List of vegetable crops that can be grown successfully under soilless culture.
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"7265",leadTitle:null,fullTitle:"Organochlorine",title:"Organochlorine",subtitle:null,reviewType:"peer-reviewed",abstract:"Organochlorines (OC) are organic molecules with chlorine in their structure. There is a large number of organochlorine compounds known. Large amounts of chlorinated organic compounds are produced for industrial, agricultural, pharmaceutical, household purposes, etc. In many studies, the main focus is on OC that have been evaluated as environmental contaminants with toxic effects on humans. Different types of organochlorines have been produced throughout the world. Some of the most popular classes are organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), dioxins, chlorobenzenes, chlorophenols, chlorinated alkanes, etc. Organochlorine compounds are very stable. Generally, they are molecules of moderate polarity (low solubility in water). This makes OCs easily soluble in fats. They are found in almost all environments: air, water, soil, sediments and biota samples. They can spread out easily in different geographic altitudes and latitudes. Volatile and semi-volatile OCs have the ability to travel far distances from the place where they were used. Some studies have reported some organochlorines in the North Pole at the same levels as the areas where they were produced or applied. They have the ability to bioaccumulate easily in biota. Passing through the food chain levels, they increase their concentrations (biomagnifying). The main access pathways for OCs to the human body are through foods and exposures. Generally, they display their effects after a relatively long period of exposure. This is the main reason why they were produced and used for a long time before their production and use was banned. The most important health effects that organochlorines can cause are: mutagenic, endocrine-disruptor, carcinogenic and central nervous or peripheral disorders. After identification of the consequences, production of OCs and use was banned in many countries but their effects are still being seen many years later.",isbn:"978-1-78984-264-7",printIsbn:"978-1-78984-263-0",pdfIsbn:"978-1-83881-798-5",doi:"10.5772/intechopen.74499",price:100,priceEur:109,priceUsd:129,slug:"organochlorine",numberOfPages:72,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"bb67784ff0ecf9cb18c3667be3c84c3c",bookSignature:"Aurel Nuro",publishedDate:"October 24th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/7265.jpg",numberOfDownloads:4032,numberOfWosCitations:6,numberOfCrossrefCitations:0,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:5,numberOfDimensionsCitationsByBook:2,hasAltmetrics:0,numberOfTotalCitations:11,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 20th 2018",dateEndSecondStepPublish:"March 13th 2018",dateEndThirdStepPublish:"May 12th 2018",dateEndFourthStepPublish:"July 31st 2018",dateEndFifthStepPublish:"September 29th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"14427",title:"Dr.",name:"Aurel",middleName:null,surname:"Nuro",slug:"aurel-nuro",fullName:"Aurel Nuro",profilePictureURL:"https://mts.intechopen.com/storage/users/14427/images/system/14427.jpg",biography:"Aurel Nuro was born in Albania in 1977. He was graduated with a degree in Chemistry (2002) from the Faculty of Natural Sciences, Tirana University, Albania, in 2002. He obtained his Ph.D. from the same university in 2008 followed by “Docent” in 2010 and Associate Professor in 2012. Since 2002 he has worked as a lecturer and researcher in the working group of Organic Chemistry near the Department of Chemistry, FNS, UT. His main research areas include organic chemistry, instrumental analyses, gas chromatography, environmental pollution, and ecotoxicology, among others. Dr. Nuro has been a coordinator, expert, and participant in national and international projects. He has mentored more than 180 master’s theses in Environmental Chemistry, Food Chemistry, Pharmacy, and other subjects. His publications include articles, books, and conference proceedings (altogether more than 150).",institutionString:"University of Tirana",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Tirana",institutionURL:null,country:{name:"Albania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"85",title:"Organic Chemistry",slug:"organic-chemistry"}],chapters:[{id:"63897",title:"Introductory Chapter: Organochlorine",doi:"10.5772/intechopen.81271",slug:"introductory-chapter-organochlorine",totalDownloads:839,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Aurel Nuro",downloadPdfUrl:"/chapter/pdf-download/63897",previewPdfUrl:"/chapter/pdf-preview/63897",authors:[{id:"14427",title:"Dr.",name:"Aurel",surname:"Nuro",slug:"aurel-nuro",fullName:"Aurel Nuro"}],corrections:null},{id:"63219",title:"Dioxin and Furan Emissions and Its Management Practices",doi:"10.5772/intechopen.80011",slug:"dioxin-and-furan-emissions-and-its-management-practices",totalDownloads:1291,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Many changes like increment of the population and demanded services, expansion of industries, increasing of transportation demand, etc., have increased the emission of dioxin and furan. There was no indicative research conducted on the quantification and management practices of the unintentionally produced persistent organic pollutants like dioxin and Furan. A UNEP model for dioxin- and furan-related POPs management was commonly used to assess the main anthropogenic sources of dioxin and furan. In this book chapter, UNEP toolkit that was developed in 2013 is used to identify and quantify the sector-based emission of dioxin and furan. About nine main groups of anthropogenic POPs sources such as waste incineration, open burning process, ferrous and nonferrous metal production, etc., explicitly discussed in the report were identified. The case study in Addis Ababa showed that all organizations have no awareness about the dioxin and furan emission issues and follow very weak management styles. Finally, the book chapter suggests the reformulation of the national legal management framework, adaptation of best available technology with less POPs footprint, increasing public and stakeholder’s awareness and participation and capacitating the concerned government organization.",signatures:"Mekonnen Maschal Tarekegn and Efrem Sisay Akele",downloadPdfUrl:"/chapter/pdf-download/63219",previewPdfUrl:"/chapter/pdf-preview/63219",authors:[{id:"243172",title:"Ph.D. Student",name:"Mekonnen Maschal",surname:"Tarekegn",slug:"mekonnen-maschal-tarekegn",fullName:"Mekonnen Maschal Tarekegn"},{id:"246617",title:"Mr.",name:"Efrem Sisay",surname:"Akele",slug:"efrem-sisay-akele",fullName:"Efrem Sisay Akele"}],corrections:null},{id:"62374",title:"Mechanistic Considerations on the Hydrodechlorination Process of Polychloroarenes",doi:"10.5772/intechopen.79083",slug:"mechanistic-considerations-on-the-hydrodechlorination-process-of-polychloroarenes",totalDownloads:936,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Defunctionalization of organochlorines through reductive dechlorination (also known as hydrodechlorination—replacement of chlorine atoms by hydrogen—is one of the main methodologies used in the detoxification of these harmful compounds. Most of the published papers on this particular matter focused on specific reagents, reaction conditions, and mainly result efficiency. Some of the authors were also concerned with reaction pathways (e.g., the order in which chlorine atoms were removed from a polychlorinated aromatic substrate—polychlorinated biphenyls, PCBs; polychlorinated dibenzo-p-dioxins, PCDDs; or polychlorinated dibenzofurans, PCDFs). However, the papers that dealt with the investigation of reaction mechanism were rather scarce. This chapter presents the advances made by researchers in understanding, from a mechanistic point of view, the hydrodechlorination process, along with our own assumptions. In doing so, it would be easier to predict the behavior of such compounds in a specific environment, showing more clearly the scope and limitations of each process, depending on the reaction conditions and reagents.",signatures:"Yoshiharu Mitoma, Yumi Katayama and Cristian Simion",downloadPdfUrl:"/chapter/pdf-download/62374",previewPdfUrl:"/chapter/pdf-preview/62374",authors:[{id:"186359",title:"Prof.",name:"Yoshiharu",surname:"Mitoma",slug:"yoshiharu-mitoma",fullName:"Yoshiharu Mitoma"},{id:"245719",title:"Prof.",name:"Cristian",surname:"Simion",slug:"cristian-simion",fullName:"Cristian Simion"},{id:"245720",title:"Dr.",name:"Yumi",surname:"Katayama",slug:"yumi-katayama",fullName:"Yumi Katayama"}],corrections:null},{id:"62396",title:"Application of Heterogeneous Catalysts in Dechlorination of Chlorophenols",doi:"10.5772/intechopen.79134",slug:"application-of-heterogeneous-catalysts-in-dechlorination-of-chlorophenols",totalDownloads:967,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Chlorophenols (CPs) is a very important kind of basic organic chemical intermediates such as sanitizers, germicides, insecticides and so on; but CPs also constitutes a particular group of priority pollutants that widely distribute in wastewater and the polluted groundwater. Because of their acute toxicity, persistence and low biodegradability, their emissions have been progressively restricted by strong legal regulations. In this chapter, we focused on methods for degrading of CPs recent years, especially by using new heterogeneous catalytic hydrogenation methods to the dechlorination of CPs. The purpose is to introduce scientific research workers and companies to waste water treatments in order to inspire and further better protect the environment.",signatures:"Fuchong Li, Yansheng Liu, Linlei Wang, Xu Li, Tianqiong Ma and\nGuangbi Gong",downloadPdfUrl:"/chapter/pdf-download/62396",previewPdfUrl:"/chapter/pdf-preview/62396",authors:[{id:"250242",title:"Mr.",name:"Fuchong",surname:"Li",slug:"fuchong-li",fullName:"Fuchong Li"},{id:"251354",title:"Prof.",name:"Guangbi",surname:"Gong",slug:"guangbi-gong",fullName:"Guangbi Gong"},{id:"258478",title:"Dr.",name:"Yansheng",surname:"Liu",slug:"yansheng-liu",fullName:"Yansheng Liu"},{id:"258479",title:"Ms.",name:"Linlei",surname:"Wang",slug:"linlei-wang",fullName:"Linlei Wang"},{id:"258480",title:"Mr.",name:"Xu",surname:"Li",slug:"xu-li",fullName:"Xu Li"},{id:"258481",title:"Dr.",name:"Tianqiong",surname:"Ma",slug:"tianqiong-ma",fullName:"Tianqiong Ma"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"10030",title:"Emerging Contaminants",subtitle:null,isOpenForSubmission:!1,hash:"cec08ab5f7b88e8dbe3c8541d3555121",slug:"emerging-contaminants",bookSignature:"Aurel Nuro",coverURL:"https://cdn.intechopen.com/books/images_new/10030.jpg",editedByType:"Edited by",editors:[{id:"14427",title:"Dr.",name:"Aurel",surname:"Nuro",slug:"aurel-nuro",fullName:"Aurel Nuro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7326",title:"Phosphorus",subtitle:"Recovery and Recycling",isOpenForSubmission:!1,hash:"463481a56cd0f4b649285f54a9e5008c",slug:"phosphorus-recovery-and-recycling",bookSignature:"Tao Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/7326.jpg",editedByType:"Edited by",editors:[{id:"185487",title:"Associate Prof.",name:"Tao",surname:"Zhang",slug:"tao-zhang",fullName:"Tao Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7715",title:"Recent Advances in Pyrolysis",subtitle:null,isOpenForSubmission:!1,hash:"76f7f501be4b6e4f5d3f97e81bac2c26",slug:"recent-advances-in-pyrolysis",bookSignature:"Hassan Al- Haj Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/7715.jpg",editedByType:"Edited by",editors:[{id:"12400",title:"Prof.",name:"Hassan Al- Haj",surname:"Ibrahim",slug:"hassan-al-haj-ibrahim",fullName:"Hassan Al- Haj Ibrahim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8889",title:"Solvents, Ionic Liquids and Solvent Effects",subtitle:null,isOpenForSubmission:!1,hash:"75c7231408f17b5af0ff2952627dd5fa",slug:"solvents-ionic-liquids-and-solvent-effects",bookSignature:"Daniel Glossman-Mitnik and Magdalena Maciejewska",coverURL:"https://cdn.intechopen.com/books/images_new/8889.jpg",editedByType:"Edited by",editors:[{id:"198499",title:"Dr.",name:"Daniel",surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8346",title:"Chirality from Molecular Electronic States",subtitle:null,isOpenForSubmission:!1,hash:"2c8c9c50832625da3dc4cee759352246",slug:"chirality-from-molecular-electronic-states",bookSignature:"Takashiro Akitsu",coverURL:"https://cdn.intechopen.com/books/images_new/8346.jpg",editedByType:"Edited by",editors:[{id:"147861",title:"Dr.",name:"Takashiro",surname:"Akitsu",slug:"takashiro-akitsu",fullName:"Takashiro Akitsu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",isOpenForSubmission:!1,hash:"339199f254d2987ef3167eef74fb8a38",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",editedByType:"Edited by",editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10701",title:"Alkenes",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"f6dd394ef1ca2d6472220de6a79a0d9a",slug:"alkenes-recent-advances-new-perspectives-and-applications",bookSignature:"Reza Davarnejad",coverURL:"https://cdn.intechopen.com/books/images_new/10701.jpg",editedByType:"Edited by",editors:[{id:"88069",title:"Associate Prof.",name:"Reza",surname:"Davarnejad",slug:"reza-davarnejad",fullName:"Reza Davarnejad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9953",title:"Azoles",subtitle:"Synthesis, Properties, Applications and Perspectives",isOpenForSubmission:!1,hash:"87a84470866a4c146b5c9c8e46185779",slug:"azoles-synthesis-properties-applications-and-perspectives",bookSignature:"Aleksey Kuznetsov",coverURL:"https://cdn.intechopen.com/books/images_new/9953.jpg",editedByType:"Edited by",editors:[{id:"201033",title:"Prof.",name:"Aleksey",surname:"Kuznetsov",slug:"aleksey-kuznetsov",fullName:"Aleksey Kuznetsov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9197",title:"Organic Synthesis",subtitle:"A Nascent Relook",isOpenForSubmission:!1,hash:"03e0a3f9177c215d245ac49f0275e604",slug:"organic-synthesis-a-nascent-relook",bookSignature:"Belakatte Parameshwarappa Nandeshwarappa",coverURL:"https://cdn.intechopen.com/books/images_new/9197.jpg",editedByType:"Edited by",editors:[{id:"261141",title:"Dr.",name:"Belakatte Parameshwarappa",surname:"Nandeshwarappa",slug:"belakatte-parameshwarappa-nandeshwarappa",fullName:"Belakatte Parameshwarappa Nandeshwarappa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9405",title:"Quinazolinone and Quinazoline Derivatives",subtitle:null,isOpenForSubmission:!1,hash:"95a736fcc80804d0875730b3515aa659",slug:"quinazolinone-and-quinazoline-derivatives",bookSignature:"Ali Gamal Al-kaf",coverURL:"https://cdn.intechopen.com/books/images_new/9405.jpg",editedByType:"Edited by",editors:[{id:"191580",title:null,name:"Ali Gamal",surname:"Al-kaf",slug:"ali-gamal-al-kaf",fullName:"Ali Gamal Al-kaf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74251",slug:"corrigendum-to-enhancing-soil-properties-and-maize-yield-through-organic-and-inorganic-nitrogen-and",title:"Corrigendum to: Enhancing Soil Properties and Maize Yield through Organic and Inorganic Nitrogen and Diazotrophic Bacteria",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74251.pdf",downloadPdfUrl:"/chapter/pdf-download/74251",previewPdfUrl:"/chapter/pdf-preview/74251",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74251",risUrl:"/chapter/ris/74251",chapter:{id:"71840",slug:"enhancing-soil-properties-and-maize-yield-through-organic-and-inorganic-nitrogen-and-diazotrophic-ba",signatures:"Arshad Jalal, Kamran Azeem, Marcelo Carvalho Minhoto Teixeira Filho and Aeysha Khan",dateSubmitted:"May 29th 2019",dateReviewed:"March 6th 2020",datePrePublished:"April 20th 2020",datePublished:"June 17th 2020",book:{id:"9345",title:"Sustainable Crop Production",subtitle:null,fullTitle:"Sustainable Crop Production",slug:"sustainable-crop-production",publishedDate:"June 17th 2020",bookSignature:"Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira",coverURL:"https://cdn.intechopen.com/books/images_new/9345.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"190597",title:"Dr.",name:"Marcelo Carvalho Minhoto",middleName:null,surname:"Teixeira Filho",fullName:"Marcelo Carvalho Minhoto Teixeira Filho",slug:"marcelo-carvalho-minhoto-teixeira-filho",email:"mcm.teixeira-filho@unesp.br",position:null,institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}},{id:"322298",title:"Dr.",name:"Aeysha",middleName:null,surname:"Khan",fullName:"Aeysha Khan",slug:"aeysha-khan",email:"fhw9uhfig@gmail.com",position:null,institution:null},{id:"322299",title:"Dr.",name:"Kamran",middleName:null,surname:"Azeem",fullName:"Kamran Azeem",slug:"kamran-azeem",email:"gisfgiog34sg@gmail.com",position:null,institution:null},{id:"322301",title:"Dr.",name:"Arshad",middleName:null,surname:"Jalal",fullName:"Arshad Jalal",slug:"arshad-jalal",email:"gisfgiog3465sg@gmail.com",position:null,institution:null}]}},chapter:{id:"71840",slug:"enhancing-soil-properties-and-maize-yield-through-organic-and-inorganic-nitrogen-and-diazotrophic-ba",signatures:"Arshad Jalal, Kamran Azeem, Marcelo Carvalho Minhoto Teixeira Filho and Aeysha Khan",dateSubmitted:"May 29th 2019",dateReviewed:"March 6th 2020",datePrePublished:"April 20th 2020",datePublished:"June 17th 2020",book:{id:"9345",title:"Sustainable Crop Production",subtitle:null,fullTitle:"Sustainable Crop Production",slug:"sustainable-crop-production",publishedDate:"June 17th 2020",bookSignature:"Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira",coverURL:"https://cdn.intechopen.com/books/images_new/9345.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"190597",title:"Dr.",name:"Marcelo Carvalho Minhoto",middleName:null,surname:"Teixeira Filho",fullName:"Marcelo Carvalho Minhoto Teixeira Filho",slug:"marcelo-carvalho-minhoto-teixeira-filho",email:"mcm.teixeira-filho@unesp.br",position:null,institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}},{id:"322298",title:"Dr.",name:"Aeysha",middleName:null,surname:"Khan",fullName:"Aeysha Khan",slug:"aeysha-khan",email:"fhw9uhfig@gmail.com",position:null,institution:null},{id:"322299",title:"Dr.",name:"Kamran",middleName:null,surname:"Azeem",fullName:"Kamran Azeem",slug:"kamran-azeem",email:"gisfgiog34sg@gmail.com",position:null,institution:null},{id:"322301",title:"Dr.",name:"Arshad",middleName:null,surname:"Jalal",fullName:"Arshad Jalal",slug:"arshad-jalal",email:"gisfgiog3465sg@gmail.com",position:null,institution:null}]},book:{id:"9345",title:"Sustainable Crop Production",subtitle:null,fullTitle:"Sustainable Crop Production",slug:"sustainable-crop-production",publishedDate:"June 17th 2020",bookSignature:"Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira",coverURL:"https://cdn.intechopen.com/books/images_new/9345.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10191",leadTitle:null,title:"Health and Academic Achievement",subtitle:"New Findings",reviewType:"peer-reviewed",abstract:"Due to the COVID-19 pandemic, the fields of health and education have been extensively revisited worldwide. This book addresses the importance of wellbeing in education. Health and Academic Achievement - New Findings provides recent reflections on the quality of informal learning environments in preschool-aged children, the acceptance of employing online education professionals, the mental health of teachers and students, and the challenges posed by current teaching and learning strategies during COVID-19. This book focuses on human behavior in health and education and will be of interest to readers in fields ranging from biology to sociology as well as readers interested in wellbeing and mental health.",isbn:"978-1-83881-090-0",printIsbn:"978-1-83881-089-4",pdfIsbn:"978-1-83881-091-7",doi:"10.5772/intechopen.90958",price:100,priceEur:109,priceUsd:129,slug:"health-and-academic-achievement-new-findings",numberOfPages:94,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"7ee3f57e3911318305ac5c2eef39f8ab",bookSignature:"Blandina Bernal-Morales",publishedDate:"May 12th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/10191.jpg",keywords:null,numberOfDownloads:3086,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:3,numberOfTotalCitations:4,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 27th 2020",dateEndSecondStepPublish:"June 17th 2020",dateEndThirdStepPublish:"August 16th 2020",dateEndFourthStepPublish:"November 4th 2020",dateEndFifthStepPublish:"January 3rd 2021",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:"Dr. Bernal-Morales earned a Ph.D. in Psychology at the Universidad Nacional Autónoma de México. She is an active member of the Mexican National System of Researchers, the International Society for Neuroethology and the European Behavioral Pharmacology Society. Her research is intended on preclinical and human studies, on topics such as stress, academic performance, motivational behaviour, and experimental pharmacology.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"174721",title:"Dr.",name:"Blandina",middleName:null,surname:"Bernal-Morales",slug:"blandina-bernal-morales",fullName:"Blandina Bernal-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/174721/images/system/174721.png",biography:"Dr. Blandina Bernal-Morales was born in Xalapa, México, 1971. She received a degree in Biological and Pharmaceutical Chemistry from Universidad Veracruzana, México. She obtained an MSci in Neuroethology from the same university, and a Ph.D. in Psychology from the Universidad Nacional Autónoma de México (UNAM). She is a researcher in the neuropharmacology lab of the Institute of Neuroethology at the Universidad Veracruzana and teaches pre-and postgraduate students. Dr. Bernal-Morales’ preclinical and human research concerns stress, academic performance, and experimental pharmacology related to anxiety and depression in infancy and adulthood. She has directed theses and is the author and co-author of original papers about stress, behavioral neuroscience, scientific divulgation, and education.",institutionString:"Universidad Veracruzana",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Universidad Veracruzana",institutionURL:null,country:{name:"Mexico"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1317",title:"Public Health",slug:"social-sciences-education-public-health"}],chapters:[{id:"75394",title:"Introductory Chapter: Wellness for Education",slug:"introductory-chapter-wellness-for-education",totalDownloads:211,totalCrossrefCites:0,authors:[{id:"174721",title:"Dr.",name:"Blandina",surname:"Bernal-Morales",slug:"blandina-bernal-morales",fullName:"Blandina Bernal-Morales"}]},{id:"74883",title:"Relation between Student Mental Health and Academic Achievement Revisited: A Meta-Analysis",slug:"relation-between-student-mental-health-and-academic-achievement-revisited-a-meta-analysis",totalDownloads:950,totalCrossrefCites:0,authors:[{id:"324308",title:"Associate Prof.",name:"Gokhan",surname:"Bas",slug:"gokhan-bas",fullName:"Gokhan Bas"}]},{id:"73484",title:"Child Care for the under 3 Year Old Children: Experiences from Lesotho",slug:"child-care-for-the-under-3-year-old-children-experiences-from-lesotho",totalDownloads:469,totalCrossrefCites:0,authors:[{id:"325409",title:"Ph.D. Student",name:"Edith Matsietsi",surname:"Sebatane",slug:"edith-matsietsi-sebatane",fullName:"Edith Matsietsi Sebatane"},{id:"334664",title:"Dr.",name:"Maretsepile",surname:"Mahamo",slug:"maretsepile-mahamo",fullName:"Maretsepile Mahamo"},{id:"334665",title:"Dr.",name:"Phaello",surname:"Ntsonyane",slug:"phaello-ntsonyane",fullName:"Phaello Ntsonyane"}]},{id:"73150",title:"The Influence of Career Adaptability on Career Calling and Health of Teachers",slug:"the-influence-of-career-adaptability-on-career-calling-and-health-of-teachers",totalDownloads:343,totalCrossrefCites:0,authors:[{id:"286438",title:"Prof.",name:"Willie",surname:"Chinyamurindi",slug:"willie-chinyamurindi",fullName:"Willie Chinyamurindi"},{id:"322754",title:"Dr.",name:"Herring",surname:"Shava",slug:"herring-shava",fullName:"Herring Shava"}]},{id:"74502",title:"E-Learning Acceptance: Online Teaching Degree Earners and What Principals Think",slug:"e-learning-acceptance-online-teaching-degree-earners-and-what-principals-think",totalDownloads:376,totalCrossrefCites:0,authors:[{id:"323087",title:"Dr.",name:"Christopher",surname:"Applegate",slug:"christopher-applegate",fullName:"Christopher Applegate"}]},{id:"73295",title:"The Social Isolation Triggered by COVID-19: Effects on Mental Health and Education in Mexico",slug:"the-social-isolation-triggered-by-covid-19-effects-on-mental-health-and-education-in-mexico",totalDownloads:739,totalCrossrefCites:1,authors:[{id:"218681",title:"Dr.",name:"Gabriel",surname:"Guillén-Ruiz",slug:"gabriel-guillen-ruiz",fullName:"Gabriel Guillén-Ruiz"},{id:"306437",title:"Dr.",name:"Emma Virgina",surname:"Herrera-Huerta",slug:"emma-virgina-herrera-huerta",fullName:"Emma Virgina Herrera-Huerta"},{id:"306438",title:"MSc.",name:"Ana Karen",surname:"Limón-Vázquez",slug:"ana-karen-limon-vazquez",fullName:"Ana Karen Limón-Vázquez"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"184402",firstName:"Romina",lastName:"Rovan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/184402/images/4747_n.jpg",email:"romina.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8645",title:"Contemporary Topics in Graduate Medical Education",subtitle:null,isOpenForSubmission:!1,hash:"76d224ba3c158c43fda8141a61ababd6",slug:"contemporary-topics-in-graduate-medical-education",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, James P. Orlando and Thomas J. Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/8645.jpg",editedByType:"Edited by",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"71034",title:"Growth Kinetics of Thin Film Epitaxy",doi:"10.5772/intechopen.91224",slug:"growth-kinetics-of-thin-film-epitaxy",body:'
Epitaxial thin films and artificial multilayers are grown on solid single-crystal surfaces with atomic monolayer thickness control either by chemical vapor deposition (CVD) [1, 2] or by molecular beam epitaxy (MBE). In CVD, precursor molecules are thermally decomposed in a continuous flow oven in a background atmosphere of clean inert gas, whereas in MBE the surface is held in ultrahigh vacuum (UHV, 10−8 Pa). Controlling the growth morphology is a challenge in both fabrication techniques; it requires knowledge of both thermodynamics and of kinetics.
As with other thin films, epitaxial films can provide properties or structures that are difficult or impossible to obtain in bulk materials. Indeed, many materials are easier to grow epitaxially than to grow and shape in bulk form. Compared to polycrystalline films, epitaxial films have at least four advantages, which are elimination of grain boundaries, ability to monitor the growth by surface diffraction, control of crystallographic orientation, and the potential for atomically smooth growth.
Epitaxy is the special type of thin film deposition and is particularly demanding about all aspects of process control. Film quality is readily degraded by small amounts of contamination, nonstoichiometry, and lattice mismatch. On the other hand, when good control is achieved, complex multilayered structures with unique properties can be fabricated with atomic layer precision. Moreover, the precise structural and compositional nature of the epitaxial growth surface allows the use of growth monitoring techniques that give detailed information about film growth mechanisms on an atomic scale.
The purpose of this chapter is to guide the new readers who have just entered this field. Based on the in-depth analysis of the main aspects of epitaxy technology by cross-referencing the relevant literature provided by experts, the research and development direction of epitaxy technology are evaluated. Epitaxy refers to the orderly growth of crystal materials on the substrate crystal and the establishment of a clear crystal relationship at the interface between the two crystal lattices. In homoepitaxy, the epitaxial layer and substrate are made of the same material, while in heteroepitaxy, they are made of different materials. If two materials have the same crystal structure, they are called similar, otherwise they are called different. In the epitaxial structure, the same lattice spacing between the epitaxial material and the substrate material in the same direction plane is called lattice matching, otherwise, lattice mismatch. At one growth site, the constituent atoms are bonded to the epitaxial film, in which the bonding leads to the unequal probability of the atoms’ attachment and desorption in the equilibrium. Atoms bonded with energy higher than the growth site are considered to be part of the epitaxial film. All atoms bonded with less energy than the growth sites are called adatoms. In the region of relatively high temperature, the mobility of atoms is stronger, and they can aggregate into two-dimensional islands, thus forming a new surface step. The method of epitaxy can be divided into (1) solid phase epitaxy (SPE), (2) liquid phase epitaxy (LPE), and (3) vapor phase epitaxy (VPE). This chapter only discusses the growth kinetics of each stage, including gas adsorption, surface diffusion, interaction of adsorbed species, bonding of surface-forming film materials, and nucleation and microstructure formation of epitaxial growth, rather than specific epitaxial growth methods.
In the early study of thin films, it was found that the growth process of thin films is a complex process, including atom arrival, atom adsorption, diffusion/migration on the surface, nucleation, and coalescence. It was also found that four parameters influence the film growth: pressure, deposition rate, substrate temperature, and substrate structure. Also, the binding energy of the adsorbent to the substrate is of vital importance, but since this is not a controllable parameter, we will ignore it here. For metals adsorbed on insulator surfaces, we assume that every atom that impinges on the surface stays there. For other systems one may operate with a sticking coefficient, which is the probability of an atom sticking to the surface upon impingement. The adsorbed atoms can exhibit a complicated dynamical behavior at the surface: Atoms can move around on the corresponding surface, and they can diffuse into the substrate or even desorb from the substrate. When two atoms meet, they form metastable nuclei. This is referred to as nucleation. Nuclei can also split up, rotate, or migrate across the surface. At a certain critical size, the nuclei become stable, and this is where actual crystal growth begins. Initial film growth is categorized into three different types of behaviors. The three growth modes are called Volmer-Weber (VW), Stranski-Krastanov (SK), and Frank-van der Merwe (FM) [3]. Figure 1 illustrates the different growth modes, which can be described as follows. For VW growth the growth is occurring as three-dimensional (3D) nuclei which later coalesce. SK growth is characterized as the formation of one or more layers upon which nucleation and growth dominate. FM growth or layer-by-layer growth is the growth mode that has our interest because of the well-ordered surfaces produced this way. To achieve layer-by-layer growth of atoms, instead of 3D growth, one must try to reduce the nucleation rate. This can be done by (1) reducing the pressure since it is believed that residual gases can create nucleation sites on the substrate surface, (2) increasing the substrate temperature which promotes the mobility of the atoms on the surface, or (3) reducing the deposition rate. RHEED can be used to verify the growth mode because oscillations of the intensity indicate that layer-by-layer growth is occurring.
Illustration of the three different growth modes. Left: FM growth. Center: SK growth. Right: VW growth.
Firstly, the heart of the thin film process sequence will be discussed. Deposition may be considered as six sequential substeps, and that will be examined one by one in the next section. The arriving atoms and molecules must first (1) adsorb on the surface, after which they often (2) diffuse some distance before becoming incorporated into the film. Incorporation involves (3) reaction of the adsorbed species with each other and the surface to form the bonds of the film material. The (4) initial aggregation of the film material is called nucleation. As the film grows thicker, it (5) develops a structure, or morphology, which includes both topography (roughness) and crystallography. A film’s crystallography may range from amorphous to polycrystalline to single-crystal. The last is obtained by epitaxy—that is, by replicating the crystalline order of a single-crystal substrate. Epitaxy has special techniques and features which are also the focus of this chapter, and (6) diffusional interactions occur within the bulk of the film and with the substrate. These interactions are similar to those of post-deposition annealing, since they occur beneath the surface on which deposition is continuing to occur. Sometimes, after deposition, further heat treatment of a film is carried out to modify its properties. For example, composition can be modified by annealing in a vapor, and crystal growth can be achieved by long annealing or by briefly melting. These post-deposition techniques will not be discussed in this chapter.
The word “epitaxy” comes from the Greek word epi, which means “located on,” while “taxis” means “arranged.” Epitaxial growth refers to the registration or alignment of the crystal atoms in the single-crystal substrate into the single-crystal film. More precisely, if the atoms of the substrate material at the interface occupy the natural lattice position of the film material, the interface between the film and the substrate crystal is epitaxial, and vice versa. These two materials do not have to be the same crystal, but they are usually like this. When the film material is the same as the substrate material, the crystallographic registration between the film and the substrate is usually called uniform epitaxy. The epitaxial deposition of thin film materials different from substrate materials is called heteroepitaxy.
Epitaxial growth technology has important advantages in material manufacturing of microelectronic and optoelectronic applications. It can be used to prepare films with very good crystal quality. This also makes it possible to fabricate composite films with ideal electronic or optical properties that do not exist in nature. There are many factors that affect the selection of materials and processing methods for epitaxial growth. It includes the chemical compatibility of the film material and the substrate material; the magnitude of the energy band gap of the film material and its relationship with the energy band gap and the edge of the energy band of the substrate material; whether the minimum value of the conduction band energy and the maximum value of the valence band energy are in the same wave vector position is an important factor in optical applications; and the chemical compatibility of the dopant applied to produce the required functional behavior.
In heteroepitaxial film growth, the substrate crystal structure provides a template for locating the atoms of the first arriving film material, and each atomic layer of the film material provides the same function for the next layer formed by FM growth, as described in the previous section. If the substrate is a single crystal with good quality and the vapor supersaturation is moderate, the atoms have a high mobility on the growth surface; this is a common growth mode. If the lattice parameter mismatch is not too large, for example, it is less than 0.5%, the growth tends to plane. If the mismatch is large, the material tends to gather on the surface of the island, but remains epitaxial.
Plane growth is carried out by attaching atoms to the edge of the step, which causes the step to move on the growth surface. Generally speaking, the unstressed lattice size of the thin film material in the direction parallel to the interface, such as
The definition of mismatch strain in Eq. (1) is consistent with the standard definition of tensile elastic strain of material in the state of no stress. Sometimes we use the denominator of
Schematic illustration of heteroepitaxial film growth with lattice mismatch. The substrate thickness is presumed to be large compared to film thickness, and the structure extends laterally very far compared to any thicknesses. Under these circumstances, the lattice mismatch is accommodated by elastic strain at the deposited film.
Take a simple comparison of different forms of energy. Both the elastic energy and the bonding energy can be compared with
In this section, the factors controlling the early growth of thin films on the substrate are described from the perspective of atomism. This process starts with a clean surface of the substrate, which at a temperature of
Schematic showing the atomistics of film formation on substrates.
In thin film deposition, because the vapor phase and the substrate are not the same material phase, and the temperature of the substrate is usually lower than that of the vapor phase, the situation is often complex. In this case, the definition of equilibrium vapor pressure is not clear. However, in most cases, when the vapor pressure is lower than the equilibrium vapor pressure, the film material will not deposit on the growth surface, which is an operational definition of
Consider a molecule approaching a surface from the vapor phase, as shown in Figure 4. Upon arriving within a few atomic distances of the surface, it will begin to feel an attraction due to interaction with the surface molecules. This happens even with symmetrical molecules and with inert gases, neither of which has dipole moments. It happens because even these molecules and atoms act as oscillating dipoles, and this behavior creates the dipole-induced-dipole interaction known as the Van der Waals force or London dispersion force. Polar molecules, having permanent dipoles, are attracted more strongly. The approaching molecule is being attracted into a potential well like the one that was illustrated in Figure 5 for condensation. Condensation is just a special case of adsorption in which the substrate composition is the same as that of the adsorbate. This is sometimes the case in thin film deposition and sometimes not. In either case, the molecule accelerates down the curve of the potential well until it passes the bottom and is repelled by the steeply rising portion, which is caused by mutual repulsion of the nuclei. If enough of the molecule’s perpendicular component of momentum is dissipated into the surface during this interaction, the molecule will not be able to escape the potential well after being repelled, though it will still be able to migrate along the surface. This molecule is trapped in a weakly adsorbed state known as physical adsorption or physisorption. The fraction of approaching molecules so adsorbed is called the trapping probability, δ, and the fraction escaping (reflecting) is (1 − δ) as shown in Figure 4. The quantity δ is different from the thermal accommodation coefficient,
Adsorption processes and quantities. a, is used only for condensation (adsorption of a material onto itself). A vertical connecting bar denotes a chemical bond.
Molecular potential energy diagram for evaporation and condensation.
Gas-conductive heat transfer between parallel plates at (a) low and (b) high Knudsen numbers, K.
In general, a molecule is at least partially accommodated thermally to the surface temperature,
In addition to the low temperature
These examples will be revisited after a more detailed study of the energetics of the precursor adsorption model.
Consider a hypothetical diatomic gas phase molecule Y2(g) adsorbing and then dissociatively chemisorbing as two Y atoms. Figure 7 shows a diagram of the potential energy versus molecular distance,
Energetics of the precursor adsorption model. Energy scale is typical only.
There are two ways in which vapor can arrive at the surface having an
A principal advantage of the energy-enhanced deposition processes is that they can provide enough energy so that the arriving molecules can surmount the
Conversely, in thermally controlled deposition processes such as evaporation and CVD, the vapor often adsorbs first into the precursor state, that is, it falls to the bottom of the well on curve a or b. Thence, it may either chemisorb by overcoming the barrier
Surface diffusion is one of the most important determinants of film structure because it allows the adsorbing species to find each other, find the most active sites, or find epitaxial sites. Various methods have been applied to measure surface diffusion rates of adsorbed molecules. The role of surface diffusion in thin films has mainly been inferred from observations of film structure. Scanning tunneling microscope (STM) gives us the extraordinary power to directly observe individual atoms on surfaces in relation to the entire array of available atomic surface sites. STM observation of the diffusion of these atoms should ultimately provide a wealth of data relevant to thin film deposition.
The expression of the surface diffusion rate will be derived using the absolute reaction rate theory [9]. Although this approach cannot provide a quantitative estimate of the diffusion rate, it will provide valuable insight into what factors determine this rate. Figure 7 showed that adsorbed atoms or molecules reside in potential wells on the surface, but it did not consider the variation in well depth with position,
Surface diffusion: (a) potential energy vs. position x along the surface and (b) typical adsorption sites on a surface lattice.
There will be some flux,
Considering the adsorbate to be a two-dimensional gas at thermal equilibrium, the Maxwell-Boltzmann distribution applies to these translating molecules. Thus, we may use
where
To understand nucleation, the concept of surface energy needs to be introduced. The familiar experiment of drawing a liquid membrane out of soapy water on a wire ring is illustrated in Figure 9. The force required to support the membrane per unit width of membrane surface is known as the surface tension,
Surface tension of a liquid membrane.
Thus, surface tension (N/m) and surface energy per unit area (J/m2) are identical, at least for liquids. For solids at
The surface energy exists because the molecules in the condensed phase attract each other, which is the reason for condensation. The generation of a surface involves the removal of molecular contact (bond breaking) from above the surface, thus involving energy input. Therefore, the movement in the condensed phase can occur within a certain range, and this movement will continue to minimize the total surface energy,
For the deposition on foreign substrates, the substrate
Film growth modes: (a) Frank-Van der Merwe (layer), (b) Volmer-Weber (island), and (c) Stranski-Krastanov.
In other words, the total surface energy of the wetted substrate is lower than that of the bare substrate. This leads to the smooth growth of the atomic layer, which is the Frank-van der Merwe growth mode. To achieve this mode, there must be a strong enough bond between the film and the substrate to reduce the
Different crystal shapes imply that underlying substrates critically influence the vapor phase growth mode. The substrate-dependent growth characteristics of various low-dimensional nanocrystals in both solution and vapor phase growth have been discussed for their growth mechanisms [10, 11].
In general, within the framework of the nucleation kinetics model [12], a gas phase growth reaction can be divided into two steps: (1) adsorption of vaporized precursors onto substrates and diffusion to the preferential growth sites and (2) incorporation of precursors into existing nuclei. The rate-limiting step in vapor phase crystal growth can be determined as either the diffusion-limited step or the reaction-limited step.
One way to achieve smooth growth is to reduce substrate temperature,
The question of whether a process is approaching equilibrium or is instead limited by kinetics is an important one, and it arises often in thin film deposition. Process behavior and film properties are profoundly affected by the degree to which one or the other situation dominates. The answer is not always apparent in a given process, and this often leads to confusion and to misinterpretation of observed phenomena. Therefore, to elaborate briefly, the generalized mathematical representation of this dichotomy is embodied in Eq. (9):
where −
Eq. (9) describes the rate balance of a reversible reaction, and Eq. (10) defines its equilibrium constant:
Approach to equilibrium requires the forward and reverse rates to be fast enough so that they become balanced within the applicable time scale, which may be the time for deposition of one monolayer, for example. Then, the concentrations of reactant and product species are related by the difference in their free energies,
where
where
The difficulty of answering the question of kinetics versus thermodynamics arises from the fact that the applicable rate constants,
When wetting is complete and Eq. (8) holds, the adsorbing atoms do not accumulate into 3D islands but, instead, spread out on the surface in a partial monolayer as shown in Figure 10a. Because total surface energy is reduced rather than increased by this process, there is no nucleation barrier in going from the vapor state to the adsorbed state, that is, the term in Eq. (13) is negative when the interfacial area is included:
where
This means that deposition can proceed even in undersaturated conditions.
Assuming, as we did for 3D nucleation, that there is sufficient surface diffusion for equilibration, the partial monolayer of adsorbed atoms will behave as a 2D gas. By analogy to a 3D gas condensing into 3D nuclei, the 2D gas then condenses into 2D nuclei as illustrated in Figure 11. Here, only the top monolayer of atoms is drawn. The “atomic terrace” to the left represents a monolayer which is one atomic step (a) higher than the surface to the right. But unlike the 3D nucleation case, 2D nucleation from a 2D gas involves no change in any of the
Geometry of 3D nucleation, looking down at the surface.
and
Here,
It can be seen from the above that the surface energy depends not only on the facet direction discussed in Section 3.3.1 but also on the density of steps and kinks (Williams, 1994). The equilibrium densities of these two features increase with
During film deposition, if the surface diffusion rate is high enough and
Two-dimensional nucleation is usually preferred to 3D because it leads to smooth growth. In nonepitaxial growth, large grain size (coarse nucleation) may be desired in addition to smoothness. Unlike in the 3D nucleation case, here large grain size and smoothness are not incompatible. That is, if adatom mobility on the substrate is sufficient, large 2D nuclei will form before the first monolayer coalesces, and then subsequent monolayers will grow epitaxially on those nuclei. But there is another problem. High adatom mobility requires a low surface diffusion activation energy,
The texturing described here refers to the crystal structure rather than the surface morphology, although they are often correlated. The degree of texturing is the degree to which the crystallites in a polycrystalline film are similarly oriented. In one limit, there is random orientation (no texturing), and in the other limit, there is the single crystal. A material in which the crystallites are nearly aligned in all three dimensions is called a “mosaic,” and the limit of a perfect mosaic is a single crystal. The degree of texturing is best measured by X-ray techniques. Texturing can occur in one, two, or three dimensions. Epitaxy is the best way to achieve perfect three-dimensional texturing. Epitaxy occurs when the bonds of the film crystal align with the bonds of the substrate surface, making the interfacial energy,
Because of the importance of atomically abrupt interfaces, we will focus next on physical and chemical vapor deposition processes which operate far from equilibrium in the sense that
In addition to non-equilibrium growth, one must also have chemical compatibility and reasonably good lattice match between layers to obtain good heteroepitaxy. Now let us move on to chemical interactions. Epitaxy is particularly sensitive to degradation by impurities and defects. Moreover, complete disruption of epitaxy can occur if even a fraction of a monolayer of disordered contaminant exists on the substrate surface or accumulates on the film surface during deposition. This is because the depositing atoms need to sense the crystallographic order of the underlying material and chemical forces extend only one or two atomic distances. An island of surface contaminant becomes the nucleus for the growth of nonepitaxial material, and this region often spreads with further deposition, as shown in Figure 12, rather than being overgrown by the surrounding epilayer. Contamination can enter at any step in the thin film process. Removal of substrate contamination to improve adhesion is not discussed here. The additional substrate requirements that must be met to achieve epitaxy are of great concern. These include crystallographic order, submonolayer surface cleanliness, and chemical inertness toward the depositing species. Any crystallographic disorder at the substrate surface will be propagated into the depositing film. A few materials can be obtained as prepolished wafers with excellent surface crystallography. In other cases, careful preparation is necessary to remove the disorder introduced by wafer sawing and mechanical polishing. The crystallographic damage produced by polishing-grit abrasion extends into the crystal beneath the surface scratches, to a distance of many times the grit diameter, as shown by the dislocation line networks in Figure 13a. This damaged region must be removed by chemical etching. To promote uniform etching and prevent pitting, the “chemical polishing” technique is used. In this technique, the etchant is applied to a soft, porous, flat pad which is wiped across the wafer. If the depth of etching is insufficient, some damage will remain, as shown in Figure 13b, even though the surface may appear absolutely flat and smooth under careful scrutiny by Nomarski microscopy. However, these defects can be revealed by dipping the wafer in a “dislocation” etchant [13] that preferentially attacks them and thereby decorates the surface with identifying pits and lines. The crystallographic disorder at these defects, consisting of strained and broken bonds, raises the local free energy and thereby increases reactivity toward the etchant. After sufficient chemical polishing, the only remaining defects will be those grown into the bulk crystal, as shown at the etch pits in Figure 13c.
Effect of submonolayer surface contamination on epitaxy.
Crystallographic damage due to wafer sawing and mechanical polishing.
After crystallographic preparation of the substrate, surface contamination must be removed. In the final chemical cleaning step prior to wafer installation in the deposition chamber, one seeks to minimize residual surface contamination and also to select its composition so that it is more easily removed by the techniques available in the chamber.
Finally, the lattice mismatch is discussed. The expression of lattice mismatch factor is as follows:
Having now dealt with avoiding precipitates and controlling point defects, we can proceed to the problem of minimizing other crystallographic defects. It is useful to think of defects in terms of their dimensionality. Point defects are zero-dimensional (0D), while precipitates or disordered regions are 3D. Planar (2D) defects include grain boundaries, twin planes, stacking faults, and antiphase domain boundaries. Dislocations are line (1D) defects. We will see below how dislocations arise from the fractional lattice mismatch, f, at heteroepitaxial interfaces. For this purpose, we consider the simple square symmetry of cubic material growing in (001) orientation on a (001)-oriented substrate, although the same principles apply to other symmetries. Figure 14 shows the various modes of mismatch accommodation. In the special case of perfect match (a), the lattices are naturally aligned, and the growth is therefore “commensurate” without requiring lattice strain. In (b–d), the atomic spacing of the epilayer, ae, is larger than that of the substrate, as. In fact, f has been made quite large (0.14) here so that it may be readily observed, but it is much smaller in most heteroepitaxial systems of interest.
Modes of accommodating epilayer lattice (solid circles) to substrate lattice (white circles).
There are several ways in which lattice mismatch can be accommodated. In Figure 14b, bonding across the interface is weak, so that the epilayer “floats” on top of the substrate and is therefore “incommensurate” with it. This mode occurs, for example, with materials having a 2D, layered structure, such as graphite and MoS2 [14]. In such compounds, there is no chemical bonding perpendicular to the hexagonally close-packed and tightly bonded basal plane, so that interaction of such a film with the substrate is only by Van der Waals forces. These weak forces are often strong enough to maintain rotational alignment with the substrate and to produce a small periodic compression and expansion in the epilayer lattice, but they are not strong enough to strain the epilayer so that it fits that of the substrate. There is a small periodic distortion in ae as the lattices fall in and out of alignment periodically across the interface, and this produces a beautiful Moire pattern in STM images of the epilayer surface. Incommensurate growth can also occur when chemical bonding is weak because of a difference in bonding character between film and substrate. Chemical bonding can also be blocked by passivating the substrate surface.
In the more common situation, the epilayer is chemically bonded to the substrate, thus forming a unit called a “bicrystal.” A thin epilayer with small f is likely to become strained to fit the substrate in
Here, the second equality was obtained by setting
(where Y′ is sometimes known as the biaxial elastic modulus. Poisson’s ratio).
In Figure 14c, the epilayer is shown compressed in
X-ray diffraction measurement of the expanded atomic plane spacing a′ in z can be used with Eq. (17) to determine the fraction by which the epilayer lattice has compressed to fit the substrate in x and y. Electron diffraction can be used only when the change in a is larger than a few percent, because the peaks are much broader than in X-ray diffraction. The strain energy stored per unit area in the coherently strained epilayer Uϵ is obtained by integrating force over distance as the film is compressed toward a fit to the substrate, starting from the relaxed state shown in Figure 14b. The force to maintain the compression is supplied from the rigid substrate by bonding across the interface. The integration can be done in one direction and then doubled to account for the orthogonal direction. The force,
where
The force of compression creates shear stresses in crystal planes that are not perpendicular to it, and along certain of these planes, the film will “slip” to relieve stress by breaking and then reforming bonds. After slippage, there will be extra rows of substrate atoms which are not bonded to the film, such as the one shown along
Usually, defects of any dimensionality (0D through 3D) are undesirable within a film unless they are introduced for a specific purpose such as doping. Films in electronic applications are particularly sensitive to degradation by defects. They disturb the lattice periodicity and thus locally alter the band structure of a semiconductor crystal, often producing charge carrier traps or charge recombination centers within the band gap. Defects of 1D and 2D also provide paths for electrical leakage and impurity diffusion. Thus, in heteroepitaxial growth, it is important to know what conditions have to be met to avoid the generation of misfit dislocations. This situation needs to be analyzed based on the discussion of the properties of dislocations. It is not discussed here because of the space.
The above discussion has examined the factors determining epitaxy film structure, topography, interfacial properties, and stress. The kinetic mechanism of atom adsorption, diffusion, reaction, nucleation, and texture is given. The kinetic characteristics and related technological conditions of two-dimensional nucleation and layered ordered growth are described. A new optimized denotation index (a
Soil is usually the most available growing medium for all kinds of plants. Almost all of the vegetables we find on grocery store shelves are produced either directly or indirectly in open field soils. In general, soil serves two basic purposes—it acts as a reservoir to retain nutrients and water, and it provides physical support for the plant through its root system [1]. A well-drained, pathogen-free field soil of uniform texture is the least-expensive medium for plant growth, but the soil does not always occur in this perfect package [2]. Existing levels of abiotic and biotic stresses in soil severely affects agricultural and horticultural production. Some soils are poorly textured or shallow and provide an unsatisfactory root environment because of limited aeration and slow drainage. Pathogenic organisms are a common problem in field soils. On the other side, the shrinking of agricultural land due to continuous urbanization and industrialization also affects the total agriculture and horticulture production [1]. Strong worldwide urbanization also puts a demand for producing vegetables in close proximity to the consumers. When adverse conditions are found in soil and reclamation is impractical, some form of an alternate method of cultivation without soil may be justified. Soilless cultivation is another way of growing agricultural and horticultural crops. The recent scientific invention proved that it is also possible to produce crop plants without soil,
Presently, many countries are focusing special attention towards soilless cultivation,
Soilless culture is rapidly gaining momentum and popularity and is one of the fastest-growing sectors of agriculture. There has already been a great deal of buzz throughout the scientific community for the potential to use soilless culture in future food production. Soilless culture could well dominate food production in the future. The application of these systems is likely to increase close to existing cities as well as in mega-cities worldwide in the near future. To meet the growing demand for soilless culture technology, ICAR-Indian Institute of Horticultural Research, Bengaluru has standardized a simple and low-cost production technology, including nutrient formulations for open and polyhouse soilless cultivation of most commonly consumed vegetables
Soilless culture is a method of growing plants without soil. In this method of cultivation, plants are grown by providing nutrients, water, and physical support in a container. Soilless culture is normally called water or solution culture, the technique was firstly termed by W.F. Gericke as hydroponics (water working) in the 1930s [8]. Several workers use the term hydroponics to mention the systems that include some kind of organic or inorganic substrates to support the plant physically and to hold water in its inert matrix. The hydroponics method of cultivation has been used every now and then in the world as a profitable business of growing vegetable, flower, ornamental and medicinal plants. Because of the availability of various types of substrates along with scientific advancements, soilless culture has entered into the viable commercial stage. It supplies fresh vegetables in countries with limited arable land as well as in small countries with dense populations. Plants grown in hydroponics or soilless culture had consistently superior quality, high yield, rapid harvest, and high nutrient content.
Soilless culture in bags, pots, or troughs with a lightweight medium,
The existence of a diverse climate in India ensures the availability of all types of fresh vegetables. India stands second in vegetable production in the world, after China. As per National Horticulture Database (Second Advance Estimates) published by National Horticulture Board, during 2019–2020, India produced 191.77 million metric tonnes of vegetables. The area under vegetable cultivation is 10.35 million hectares. The global area under soilless cultivation of vegetables is 95,000 ha only. This is a very meagre area at the world level when compared to an area under soil-based cultivation of vegetables. There is a range of limitless options in soilless culture regarding the type of vegetable crops to be grown. The list of suitable vegetable crops under different groups for growing in both open-field and polyhouse soilless culture conditions is given in Table 1.
Type of vegetable crops | Name of the vegetable crops |
---|---|
Transplanted vegetables | Tomato, brinjal, chilli, onion, cabbage, cauliflower, and broccoli |
Direct sown vegetables | Okra, zucchini, cucumber, ridge gourd, bottle gourd, spine gourd, radish, beetroot |
Perennial vegetables | Drumstick, curry leaf, chekkurmanis and agathi |
Leafy vegetables | Amaranthus, palak, and lettuce |
Spice crops | Coriander and fenugreek |
Legume vegetables | French bean, garden peas, Dolichos, cowpea, and yard long bean |
List of vegetable crops that can be grown successfully under soilless culture.
Source: Kalaivanan
Based on the space available in terrace or rooftop of home two types of gardens can be adopted
Terrace garden can be two models i. open garden and ii. shade net garden. In an open garden, containers are placed on the terrace, and vegetables and medicinal herbs are grown. Hence, the investment is only on containers, growing media, seeds, crop production and protection chemicals, and home garden tools. In the case of a shade net garden, a shade net is installed and crops are grown inside the shade net. The investment is Rs 100/square feet in addition to the above-mentioned investment. However, the shade net garden protects the plants from pests and diseases to a greater extent, reduces the use of crop protection measures, and the crops and produce are much healthier as they are grown under protected conditions.
Installation of shade net is very simple and can be done by any local artisans (Figure 1). It requires galvanized pipes (G.I.) of 60 mm diameter (“B” Class), fasteners, and an agro shade net (50%). The length and width of the shade net can be any size based on the area available and the height will be 8½ feet. The G.I pipes are grouted to the terrace if it is to be on a terrace or can be fixed on the ground with proper concrete foundation if it is to be on an open yard. The space between two adjacent G.I. columns is 10 feet. A simple door is required to be provided at any one convenient place of the structure. The dimension of the door is 1.2 × 1.8 m (W × H). The entire G.I structure is covered with a 50% agro shade net with fasteners. The containers, such as grow bags, pots, and rectangular trays, can be placed inside the shade net.
Shade net garden.
The vertical home structure is designed considering (i) size suitable for terrace/utility area, (ii) to grow vegetables consumed by a family on daily basis, (iii) pots suitable for respective vegetables/leafy vegetables/flowers/medicinal plants, (iv) structure suitable for handling in terms of the height of reach, mobility, the requirement of light available to all the pots, and (v) effective utilization of maximum area for growing plants. The vertical garden structure has three major substructures
Vertical garden.
The vertical garden has four height levels and the topmost level was decided based on the maximum reach of a normal human being hand reach. Vegetable crops that grow a height of higher than 2 feet (tomato, chilli, brinjal, peas, etc.,) are placed in the bottom-most level of the vertical garden structure. Leafy vegetables (palak, amaranthus, coriander, etc.) that grow to a height of about one foot are placed above the bottom layer. Medicinal crops or again leafy vegetables are placed above the second bottom layer. Flowers are placed at the topmost level of the structure which would give aesthetic look.
According to [11, 12, 13] substrates must have the following properties:
Inert (no reaction with the nutrients)
pH neutral
Porous
Low density
Hydrophilic
There should not be any radioactive pollutants and heavy metals in substrates
As much as possible the substrate should be usable in natural form without any additional processing
The substrate can either be obtained by mining from nature or otherwise produced in the industry
It should have constant quality without much change particularly in physical properties during use
Substrate should have a lifetime of a minimum of 3 years
The substrate should be easy to handle and use
The cost of the substrate should be low
The nature of the substrate should be either biodegradable or destroyed without causing any environmental risk
It should not undergo any structural change during repeated sterilization
The substrate must be free from pest and disease-causing agents/pathogens.
Substrates, such as rockwool, cocopeat, clay granulates, pumice, sand, Irish peat, and perlite, are able to meet the above specifications [14, 15].
Ideal substrate should fulfil four important roles
Authors reference | Country | Area in ha | Media/ system | Key crops grown |
---|---|---|---|---|
Hassall | Spain | 4000 | Rockwool, sand, perlite | Cucumber, capsicum, tomato, lettuce |
Hassall | Netherlands | 10,000 | Rockwool | Strawberry, tomato, cucumber, lettuce, cauliflower, muskmelons, gerbera, chrysanthemum, carnation |
Jiang | China | 1250 | Rockwool, NFT, DFT | Carnation, roses, chrysanthemum, tomato, cucumber, lettuce |
Donnan [18] | France | 1000 | Rockwool | Capsicum, tomato, cucumber, cut flowers |
Bradley | Canada | 2000 | Rockwool and perlite | Cucumber, capsicum, tomato, |
Various soilless culture media and crops grown.
An ideal potting medium for vegetable crops must be well aerated and porous, hold sufficient moisture, have adequate drainage, and must provide adequate nutrients to the plants. Among all substrates, cocopeat is the one that retains moisture, stores, and releases nutrients to roots over an extended period of time for enhancing plant growth. Therefore, it is considered an ideal soilless growing media for vegetable crops. In this connection, the technology for conversion of raw coir pith into fermented cocopeat has been standardized at ICAR-Indian Institute of Horticultural Research, Bengaluru and released as a product called Arka Fermented Cocopeat (AFC). Arka Fermented Cocopeat is developed by the solid-state fermentation of raw coir pith, by employing a fungal consortium and enriched with the Arka Microbial Consortium comprising of N fixing, P and Zn solubilizing, and plant growth-promoting microbes could be a potential substrate for soilless cultivation of vegetables, flowers, and medicinal crops, etc. Arka Fermented Cocopeat is very popular and used as a growing media in the nursery for raising seedlings of various vegetable crops and rootstocks of different fruit crops. However, it has not been evaluated as a growing media for the cultivation of vegetables under soilless conditions. Therefore, a series of experiments on soilless cultivation of different vegetables were conducted at ICAR-IIHR to study the suitability of Arka Fermented Cocopeat (AFC) as substrate along with commercial cocopeat and soil. The results revealed that the substrate AFC recorded better yield and quality in vegetable crops compared to commercial cocopeat and soil. Arka Fermented cocopeat (AFC) alone or AFC + vermicompost or AFC + vermicompost/FYM/compost are also the best substrate combination for growing vegetable crops under soilless cultivation.
Raw coir pith fermented cocopeat
Seventeen nutrient elements are considered essential for the growth and development of any living plant on the earth. The absence of anyone essential nutrient will make it difficult for the growth of plants and will not allow the plant to complete its life cycle. Further, the role of essential nutrients cannot be played or replaced by any other nutrients. In soilless culture or hydroponics, the nutrients which are considered essential should be supplied in the form of nutrient solution. Mostly C, H, and O are taken by the plants from water and CO2 in the air. Remaining essential nutrients
Nutrient | Cooper [20] | Steiner [21] | Hewitt [22] | Hoagland & Arnon [23] |
---|---|---|---|---|
mg L−1 | ||||
N | 200–236 | 168 | 168 | 210 |
P | 60 | 31 | 41 | 31 |
K | 300 | 273 | 156 | 234 |
Ca | 170–185 | 180 | 160 | 160 |
Mg | 50 | 48 | 36 | 34 |
S | 68 | 336 | 48 | 64 |
Fe | 12 | 2–4 | 2.8 | 2.5 |
Cu | 0.1 | 0.02 | 0.064 | 0.02 |
Zn | 0.1 | 0.11 | 0.065 | 0.05 |
Mn | 2.0 | 0.62 | 0.54 | 0.5 |
B | 0.3 | 0.44 | 0.54 | 0.5 |
Mo | 0.04 | Not considered | 0.04 | 0.01 |
Concentration ranges of essential mineral elements according to various authors.
Proper nutrition factors, such as pH level, electrical conductivity (EC), the types of nutrition, the composition of nutrients irrigated, and so on are the key factors to improve the quality and yield of vegetables. Vegetable crops can be grown organically by mixing organic manures, such as FYM, compost (kitchen waste compost, city compost), and vermicompost, with substrate cocopeat @ 1:1:1 ratio which will take care of the nutrient requirement of the plants. Vermicompost @100 g/plant should be applied at monthly intervals. Decomposed kitchen waste can also be applied. ICAR-IIHR standardized nutrient solution (Arka Sasya Poshak Ras) may be practiced for meeting the nutrient requirement of the plants under cocopeat-based soilless cultivation. Arka Sasya Poshak Ras is a liquid nutrient formulation (comprising solutions A and B) is a unique blend of the macro and micronutrients which are well balanced to support the growth of vegetables.
It is suitable for most commonly used vegetables (tomato, chilli, cabbage, zucchini, cucumber, ridge gourd, French bean, peas, cowpea, Dolichos, etc.) and leafy vegetables (amaranthus, coriander, palak, etc.)
One litre each of nutrient solution
For leafy vegetables, 3.5 ml of each nutrient solution A and B may be diluted in 1 litre of water and applied @ 600 ml per bag of size 4 × 1 × 1 feet.
For peas, beans, Dolichos, and cowpea, 4.0 ml of each nutrient solution A and B may be diluted and applied @ 600 ml per bag of size 4 × 1 × 1 feet.
The frequency of nutrient solution application is two times per week starting from the 10th day of transplantation up to 30 days from the date of sowing or transplanting and three times per week thereafter.
pH regulates/controls the availability of most of the essential plant elements in a nutrient solution. The nutrient solution pH between 5.8 and 6.5 is considered as most optimal. Higher or lower nutrient solution pH than the suggested range for individual crops, the nutrient deficiencies will become apparent or toxicity symptoms will grow.
Similar to pH, electrical conductivity (EC) is one of the most important properties of nutrient solutions. The EC level between 1.5 and 2.5 dS/m is considered ideal for hydroponics/soilless culture. The strength of the nutrient solution strictly depends on the EC level of the solution. The total concentration of the solution is only indicated by the EC and not the specific nutrient components. Too high or too low EC level in nutrient solution may create salinity problems or the supply of some nutrients to the crop may be insufficient. Higher EC will not allow nutrient absorption to take place due to osmotic pressure and lower EC severely affects plant health and yield. However, among different species, the yield response of the plants may vary widely with respect to the EC level of the nutrient solution. So, the terms “too low” and “too high” need to be quantitatively defined for each cultivated plant species based on experimental results. When plants take up nutrients and water from the solution, the total salt concentration, i.e., the EC of the solution changes. Freshwater must be added If the EC is higher than the recommended range. Add nutrients if the EC is lower in the nutrient solution.
The production technology for soilless cultivation of zucchini, colour cabbage, chilli, coriander, cucumber, French bean, peas, and tomato on Arka Fermented Cocopeat under open as well as in protected conditions has been standardized at ICAR-Indian Institute of Horticultural Research, Bengaluru. The results of most of the experiments conducted with different vegetable crops in grow bags under open-field and polyhouse soilless culture indicated that the plants grown in soilless culture recorded higher yield and better quality, particularly in mineral nutrient content compared to soil-grown plants. This technology would be highly suited for urban and peri-urban vegetable cultivation for meeting the food security in cities. This particular technology has already been popularized through various training programmes, exhibitions, magazines, and media. Many growers have already started adopting IIHR soilless culture technology in the cultivation of vegetables using AFC as a substrate.
Between open and polyhouse soilless cultivation, the highest yield and better fruit quality were recorded with zucchini, chilli, coriander, cucumber, French bean, peas, and tomato with open conditions. However, colour cabbage recorded maximum head weight and highest yield in polyhouse soilless cultivation. Similarly, brinjal also recorded higher yield in polyhouse than in open-field soilless culture because of better control of pests, particularly brinjal shoot and fruit borer. Pest and disease management was easier in polyhouse than in open-field soilless culture [24].
Between open and polyhouse soilless cultivation of zucchini, the highest stem diameter (35.2 mm), maximum fruit length (23.2 cm), fruit girth (42.9 mm), fruit weight (315.4 g), and yield (5.27 kg/plant and 65.8 t/ha) were recorded with open conditions [25, 26]. However, the maximum plant height (80.6 cm), number of leaves (47.4), number of fruits (22.3), and total plant dry biomass (144.7 g/plant) were recorded with polyhouse conditions.
When open and polyhouse soilless cultivation of red cabbage were compared, the maximum plant height (25.71 cm), head diameter (33.7 cm), head length (12.9 cm), average head weight (817.8 g/plant), and yield (45.43 t/ha) was recorded with polyhouse conditions [27].
Open field soilless cultivation outperformed polyhouse cultivation in almost all the parameters (number of fruits (228), fruit length (11.8 cm), fruit girth (10.3 cm), average fruit weight (5.68 g), and yield (1.29 kg/plant)) recorded during the course of the experiment except plant height [28].
The performance of coriander under open-field soilless culture was found to be better than polyhouse soilless culture [28].
In French bean, open field soilless cultivation outclassed polyhouse in stem diameter (11.2 mm), number of branches (6.14), number of pods (42.74), pod length (15.04 cm), pod girth (7.23 mm), and pod yield (286.4 g/plant)) recorded during the course of the experiment except for plant height [29].
Best nutrient scheduling found in open-field conditions recorded better growth and yield in garden peas under polyhouse also. Between soil and cocopeat, soil recorded maximum growth and better yield compared to cocopeat [30].
With respect to different substrates studied, zucchini, chilli, coriander, cucumber, and tomato raised on Arka Fermented Cocopeat registered better growth and yield than soil. However, colour cabbage and peas recorded better growth and yield with soil. French bean plants recorded on par yield with both soil and soilless substrate.
Zucchini plants recorded maximum plant height (54.7 cm), stem diameter (35.2 mm), number of leaves (39.3), total plant dry biomass (139.8 g/plant), number of fruits (16.8), fruit length (23.2 cm), fruit girth (42.9 mm), fruit weight (315.4 g) and yield (5.27 kg/plant and 65.8 t/ha) when the plants raised on Arka Fermented Cocopeat compared to soil (3.70 kg/plant and 46.3 t/ha) [25, 26].
Among the substrates, soil registered maximum stem diameter (24.9 mm), number of leaves (28.3), head diameter (36.8 cm), head length (13.7 cm), average head weight (977.8 g), and yield (54.32 t/ha) in red cabbage compared to Arka Fermented Cocopeat (817.8 g and 45.43 t/ha, respectively). Nevertheless, AFC recorded maximum plant height (25.7 cm) than soil (24.5 cm) [27].
In grow bags, chilli raised on Arka Fermented Cocopeat registered maximum number of fruits (232), fruit length (11.8 cm), fruit girth (10.3 mm), average fruit weight (5.68 g), and yield (1.29 kg/plant) compared to soil (1.02 kg/plant) [28].
Plants grown in AFC and soil (41 pods, 6.83 g pod weight, 283 g/plant, and 19.97 t/ha) were recorded on par yield with each other. Most of the macro and micronutrient concentrations in French bean pods were found to be higher in soilless plants than in those grown in soil [29].
Between soil and cocopeat, soil recorded maximum growth and better yield compared to cocopeat. The results showed or indicated that the soil is found to be more suitable for peas followed by cocopeat. However, most of the mineral nutrient contents in pods were found higher in soilless plants than in those grown in soil. In peas, root growth was better in plants grown on cocopeat than the plants grown under soil. However, when it comes to nodule formation, a good number of nodules was observed in the roots of plants grown on soil but no nodulation in the roots of the pea plants grown on cocopeat [30].
Arka Fermented Cocopeat recorded better growth and the highest yield of cucumber compared to soil [31]. Alifar
Among the substrates studied, tomato plants raised on Arka Fermented Cocopeat registered maximum growth and yield (87.6 t/ha) compared to commercial cocopeat (76.7 t/ha) and soil (58.2 t/ha). The fruit quality was better when tomato plants were grown on Arka Fermented Cocopeat compared to commercial cocopeat and soil [33]. Plants grown in cocopeat substrate produced a higher fruit number (5.2%) and total yield (0.7%) than that of rockwool substrate. Fruit size and fruit quality characters showed no significant differences within growing substrates [34].
Liquid nutrient formulations for growing zucchini, colour cabbage, chilli, coriander, cucumber, French bean, peas, and tomato on Arka Fermented Cocopeat under open and polyhouse soilless culture have also been developed. Best nutrient scheduling under open conditions was found to register maximum growth and yield in polyhouse conditions as well.
Nutrient scheduling of 168 ppm N-NO3, 16 ppm P, and 189 ppm K recorded maximum fruit length (24.12 cm), fruit girth (44.4 mm), fruit weight (335.6 g), and yield (5.71 kg/plant and 71.39 t/ha) under open conditions. The above-mentioned nutrient scheduling recorded maximum growth and zucchini fruit yield in protected conditions also [25, 26].
Nutrient scheduling of 185 ppm N-NO3, 41 ppm P, and 210 ppm K recorded maximum stem diameter (25.71 mm), a number of leaves (24.82), head diameter (36.79 cm), head length (14.64 cm), average head weight (972.25 g/plant), and yield (54.01 t/ha). The best nutrient scheduling under protected conditions is also found to register maximum growth and red cabbage yield in open conditions [27].
In Chilli hybrid Arka Meghana, the highest number of fruits (248.2) and yield per plant (1.43 kg) was recorded with scheduling of 176 ppm N-NO3, 29 ppm P, and 200 ppm K per plant and found to be on par with 194 ppm N-NO3, 32 ppm P, and 228 ppm K (218.6 fruits and 1.30 kg yield per plant). However, the maximum fruit length (12.22 cm), fruit girth (10.98 mm), average fruit weight (5.96 g per fruit), and dry chilli yield (287 g per plant) was recorded with 194 ppm N-NO3, 32 ppm P, and 228 ppm K nutrient scheduling [28].
The production technology for soilless cultivation of coriander var.
Supplying of 166 ppm N-NO3, 33 ppm P, and 207 ppm K recorded the maximum stem girth (18.43 mm), highest fresh (1690 g/plant), and dry plant biomass (540.8 g/plant), highest average fruit weight (212.9 g) and yield (2.11 kg/plant and 32.51 t/ha) under open-field conditions [31].
Scheduling 141 ppm N-NO3, 29 ppm P, and 179 ppm K recorded maximum plant height (47.11 cm), stem diameter (11.22 mm), number of branches (6.14), highest total fresh (205.8 g/plant), and dry biomass (35.89 g/plant), highest number of pods (42.74), pod length (15.04 cm), pod girth (7.31 mm), average pod weight (6.69 g), and yield (286.4 g/plant and 20.18 t/ha) [29].
Nutrient scheduling of 133 ppm N-NO3, 27 ppm P, and 168 ppm K recorded maximum plant height (65.66 cm), stem diameter (6.51 mm), number of branches (3.14), highest plant biomass (24.04 g/plant), number of pods (15.14), pod length (7.07 cm), pod girth (9.67 mm), average pod yield (83.25 g/plant and 1.17 kg/bag) under open-field soilless cultivation. The best nutrient scheduling found in open-field conditions recorded better growth and yield under polyhouse also [30].
Tomato, colour cabbage, zucchini, and peas in soilless cultivation
The highest number of fruits (80.14) and yield (93.9 t/ha) of tomato hybrid Arka Rakshak was recorded with the split application of 15:35:15 percent of the recommended NPK (180:120:180 kg NPK/ha), during establishment to early flowering, followed by 12.5:12.5:12.5 percent application during fruit development and 72.5:52.5:72.5 percent application during harvest. Nutrient scheduling significantly improved the TSS while other quality parameters were not significantly enhanced [33].
Knowledge of the nutritional status of all components (nutrient solution, substrate/media, and plant tissues) of a soilless cultivation system is very much required to judge the success of fertilizer schedules with respect to plant nutrients availability and the plant tissue nutrient content and it also helps to identify the reasons of any deficiency and toxicity symptoms that may appear in plants. The costs of the information with respect to the nutritional status of all components are a form of assurance towards success. The nutrient solution in a recirculated hydroponics system of cultivation may be utilized for a few days (short use) to a few weeks (extended use). To extend the life of nutrient solution to a few weeks in recirculated soilless culture/hydroponics system, it is always better to analyse the solution periodically for pH, EC, and individual nutrient concentration. Based on the nutrient analysis, periodic replenishment or adjustment in nutrient solutions can be made using nutrient stock solutions. By doing so, the longevity of nutrient solutions can be extended and the cost required for buying nutrient solutions or soluble salts can be reduced. Total salt content estimation on daily basis will also give the status of the nutrient content in the solution even though this cannot substitute for comprehensive analysis [2].
To avoid toxicity and deficiencies of nutrients in recirculated solutions due to continuous variation in nutrient status, it is necessary to do solution analysis for complete control over nutrient management in liquid soilless culture. The frequent requirement of solution analysis in water-based soilless culture gives a reason for switching over to solid substrate-based soilless culture. In solid substrate-based soilless culture systems, the evenly balanced nutrient solution is given to plants at the time of irrigation. In this way, the problem of nutrient solution management in solid substrate-based soilless cultivation systems can be minimized. Also, by accurately weighing the soluble salts at the time of nutrient solution preparation, it is possible to make a very properly working solution.
Like nutrient solution and substrate analysis, tissue analysis (leaf petioles or blades and whole leaves) is also warranted for successful nutrient management in plants. Tissue analysis during the crop growth period provides the current status of nutrient content in plants. Based on the nutrient content in plants, the fertilizer program may be adjusted or modified for better plant growth and productivity in soilless cultivation. Nutrient data obtained through tissue analysis may also help in interpreting nutrient deficiency or toxicity symptoms. Depending on plant parts sampled, location of sampling, and method used for analysis, the critical nutrient levels may vary. Critical nutrient concentrations for tomatoes, cucumbers, and different vegetables have been reported by various researchers [2, 35, 36, 37].
Substrate texture, porosity, and surface area to be wetted are vital considerations in making the right choice of irrigation in soilless vegetable cultivation [15]. While selecting an irrigation system for container or bag culture, one should keep in mind that the main purpose of irrigation is to apply nutrient solution homogeneously by making wet of entire growing media. A dry substrate or medium will make it very difficult for the plant root system to function properly [38]. Therefore, proper water management in soilless culture is very much important not only for meeting the water requirement of the plants but also for distributing the nutrients uniformly in the media. During summer, plants need extra water and hence the plants should preferably be irrigated twice a day. For soilless media, watering needs to be done only when the surface/subsurface of the media/substrate is dried and excess watering may be avoided.
The results of most of the experiments conducted with different vegetable crops under open-field and polyhouse soilless culture indicated that the fruits of plants grown in soilless culture recorded better quality, particularly in mineral nutrient content compared to soil-grown plants [7, 33]. Most of the nutrient concentrations in zucchini fruits were found to be higher in soilless plants than in those grown in soil [7]. The fruit quality was better when tomato plants were grown on Arka Fermented Cocopeat compared to commercial cocopeat and soil. Calcium content in tomato fruit samples was found to vary significantly among soilless media
The substrate combinations,
In polyhouse French bean cultivation, nematode infection was found to be almost nil in plants grown on cocopeat but nearly half of the plants grown in soil were affected with a nematode [29]. In peas, root growth was better in plants grown on cocopeat than the plants grown under soil. However, when it comes to nodule formation, a good number of nodules was observed in the roots of plants grown on soil but no nodulation in the roots of the pea plants grown on cocopeat [30].
The results of most of the experiments conducted at ICAR-IIHR, Bengaluru with different vegetable crops in grow bags under open-field and polyhouse soilless culture indicated that the plants grown in soilless culture recorded higher yield and better quality, particularly in mineral nutrient content compared to soil-grown plants. The yield of different vegetables grown under soilless culture in an area of 100 m2 is as follows; 1260 kg for tomato, 803.6 kg for zucchini, 204 kg for colour cabbage, 300 kg for chilli, 441 kg for cucumber 280 kg for French bean, and 81.9 kg for garden peas. Net profit from the vegetables grown in an area of 100 m2 varied from Rs 7140 for cucumber to Rs 35,960 for zucchini and the net profits of the rest of the crops found to fit in between. This technology would be highly suited for urban and peri-urban vegetable cultivation for meeting the food security in cities. The production technology developed at ICAR-Indian Institute of Horticultural Research for soilless cultivation of most commonly consumed vegetables in India has generated a lot of interest among the soilless growers for the cultivation of vegetables on AFC. This particular technology is being popularized through various training programmes, exhibitions, magazines, and media. Many growers have already started adopting this particular technology in the cultivation of vegetables using AFC as a substrate.
A substantial quantum of research work carried out in recent past stating the advantages and disadvantages of soilless cultivation of vegetables.
Compared to a conventional soil-based cultivation system, soilless cultivation provides several advantages than disadvantages. Soilless cultivation provides ideal conditions for the growth of plants which in turn helps in getting a higher yield. With little effort, time and cost, it is possible to do very relaxed and clean vegetable cultivation under soilless culture. The majority of soil-born pests and diseases can be controlled just by shifting over to soilless cultivation from the traditional way of farming. Degraded and poor fertile soils can be easily brought into soilless cultivation. It affords an unsoiled working environment and thus labour engagement is easy. List of other advantages of soilless culture is control of plant nutrition, ability to control pH and EC, water economy and control, reduction of labour requirement, sterilization practices, control of root environment, multiple crops per year and unsuitable soil can be used, etc.
In spite of several merits offered by soilless culture, it has few demerits as well. Technical know-how and high initial cost are the two important things required for scaling up of soilless culture at the commercial level. The requirement of investment and technical knowledge will go up further when combining soilless culture with protected cultivation. Experts with precision management skills are needed for nutrient solution preparation, pH and EC maintenance, identification and correction of mineral nutrient deficiency, aeration; upkeeping all the weather parameters in support of ideal plant growth in protected structures, etc. Above all, much attention is important for plant health management. The requirement of energy inputs is very high to run the soilless culture system, particularly in hydroponics. Because of higher initial cost, technical knowledge on crop agronomy and physiology limits the soilless culture to high-value crops cultivation. Growing low-value crops in hydroponics may not be so economical.
In urban and peri-urban agriculture, no doubt that the soilless culture is rapidly gaining impetus and acceptance among growers. In advanced countries, the system of soilless cultivation is so popular and well-received mainly for commercial cultivation of high-value vegetable crops, medicinal and ornamental crops but now it is spreading very rapidly in rest of the world. With this speed, the soilless culture is certainly going to dominate in future food production. Growers are presently turning towards alternate technologies, such as soilless culture due to the decline in the availability of arable lands and the problem of soil-borne diseases in soil-based cultivation. Due to better water use efficiency in soilless culture, this particular system of cultivation can also be taken to places where water availability is limited. Presently the hydroponics unit setting up cost is too high because of limited adoption but by acceptance and adoption of more and more growers, the cost of the unit can be brought to affordable levels. Further, this technology is not getting popularity as expected in some of the developing and underdeveloped countries due to various reasons, such as high initial investment and the requirement of skilled manpower. Standardized soilless production technology by the public and private research institutions is very important to popularize and create mass awareness among urban and peri-urban growers. In this direction, ICAR-IIHR is not stopping after standardizing the soilless production technology for vegetables but also putting more and more effort into the spread of this particular technology at the national level. ICAR-IIHR soilless culture production technology has already been popularized through various training programmes, exhibitions, magazines, and media. Many growers have already started adopting IIHR soilless culture technology in the cultivation of vegetables, flowers, and medicinal crops.
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{id:"965887@"},profiles:[],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"<%={{={@{#{${acx}}%>",sort:"dateEndThirdStepPublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4389},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"208",title:"Material Science",slug:"nanotechnology-and-nanomaterials-material-science",parent:{id:"17",title:"Nanotechnology and Nanomaterials",slug:"nanotechnology-and-nanomaterials"},numberOfBooks:99,numberOfSeries:0,numberOfAuthorsAndEditors:2716,numberOfWosCitations:4236,numberOfCrossrefCitations:1964,numberOfDimensionsCitations:4604,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"208",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editedByType:"Edited by",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editedByType:"Edited by",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization and Applications",subtitle:null,isOpenForSubmission:!1,hash:"3478d05926950f475f4ad2825d340963",slug:"crystallization-and-applications",bookSignature:"Youssef Ben Smida and Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:"Edited by",editors:[{id:"311698",title:"Dr.",name:"Youssef",middleName:null,surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10644",title:"Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization",subtitle:null,isOpenForSubmission:!1,hash:"30a4c22b98d8dd2b18e5c33dade4b94b",slug:"recent-developments-in-atomic-force-microscopy-and-raman-spectroscopy-for-materials-characterization",bookSignature:"Chandra Shakher Pathak and Samir Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10644.jpg",editedByType:"Edited by",editors:[{id:"318029",title:"Dr.",name:"Chandra Shakher",middleName:null,surname:"Pathak",slug:"chandra-shakher-pathak",fullName:"Chandra Shakher Pathak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10386",title:"Ionic Liquids",subtitle:"Thermophysical Properties and Applications",isOpenForSubmission:!1,hash:"e995617af1c5e63353ae91bbdac4c894",slug:"ionic-liquids-thermophysical-properties-and-applications",bookSignature:"S. M. Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/10386.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10281",title:"Nanopores",subtitle:null,isOpenForSubmission:!1,hash:"73c465d2d70f8deca04b05d7ecae26c4",slug:"nanopores",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10281.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",middleName:null,surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9913",title:"Carbon Nanotubes",subtitle:"Redefining the World of Electronics",isOpenForSubmission:!1,hash:"43a22b8570e841b7a26d70159b2f755d",slug:"carbon-nanotubes-redefining-the-world-of-electronics",bookSignature:"Prasanta Kumar Ghosh, Kunal Datta and Arti Dinkarrao Rushi",coverURL:"https://cdn.intechopen.com/books/images_new/9913.jpg",editedByType:"Edited by",editors:[{id:"294687",title:"Dr.",name:"Prasanta",middleName:"Kumar",surname:"Ghosh",slug:"prasanta-ghosh",fullName:"Prasanta Ghosh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10479",title:"21st Century Advanced Carbon Materials for Engineering Applications",subtitle:"A Comprehensive Handbook",isOpenForSubmission:!1,hash:"712d04d43dbe1dca7dec9fcc08bc8852",slug:"21st-century-advanced-carbon-materials-for-engineering-applications-a-comprehensive-handbook",bookSignature:"Mujtaba Ikram and Asghari Maqsood",coverURL:"https://cdn.intechopen.com/books/images_new/10479.jpg",editedByType:"Edited by",editors:[{id:"286820",title:"Dr.",name:"Mujtaba",middleName:null,surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10411",title:"Materials at the Nanoscale",subtitle:null,isOpenForSubmission:!1,hash:"be29908600b7067c583ac21da1544a2d",slug:"materials-at-the-nanoscale",bookSignature:"Awadesh Kumar Mallik",coverURL:"https://cdn.intechopen.com/books/images_new/10411.jpg",editedByType:"Edited by",editors:[{id:"178218",title:"Dr.",name:"Awadesh",middleName:null,surname:"Mallik",slug:"awadesh-mallik",fullName:"Awadesh Mallik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10465",title:"Silver Micro-Nanoparticles",subtitle:"Properties, Synthesis, Characterization, and Applications",isOpenForSubmission:!1,hash:"dcc19a2b44c91940e16d82fd5eb8fffa",slug:"silver-micro-nanoparticles-properties-synthesis-characterization-and-applications",bookSignature:"Samir Kumar, Prabhat Kumar and Chandra Shakher Pathak",coverURL:"https://cdn.intechopen.com/books/images_new/10465.jpg",editedByType:"Edited by",editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10469",title:"Nanofibers",subtitle:"Synthesis, Properties and Applications",isOpenForSubmission:!1,hash:"28dc655dde01b94399cab954663f8bff",slug:"nanofibers-synthesis-properties-and-applications",bookSignature:"Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10469.jpg",editedByType:"Edited by",editors:[{id:"176093",title:"Dr.",name:"Brajesh",middleName:null,surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10505",title:"Colloids",subtitle:"Types, Preparation and Applications",isOpenForSubmission:!1,hash:"55025219ea1a8b915ec8aa4b9f497a8d",slug:"colloids-types-preparation-and-applications",bookSignature:"Mohamed Nageeb Rashed",coverURL:"https://cdn.intechopen.com/books/images_new/10505.jpg",editedByType:"Edited by",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:99,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"50566",doi:"10.5772/63234",title:"Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst",slug:"influences-of-doping-on-photocatalytic-properties-of-tio2-photocatalyst",totalDownloads:5395,totalCrossrefCites:23,totalDimensionsCites:75,abstract:"As a kind of highly effective, low‐cost, and stable photocatalysts, TiO2 has received substantial public and scientific attention. However, it can only be activated under ultraviolet light irradiation due to its wide bandgap, high recombination, and weak separation efficiency of carriers. Doping is an effective method to extend the light absorption to the visible light region. In this chapter, we will address the importance of doping, different doping modes, preparation method, and photocatalytic mechanism in TiO2 photocatalysts. Thereafter, we will concentrate on Ti3+ self‐doping, nonmetal doping, metal doping, and codoping. Examples of progress can be given for each one of these four doping modes. The influencing factors of preparation method and doping modes on photocatalytic performance (spectrum response, carrier transport, interfacial electron transfer reaction, surface active sites, etc.) are summed up. The main objective is to study the photocatalytic processes, to elucidate the mechanistic models for a better understanding the photocatalytic reactions, and to find a method of enhancing photocatalytic activities.",book:{id:"5139",slug:"semiconductor-photocatalysis-materials-mechanisms-and-applications",title:"Semiconductor Photocatalysis",fullTitle:"Semiconductor Photocatalysis - Materials, Mechanisms and Applications"},signatures:"Fei Huang, Aihua Yan and Hui Zhao",authors:[{id:"178389",title:"Dr.",name:"Fei",middleName:null,surname:"Huang",slug:"fei-huang",fullName:"Fei Huang"},{id:"185126",title:"Dr.",name:"Aihua",middleName:null,surname:"Yan",slug:"aihua-yan",fullName:"Aihua Yan"},{id:"185127",title:"Ms.",name:"Hui",middleName:null,surname:"Zhao",slug:"hui-zhao",fullName:"Hui Zhao"}]},{id:"17184",doi:"10.5772/17039",title:"Polymer Nanocomposites: From Synthesis to Applications",slug:"polymer-nanocomposites-from-synthesis-to-applications",totalDownloads:17294,totalCrossrefCites:31,totalDimensionsCites:68,abstract:null,book:{id:"1045",slug:"nanocomposites-and-polymers-with-analytical-methods",title:"Nanocomposites and Polymers with Analytical Methods",fullTitle:"Nanocomposites and Polymers with Analytical Methods"},signatures:"S. Anandhan and S. Bandyopadhyay",authors:[{id:"27050",title:"Prof.",name:"Sri",middleName:null,surname:"Bandyopadhyay",slug:"sri-bandyopadhyay",fullName:"Sri Bandyopadhyay"},{id:"44992",title:"Prof.",name:"Anandhan",middleName:null,surname:"Srinivasan",slug:"anandhan-srinivasan",fullName:"Anandhan Srinivasan"}]},{id:"9725",doi:"10.5772/8508",title:"Biosynthesis and Application of Silver and Gold Nanoparticles",slug:"biosynthesis-and-application-of-silver-and-gold-nanoparticles",totalDownloads:27930,totalCrossrefCites:23,totalDimensionsCites:58,abstract:null,book:{id:"3621",slug:"silver-nanoparticles",title:"Silver Nanoparticles",fullTitle:"Silver Nanoparticles"},signatures:"Zygmunt Sadowski",authors:null},{id:"17194",doi:"10.5772/21694",title:"Properties of Nanofillers in Polymer",slug:"properties-of-nanofillers-in-polymer",totalDownloads:20390,totalCrossrefCites:9,totalDimensionsCites:56,abstract:null,book:{id:"1045",slug:"nanocomposites-and-polymers-with-analytical-methods",title:"Nanocomposites and Polymers with Analytical Methods",fullTitle:"Nanocomposites and Polymers with Analytical Methods"},signatures:"Damien M. Marquis, Éric Guillaume and Carine Chivas-Joly",authors:[{id:"44307",title:"Dr",name:"Damien",middleName:"Michel",surname:"Marquis",slug:"damien-marquis",fullName:"Damien Marquis"},{id:"44317",title:"Prof.",name:"Carine",middleName:null,surname:"Chivas-Joly",slug:"carine-chivas-joly",fullName:"Carine Chivas-Joly"}]},{id:"52860",doi:"10.5772/65937",title:"Cerium Oxide Nanostructures and their Applications",slug:"cerium-oxide-nanostructures-and-their-applications",totalDownloads:5377,totalCrossrefCites:24,totalDimensionsCites:58,abstract:"Due to excellent physical and chemical properties, cerium oxide (ceria, CeO2) has attracted much attention in recent years. This chapter aimed at providing some basic and fundamental properties of ceria, the importance of oxygen vacancies in this material, nano‐size effects and various synthesis strategies to form diverse structural morphologies. Finally, some key applications of ceria‐based nanostructures are reviewed. We conclude this chapter by expressing personal perspective on the probable challenges and developments of the controllable synthesis of CeO2 nanomaterials for various applications.",book:{id:"5510",slug:"functionalized-nanomaterials",title:"Functionalized Nanomaterials",fullTitle:"Functionalized Nanomaterials"},signatures:"Adnan Younis, Dewei Chu and Sean Li",authors:[{id:"191574",title:"Dr.",name:"Adnan",middleName:null,surname:"Younis",slug:"adnan-younis",fullName:"Adnan Younis"}]}],mostDownloadedChaptersLast30Days:[{id:"71103",title:"Preparation of Nanoparticles",slug:"preparation-of-nanoparticles",totalDownloads:3140,totalCrossrefCites:11,totalDimensionsCites:25,abstract:"Innovative developments of science and engineering have progressed very fast toward the synthesis of nanomaterials to achieve unique properties that are not the same as the properties of the bulk materials. The particle reveals interesting properties at the dimension below 100 nm, mostly from two physical effects. The two physical effects are the quantization of electronic states apparent leading to very sensitive size-dependent effects such as optical and magnetic properties and the high surface-to-volume ratio modifies the thermal, mechanical, and chemical properties of materials. The nanoparticles’ unique physical and chemical properties render them most appropriate for a number of specialist applications.",book:{id:"9109",slug:"engineered-nanomaterials-health-and-safety",title:"Engineered Nanomaterials",fullTitle:"Engineered Nanomaterials - Health and Safety"},signatures:"Takalani Cele",authors:[{id:"305934",title:"Dr.",name:"Takalani",middleName:null,surname:"Cele",slug:"takalani-cele",fullName:"Takalani Cele"}]},{id:"72636",title:"Nanocomposite Materials",slug:"nanocomposite-materials",totalDownloads:2139,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Nanocomposites are the heterogeneous/hybrid materials that are produced by the mixtures of polymers with inorganic solids (clays to oxides) at the nanometric scale. Their structures are found to be more complicated than that of microcomposites. They are highly influenced by the structure, composition, interfacial interactions, and components of individual property. Most popularly, nanocomposites are prepared by the process within in situ growth and polymerization of biopolymer and inorganic matrix. With the rapid estimated demand of these striking potentially advanced materials, make them very much useful in various industries ranging from small scale to large to very large manufacturing units. With a great deal to mankind with environmental friendly, these offer advanced technologies in addition to the enhanced business opportunities to several industrial sectors like automobile, construction, electronics and electrical, food packaging, and technology transfer.",book:{id:"10072",slug:"nanotechnology-and-the-environment",title:"Nanotechnology and the Environment",fullTitle:"Nanotechnology and the Environment"},signatures:"Mousumi Sen",authors:[{id:"310218",title:"Dr.",name:"Mousumi",middleName:null,surname:"Sen",slug:"mousumi-sen",fullName:"Mousumi Sen"}]},{id:"38951",title:"Carbon Nanotube Transparent Electrode",slug:"carbon-nanotube-transparent-electrode",totalDownloads:3985,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"3077",slug:"syntheses-and-applications-of-carbon-nanotubes-and-their-composites",title:"Syntheses and Applications of Carbon Nanotubes and Their Composites",fullTitle:"Syntheses and Applications of Carbon Nanotubes and Their Composites"},signatures:"Jing Sun and Ranran Wang",authors:[{id:"153508",title:"Prof.",name:"Jing",middleName:null,surname:"Sun",slug:"jing-sun",fullName:"Jing Sun"},{id:"153596",title:"Ms.",name:"Ranran",middleName:null,surname:"Wang",slug:"ranran-wang",fullName:"Ranran Wang"}]},{id:"49413",title:"Electrodeposition of Nanostructure Materials",slug:"electrodeposition-of-nanostructure-materials",totalDownloads:3732,totalCrossrefCites:1,totalDimensionsCites:7,abstract:"We are conducting a multi-disciplinary research work that involves development of nanostructured thin films of semiconductors for different applications. Nanotechnology is widely considered to constitute the basis of the next technological revolution, following on from the first Industrial Revolution, which began around 1750 with the introduction of the steam engine and steelmaking. Nanotechnology is defined as the design, characterization, production, and application of materials, devices and systems by controlling shape and size of the nanoscale. The nanoscale itself is at present considered to cover the range from 1 to 100 nm. All samples prepared in thin film forms and the characterization revealed their nanostructure. The major exploitation of thin films has been in microelectronics, there are numerous and growing applications in communications, optical electronics, coatings of all kinds, and in energy generation. A great many sophisticated analytical instruments and techniques, largely developed to characterize thin films, have already become indispensable in virtually every scientific endeavor irrespective of discipline. Among all these techniques, electrodeposition is the most suitable technique for nanostructured thin films from aqueous solution served as samples under investigation. The electrodeposition of metallic layers from aqueous solution is based on the discharge of metal ions present in the electrolyte at a cathodic surface (the substrate or component.) The metal ions accept an electron from the electrically conducting material at the solid- electrolyte interface and then deposit as metal atoms onto the surface. The electrons necessary for this to occur are either supplied from an externally applied potential source or are surrendered by a reducing agent present in solution (electroless reduction). The metal ions themselves derive either from metal salts added to solution, or by the anodic dissolution of the so-called sacrificial anodes, made of the same metal that is to be deposited at the cathode.",book:{id:"4718",slug:"electroplating-of-nanostructures",title:"Electroplating of Nanostructures",fullTitle:"Electroplating of Nanostructures"},signatures:"Souad A. M. Al-Bat’hi",authors:[{id:"174793",title:"Dr.",name:"Mohamad",middleName:null,surname:"Souad",slug:"mohamad-souad",fullName:"Mohamad Souad"}]},{id:"71346",title:"Application of Nanomaterials in Environmental Improvement",slug:"application-of-nanomaterials-in-environmental-improvement",totalDownloads:1691,totalCrossrefCites:0,totalDimensionsCites:13,abstract:"In recent years, researchers used many scientific studies to improve modern technologies in the field of reducing the phenomenon of pollution resulting from them. In this chapter, methods to prepare nanomaterials are described, and the main properties such as mechanical, electrical, and optical properties and their relations are determined. The investigation of nanomaterials needed high technologies that depend on a range of nanomaterials from 1 to 100 nm; these are scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffractions (XRD). The applications of nanomaterials in environmental improvement are different from one another depending on the type of devices used, for example, solar cells for producing clean energy, nanotechnologies in coatings for building exterior surfaces, and sonochemical decolorization of dyes by the effect of nanocomposite.",book:{id:"10072",slug:"nanotechnology-and-the-environment",title:"Nanotechnology and the Environment",fullTitle:"Nanotechnology and the Environment"},signatures:"Ali Salman Ali",authors:[{id:"313275",title:"Associate Prof.",name:"Ali",middleName:null,surname:"Salman",slug:"ali-salman",fullName:"Ali Salman"}]}],onlineFirstChaptersFilter:{topicId:"208",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81438",title:"Research Progress of Ionic Thermoelectric Materials for Energy Harvesting",slug:"research-progress-of-ionic-thermoelectric-materials-for-energy-harvesting",totalDownloads:24,totalDimensionsCites:0,doi:"10.5772/intechopen.101771",abstract:"Thermoelectric material is a kind of functional material that can mutually convert heat energy and electric energy. It can convert low-grade heat energy (less than 130°C) into electric energy. Compared with traditional electronic thermoelectric materials, ionic thermoelectric materials have higher performance. The Seebeck coefficient can generate 2–3 orders of magnitude higher ionic thermoelectric potential than electronic thermoelectric materials, so it has good application prospects in small thermoelectric generators and solar power generation. According to the thermoelectric conversion mechanism, ionic thermoelectric materials can be divided into ionic thermoelectric materials based on the Soret effect and thermocouple effect. They are widely used in pyrogen batteries and ionic thermoelectric capacitors. The latest two types of ionic thermoelectric materials are in this article. The research progress is explained, and the problems and challenges of ionic thermoelectric materials and the future development direction are also put forward.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Jianwei Zhang, Ying Xiao, Bowei Lei, Gengyuan Liang and Wenshu Zhao"},{id:"77670",title:"Thermoelectric Elements with Negative Temperature Factor of Resistance",slug:"thermoelectric-elements-with-negative-temperature-factor-of-resistance",totalDownloads:72,totalDimensionsCites:0,doi:"10.5772/intechopen.98860",abstract:"The method of manufacturing of ceramic materials on the basis of ferrites of nickel and cobalt by synthesis and sintering in controllable regenerative atmosphere is presented. As the generator of regenerative atmosphere the method of conversion of carbonic gas is offered. Calculation of regenerative atmosphere for simultaneous sintering of ceramic ferrites of nickel and cobalt is carried out. It is offered, methods of the dilated nonequilibrium thermodynamics to view process of distribution of a charge and heat along a thermoelement branch. The model of a thermoelement taking into account various relaxation times of a charge and warmth is constructed.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Yuri Bokhan"},{id:"79236",title:"Processing Techniques with Heating Conditions for Multiferroic Systems of BiFeO3, BaTiO3, PbTiO3, CaTiO3 Thin Films",slug:"processing-techniques-with-heating-conditions-for-multiferroic-systems-of-bifeo3-batio3-pbtio3-catio",totalDownloads:96,totalDimensionsCites:0,doi:"10.5772/intechopen.101122",abstract:"In this chapter, we have report a list of synthesis methods (including both synthesis steps & heating conditions) used for thin film fabrication of perovskite ABO3 (BiFeO3, BaTiO3, PbTiO3 and CaTiO3) based multiferroics (in both single-phase and composite materials). The processing of high quality multiferroic thin film have some features like epitaxial strain, physical phenomenon at atomic-level, interfacial coupling parameters to enhance device performance. Since these multiferroic thin films have ME properties such as electrical (dielectric, magnetoelectric coefficient & MC) and magnetic (ferromagnetic, magnetic susceptibility etc.) are heat sensitive, i.e. ME response at low as well as higher temperature might to enhance the device performance respect with long range ordering. The magnetoelectric coupling between ferromagnetism and ferroelectricity in multiferroic becomes suitable in the application of spintronics, memory and logic devices, and microelectronic memory or piezoelectric devices. In comparison with bulk multiferroic, the fabrication of multiferroic thin film with different structural geometries on substrate has reducible clamping effect. A brief procedure for multiferroic thin film fabrication in terms of their thermal conditions (temperature for film processing and annealing for crystallization) are described. Each synthesis methods have its own characteristic phenomenon in terms of film thickness, defects formation, crack free film, density, chip size, easier steps and availability etc. been described. A brief study towards phase structure and ME coupling for each multiferroic system of BiFeO3, BaTiO3, PbTiO3 and CaTiO3 is shown.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Kuldeep Chand Verma and Manpreet Singh"},{id:"78034",title:"Quantum Physical Interpretation of Thermoelectric Properties of Ruthenate Pyrochlores",slug:"quantum-physical-interpretation-of-thermoelectric-properties-of-ruthenate-pyrochlores",totalDownloads:78,totalDimensionsCites:0,doi:"10.5772/intechopen.99260",abstract:"Lead- and lead-yttrium ruthenate pyrochlores were synthesized and investigated for Seebeck coefficients, electrical- and thermal conductivity. Compounds A2B2O6.5+z with 0 ≤ z < 0.5 were defect pyrochlores and p-type conductors. The thermoelectric data were analyzed using quantum physical models to identify scattering mechanisms underlying electrical (σ) and thermal conductivity (κ) and to understand the temperature dependence of the Seebeck effect (S). In the metal-like lead ruthenates with different Pb:Ru ratios, σ (T) and the electronic thermal conductivity κe (T) were governed by ‘electron impurity scattering’, the lattice thermal conductivity κL (T) by the 3-phonon resistive process (Umklapp scattering). In the lead-yttrium ruthenate solid solutions (Pb(2-x)YxRu2O(6.5±z)), a metal–insulator transition occurred at 0.2 moles of yttrium. On the metallic side (<0.2 moles Y) ‘electron impurity scattering’ prevailed. On the semiconductor/insulator side between x = 0.2 and x = 1.0 several mechanisms were equally likely. At x > 1.5 the Mott Variable Range Hopping mechanism was active. S (T) was discussed for Pb-Y-Ru pyrochlores in terms of the effect of minority carrier excitation at lower- and a broadening of the Fermi distribution at higher temperatures. The figures of merit of all of these pyrochlores were still small (≤7.3 × 10−3).",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Sepideh Akhbarifar"},{id:"77635",title:"Optimization of Thermoelectric Properties Based on Rashba Spin Splitting",slug:"optimization-of-thermoelectric-properties-based-on-rashba-spin-splitting",totalDownloads:124,totalDimensionsCites:0,doi:"10.5772/intechopen.98788",abstract:"In recent years, the application of thermoelectricity has become more and more widespread. Thermoelectric materials provide a simple and environmentally friendly solution for the direct conversion of heat to electricity. The development of higher performance thermoelectric materials and their performance optimization have become more important. Generally, to improve the ZT value, electrical conductivity, Seebeck coefficient and thermal conductivity must be globally optimized as a whole object. However, due to the strong coupling among ZT parameters in many cases, it is very challenging to break the bottleneck of ZT optimization currently. Beyond the traditional optimization methods (such as inducing defects, varying temperature), the Rashba effect is expected to effectively increase the S2σ and decrease the κ, thus enhancing thermoelectric performance, which provides a new strategy to develop new-generation thermoelectric materials. Although the Rashba effect has great potential in enhancing thermoelectric performance, the underlying mechanism of Rashba-type thermoelectric materials needs further research. In addition, how to introduce Rashba spin splitting into current thermoelectric materials is also of great significance to the optimization of thermoelectricity.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Zhenzhen Qin"},{id:"75364",title:"Challenges in Improving Performance of Oxide Thermoelectrics Using Defect Engineering",slug:"challenges-in-improving-performance-of-oxide-thermoelectrics-using-defect-engineering",totalDownloads:214,totalDimensionsCites:0,doi:"10.5772/intechopen.96278",abstract:"Oxide thermoelectric materials are considered promising for high-temperature thermoelectric applications in terms of low cost, temperature stability, reversible reaction, and so on. Oxide materials have been intensively studied to suppress the defects and electronic charge carriers for many electronic device applications, but the studies with a high concentration of defects are limited. It desires to improve thermoelectric performance by enhancing its charge transport and lowering its lattice thermal conductivity. For this purpose, here, we modified the stoichiometry of cation and anion vacancies in two different systems to regulate the carrier concentration and explored their thermoelectric properties. Both cation and anion vacancies act as a donor of charge carriers and act as phonon scattering centers, decoupling the electrical conductivity and thermal conductivity.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Jamil Ur Rahman, Gul Rahman and Soonil Lee"}],onlineFirstChaptersTotal:6},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 13th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",biography:"Full Professor and Vice Chair, Division of Pharmacology, Loma Linda University, School of Medicine. He received his B.S. Degree in Biology at La Sierra University, Riverside California (1980) and a PhD in Pharmacology from Loma Linda University School of Medicine (1988). Post-Doctoral Fellow at University of California, Irvine, College of Medicine 1989-1992 with a focus on autonomic nerve function in blood vessels and the impact of aging on the function of these nerves and overall blood vessel function. Twenty years of research funding and served on NIH R01 review panels, Editor-In-Chief of Edorium Journal of Aging Research. Serves as a peer reviewer for biomedical journals. Military Reserve Officer serving with the 100 Support Command, 100 Troop Command, 40 Infantry Division, CA National Guard.",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}]},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}]},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",biography:"Dr. Emad Shalaby is a professor of biochemistry on the Biochemistry Department Faculty of Agriculture, Cairo University. He\nreceived a short-term scholarship to carry out his post-doctoral\nstudies abroad, from Japan International Cooperation Agency\n(JICA), in coordination with the Egyptian government. Dr.\nShalaby speaks fluent English and his native Arabic. He has 77\ninternationally published research papers, has attended 15 international conferences, and has contributed to 18 international books and chapters.\nDr. Shalaby works as a reviewer on over one hundred international journals and is\non the editorial board of more than twenty-five international journals. He is a member of seven international specialized scientific societies, besides his local one, and\nhe has won seven prizes.",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11576",title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",hash:"5a01644fb0b4ce24c2f947913d154abe",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 26th 2022",isOpenForSubmission:!0,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",hash:"3d72ae651ee2a04b2368bf798a3183ca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 29th 2022",isOpenForSubmission:!0,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:39,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Bioinformatics and Medical Informatics",value:7,count:13,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"15",type:"subseries",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11411,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},onlineFirstChapters:{paginationCount:9,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80485",title:"Potential Marker for Diagnosis and Screening of Iron Deficiency Anemia in Children",doi:"10.5772/intechopen.102792",signatures:"Yulia Nadar Indrasari, Siti Nurul Hapsari and Muhamad Robiul Fuadi",slug:"potential-marker-for-diagnosis-and-screening-of-iron-deficiency-anemia-in-children",totalDownloads:42,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"79693",title:"Ferroptosis: Can Iron be the Last or Cure for a Cell?",doi:"10.5772/intechopen.101426",signatures:"Asuman Akkaya Fırat",slug:"ferroptosis-can-iron-be-the-last-or-cure-for-a-cell",totalDownloads:90,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"79616",title:"Dietary Iron",doi:"10.5772/intechopen.101265",signatures:"Kouser Firdose and Noor Firdose",slug:"dietary-iron",totalDownloads:144,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"78977",title:"FERALGINE™ a New Oral iron Compound",doi:"10.5772/intechopen.100445",signatures:"Valentina Talarico, Laura Giancotti, Giuseppe Antonio Mazza, Santina Marrazzo, Roberto Miniero and Marco Bertini",slug:"feralgine-a-new-oral-iron-compound",totalDownloads:129,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:null,institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"onlineFirst.detail",path:"/online-first/81512",hash:"",query:{},params:{id:"81512"},fullPath:"/online-first/81512",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()