"Dr.",name:"Hafiz Muhammad",surname:"Ali",slug:"hafiz-muhammad-ali",fullName:"Hafiz Muhammad Ali"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10701",title:"Alkenes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f6dd394ef1ca2d6472220de6a79a0d9a",slug:null,bookSignature:"Dr. Reza Davarnejad",coverURL:"https://cdn.intechopen.com/books/images_new/10701.jpg",editedByType:null,editors:[{id:"88069",title:"Dr.",name:"Reza",surname:"Davarnejad",slug:"reza-davarnejad",fullName:"Reza Davarnejad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10699",title:"Foams",subtitle:null,isOpenForSubmission:!0,hash:"9495e848f41431e0ffb3be12b4d80544",slug:null,bookSignature:"Dr. Marco Caniato",coverURL:"https://cdn.intechopen.com/books/images_new/10699.jpg",editedByType:null,editors:[{id:"312499",title:"Dr.",name:"Marco",surname:"Caniato",slug:"marco-caniato",fullName:"Marco Caniato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:13},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:27},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:6},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.png",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9864",title:"Hydrology",subtitle:null,isOpenForSubmission:!1,hash:"02925c63436d12e839008c793a253310",slug:"hydrology",bookSignature:"Theodore V. Hromadka II and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9864.jpg",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9083",title:"Rodents",subtitle:null,isOpenForSubmission:!1,hash:"480148de5ecf236b3e0860fc3954b2d4",slug:"rodents",bookSignature:"Loth S. Mulungu",coverURL:"https://cdn.intechopen.com/books/images_new/9083.jpg",editors:[{id:"108433",title:"Dr.",name:"Loth S.",middleName:null,surname:"Mulungu",slug:"loth-s.-mulungu",fullName:"Loth S. Mulungu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5220},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.png",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9668",title:"Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging",subtitle:null,isOpenForSubmission:!1,hash:"c5484276a314628acf21ec1bdc3a86b9",slug:"chemistry-and-biochemistry-of-winemaking-wine-stabilization-and-aging",bookSignature:"Fernanda Cosme, Fernando M. Nunes and Luís Filipe-Ribeiro",coverURL:"https://cdn.intechopen.com/books/images_new/9668.jpg",editors:[{id:"186819",title:"Prof.",name:"Fernanda",middleName:null,surname:"Cosme",slug:"fernanda-cosme",fullName:"Fernanda Cosme"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9660",title:"Inland Waters",subtitle:"Dynamics and Ecology",isOpenForSubmission:!1,hash:"975c26819ceb11a926793bc2adc62bd6",slug:"inland-waters-dynamics-and-ecology",bookSignature:"Adam Devlin, Jiayi Pan and Mohammad Manjur Shah",coverURL:"https://cdn.intechopen.com/books/images_new/9660.jpg",editors:[{id:"280757",title:"Dr.",name:"Adam",middleName:"Thomas",surname:"Devlin",slug:"adam-devlin",fullName:"Adam Devlin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editedByType:"Edited by",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editedByType:"Edited by",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9083",title:"Rodents",subtitle:null,isOpenForSubmission:!1,hash:"480148de5ecf236b3e0860fc3954b2d4",slug:"rodents",bookSignature:"Loth S. Mulungu",coverURL:"https://cdn.intechopen.com/books/images_new/9083.jpg",editedByType:"Edited by",editors:[{id:"108433",title:"Dr.",name:"Loth S.",middleName:null,surname:"Mulungu",slug:"loth-s.-mulungu",fullName:"Loth S. Mulungu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9864",title:"Hydrology",subtitle:null,isOpenForSubmission:!1,hash:"02925c63436d12e839008c793a253310",slug:"hydrology",bookSignature:"Theodore V. Hromadka II and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9864.jpg",editedByType:"Edited by",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editedByType:"Edited by",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editedByType:"Edited by",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.png",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editedByType:"Edited by",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9423",title:"AI and Learning Systems",subtitle:"Industrial Applications and Future Directions",isOpenForSubmission:!1,hash:"10ac8fb0bdbf61044395963028653d21",slug:"ai-and-learning-systems-industrial-applications-and-future-directions",bookSignature:"Konstantinos Kyprianidis and Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:"Edited by",editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8990",title:"Current Concepts in Zika Research",subtitle:null,isOpenForSubmission:!1,hash:"f410c024dd429d6eb0e6abc8973ecc14",slug:"current-concepts-in-zika-research",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/8990.jpg",editedByType:"Edited by",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"921",title:"Electrostatics",slug:"ceramics-electrostatics",parent:{title:"Ceramics",slug:"ceramics"},numberOfBooks:3,numberOfAuthorsAndEditors:86,numberOfWosCitations:77,numberOfCrossrefCitations:52,numberOfDimensionsCitations:100,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"ceramics-electrostatics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5215",title:"Piezoelectric Materials",subtitle:null,isOpenForSubmission:!1,hash:"a062db03e5e21b64942d5d4dfd9b7bd2",slug:"piezoelectric-materials",bookSignature:"Toshio Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/5215.jpg",editedByType:"Edited by",editors:[{id:"33684",title:"Prof.",name:"Toshio",middleName:null,surname:"Ogawa",slug:"toshio-ogawa",fullName:"Toshio Ogawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3272",title:"Piezoelectric Materials and Devices",subtitle:"Practice and Applications",isOpenForSubmission:!1,hash:"a41c5bb092cc30980df760d6bec44c20",slug:"piezoelectric-materials-and-devices-practice-and-applications",bookSignature:"Farzad Ebrahimi",coverURL:"https://cdn.intechopen.com/books/images_new/3272.jpg",editedByType:"Edited by",editors:[{id:"20062",title:"Dr.",name:"Farzad",middleName:null,surname:"Ebrahimi",slug:"farzad-ebrahimi",fullName:"Farzad Ebrahimi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3218",title:"Piezoelectric Ceramics",subtitle:null,isOpenForSubmission:!1,hash:"835cbf1fbf213fbd3aeb4e4cbf1686c9",slug:"piezoelectric-ceramics",bookSignature:"Ernesto Suaste-Gomez",coverURL:"https://cdn.intechopen.com/books/images_new/3218.jpg",editedByType:"Edited by",editors:[{id:"12814",title:"Dr.",name:"Ernesto",middleName:null,surname:"Suaste-Gomez",slug:"ernesto-suaste-gomez",fullName:"Ernesto Suaste-Gomez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"11644",doi:"10.5772/9942",title:"Porous Piezoelectric Ceramics",slug:"porous-piezoelectric-ceramics",totalDownloads:5021,totalCrossrefCites:12,totalDimensionsCites:22,book:{slug:"piezoelectric-ceramics",title:"Piezoelectric Ceramics",fullTitle:"Piezoelectric Ceramics"},signatures:"Elisa Mercadelli, Alessandra Sanson and Carmen Galassi",authors:[{id:"12866",title:"Dr.",name:"Elisa",middleName:null,surname:"Mercadelli",slug:"elisa-mercadelli",fullName:"Elisa Mercadelli"},{id:"12886",title:"Dr.",name:"Alessandra",middleName:null,surname:"Sanson",slug:"alessandra-sanson",fullName:"Alessandra Sanson"},{id:"12887",title:"Dr.",name:"Carmen",middleName:null,surname:"Galassi",slug:"carmen-galassi",fullName:"Carmen Galassi"}]},{id:"11647",doi:"10.5772/9945",title:"Piezoelectric Material-Based Energy Harvesting Devices: Advance of SSH Optimization Techniques (1999-2009)",slug:"piezoelectric-material-based-energy-harvesting-devices-advance-of-ssh-optimization-techniques-1999-2",totalDownloads:3229,totalCrossrefCites:4,totalDimensionsCites:10,book:{slug:"piezoelectric-ceramics",title:"Piezoelectric Ceramics",fullTitle:"Piezoelectric Ceramics"},signatures:"Elie Lefeuvre, Mickail Lallart, Claude Richard and Daniel Guyomar",authors:[{id:"10041",title:"Dr.",name:"Mickaël",middleName:null,surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"},{id:"10042",title:"Prof.",name:"Daniel",middleName:"Jean",surname:"Guyomar",slug:"daniel-guyomar",fullName:"Daniel Guyomar"},{id:"12121",title:"Dr.",name:"Elie",middleName:null,surname:"Lefeuvre",slug:"elie-lefeuvre",fullName:"Elie Lefeuvre"},{id:"12927",title:"Pr",name:"Claude",middleName:null,surname:"Richard",slug:"claude-richard",fullName:"Claude Richard"}]},{id:"40134",doi:"10.5772/53117",title:"Acoustic Wave Velocity Measurement on Piezoelectric Ceramics",slug:"acoustic-wave-velocity-measurement-on-piezoelectric-ceramics",totalDownloads:2956,totalCrossrefCites:6,totalDimensionsCites:10,book:{slug:"piezoelectric-materials-and-devices-practice-and-applications",title:"Piezoelectric Materials and Devices",fullTitle:"Piezoelectric Materials and Devices - Practice and Applications"},signatures:"Toshio Ogawa",authors:[{id:"33684",title:"Prof.",name:"Toshio",middleName:null,surname:"Ogawa",slug:"toshio-ogawa",fullName:"Toshio Ogawa"}]}],mostDownloadedChaptersLast30Days:[{id:"11639",title:"Piezoelectric Thin Film Deposition: Novel Self-Assembled Island Structures and Low Temperature Processes on Silicon",slug:"piezoelectric-thin-film-deposition-novel-self-assembled-island-structures-and-low-temperature-proces",totalDownloads:3550,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"piezoelectric-ceramics",title:"Piezoelectric Ceramics",fullTitle:"Piezoelectric Ceramics"},signatures:"Sharath Sriram, Madhu Bhaskaran and Arnan Mitchell",authors:[{id:"12171",title:"Dr.",name:"Sharath",middleName:null,surname:"Sriram",slug:"sharath-sriram",fullName:"Sharath Sriram"},{id:"12172",title:"Dr.",name:"Madhu",middleName:null,surname:"Bhaskaran",slug:"madhu-bhaskaran",fullName:"Madhu Bhaskaran"},{id:"12173",title:"Prof",name:"Arnan",middleName:null,surname:"Mitchell",slug:"arnan-mitchell",fullName:"Arnan Mitchell"}]},{id:"51174",title:"Quantum Mechanical Approaches for Piezoelectricity Study in Perovskites",slug:"quantum-mechanical-approaches-for-piezoelectricity-study-in-perovskites",totalDownloads:1240,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"piezoelectric-materials",title:"Piezoelectric Materials",fullTitle:"Piezoelectric Materials"},signatures:"Edilson Luiz C. de Aquino, Marcos Antonio B. dos Santos, Márcio de Souza Farias, Sady S. da Silva Alves, Fábio dos Santos Gil, Antonio Florêncio de Figueiredo, José Ribamar B. Lobato, Raimundo Dirceu de P. Ferreira, Oswaldo Treu-Filho, Rogério Toshiaki Kondo and José Ciríaco Pinheiro",authors:[{id:"97271",title:"Dr.",name:"José",middleName:null,surname:"Ciriaco-Pinheiro",slug:"jose-ciriaco-pinheiro",fullName:"José Ciriaco-Pinheiro"},{id:"150348",title:"MSc.",name:"Rogerio",middleName:null,surname:"Kondo",slug:"rogerio-kondo",fullName:"Rogerio Kondo"},{id:"185499",title:"Dr.",name:"Edilson",middleName:null,surname:"Aquino",slug:"edilson-aquino",fullName:"Edilson Aquino"},{id:"185500",title:"Dr.",name:"Marcos",middleName:null,surname:"Santos",slug:"marcos-santos",fullName:"Marcos Santos"},{id:"185501",title:"Dr.",name:"Márcio",middleName:null,surname:"Farias",slug:"marcio-farias",fullName:"Márcio Farias"},{id:"185502",title:"Dr.",name:"Sady",middleName:null,surname:"Alves",slug:"sady-alves",fullName:"Sady Alves"},{id:"185503",title:"Dr.",name:"Fabio",middleName:null,surname:"Gil",slug:"fabio-gil",fullName:"Fabio Gil"},{id:"185504",title:"Dr.",name:"Antonio",middleName:null,surname:"Figueiredo",slug:"antonio-figueiredo",fullName:"Antonio Figueiredo"},{id:"185505",title:"Dr.",name:"José",middleName:null,surname:"Lobato",slug:"jose-lobato",fullName:"José Lobato"},{id:"185506",title:"Dr.",name:"Raimundo",middleName:null,surname:"Ferreira",slug:"raimundo-ferreira",fullName:"Raimundo Ferreira"},{id:"185507",title:"Dr.",name:"Oswaldo",middleName:null,surname:"Teu-Filho",slug:"oswaldo-teu-filho",fullName:"Oswaldo Teu-Filho"}]},{id:"50322",title:"Acoustic Wave Velocity Measurement on Piezoelectric Single Crystals",slug:"acoustic-wave-velocity-measurement-on-piezoelectric-single-crystals",totalDownloads:1237,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"piezoelectric-materials",title:"Piezoelectric Materials",fullTitle:"Piezoelectric Materials"},signatures:"Toshio Ogawa",authors:[{id:"33684",title:"Prof.",name:"Toshio",middleName:null,surname:"Ogawa",slug:"toshio-ogawa",fullName:"Toshio Ogawa"}]},{id:"50728",title:"Piezoelectric Materials in RF Applications",slug:"piezoelectric-materials-in-rf-applications",totalDownloads:1526,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"piezoelectric-materials",title:"Piezoelectric Materials",fullTitle:"Piezoelectric Materials"},signatures:"Philippe Benech and Jean‐Marc Duchamp",authors:[{id:"4490",title:"Pr",name:"Philippe",middleName:null,surname:"Benech",slug:"philippe-benech",fullName:"Philippe Benech"},{id:"182052",title:"Dr.",name:"Jean-Marc",middleName:null,surname:"Duchamp",slug:"jean-marc-duchamp",fullName:"Jean-Marc Duchamp"}]},{id:"39691",title:"Piezoelectric Actuators for Functionally Graded Plates- Nonlinear Vibration Analysis",slug:"piezoelectric-actuators-for-functionally-graded-plates-nonlinear-vibration-analysis",totalDownloads:1770,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"piezoelectric-materials-and-devices-practice-and-applications",title:"Piezoelectric Materials and Devices",fullTitle:"Piezoelectric Materials and Devices - Practice and Applications"},signatures:"Farzad Ebrahimi",authors:[{id:"71997",title:"Dr.",name:"Farzad",middleName:null,surname:"Ebrahimi",slug:"farzad-ebrahimi",fullName:"Farzad Ebrahimi"}]},{id:"43270",title:"Design and Application of Piezoelectric Stacks in Level Sensors",slug:"design-and-application-of-piezoelectric-stacks-in-level-sensors",totalDownloads:1687,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"piezoelectric-materials-and-devices-practice-and-applications",title:"Piezoelectric Materials and Devices",fullTitle:"Piezoelectric Materials and Devices - Practice and Applications"},signatures:"Andrzej Buchacz and Andrzej Wróbel",authors:[{id:"77699",title:"Prof.",name:"Andrzej",middleName:null,surname:"Buchacz",slug:"andrzej-buchacz",fullName:"Andrzej Buchacz"},{id:"163199",title:"Dr.",name:"Andrzej",middleName:null,surname:"Wróbel",slug:"andrzej-wrobel",fullName:"Andrzej Wróbel"}]},{id:"11648",title:"Electrostrictive Polymers as High-Performance Electroactive Polymers for Energy Harvesting",slug:"electrostrictive-polymers-as-high-performance-electroactive-polymers-for-energy-harvesting",totalDownloads:5282,totalCrossrefCites:3,totalDimensionsCites:7,book:{slug:"piezoelectric-ceramics",title:"Piezoelectric Ceramics",fullTitle:"Piezoelectric Ceramics"},signatures:"Pierre-Jean Cottinet, Daniel Guyomar, Benoit Guiffard, Laurent Lebrun and Chatchai Putson",authors:[{id:"12401",title:"Dr.",name:"Pierre-Jean",middleName:null,surname:"Cottinet",slug:"pierre-jean-cottinet",fullName:"Pierre-Jean Cottinet"},{id:"12570",title:"Prof.",name:"Benoit",middleName:null,surname:"Guiffard",slug:"benoit-guiffard",fullName:"Benoit Guiffard"},{id:"12571",title:"Pr.",name:"Laurent",middleName:null,surname:"Lebrun",slug:"laurent-lebrun",fullName:"Laurent Lebrun"},{id:"12572",title:"PhD student",name:"Chatchai",middleName:null,surname:"Putson",slug:"chatchai-putson",fullName:"Chatchai Putson"}]},{id:"43265",title:"The Application of Piezoelectric Materials in Machining Processes",slug:"the-application-of-piezoelectric-materials-in-machining-processes",totalDownloads:3976,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"piezoelectric-materials-and-devices-practice-and-applications",title:"Piezoelectric Materials and Devices",fullTitle:"Piezoelectric Materials and Devices - Practice and Applications"},signatures:"Saeed Assarzadeh and Majid Ghoreishi",authors:[{id:"162546",title:"Dr.",name:"Saeed",middleName:null,surname:"Assarzadeh",slug:"saeed-assarzadeh",fullName:"Saeed Assarzadeh"}]},{id:"50642",title:"Polymeric Prosthesis as Acoustic, Pressure, Temperature, and Light Sensor Fabricated by Three-Dimensional Printing",slug:"polymeric-prosthesis-as-acoustic-pressure-temperature-and-light-sensor-fabricated-by-three-dimension",totalDownloads:1036,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"piezoelectric-materials",title:"Piezoelectric Materials",fullTitle:"Piezoelectric Materials"},signatures:"Ernesto Suaste-Gómez, Grissel Rodríguez-Roldán, Héctor Reyes-\nCruz and Omar Terán-Jiménez",authors:[{id:"12814",title:"Dr.",name:"Ernesto",middleName:null,surname:"Suaste-Gomez",slug:"ernesto-suaste-gomez",fullName:"Ernesto Suaste-Gomez"},{id:"185176",title:"MSc.",name:"Omar",middleName:null,surname:"Terán-Jiménez",slug:"omar-teran-jimenez",fullName:"Omar Terán-Jiménez"},{id:"185178",title:"MSc.",name:"Grissel",middleName:null,surname:"Rodríguez-Roldán",slug:"grissel-rodriguez-roldan",fullName:"Grissel Rodríguez-Roldán"},{id:"185179",title:"MSc.",name:"Hector",middleName:null,surname:"Reyes-Cruz",slug:"hector-reyes-cruz",fullName:"Hector Reyes-Cruz"}]},{id:"11640",title:"Investigation of Elevated Temperature Effects on Multiple Layer Piezoelectric Ultrasonic Transducers with Adhesive Bondlines by Self-Heating",slug:"investigation-of-elevated-temperature-effects-on-multiple-layer-piezoelectric-ultrasonic-transducers",totalDownloads:18015,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"piezoelectric-ceramics",title:"Piezoelectric Ceramics",fullTitle:"Piezoelectric Ceramics"},signatures:"Zhengbin Wu, Sandy Cochran and Bo Wu",authors:[{id:"11907",title:"Prof.",name:"Zhengbin",middleName:null,surname:"Wu",slug:"zhengbin-wu",fullName:"Zhengbin Wu"},{id:"12761",title:"Dr.",name:"Sandy",middleName:null,surname:"Cochran",slug:"sandy-cochran",fullName:"Sandy Cochran"},{id:"12763",title:"Prof",name:"Bo",middleName:null,surname:"Wu",slug:"bo-wu",fullName:"Bo Wu"}]}],onlineFirstChaptersFilter:{topicSlug:"ceramics-electrostatics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"onlineFirst.detail",path:"/online-first/castor-ricinus-communis-an-underutilized-oil-crop-in-the-south-east-asia",hash:"",query:{},params:{chapter:"castor-ricinus-communis-an-underutilized-oil-crop-in-the-south-east-asia"},fullPath:"/online-first/castor-ricinus-communis-an-underutilized-oil-crop-in-the-south-east-asia",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()