IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\n
By listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
All three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n
"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n
"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\n
In conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n
“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\n
We invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\n
Feel free to share this news on social media and help us mark this memorable moment!
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\n
By listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
All three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n
"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n
"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\n
In conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n
“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\n
We invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\n
Feel free to share this news on social media and help us mark this memorable moment!
\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5457",leadTitle:null,fullTitle:"Contemporary Leadership Challenges",title:"Contemporary Leadership Challenges",subtitle:null,reviewType:"peer-reviewed",abstract:"Social and behavioral science has for decades studied and recognized leadership as a social exchange between leaders and followers. But leadership is rather complex, and as such, it tends to lead to an increased interest within and across different disciplines. This book is an attempt to provide theoretical and empirical framework to better understand leadership challenges in various contexts. The authors cover an array of themes that span from an individual level to an organizational and societal level. In this volume, two sections are presented. The first section based on individual level focuses on different leadership styles and abilities, and the other section provides theories to understand leadership in public administration, in industrial settings and in nonprofit organizations.",isbn:"978-953-51-2904-2",printIsbn:"978-953-51-2903-5",pdfIsbn:"978-953-51-4116-7",doi:"10.5772/62977",price:119,priceEur:129,priceUsd:155,slug:"contemporary-leadership-challenges",numberOfPages:274,isOpenForSubmission:!1,isInWos:1,isInBkci:!0,hash:"1fcedc3f8fe4dc3365c22aba9ed7af26",bookSignature:"Aida Alvinius",publishedDate:"February 1st 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5457.jpg",numberOfDownloads:49969,numberOfWosCitations:23,numberOfCrossrefCitations:24,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:36,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:83,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 14th 2016",dateEndSecondStepPublish:"May 5th 2016",dateEndThirdStepPublish:"August 9th 2016",dateEndFourthStepPublish:"November 7th 2016",dateEndFifthStepPublish:"December 7th 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,8",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"145558",title:"Associate Prof.",name:"Aida",middleName:null,surname:"Alvinius",slug:"aida-alvinius",fullName:"Aida Alvinius",profilePictureURL:"https://mts.intechopen.com/storage/users/145558/images/2643_n.jpg",biography:"Aida Alvinius (Ph.D sociolog., Karlstad University, Sweden) is associate professor and university lecturer at the Department of Security, Strategy and Leadership, Swedish Defence University. She has published articles, chapters in books, and research reports within the field of organisation, collaboration, gender studies and leadership, sociology of disasters, and military sociology.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"National Defence College Kenya",institutionURL:null,country:{name:"Kenya"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"438",title:"Leadership",slug:"leadership"}],chapters:[{id:"53615",title:"Waking Up to the Power of Reflection to Unlock Transformation in People, Teams and Organizations",doi:"10.5772/66656",slug:"waking-up-to-the-power-of-reflection-to-unlock-transformation-in-people-teams-and-organizations",totalDownloads:2162,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:"In our busy and frenetic world, leaders face overwhelm. Never before has there been so much change on so many fronts, demanding attention, squeezing out critical reflective time and thinking space. This is time and space to develop the personal capacities to lead with greater clarity, humanity and wisdom in order for transformation to occur, to learn how to reflect on experience, to sense what is needed and to lean into the futures’ emerging potential, instead of problem solving based on habitual thinking and yesterday's logic. This chapter will give reflection and reflective learning a rebranding, propelling it from dusty classrooms to become centre stage in a leader's toolkit, and will show how to apply the findings of the authors’ important new research in the workplace. The new leadership process “Reflect to Create!” with its seven human capacities for inspiring, creating and leading transformational change in today's VUCA world is introduced. The four core conditions and four key practices to embed the approach are also introduced.",signatures:"Elaine Patterson",downloadPdfUrl:"/chapter/pdf-download/53615",previewPdfUrl:"/chapter/pdf-preview/53615",authors:[{id:"189794",title:"M.A.",name:"Elaine",surname:"Patterson",slug:"elaine-patterson",fullName:"Elaine Patterson"}],corrections:null},{id:"52166",title:"Reflective Leadership: Learning to Manage and Lead Human Organizations",doi:"10.5772/64968",slug:"reflective-leadership-learning-to-manage-and-lead-human-organizations",totalDownloads:3974,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:"This chapter mainly focuses on the concept of reflection as a process, both individual and collaborative, involving experience and uncertainty under the theme of reflective leadership. This type of leadership basically means learning to manage and lead human organizations. It originates from the concept of reflection defining leadership roles and responsibilities in all types of organizations. Focusing on reflection for learning in an effort to create reflective learning communities for all stakeholders taking part in both administrative and executive positions in organizations, this chapter is expected to contribute to leadership theories, to link theory and practice in concrete terms describing new leadership roles and responsibilities under the reflective thought considering its unique impact on organizational functioning.",signatures:"Süleyman Davut Göker and Kıvanç Bozkuş",downloadPdfUrl:"/chapter/pdf-download/52166",previewPdfUrl:"/chapter/pdf-preview/52166",authors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"},{id:"190044",title:"Dr.",name:"Kivanc",surname:"Bozkus",slug:"kivanc-bozkus",fullName:"Kivanc Bozkus"}],corrections:null},{id:"52673",title:"Developing Leadership Resilience Through a Sense of Coherence",doi:"10.5772/65770",slug:"developing-leadership-resilience-through-a-sense-of-coherence",totalDownloads:2188,totalCrossrefCites:3,totalDimensionsCites:4,hasAltmetrics:1,abstract:"Leadership resilience is something that is accrued through experience. Becoming resilient necessarily involves the negative side of leadership and is one in which the leader often manifests symptoms of work‐induced stress. When in this space, the leader often feels isolated, and the voice of the leader is quietened as few leaders are able to say they are afraid. This case study provides insight into one leader's journey, during which he was able to find his voice. In so doing he developed a sense of coherence, which enabled the leadership episode to become part of a broader narrative. The process was facilitated through a coaching relationship, one in which a resilience and Salutogenic model/process and interpretative phenomenological analysis was utilised.",signatures:"Dee Gray",downloadPdfUrl:"/chapter/pdf-download/52673",previewPdfUrl:"/chapter/pdf-preview/52673",authors:[{id:"189709",title:"Dr.",name:"Dee",surname:"Gray",slug:"dee-gray",fullName:"Dee Gray"}],corrections:null},{id:"52779",title:"Leadership and Gender Differences—Are Men and Women Leading in the Same Way?",doi:"10.5772/65774",slug:"leadership-and-gender-differences-are-men-and-women-leading-in-the-same-way-",totalDownloads:5501,totalCrossrefCites:7,totalDimensionsCites:8,hasAltmetrics:1,abstract:"In this chapter, we aim to highlight the main gender differences in terms of leadership, to provide a critical comparative analysis, to discuss potential barriers that need to be overcome, and to find some ways of increasing organizational performance through a better leadership style. The focus will not be placed on the gender differences by themselves but on the ways these differences can positively influence the organizational performance. Our proposed chapter is mainly based on literature review as a methodology in its own right. Since literature review has revealed quite many divergent opinions, we also used questionnaires and interviews as data collection tools and we intend to present some of our results, without aiming to generalize all these results to different cultures. We cannot conclude that men’s leadership skills are more powerful and more important than women’s skills or vice versa, but it is clear that gender differences do exist and people should capitalize on them. We consider the word ‘complementary’ is better than the word ‘different’ when talking about leadership styles and that it is possible for leaders to develop a series of skills that are not necessarily traditionally linked to their own gender.",signatures:"Cătălina Radu, Alecxandrina Deaconu and Corina Frăsineanu",downloadPdfUrl:"/chapter/pdf-download/52779",previewPdfUrl:"/chapter/pdf-preview/52779",authors:[{id:"189086",title:"Ph.D.",name:"Cătălina",surname:"Radu",slug:"catalina-radu",fullName:"Cătălina Radu"}],corrections:null},{id:"52788",title:"Leadership: The Act of Serving",doi:"10.5772/65970",slug:"leadership-the-act-of-serving",totalDownloads:1788,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"This chapter is directed toward servant leadership as applied to the field of sport and athletic coaching. The purpose of the chapter is to give a brief definition of servant leadership and the application of such in coaching, and then to offer strategies for servant leadership as well as discuss several different research studies in athletic coaching. The conclusion simply states that though little research in coaching servant leadership exists, that which has been accomplished argues for implementation of coaching styles that are servant leadership focused.",signatures:"Sharon K. Stoll, Jennifer M. Beller, Peter VanMullem, Kevin Bryant\nand Marcis R. Fennell",downloadPdfUrl:"/chapter/pdf-download/52788",previewPdfUrl:"/chapter/pdf-preview/52788",authors:[{id:"189960",title:"Prof.",name:"Sharon Kay",surname:"Stoll",slug:"sharon-kay-stoll",fullName:"Sharon Kay Stoll"},{id:"213781",title:"Dr.",name:"Pete",surname:"Van Mullem",slug:"pete-van-mullem",fullName:"Pete Van Mullem"}],corrections:null},{id:"53703",title:"Leadership as an Art and a Responsibility: A Case Study of the Linguistic Choices of Nigeria's President Goodluck Jonathan",doi:"10.5772/67014",slug:"leadership-as-an-art-and-a-responsibility-a-case-study-of-the-linguistic-choices-of-nigeria-s-presid",totalDownloads:2024,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"President Jonathan of Nigeria continuously proclaimed that no blood of a Nigerian is worth his ambition before the 2015 elections. However, when he lost the presidential elections in 2015, it would be natural to expect him to become anti‐government and seek ill of the Nigerian people who rejected him. This study thus sought to determine the usage of language by President Jonathan in order to determine if he uses language responsibly and for the peace and unity of Nigeria. The data were sourced from his Facebook page. These were saved and analysed using the Chomsky theta theory and Halliday theme‐rheme system. The findings from the discussion show that Dr. Jonathan consistently exhibit responsible leadership in his linguistic usage. He continued to encourage and call on Nigerians to unite and support the government of the day. It was thus concluded that he has in him the spirit of leadership, which manifests in his positive use of language to encourage Nigeria's unity.",signatures:"Iyabode Omolara Akewo Daniel",downloadPdfUrl:"/chapter/pdf-download/53703",previewPdfUrl:"/chapter/pdf-preview/53703",authors:[{id:"190346",title:"Dr.",name:"Iyabode",surname:"Daniel",slug:"iyabode-daniel",fullName:"Iyabode Daniel"}],corrections:null},{id:"52733",title:"Critical Revision of Leadership Styles in Management and Company Cases",doi:"10.5772/65952",slug:"critical-revision-of-leadership-styles-in-management-and-company-cases",totalDownloads:2468,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:1,abstract:"In this chapter, we expose from a critical point of view the main leadership styles and then three successful international case companies (Inditex, Santander, and Telefónica) that recognized their style and the strategies they developed. These cases will be the start point to discuss what kind of leadership seems to be more suitable for staff development and for a better management of human resources. Our hypothesis is that with these styles of leadership, effectiveness of human resources is enhanced, and productivity of enterprises is assured to remain competitive, adapted, and successful. Also, we assume that there are some cultures in which these styles of leadership are better prepared, as the culture predisposes employees to accept and assimilate them. We are aware that worldwide business culture has a long way to progress toward more evolved leadership styles. This business culture is partly linked, or it is concomitant to the value or condition that is given to citizens in societies.",signatures:"Beatriz Peña-Acuña",downloadPdfUrl:"/chapter/pdf-download/52733",previewPdfUrl:"/chapter/pdf-preview/52733",authors:[{id:"194887",title:"Dr.",name:"Beatriz",surname:"Peña-Acuña",slug:"beatriz-pena-acuna",fullName:"Beatriz Peña-Acuña"}],corrections:null},{id:"52477",title:"Ethical Leadership in Crisis Management: The Role of University Education",doi:"10.5772/65497",slug:"ethical-leadership-in-crisis-management-the-role-of-university-education",totalDownloads:2087,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Ethical leadership is a necessary ingredient for successful crisis management. The study outlines generalizable prescriptive remedial steps that can be taken by business leaders faced by crises. But these remedial steps are simply the “bricks and mortar” of effective crisis management. The “pulsating soul” of ethical leadership is required to give such remedial steps the necessary moral compass for the initiation and sustained directional focus required for successful crisis management operationalization. The study’s objective and purpose are twofold. First, it outlines a model of crisis management derived from recent case studies of best practice and briefly indicates how such practices reduce financial losses to the organizations concerned if correctly implemented by ethical leaders. Second, the study aims to show how ethical leadership required for effective crisis management might be nurtured through specific ethics-oriented postgraduate university instruction. The study suggests that these two aspects, ethical leadership and prescriptive steps to follow in the event of a crisis, are not only mutually reinforcing but also indispensable in effective crisis management.",signatures:"David A.L. Coldwell",downloadPdfUrl:"/chapter/pdf-download/52477",previewPdfUrl:"/chapter/pdf-preview/52477",authors:[{id:"189110",title:"Prof.",name:"David",surname:"Coldwell",slug:"david-coldwell",fullName:"David Coldwell"}],corrections:null},{id:"52362",title:"Development of Leadership Competencies During Studies at an Institution of Higher Education: Students’ Opinion",doi:"10.5772/65269",slug:"development-of-leadership-competencies-during-studies-at-an-institution-of-higher-education-students",totalDownloads:4675,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"In order for more professionals to take the role of leaders, the systematic attitude to this question is necessary and one of the aspects is that it is needed to begin preparing students for the leadership at a higher school. Although there are many facts about the importance of developing of leadership competences at higher schools, there is a lack of research on the subject of students’ opinion about leadership development in Lithuania, as well as in other countries. That is why the research considering this issue is relevant practically and quite new scientifically. The aim of this study is to reveal students’ opinion about developing leadership competences during the studies at an institution of higher education. For this purpose, in the year 2015 and 2016 the research involving 857 last year students from different Lithuanian higher education institutions was fulfilled. The research has shown that the demand of students to develop leadership competences is significantly high and it is realized only partially. The research also confirmed the idea that the development of the leadership competencies could not be based on only one subject, but the integrated strategy needs to be applied. Based on the findings, some recommendations for higher education institutions were formulated as well.",signatures:"Aelita Skarbalienė",downloadPdfUrl:"/chapter/pdf-download/52362",previewPdfUrl:"/chapter/pdf-preview/52362",authors:[{id:"189070",title:"Dr.",name:"Aelita",surname:"Skarbalienė",slug:"aelita-skarbaliene",fullName:"Aelita Skarbalienė"}],corrections:null},{id:"52214",title:"Leadership in Non-Profit Organisations",doi:"10.5772/65268",slug:"leadership-in-non-profit-organisations",totalDownloads:2077,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Emerging at the end of the twentieth century, non-profit sector has taken on a new significance. Non-governmental organisations, health institutions, educational institutions and museums are examples for the variety of non-profit organisations. Museums are defined as the symbols of national cultures and bridges uniting the past with the present. However, it may be suggested that this definition has lost its validity on a large scale due to globalism that penetrated into our lives in the twentieth century. Globalism and multiculturalism played an important role in the industrialisation of culture, and being the symbols of culture, museums assumed the form of dynamics within this industry. Accordingly, the concept of museum leadership gained importance. The increasing competition amongst museums makes leadership more crucial. Compared to other sectors, museums have not been studied enough in terms of leadership and the late, but the necessary attempt to improve museum leadership is of vital importance for cultural industry. This study first discusses leadership and non-profit organisations separately, and afterwards, it investigates into leadership in non-profit organisations. Lastly, it elaborates on museum leadership, which is a popular concept of the modern day.",signatures:"Beste Gökçe Parsehyan",downloadPdfUrl:"/chapter/pdf-download/52214",previewPdfUrl:"/chapter/pdf-preview/52214",authors:[{id:"189113",title:"Dr.",name:"Beste",surname:"Gokce Parsehyan",slug:"beste-gokce-parsehyan",fullName:"Beste Gokce Parsehyan"}],corrections:null},{id:"52851",title:"Industrial Leadership: Leading Within the Field of Construction and Design",doi:"10.5772/65680",slug:"industrial-leadership-leading-within-the-field-of-construction-and-design",totalDownloads:3746,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The structure of the design and construction organizations is different from that of the service or manufacturing industry. Although design and construction organizsations are parts of the construction industry, they are different from each other, also. This chapter is based on the researches investigating the leadership behaviours of construction professionals and consists basically of two main sections. In the first section, the concept of leadership and importance of leadership in design and construction processes will beis discussed. In this first section, firstlyinitially, as the leaders of the design teams, the importance of leadership skills of architects in both architectural design teams and other design teams, and, secondly, the importance of leadership skills of construction professionals will beis evaluated. In the second section, the focus of the study will befocuses on the evaluation of leadership behaviours of construction professionals with a literature review of previous researches. In this second section, initially, the leadership stiles in design teams, and secondly leadership stiles of construction teams will beis evaluated.",signatures:"Esin Kasapoğlu",downloadPdfUrl:"/chapter/pdf-download/52851",previewPdfUrl:"/chapter/pdf-preview/52851",authors:[{id:"189772",title:"Dr.",name:"Esin",surname:"Kasapoglu",slug:"esin-kasapoglu",fullName:"Esin Kasapoglu"}],corrections:null},{id:"52757",title:"Leadership Requirements for Successful Implementation of Lean Management in Health Care: A Systematic Review of the Literature",doi:"10.5772/65653",slug:"leadership-requirements-for-successful-implementation-of-lean-management-in-health-care-a-systematic",totalDownloads:2257,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Lean is a management philosophy aimed at increasing value for end users by controlling waste. As such, it is a promising approach for health-care organizations to improve quality and control costs. Yet the transition to Lean management often fails in health-care organizations, commonly due to a lack of specific Lean leadership skills. This research addresses a gap in the knowledge about leadership requirements for successful Lean implementation in health-care organizations. A systematic literature search was performed using the MEDLINE, EMBASE and Emerald databases, resulting in the selection of 23 articles. Analysis of these articles confirmed the five Lean leadership principles identified in the manufacturing literature—improvement culture, self-development, employee training, going to the gemba, and hoshin kanri—and identified specific leadership behaviors, skills, characteristics, and attitudes for each principle. A sixth leadership principle, that of customer value, was also identified. This research contributes to existing Lean literature by providing new insights into leadership requirements for Lean transitions in health care. A new leadership framework is suggested for Lean leadership requirements during Lean implementation. In practice, this research provides health-care leaders with a practical framework and guidance with which to successfully implement Lean in a health-care institution.",signatures:"Kjeld H. Aij and Marion E. Veth",downloadPdfUrl:"/chapter/pdf-download/52757",previewPdfUrl:"/chapter/pdf-preview/52757",authors:[{id:"190181",title:"Dr.",name:"Kjeld",surname:"Aij",slug:"kjeld-aij",fullName:"Kjeld Aij"},{id:"195731",title:"Dr.",name:"Marion",surname:"Veth",slug:"marion-veth",fullName:"Marion Veth"}],corrections:null},{id:"52389",title:"Leadership and Healthcare Services",doi:"10.5772/65288",slug:"leadership-and-healthcare-services",totalDownloads:1863,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The reasons why organizations make changes in various fields, especially in their structure, include various changing situations such as globalization, increasing awareness in human rights and employee rights, developments in communication technologies, and changes in people’s expectations and demands. These changes in their structures have brought along changes in their management perspectives. In shaping the new management perspective which became a field of study which contains specialties, international competition has also played a major role as well as abovementioned notions of globalization, human rights, and communication technologies. Organizations keeping up with the time and reaching success by achieving competitive superiority in their field of activity are closely related with being managed by real leaders and these leaders’ behaviors and attitudes. Competition in healthcare sector has increased as a result of raised awareness in the right of healthy life which is one of the fundamental rights of individuals and that their demands were developed in that direction. In addition to this, it is quite important that the leaders, who are able to guide people, have ethical leadership characteristics in order to set an example to especially people who follow them and show righteousness and honesty in their actions.",signatures:"Bilge Sözen Şahne and Sevgi Şar",downloadPdfUrl:"/chapter/pdf-download/52389",previewPdfUrl:"/chapter/pdf-preview/52389",authors:[{id:"184120",title:"Dr.",name:"Bilge",surname:"Sözen Şahne",slug:"bilge-sozen-sahne",fullName:"Bilge Sözen Şahne"},{id:"190488",title:"Prof.",name:"Sevgi",surname:"Şar",slug:"sevgi-sar",fullName:"Sevgi Şar"}],corrections:null},{id:"52409",title:"Leadership in Nursing",doi:"10.5772/65308",slug:"leadership-in-nursing",totalDownloads:13169,totalCrossrefCites:6,totalDimensionsCites:8,hasAltmetrics:0,abstract:"The nursing literature, until recently presents the phenomenon of leadership as associated with nurse executives and formal leadership roles. That is leadership is defined in terms of an interactive process where followers are motivated and empowered to accomplish specific goals. The purpose of this chapter is to present the phenomena of nursing clinical leadership and leadership at the bedside, which is a new area of research in nursing. This chapter proposes that leadership is not merely linked to top management levels, but it can be developed and implemented at bedside for nurses. Clinical leadership skills focus on patients and healthcare teams rather than formal leadership position. In addition, clinical leadership relates to nursing professional activities, which provide direct care at bedside, which differs from the traditional nursing leadership notion. Thus, acquiring clinical leadership skills is crucial for nurses who provide direct patient care. This allows nurses to direct and support patients and healthcare teams when providing care. Furthermore, it is crucial that nurses develop an effective leadership role to deliver high-quality care and ensure patient safety while engaging in numerous daily leadership roles. Moreover, it emphasized the importance of the cooperation between nursing education programs and healthcare organizations in preparing nurses to be effective leaders by 2020 for the new era of health care.",signatures:"Reem Nassar AL-Dossary",downloadPdfUrl:"/chapter/pdf-download/52409",previewPdfUrl:"/chapter/pdf-preview/52409",authors:[{id:"194238",title:"Dr.",name:"Reem",surname:"Al-Dossary",slug:"reem-al-dossary",fullName:"Reem Al-Dossary"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5472",title:"Gender Differences in Different Contexts",subtitle:null,isOpenForSubmission:!1,hash:"2f67b9514d1d24a468b8cdf15f0c1cdb",slug:"gender-differences-in-different-contexts",bookSignature:"Aida Alvinius",coverURL:"https://cdn.intechopen.com/books/images_new/5472.jpg",editedByType:"Edited by",editors:[{id:"145558",title:"Associate Prof.",name:"Aida",surname:"Alvinius",slug:"aida-alvinius",fullName:"Aida Alvinius"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6781",title:"Leadership",subtitle:null,isOpenForSubmission:!1,hash:"f3afd6d261e6aec6511ce90e5c0601ca",slug:"leadership",bookSignature:"Suleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/6781.jpg",editedByType:"Edited by",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7799",title:"Digital Leadership",subtitle:"A New Leadership Style for the 21st Century",isOpenForSubmission:!1,hash:"04acd8ff54f1ae641699692e90c508b3",slug:"digital-leadership-a-new-leadership-style-for-the-21st-century",bookSignature:"Mario Franco",coverURL:"https://cdn.intechopen.com/books/images_new/7799.jpg",editedByType:"Edited by",editors:[{id:"105529",title:"Dr.",name:"Mário",surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79043",slug:"corrigendum-the-application-of-electric-drive-technologies-i",title:"Corrigendum: Application of Electric Drive Technologies in City Buses",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/79043.pdf",downloadPdfUrl:"/chapter/pdf-download/79043",previewPdfUrl:"/chapter/pdf-preview/79043",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/79043",risUrl:"/chapter/ris/79043",chapter:{id:"41487",slug:"the-application-of-electric-drive-technologies-in-city-buses",signatures:"Zlatomir Živanović and Zoran Nikolic",dateSubmitted:"April 4th 2012",dateReviewed:"July 21st 2012",datePrePublished:null,datePublished:"December 19th 2012",book:{id:"3196",title:"New Generation of Electric Vehicles",subtitle:null,fullTitle:"New Generation of Electric Vehicles",slug:"new-generation-of-electric-vehicles",publishedDate:"December 19th 2012",bookSignature:"Zoran Stevic",coverURL:"https://cdn.intechopen.com/books/images_new/3196.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"30692",title:"Dr.",name:"Zoran",middleName:"M.",surname:"Stevic",slug:"zoran-stevic",fullName:"Zoran Stevic"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"154524",title:"Dr.",name:"Zlatomir",middleName:null,surname:"Zivanovic",fullName:"Zlatomir Zivanovic",slug:"zlatomir-zivanovic",email:"zzivanovic@vinca.rs",position:null,institution:{name:"University of Belgrade",institutionURL:null,country:{name:"Serbia"}}},{id:"164696",title:"Dr.",name:"Zoran",middleName:null,surname:"Nikolic",fullName:"Zoran Nikolic",slug:"zoran-nikolic",email:"zor.nikolic@yahoo.com",position:null,institution:null}]}},chapter:{id:"41487",slug:"the-application-of-electric-drive-technologies-in-city-buses",signatures:"Zlatomir Živanović and Zoran Nikolic",dateSubmitted:"April 4th 2012",dateReviewed:"July 21st 2012",datePrePublished:null,datePublished:"December 19th 2012",book:{id:"3196",title:"New Generation of Electric Vehicles",subtitle:null,fullTitle:"New Generation of Electric Vehicles",slug:"new-generation-of-electric-vehicles",publishedDate:"December 19th 2012",bookSignature:"Zoran Stevic",coverURL:"https://cdn.intechopen.com/books/images_new/3196.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"30692",title:"Dr.",name:"Zoran",middleName:"M.",surname:"Stevic",slug:"zoran-stevic",fullName:"Zoran Stevic"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"154524",title:"Dr.",name:"Zlatomir",middleName:null,surname:"Zivanovic",fullName:"Zlatomir Zivanovic",slug:"zlatomir-zivanovic",email:"zzivanovic@vinca.rs",position:null,institution:{name:"University of Belgrade",institutionURL:null,country:{name:"Serbia"}}},{id:"164696",title:"Dr.",name:"Zoran",middleName:null,surname:"Nikolic",fullName:"Zoran Nikolic",slug:"zoran-nikolic",email:"zor.nikolic@yahoo.com",position:null,institution:null}]},book:{id:"3196",title:"New Generation of Electric Vehicles",subtitle:null,fullTitle:"New Generation of Electric Vehicles",slug:"new-generation-of-electric-vehicles",publishedDate:"December 19th 2012",bookSignature:"Zoran Stevic",coverURL:"https://cdn.intechopen.com/books/images_new/3196.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"30692",title:"Dr.",name:"Zoran",middleName:"M.",surname:"Stevic",slug:"zoran-stevic",fullName:"Zoran Stevic"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12012",leadTitle:null,title:"Magnetic Skyrmions",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"5dafa9e8eb86549b03e08326b0db7955",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12012.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 28th 2022",dateEndSecondStepPublish:"March 21st 2022",dateEndThirdStepPublish:"May 20th 2022",dateEndFourthStepPublish:"August 8th 2022",dateEndFifthStepPublish:"October 7th 2022",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"20",title:"Physics",slug:"physics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"8356",title:"Metastable, Spintronics Materials and Mechanics of Deformable Bodies",subtitle:"Recent Progress",isOpenForSubmission:!1,hash:"1550f1986ce9bcc0db87d407a8b47078",slug:"solid-state-physics-metastable-spintronics-materials-and-mechanics-of-deformable-bodies-recent-progress",bookSignature:"Subbarayan Sivasankaran, Pramoda Kumar Nayak and Ezgi Günay",coverURL:"https://cdn.intechopen.com/books/images_new/8356.jpg",editedByType:"Edited by",editors:[{id:"190989",title:"Dr.",name:"Subbarayan",surname:"Sivasankaran",slug:"subbarayan-sivasankaran",fullName:"Subbarayan Sivasankaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"29995",title:"Optimized Profiles for Astigmatic Refractive Surgery",doi:"10.5772/18055",slug:"optimized-profiles-for-astigmatic-refractive-surgery",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/29995.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/29995",previewPdfUrl:"/chapter/pdf-preview/29995",totalDownloads:2537,totalViews:116,totalCrossrefCites:1,totalDimensionsCites:1,totalAltmetricsMentions:0,impactScore:1,impactScorePercentile:50,impactScoreQuartile:3,hasAltmetrics:0,dateSubmitted:"October 25th 2010",dateReviewed:"March 31st 2011",datePrePublished:null,datePublished:"February 29th 2012",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/29995",risUrl:"/chapter/ris/29995",book:{id:"237",slug:"astigmatism-optics-physiology-and-management"},signatures:"Samuel Arba-Mosquera, Sara Padroni, Sai Kolli and Ioannis M. Aslanides",authors:[{id:"30278",title:"MSc",name:"Samuel",middleName:null,surname:"Arba Mosquera",fullName:"Samuel Arba Mosquera",slug:"samuel-arba-mosquera",email:"samuel.arba.mosquera@eye-tech.net",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"38071",title:"Mrs.",name:"Sara",middleName:null,surname:"Padroni",fullName:"Sara Padroni",slug:"sara-padroni",email:"spadroni@hotmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"38072",title:"Mr.",name:"Ioannis M",middleName:null,surname:"Aslanides",fullName:"Ioannis M Aslanides",slug:"ioannis-m-aslanides",email:"i.aslanides@emmetropia.gr",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"237",type:"book",title:"Astigmatism",subtitle:"Optics, Physiology and Management",fullTitle:"Astigmatism - Optics, Physiology and Management",slug:"astigmatism-optics-physiology-and-management",publishedDate:"February 29th 2012",bookSignature:"Michael Goggin",coverURL:"https://cdn.intechopen.com/books/images_new/237.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-51-0230-4",pdfIsbn:"978-953-51-6874-4",reviewType:"peer-reviewed",numberOfWosCitations:29,isAvailableForWebshopOrdering:!0,editors:[{id:"65903",title:"Dr.",name:"Michael",middleName:null,surname:"Goggin",slug:"michael-goggin",fullName:"Michael Goggin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1094"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"29982",type:"chapter",title:"Physiology of Astigmatism",slug:"astigmatism-physiology",totalDownloads:4901,totalCrossrefCites:0,signatures:"Seyed-Farzad Mohammadi, Maryam Tahvildari and Hadi Z-Mehrjardi",reviewType:"peer-reviewed",authors:[{id:"30302",title:"Prof.",name:"Seyed-Farzad",middleName:null,surname:"Mohammadi",fullName:"Seyed-Farzad Mohammadi",slug:"seyed-farzad-mohammadi"},{id:"33532",title:"Dr.",name:"Hadi",middleName:null,surname:"Z-Mehrjardi",fullName:"Hadi Z-Mehrjardi",slug:"hadi-z-mehrjardi"},{id:"33533",title:"Dr.",name:"Maryam",middleName:null,surname:"Tahvildari",fullName:"Maryam Tahvildari",slug:"maryam-tahvildari"}]},{id:"29983",type:"chapter",title:"Etiology and Clinical Presentation of Astigmatism",slug:"etiology-and-clinical-presentation-of-astigmatism",totalDownloads:3907,totalCrossrefCites:0,signatures:"David Varssano",reviewType:"peer-reviewed",authors:[{id:"31189",title:"Dr.",name:"David",middleName:null,surname:"Varssano",fullName:"David Varssano",slug:"david-varssano"}]},{id:"29984",type:"chapter",title:"Optics of Astigmatism and Retinal Image Quality",slug:"optics-of-the-astigmatism-and-retinal-image-quality",totalDownloads:7107,totalCrossrefCites:1,signatures:"M. Vilaseca, F. Díaz-Doutón, S. O. Luque, M. Aldaba, M. Arjona and J. Pujol",reviewType:"peer-reviewed",authors:[{id:"35912",title:"Dr.",name:"Meritxell",middleName:null,surname:"Vilaseca",fullName:"Meritxell Vilaseca",slug:"meritxell-vilaseca"},{id:"47024",title:"Dr.",name:"Fernando",middleName:null,surname:"Díaz-Doutón",fullName:"Fernando Díaz-Doutón",slug:"fernando-diaz-douton"},{id:"47025",title:"Dr.",name:"Sergio",middleName:"Oscar",surname:"Luque",fullName:"Sergio Luque",slug:"sergio-luque"},{id:"47026",title:"Mr.",name:"Mikel",middleName:null,surname:"Aldaba",fullName:"Mikel Aldaba",slug:"mikel-aldaba"},{id:"47027",title:"Dr.",name:"Montserrat",middleName:null,surname:"Arjona",fullName:"Montserrat Arjona",slug:"montserrat-arjona"},{id:"47028",title:"Prof.",name:"Jaume",middleName:null,surname:"Pujol",fullName:"Jaume Pujol",slug:"jaume-pujol"}]},{id:"29985",type:"chapter",title:"Astigmatism – Definition, Etiology, Classification, Diagnosis and Non-Surgical Treatment",slug:"astigmatism-definition-etiology-classification-diagnosis-and-non-surgical-treatment",totalDownloads:24282,totalCrossrefCites:0,signatures:"Dieudonne Kaimbo Wa Kaimbo",reviewType:"peer-reviewed",authors:[{id:"30502",title:"Prof.",name:"Dieudonne",middleName:null,surname:"Kaimbo Wa Kaimbo",fullName:"Dieudonne Kaimbo Wa Kaimbo",slug:"dieudonne-kaimbo-wa-kaimbo"}]},{id:"29986",type:"chapter",title:"Diagnosis and Imaging of Corneal Astigmatism",slug:"diagnosis-and-imaging-of-corneal-astigmatism",totalDownloads:8318,totalCrossrefCites:3,signatures:"Jaime Tejedor and Antonio Guirao",reviewType:"peer-reviewed",authors:[{id:"30652",title:"Dr.",name:"Jaime",middleName:null,surname:"Tejedor",fullName:"Jaime Tejedor",slug:"jaime-tejedor"},{id:"48131",title:"Dr.",name:"Antonio",middleName:null,surname:"Guirao",fullName:"Antonio Guirao",slug:"antonio-guirao"}]},{id:"29987",type:"chapter",title:"Cataract Surgery in Keratoconus with Irregular Astigmatism",slug:"cataract-surgery-on-irregular-astigmatism-of-keratoconus",totalDownloads:6514,totalCrossrefCites:2,signatures:"Jean-Louis Bourges",reviewType:"peer-reviewed",authors:[{id:"39340",title:"Dr.",name:"Jean-Louis",middleName:null,surname:"Bourges",fullName:"Jean-Louis Bourges",slug:"jean-louis-bourges"}]},{id:"29988",type:"chapter",title:"Aspheric Refractive Correction of Irregular Astimatism",slug:"aspheric-refractive-correction-of-irregular-astimatism",totalDownloads:2572,totalCrossrefCites:0,signatures:"Massimo Camellin and Samuel Arba-Mosquera",reviewType:"peer-reviewed",authors:[{id:"30278",title:"MSc",name:"Samuel",middleName:null,surname:"Arba Mosquera",fullName:"Samuel Arba Mosquera",slug:"samuel-arba-mosquera"},{id:"40288",title:"Dr.",name:"Massimo",middleName:null,surname:"Camellin",fullName:"Massimo Camellin",slug:"massimo-camellin"}]},{id:"29989",type:"chapter",title:"Treating Mixed Astigmatism – A Theoretical Comparison and Guideline for Combined Ablation Strategies and Wavefront Ablation",slug:"mixed-astigmatism",totalDownloads:5557,totalCrossrefCites:0,signatures:"Diego de Ortueta, Samuel Arba Mosquera and Christoph Haecker",reviewType:"peer-reviewed",authors:[{id:"35619",title:"Prof.",name:"Diego",middleName:null,surname:"de Ortueta",fullName:"Diego de Ortueta",slug:"diego-de-ortueta"},{id:"85826",title:"Prof.",name:"Sam",middleName:null,surname:"Arba Mosquera",fullName:"Sam Arba Mosquera",slug:"sam-arba-mosquera"},{id:"86258",title:"M.Sc.",name:"Christoph",middleName:null,surname:"Häcker",fullName:"Christoph Häcker",slug:"christoph-hacker"}]},{id:"29990",type:"chapter",title:"Management of Post-Penetrating Keratoplasty Astigmatism",slug:"effect-of-graft-astigmatic-correction-by-relaxing-incisions-with-or-without-compression-sutures-on-g",totalDownloads:6427,totalCrossrefCites:0,signatures:"Sepehr Feizi",reviewType:"peer-reviewed",authors:[{id:"37619",title:"Dr.",name:"Sepehr",middleName:null,surname:"Feizi",fullName:"Sepehr Feizi",slug:"sepehr-feizi"}]},{id:"29991",type:"chapter",title:"Controlling Astigmatism in Corneal Marginal Grafts",slug:"controlling-astigmatism-in-marginal-corneal-grafts",totalDownloads:2272,totalCrossrefCites:0,signatures:"Lingyi Liang and Zuguo Liu",reviewType:"peer-reviewed",authors:[{id:"34786",title:"Prof.",name:"Zuguo",middleName:null,surname:"Liu",fullName:"Zuguo Liu",slug:"zuguo-liu"},{id:"34860",title:"Dr.",name:"Lingyi",middleName:null,surname:"Liang",fullName:"Lingyi Liang",slug:"lingyi-liang"}]},{id:"29992",type:"chapter",title:"Contact Lens Correction of Regular and Irregular Astigmatism",slug:"contact-lens-correction-of-regular-and-irregular-astigmatism",totalDownloads:10049,totalCrossrefCites:0,signatures:"Raul Martín Herranz, Guadalupe Rodríguez Zarzuelo and Victoria de Juan Herráez",reviewType:"peer-reviewed",authors:[{id:"33273",title:"Prof.",name:"Raul",middleName:null,surname:"Martin",fullName:"Raul Martin",slug:"raul-martin"},{id:"33281",title:"MSc.",name:"Guadalupe",middleName:null,surname:"Rodriguez",fullName:"Guadalupe Rodriguez",slug:"guadalupe-rodriguez"},{id:"33282",title:"MSc.",name:"Victoria",middleName:null,surname:"de Juan",fullName:"Victoria de Juan",slug:"victoria-de-juan"}]},{id:"29993",type:"chapter",title:"Posterior Chamber Toric Implantable Collamer Lenses – Literature Review",slug:"toric-posterior-chamber-phakic-implantable-collamer-lens-long-term-results",totalDownloads:2882,totalCrossrefCites:0,signatures:"Erik L. Mertens",reviewType:"peer-reviewed",authors:[{id:"45154",title:"Dr.",name:null,middleName:null,surname:"Mertens",fullName:"Mertens",slug:"mertens"}]},{id:"29994",type:"chapter",title:"Femtosecond Laser-Assisted Astigmatism Correction",slug:"femtosecond-laser-assisted-astigmatism-correction",totalDownloads:4132,totalCrossrefCites:1,signatures:"Duna Raoof-Daneshvar and Shahzad I. Mian",reviewType:"peer-reviewed",authors:[{id:"30521",title:"Dr.",name:"Shahzad",middleName:null,surname:"Mian",fullName:"Shahzad Mian",slug:"shahzad-mian"},{id:"50962",title:"Dr",name:"Duna",middleName:"A",surname:"Raoof-Daneshvar",fullName:"Duna Raoof-Daneshvar",slug:"duna-raoof-daneshvar"}]},{id:"29995",type:"chapter",title:"Optimized Profiles for Astigmatic Refractive Surgery",slug:"optimized-profiles-for-astigmatic-refractive-surgery",totalDownloads:2537,totalCrossrefCites:1,signatures:"Samuel Arba-Mosquera, Sara Padroni, Sai Kolli and Ioannis M. Aslanides",reviewType:"peer-reviewed",authors:[{id:"30278",title:"MSc",name:"Samuel",middleName:null,surname:"Arba Mosquera",fullName:"Samuel Arba Mosquera",slug:"samuel-arba-mosquera"},{id:"38071",title:"Mrs.",name:"Sara",middleName:null,surname:"Padroni",fullName:"Sara Padroni",slug:"sara-padroni"},{id:"38072",title:"Mr.",name:"Ioannis M",middleName:null,surname:"Aslanides",fullName:"Ioannis M Aslanides",slug:"ioannis-m-aslanides"}]},{id:"29996",type:"chapter",title:"Measurement and Topography Guided Treatment of Irregular Astigmatism",slug:"topography-guided-treatment-of-irregular-astigmatism-",totalDownloads:7349,totalCrossrefCites:2,signatures:"Joaquim Murta and Andreia Martins Rosa",reviewType:"peer-reviewed",authors:[{id:"52800",title:"Prof.",name:"Joaquim",middleName:null,surname:"Murta",fullName:"Joaquim Murta",slug:"joaquim-murta"}]},{id:"29997",type:"chapter",title:"Toric Intraocular Lenses in Cataract Surgery",slug:"toric-intraocular-lenses-in-cataract-surgery",totalDownloads:11899,totalCrossrefCites:1,signatures:"Nienke Visser, Noël J.C. Bauer and Rudy M.M.A. Nuijts",reviewType:"peer-reviewed",authors:[{id:"48763",title:"Dr.",name:"Rudy",middleName:null,surname:"Nuijts",fullName:"Rudy Nuijts",slug:"rudy-nuijts"},{id:"48766",title:"Dr.",name:"Noël",middleName:null,surname:"Bauer",fullName:"Noël Bauer",slug:"noel-bauer"},{id:"86687",title:"Dr.",name:"Nienke",middleName:null,surname:"Visser",fullName:"Nienke Visser",slug:"nienke-visser"}]},{id:"29998",type:"chapter",title:"Surgical Correction of Astigmatism During Cataract Surgery",slug:"correction-of-astigmatism-during-cataract-surgery",totalDownloads:8494,totalCrossrefCites:0,signatures:"Arzu Taskiran Comez and Yelda Ozkurt",reviewType:"peer-reviewed",authors:[{id:"37798",title:"Dr",name:"Yelda",middleName:null,surname:"Özkurt",fullName:"Yelda Özkurt",slug:"yelda-ozkurt"},{id:"49467",title:"Prof.",name:"Arzu",middleName:null,surname:"Taskiran Comez",fullName:"Arzu Taskiran Comez",slug:"arzu-taskiran-comez"}]}]},relatedBooks:[{type:"book",id:"268",title:"Glaucoma",subtitle:"Basic and Clinical Concepts",isOpenForSubmission:!1,hash:"b9a66374f7429cc798c56e9e8149a1aa",slug:"glaucoma-basic-and-clinical-concepts",bookSignature:"Shimon Rumelt",coverURL:"https://cdn.intechopen.com/books/images_new/268.jpg",editedByType:"Edited by",editors:[{id:"54335",title:"Dr.",name:"Shimon",surname:"Rumelt",slug:"shimon-rumelt",fullName:"Shimon Rumelt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"23814",title:"Mechanism of Aqueous Humor Secretion, Its Regulation and Relevance to Glaucoma",slug:"mechanism-of-aqueous-humor-secretion-its-regulation-and-relevance-to-glaucoma",signatures:"Mohammad Shahidullah, Waleed Hassan Al-Malki and Nicholas A. Delamere",authors:[{id:"67082",title:"Dr.",name:"Mohammad",middleName:null,surname:"Shahidullah",fullName:"Mohammad Shahidullah",slug:"mohammad-shahidullah"},{id:"140321",title:"Prof.",name:"Waleed Hassan",middleName:null,surname:"Al-Malki",fullName:"Waleed Hassan Al-Malki",slug:"waleed-hassan-al-malki"},{id:"140322",title:"Prof.",name:"Nicholas",middleName:null,surname:"Delamere",fullName:"Nicholas Delamere",slug:"nicholas-delamere"}]},{id:"23815",title:"Retinal Ganglion Cell Death",slug:"retinal-ganglion-cell-death",signatures:"Yasemin Budak and Müberra Akdogan",authors:[{id:"33278",title:"Dr.",name:"Yasemin",middleName:null,surname:"Ustündağ Budak",fullName:"Yasemin Ustündağ Budak",slug:"yasemin-ustundag-budak"},{id:"34055",title:"Mrs.",name:"Müberra",middleName:null,surname:"Akdogan",fullName:"Müberra Akdogan",slug:"muberra-akdogan"}]},{id:"23816",title:"Adaptive Changes in the Retina and Central Visual Areas in Glaucoma",slug:"adaptive-changes-in-the-retina-and-central-visual-areas-in-glaucoma",signatures:"Sansar C. Sharma, Jin Li and Elena Vecino",authors:[{id:"31685",title:"Prof.",name:"Elena",middleName:null,surname:"Vecino",fullName:"Elena Vecino",slug:"elena-vecino"},{id:"36188",title:"Prof.",name:"Sansar",middleName:null,surname:"Sharma",fullName:"Sansar Sharma",slug:"sansar-sharma"},{id:"119155",title:"Dr.",name:"Jin",middleName:null,surname:"Li",fullName:"Jin Li",slug:"jin-li"}]},{id:"23817",title:"Molecular Control of Retinal Ganglion Cell Specification and Differentiation",slug:"molecular-control-of-retinal-ganglion-cell-specification-and-differentiation",signatures:"Mengqing Xiang, Haisong Jiang, Kangxin Jin and Feng Qiu",authors:[{id:"36390",title:"Prof.",name:"Mengqing",middleName:null,surname:"Xiang",fullName:"Mengqing Xiang",slug:"mengqing-xiang"},{id:"49533",title:"Dr.",name:"Feng",middleName:null,surname:"Qiu",fullName:"Feng Qiu",slug:"feng-qiu"},{id:"49534",title:"Mr.",name:"Haisong",middleName:null,surname:"Jiang",fullName:"Haisong Jiang",slug:"haisong-jiang"},{id:"49535",title:"Mr.",name:"Kangxin",middleName:null,surname:"Jin",fullName:"Kangxin Jin",slug:"kangxin-jin"}]},{id:"23818",title:"The Role of Retinal Oxidative and Nitrative Injury in Glaucomatous Neurodegeneration",slug:"the-role-of-retinal-oxidative-and-nitrative-injury-in-glaucomatous-neurodegeneration",signatures:"Serdar Dogan and Mutay Aslan",authors:[{id:"31726",title:"Prof.",name:"Mutay",middleName:null,surname:"Aslan",fullName:"Mutay Aslan",slug:"mutay-aslan"},{id:"51847",title:"Dr.",name:"Serdar",middleName:null,surname:"Dogan",fullName:"Serdar Dogan",slug:"serdar-dogan"}]},{id:"23819",title:"Excitotoxic Injury to Retinal Ganglion Cells",slug:"excitotoxic-injury-to-retinal-ganglion-cells",signatures:"William A. Hare, Cun-Jian Dong, and Larry Wheeler",authors:[{id:"37227",title:"Dr.",name:"William",middleName:"Alan",surname:"Hare",fullName:"William Hare",slug:"william-hare"},{id:"48055",title:"Dr.",name:"Cun-Jian",middleName:null,surname:"Dong",fullName:"Cun-Jian Dong",slug:"cun-jian-dong"},{id:"93652",title:"Dr.",name:"Larry",middleName:null,surname:"Wheeler",fullName:"Larry Wheeler",slug:"larry-wheeler"}]},{id:"23820",title:"Neuroprotection in Glaucoma",slug:"neuroprotection-in-glaucoma",signatures:"Brett H. Mueller II, Dorota L. Stankowska and Raghu R. Krishnamoorthy",authors:[{id:"31573",title:"Dr.",name:"Raghu",middleName:null,surname:"Krishnamoorthy",fullName:"Raghu Krishnamoorthy",slug:"raghu-krishnamoorthy"},{id:"50465",title:"Prof.",name:"Brett",middleName:null,surname:"Mueller",fullName:"Brett Mueller",slug:"brett-mueller"},{id:"90600",title:"Dr.",name:"Dorota",middleName:null,surname:"Stankowska",fullName:"Dorota Stankowska",slug:"dorota-stankowska"}]},{id:"23821",title:"Neural Mechanisms Underlying Brimonidine’s Protection of Retinal Ganglion Cells in Experimental Glaucoma",slug:"neural-mechanisms-underlying-brimonidine-s-protection-of-retinal-ganglion-cells-in-experimental-glau",signatures:"Cun-Jian Dong, William A. Hare and Larry Wheeler",authors:[{id:"37227",title:"Dr.",name:"William",middleName:"Alan",surname:"Hare",fullName:"William Hare",slug:"william-hare"},{id:"48055",title:"Dr.",name:"Cun-Jian",middleName:null,surname:"Dong",fullName:"Cun-Jian Dong",slug:"cun-jian-dong"},{id:"93652",title:"Dr.",name:"Larry",middleName:null,surname:"Wheeler",fullName:"Larry Wheeler",slug:"larry-wheeler"}]},{id:"23822",title:"Glaucoma Genetics – Regulation of Cell Surviving and Death in the Retina",slug:"glaucoma-genetics-regulation-of-cell-surviving-and-death-in-the-retina",signatures:"Maria D. Pinazo-Durán, Roberto Gallego-Pinazo, Vicente Zanón-Moreno and Manuel Serrano",authors:[{id:"30637",title:"Dr.",name:"Vicente",middleName:null,surname:"Zanon-Moreno",fullName:"Vicente Zanon-Moreno",slug:"vicente-zanon-moreno"},{id:"52533",title:"Prof.",name:"Maria D.",middleName:null,surname:"Pinazo-Duran",fullName:"Maria D. Pinazo-Duran",slug:"maria-d.-pinazo-duran"},{id:"52539",title:"Dr.",name:"Roberto",middleName:null,surname:"Gallego-Pinazo",fullName:"Roberto Gallego-Pinazo",slug:"roberto-gallego-pinazo"},{id:"52540",title:"Prof.",name:"Manuel",middleName:null,surname:"Serrano",fullName:"Manuel Serrano",slug:"manuel-serrano"}]},{id:"23823",title:"A Vascular Approach to Glaucoma",slug:"a-vascular-approach-to-glaucoma",signatures:"Luís Abegão Pinto and Ingeborg Stalmans",authors:[{id:"37316",title:"Prof.",name:"Ingeborg",middleName:null,surname:"Stalmans",fullName:"Ingeborg Stalmans",slug:"ingeborg-stalmans"},{id:"37393",title:"Dr.",name:"Luis",middleName:"Abegão",surname:"Pinto",fullName:"Luis Pinto",slug:"luis-pinto"}]},{id:"23824",title:"Corneal Viscoelastical Properties Related to Glaucoma",slug:"corneal-viscoelastical-properties-related-to-glaucoma",signatures:"Horea Demea, Sorina Demea and Rodica Holonec",authors:[{id:"50784",title:"Mrs",name:"Sorina",middleName:null,surname:"Demea",fullName:"Sorina Demea",slug:"sorina-demea"},{id:"51213",title:"Prof.",name:"Rodica",middleName:null,surname:"Holonec",fullName:"Rodica Holonec",slug:"rodica-holonec"},{id:"52314",title:"Mr",name:"Horea",middleName:null,surname:"Demea",fullName:"Horea Demea",slug:"horea-demea"}]},{id:"23825",title:"Effects of High Altitude Related Oxidative Stress on Intraocular Pressure and Central Corneal Thickness – A Research Model for the Etiology of Glaucoma",slug:"effects-of-high-altitude-related-oxidative-stress-on-intraocular-pressure-and-central-corneal-thickn",signatures:"Sarper Karakucuk",authors:[{id:"36102",title:"Prof.",name:"Sarper",middleName:null,surname:"Karakucuk",fullName:"Sarper Karakucuk",slug:"sarper-karakucuk"}]},{id:"23826",title:"Sleep Apnea and Glaucoma – Greater Risk for Blacks?",slug:"sleep-apnea-and-glaucoma-greater-risk-for-blacks-",signatures:"Ferdinand Zizi, Adnan Mallick, Monika Dweck, Douglas Lazzaro and Girardin Jean-Louis",authors:[{id:"58174",title:"Dr.",name:"Jean-Louis",middleName:null,surname:"Girardin",fullName:"Jean-Louis Girardin",slug:"jean-louis-girardin"},{id:"58175",title:"Dr.",name:"Ferdinand",middleName:null,surname:"Zizi",fullName:"Ferdinand Zizi",slug:"ferdinand-zizi"}]},{id:"23827",title:"Quality of Life (QoL) in Glaucoma Patients",slug:"quality-of-life-qol-in-glaucoma-patients",signatures:"Georgios Labiris, Athanassios Giarmoukakis and Vassilios P. Kozobolis",authors:[{id:"61997",title:"Dr.",name:"Georgios",middleName:null,surname:"Labiris",fullName:"Georgios Labiris",slug:"georgios-labiris"},{id:"94480",title:"Dr.",name:"Athanassios",middleName:null,surname:"Giarmoukakis",fullName:"Athanassios Giarmoukakis",slug:"athanassios-giarmoukakis"},{id:"94481",title:"Prof.",name:"Vassilios",middleName:null,surname:"Kozobolis",fullName:"Vassilios Kozobolis",slug:"vassilios-kozobolis"}]},{id:"23828",title:"Glaucoma Animal Models",slug:"glaucoma-animal-models",signatures:"Elena Vecino and Sansar C. Sharma",authors:[{id:"31685",title:"Prof.",name:"Elena",middleName:null,surname:"Vecino",fullName:"Elena Vecino",slug:"elena-vecino"},{id:"36188",title:"Prof.",name:"Sansar",middleName:null,surname:"Sharma",fullName:"Sansar Sharma",slug:"sansar-sharma"}]},{id:"23829",title:"Management of Glaucoma in the Era of Modern Imaging and Diagnostics",slug:"management-of-glaucoma-in-the-era-of-modern-imaging-and-diagnostics",signatures:"Anurag Shrivastava and Umar Mian",authors:[{id:"37586",title:"Dr.",name:"Umar",middleName:null,surname:"Mian",fullName:"Umar Mian",slug:"umar-mian"},{id:"50939",title:"Dr.",name:"Anurag",middleName:null,surname:"Shrivastava",fullName:"Anurag Shrivastava",slug:"anurag-shrivastava"}]},{id:"23830",title:"Anterior Chamber Angle Assessment Techniques",slug:"anterior-chamber-angle-assessment-techniques",signatures:"Claudio Campa, Luisa Pierro, Paolo Bettin and Francesco Bandello",authors:[{id:"35590",title:"Dr.",name:"Claudio",middleName:null,surname:"Campa",fullName:"Claudio Campa",slug:"claudio-campa"},{id:"140329",title:"Prof.",name:"Luisa",middleName:null,surname:"Pierro",fullName:"Luisa Pierro",slug:"luisa-pierro"},{id:"140330",title:"Prof.",name:"Paolo",middleName:null,surname:"Bettin",fullName:"Paolo Bettin",slug:"paolo-bettin"},{id:"140331",title:"Prof.",name:"Francesco",middleName:null,surname:"Bandello",fullName:"Francesco Bandello",slug:"francesco-bandello"}]},{id:"23831",title:"End Stage Glaucoma",slug:"end-stage-glaucoma",signatures:"Tharwat H. Mokbel",authors:[{id:"35637",title:"Prof.",name:"Tharwat",middleName:null,surname:"Mokbel",fullName:"Tharwat Mokbel",slug:"tharwat-mokbel"}]},{id:"23832",title:"Update on Modulating Wound Healing in Trabeculectomy",slug:"update-on-modulating-wound-healing-in-trabeculectomy",signatures:"Hosam Sheha",authors:[{id:"50400",title:"Dr.",name:"Hosam",middleName:null,surname:"Sheha",fullName:"Hosam Sheha",slug:"hosam-sheha"}]},{id:"23833",title:"Novel Glaucoma Surgical Devices",slug:"novel-glaucoma-surgical-devices",signatures:"Parul Ichhpujani and Marlene R. Moster",authors:[{id:"52529",title:"Dr.",name:"Marlene",middleName:null,surname:"Moster",fullName:"Marlene Moster",slug:"marlene-moster"},{id:"52530",title:"Dr.",name:"Parul",middleName:null,surname:"Ichhpujani",fullName:"Parul Ichhpujani",slug:"parul-ichhpujani"}]},{id:"23834",title:"Cyclodestructive Procedures",slug:"cyclodestructive-procedures",signatures:"Sima Sayyahmelli and Rakhshandeh Alipanahi",authors:[{id:"29623",title:"Dr.",name:"Sima",middleName:null,surname:"Sayyahmelli",fullName:"Sima Sayyahmelli",slug:"sima-sayyahmelli"},{id:"41265",title:"Dr.",name:"Rakhshandeh",middleName:null,surname:"Alipanahi",fullName:"Rakhshandeh Alipanahi",slug:"rakhshandeh-alipanahi"}]},{id:"23835",title:"Another Look on Cyclodestructive Procedures",slug:"another-look-on-cyclodestructive-procedures",signatures:"Antonio Fea, Dario Damato, Umberto Lorenzi and Federico M. Grignolo",authors:[{id:"36351",title:"Dr.",name:"Antonio",middleName:null,surname:"Fea",fullName:"Antonio Fea",slug:"antonio-fea"},{id:"140326",title:"Prof.",name:"Dario",middleName:null,surname:"Damato",fullName:"Dario Damato",slug:"dario-damato"},{id:"140327",title:"Prof.",name:"Umberto",middleName:null,surname:"Lorenzi",fullName:"Umberto Lorenzi",slug:"umberto-lorenzi"},{id:"140328",title:"Dr.",name:"Federico",middleName:null,surname:"Grignolo",fullName:"Federico Grignolo",slug:"federico-grignolo"}]},{id:"23836",title:"Controlled Cyclophotocoagulation",slug:"controlled-cyclophotocoagulation",signatures:"Paul-Rolf Preußner",authors:[{id:"43694",title:"Prof.",name:"Paul Rolf",middleName:null,surname:"Preußner",fullName:"Paul Rolf Preußner",slug:"paul-rolf-preussner"},{id:"43698",title:"Dr.",name:"Jochen",middleName:null,surname:"Wahl",fullName:"Jochen Wahl",slug:"jochen-wahl"}]},{id:"23837",title:"Congenital Glaucoma",slug:"congenital-glaucoma",signatures:"Jair Giampani Junior and Adriana Silva Borges Giampani",authors:[{id:"35331",title:"Prof.",name:"Jair",middleName:null,surname:"Giampani Junior",fullName:"Jair Giampani Junior",slug:"jair-giampani-junior"},{id:"35333",title:"Prof.",name:"Adriana",middleName:null,surname:"Borges-Giampani",fullName:"Adriana Borges-Giampani",slug:"adriana-borges-giampani"}]},{id:"23838",title:"Primary Angle Closure Glaucoma",slug:"primary-angle-closure-glaucoma",signatures:"Michael B. Rumelt",authors:[{id:"62809",title:"Dr.",name:"Michael",middleName:null,surname:"Rumelt",fullName:"Michael Rumelt",slug:"michael-rumelt"},{id:"140318",title:"Dr.",name:"M.D.",middleName:null,surname:"Emeritus",fullName:"M.D. Emeritus",slug:"m.d.-emeritus"}]},{id:"23839",title:"Plateau Iris",slug:"plateau-iris",signatures:"Yoshiaki Kiuchi, Hideki Mochizuki and Kiyoshi Kusanagi",authors:[{id:"32982",title:"Prof.",name:"Yoshiaki",middleName:null,surname:"Kiuchi",fullName:"Yoshiaki Kiuchi",slug:"yoshiaki-kiuchi"},{id:"48345",title:"Dr.",name:"Hideki",middleName:null,surname:"Mochizuki",fullName:"Hideki Mochizuki",slug:"hideki-mochizuki"},{id:"48346",title:"Dr.",name:"Kiyoshi",middleName:null,surname:"Kusanagi",fullName:"Kiyoshi Kusanagi",slug:"kiyoshi-kusanagi"}]},{id:"23840",title:"Normal-Tension (Low-Tension) Glaucoma",slug:"normal-tension-low-tension-glaucoma",signatures:"Tsvi Sheleg",authors:[{id:"62356",title:"Dr.",name:"Tsvi",middleName:null,surname:"Sheleg",fullName:"Tsvi Sheleg",slug:"tsvi-sheleg"}]},{id:"23841",title:"Drug-Induced Glaucoma (Glaucoma Secondary to Systemic Medications)",slug:"drug-induced-glaucoma-glaucoma-secondary-to-systemic-medications-",signatures:"Eitan Z. Rath",authors:[{id:"59158",title:"Dr.",name:"Eitan Z.",middleName:null,surname:"Rath",fullName:"Eitan Z. Rath",slug:"eitan-z.-rath"}]},{id:"23842",title:"Steroid Induced Glaucoma",slug:"steroid-induced-glaucoma",signatures:"Avraham Cohen",authors:[{id:"61596",title:"Dr.",name:"Avraham",middleName:null,surname:"Cohen",fullName:"Avraham Cohen",slug:"avraham-cohen"}]},{id:"23843",title:"Glaucoma in Cases of Penetrating Keratoplasty, Lamellar Procedures and Keratoprosthesis",slug:"glaucoma-in-cases-of-penetrating-keratoplasty-lamellar-procedures-and-keratoprosthesis",signatures:"Shimon Rumelt",authors:[{id:"54335",title:"Dr.",name:"Shimon",middleName:null,surname:"Rumelt",fullName:"Shimon Rumelt",slug:"shimon-rumelt"}]}]}],publishedBooks:[{type:"book",id:"237",title:"Astigmatism",subtitle:"Optics, Physiology and Management",isOpenForSubmission:!1,hash:"899b6b3d1d0250ee904841f62bac8bee",slug:"astigmatism-optics-physiology-and-management",bookSignature:"Michael Goggin",coverURL:"https://cdn.intechopen.com/books/images_new/237.jpg",editedByType:"Edited by",editors:[{id:"65903",title:"Dr.",name:"Michael",surname:"Goggin",slug:"michael-goggin",fullName:"Michael Goggin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"268",title:"Glaucoma",subtitle:"Basic and Clinical Concepts",isOpenForSubmission:!1,hash:"b9a66374f7429cc798c56e9e8149a1aa",slug:"glaucoma-basic-and-clinical-concepts",bookSignature:"Shimon Rumelt",coverURL:"https://cdn.intechopen.com/books/images_new/268.jpg",editedByType:"Edited by",editors:[{id:"54335",title:"Dr.",name:"Shimon",surname:"Rumelt",slug:"shimon-rumelt",fullName:"Shimon Rumelt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"286",title:"Keratoplasties",subtitle:"Surgical techniques and complications",isOpenForSubmission:!1,hash:"8e8d2ab941ea6074e7a7ae55de9c78fa",slug:"keratoplasties-surgical-techniques-and-complications",bookSignature:"Luigi Mosca",coverURL:"https://cdn.intechopen.com/books/images_new/286.jpg",editedByType:"Edited by",editors:[{id:"37700",title:"Dr.",name:"Luigi",surname:"Mosca",slug:"luigi-mosca",fullName:"Luigi Mosca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"360",title:"Electroretinograms",subtitle:null,isOpenForSubmission:!1,hash:"bfbc5538173f11acb0f9549a85b70488",slug:"electroretinograms",bookSignature:"Gregor Belusic",coverURL:"https://cdn.intechopen.com/books/images_new/360.jpg",editedByType:"Edited by",editors:[{id:"44595",title:"Dr.",name:"Gregor",surname:"Belusic",slug:"gregor-belusic",fullName:"Gregor Belusic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"540",title:"Age Related Macular Degeneration",subtitle:"The Recent Advances in Basic Research and Clinical Care",isOpenForSubmission:!1,hash:"457bf890ed1e947a2ed23fc8237e34f0",slug:"age-related-macular-degeneration-the-recent-advances-in-basic-research-and-clinical-care",bookSignature:"Gui-Shuang Ying",coverURL:"https://cdn.intechopen.com/books/images_new/540.jpg",editedByType:"Edited by",editors:[{id:"86603",title:"Dr.",name:"Gui-Shuang",surname:"Ying",slug:"gui-shuang-ying",fullName:"Gui-Shuang Ying"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"237",title:"Astigmatism",subtitle:"Optics, Physiology and Management",isOpenForSubmission:!1,hash:"899b6b3d1d0250ee904841f62bac8bee",slug:"astigmatism-optics-physiology-and-management",bookSignature:"Michael Goggin",coverURL:"https://cdn.intechopen.com/books/images_new/237.jpg",editedByType:"Edited by",editors:[{id:"65903",title:"Dr.",name:"Michael",surname:"Goggin",slug:"michael-goggin",fullName:"Michael Goggin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"751",title:"Advances in Ophthalmology",subtitle:null,isOpenForSubmission:!1,hash:"63feda93d7fee6fb1f164a52e9f6427c",slug:"advances-in-ophthalmology",bookSignature:"Shimon Rumelt",coverURL:"https://cdn.intechopen.com/books/images_new/751.jpg",editedByType:"Edited by",editors:[{id:"54335",title:"Dr.",name:"Shimon",surname:"Rumelt",slug:"shimon-rumelt",fullName:"Shimon Rumelt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"81299",title:"Peptides with Therapeutic Potential against Acinetobacter baumanii Infections",doi:"10.5772/intechopen.100389",slug:"peptides-with-therapeutic-potential-against-acinetobacter-baumanii-infections",body:'
1. Introduction
Microbial infections contribute substantially to global mortality trends. Antibiotic resistance is one of the biggest challenges for the clinical sector, industry, environment, and societal development. Unfortunately, the emergence of drug-resistant pathogens is rapidly growing, and the world is heading toward the post-antibiotic era [1, 2]. Bacteria possess three defined types of antimicrobial resistance: intrinsic, acquired, and phenotypic or adaptive resistance [3, 4, 5, 6, 7, 8, 9, 10, 11]. Although there are multiple causes of the resistance phenomenon, it is considered that antimicrobial resistance is an old natural phenomenon when microbes are exposed to antimicrobial drugs, with an accelerated evolution triggered not only by the abusive use of antibiotics but also such as wrong choices, inadequate dosing, and poor adherence to treatment guidelines that contribute to the increasing antimicrobial resistance selection [12, 13]. In addition, antibiotic treatment for difficult-to-treat multidrug-resistant bacterial infections is limited [13]. ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, A. baumannii, Pseudomonas aeruginosa, Enterobacter species) are among the most common opportunistic pathogens in nosocomial infections [14]. The abbreviation ESKAPE reflects the ability of these organisms to “escape” killing by antibiotics and defy eradication by conventional therapies, which accounts for increased morbidity and mortality for improved resource utilization in healthcare [15]. One of the ESKCAPE pathogens responsible for nosocomial and community-acquired infections is A. baumannii, a Gram-negative, non-motile, non-fermentative, and non-sporulated bacterium Moraxellaceae family [16] that is part of the Acinetobacter calcoaceticus–A. baumannii complex (Acb). Currently, six species, namely A. calcoaceticus, A. baumannii, A. pittii, A. nosocomialis, A. seifertii, and A. lactucae (a later heterotypic synonym of A. dijkshoorniae) [17, 18], belonging to the Acb complex have been associated with human diseases [19]. Even though these species differ in antimicrobial resistance, pathogenicity, and epidemiology [20], the Acb complex is genetically and physiologically highly related, making it difficult to distinguish them phenotypically with standard laboratory methods [21]. Of all the species in the Acb complex, A. baumannii is the most widespread in hospitals, even associated with an increased risk of morbidity, mortality, high treatment costs, and long periods of hospitalization [22]. A. baumannii causes various infections, including wounds, skin, urinary tract infections, pneumonia, meningitis, and bacteremia [23, 24]. There are several nomenclatures in the literature based on the number of resistance classes of antibiotics. According to Magiorakos et al. (2012), a multidrug-resistant (MDR) strain is resistant to at least one antimicrobial in more than three classes of antimicrobials; and extensively drug-resistant (XDR) strain is one resistant to at least one antimicrobial in all classes of antimicrobials except two or fewer types, and a pan drug-resistant (PDR) strain is resistant to all antimicrobial agents [25]. A. baumannii has globally emerged as a highly troublesome nosocomial pathogen revealing MDR, XDR, and PDR phenotypes, and unfortunately, evidence has shown an increased A. baumannii antibiotic resistance over time [26]. A. baumannii is one of the most critical and fearful pathogens with treatment options limited due to many aspects: its extended virolome and resistome, evasion of the host’s immune effectors, ability to survive in extreme environmental conditions, to grow in biofilms, and to switch to latent growth forms with a minimal metabolic rate [27, 28]. The World Health Organization (WHO) has recently published a report, which also highlighted A. baumannii resistant to carbapenems (CRAb) [29, 31] which was classified in the group of “priority 1 for research and develop new antibiotic treatments” and was considered as a “critical” pathogen [31]. One of the antimicrobial agents with high potential for research and development of anti-Acinetobacter drugs is the antimicrobial peptides [32]. This chapter aimed to review the powerful antimicrobial peptides described with activity against A. baumannii multiresistant.
2. Antimicrobial peptides
Antimicrobial peptides (AMPs) may represent an alternative to current antibiotics in MDR A. baumannii ESKAPE pathogen [33]. AMPs (also known as host defense peptides) are small polycationic peptides naturally produced by living organisms with both microbicidal and immunomodulatory activities, acting as a primary barrier against pathogens, including protozoa, víruses, bacteria, archaea, fungi, plants, and animals as a part of innate immunity system [34, 35, 36, 37, 38, 39, 40, 41]. However, the computational design of synthetic AMPs with improved activity is also being developed [42]. They interact with cell membrane through electrostatic interactions, causing the inhibition of protein and nucleic acid synthesis and final cellular lysis by apoptosis and necrosis [43, 44]. In addition to the antimicrobial properties, some AMPs have other activities, such as anticancer antioxidant, wound healing, immunoregulatory [38, 45, 46]. AMPs also play an essential role in regulating immune processes such as activating and recruiting immune system cells, angiogenesis, and inflammation [47]. AMPs are amphipathic molecules with a positive electric charge, varying molecular weight, and containing about 11–50 amino acid residues [47, 48]. AMPs are classified into α-helical, β-sheet, and extended peptide families [49, 50, 51] and interact with the membranes initially through electrostatic and hydrophobic interactions (Figure 1), accumulating at the surface and self-assemble on the bacterial membrane after reaching a particular concentration [52, 53].
Figure 1.
Interaction of cationic AMPs with eukaryotic and bacterial membranes. Images were created using BioRender.com.
At this stage, various models have been proposed to describe the action of AMPs. The models can be classified under two broad categories: transmembrane pore (TMP) and non-pore models (NPM), and the TMP can be further subdivided into the barrel-stave pore and toroidal pore models. In the barrel-stave model, the AMPs are initially oriented parallel to the membrane but eventually insert perpendicularly in the lipid bilayer [54] (Figure 2A), thus promoting lateral peptide-peptide interactions, like that of membrane protein ion channels. Peptide amphipathic structure (α and/or β sheet) is essential in this pore formation mechanism as the hydrophobic regions interact with the membrane lipids and hydrophilic residues from the lumen of the channels [55, 56]. A unique property associated with AMPs in this category is a minimum length of ∼22 residues (α helical) or ∼ 8 residues (β sheet) to span the lipid bilayer. Only a few AMPs, such as alamethicin [57], pardaxin [58, 59], and protegrins [55], have been shown to form barrel stave channels.
Figure 2.
Mechanisms of action of AMPs in bacteria. A) Barrel-stave model: AMPs stack into the bilayer of the cell membrane to form a channel. (B) Toroidal pore model: Accumulation of vertically and bend embedded AMPs in the cell membrane to form a pore structure, (C) carpet model: Distribution of AMPs on membrane surface that evolve to detergent-like mode, forming micelles, (D) images were created using BioRender.com.
Furthermore, in the toroidal pore model, the peptides also insert perpendicularly in the lipid bilayer, but specific peptide-peptide interactions are not present [57]. Instead, the peptides induce a local curvature of the lipid bilayer with the pores partly formed by peptides and partly by the phospholipid head group (Figure 2B). Thus, the dynamic and transient lipid-peptide supramolecule is known as the “toroidal pore.” The distinguishing feature of this model compared to the barrel-stave pore is the net arrangement of the bilayer. In the barrel-stave pore, the hydrophobic and hydrophilic sequence of the lipids is maintained, whereas, in toroidal pores, the hydrophobic and hydrophilic arrangement of the bilayer is disrupted, thus providing alternate surfaces for the lipid tail and the lipid head group to interact with. Furthermore, as the pores are transient upon disintegration, some peptides translocate to the inner cytoplasmic leaflet entering the cytoplasm and potentially targeting intracellular components [60]. Other features of the toroidal pore include ion selectivity and discrete size [61]. Several AMPs such as magainin 2 [62], lacticin Q [62], aurein 2.2 [63], and melittin [57, 62] have been shown to form toroidal pores. In addition, the type of pore started by aurein 2.2 has been shown to depend on the lipid composition: In a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycerol-3-phospho-(1′-rac-glycerol) POPG (1:1) membrane model, the peptides induce toroidal pores, whereas in a 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC)/1,2-dimyristoyl-sn-glycero-3-phospho-(1′-rac-glycerol) DMPG (1,1) membrane model, the peptides work in a detergent-like model (details below) indicating the importance of the hydrophobic thickness of the lipid bilayer and the membrane composition [64, 65]. Ultimately, both pore-forming models (toroidal pore and barrel) lead to membrane depolarization and eventually cell death.
AMPs can also act without forming specific pores in the membrane. One of these models is designated as the carpet model [61, 62, 66]. In this case, the AMPs adsorb parallel to the lipid bilayer and reach a threshold concentration to cover the surface of the membrane, thereby forming a “carpet” (Figure 2C) and leading to unfavorable interactions on the membrane surface. Consequently, the membrane integrity is lost, producing a detergent-like effect, which eventually disintegrates the membrane by forming micelles. The final collapse of the membrane bilayer structure into micelles is the detergent-like model (Figure 2D). The carpet model does not require specific peptide-peptide interactions of the membrane-bound peptide monomers; it also does not require the peptide to insert into the hydrophobic core to form transmembrane channels or specific peptide structures [67]. Many peptides act as antimicrobial agents despite their specific amino acid composition or the length of the sequence. Such AMPs typically act using the carpet model [66] at high concentrations because of their amphiphilic nature. Examples of AMPs acting by the carpet model are cecropin [68], indolicidin [69], aurein 1.2 [67], and LL-37 [66].
Overall, there are many models to describe the MOA of AMPs. In addition to those given above, other related models include the interfacial activity model, the electroporation model, and the Shai-Huang-Matsazuki model [62]. Some models do not make the specific distinctions shown in Figure 2. For example, it has been suggested that the carpet-like mechanism is a prerequisite step for the toroidal pore model [62]. Most studies to elucidate the MOA of AMPs involve the use of model membranes. The mode of action of only a few AMPs has been investigated with whole bacterial cells using imaging techniques [70, 71]. Different results may be obtained using other membrane models or assay conditions; for example, more than one MOA is possible for certain AMPs such as BP100 as the peptide-to-lipid ratio changes [72], indicating that the models described here may or may not translate directly to what is occurring in bacteria.
An online antimicrobial peptide database, APD3, list examples of AMPs, including both synthetically synthesized and compounds produced by living organisms [37]. In addition, many AMPs are currently being studied to elucidate their therapeutic efficacy against A. baumannii strains (Table 1).
NA, not available; AH, alpha helical; IPM, imipenem; COL, colistin.
2.1 Cathelicidins
Cathelicidins are a group of cationic AMPs (CAMPs) (with more than 30 members) detected in the immune system of some vertebrates that have in their structure two domains involved in antimicrobial activity [145]. Compared with carbapenems (imipenem and meropenem), which are considered the drugs of choice for infections caused by MDR A. baumannii (MIC = 16–32 mg/L) [146], these peptides exhibit excellent activity.
2.1.1 LL-37
The most studied member of the cathelicidins family is LL-37 (Human cathelicidin) with an α-helical structure. It is produced by many cell types as a part of innate immunity and exhibits broad-spectrum microbicidal activities against Gram-positive and Gram-negative bacteria by plasma-membrane disruption [147]. Other properties were also described, like immunomodulation properties such as chemoattraction and activation of various immune cells, neutralizing the lipopolysaccharide (LPS), regulating the inflammatory response, wound closure, and chemotaxis [38, 148, 149, 150, 151]. Feng et al. Investigated the anti-A. baumannii activity of LL-37 and fragments KS-30 and KR-12 against one sensitive and four MDR A. baumannii clinical isolates [73]. The minimum inhibitory concentration (MIC) for three pieces of KS-30, KR-20, and KR-12 was 8–16, 16–64, and 128–256 μg/ml, respectively. At the same time, LL-37 inhibited all sensitive and drug-resistant strains at the concentration of 16–32 μg/ml. Furthermore, LL-37 and the fragment KS-30 have been found to significantly inhibited and dispersed the A. baumannii biofilm in abiotic surfaces at 32 and 64 μg/ml, respectively [73]. A panel of synthetic peptides based on human LL-37 AMP shows potent microbicidal activity against several ESKAPE pathogens without selecting resistance and can also eliminate persister cells and biofilms of P. aeruginosa, A. baumannii, and S. aureus in the micromolar scale [74]. SAAP-148 is an α-helical AMP, able to suppress MDR A. baumannii without causing resistance and prevents biofilm formation. Studies showed that this peptide could inhibit the growth of A. baumannii MDR at a concentration of 6 μg/m. Treatment with this peptide (animal model) appointment has been shown to eliminate acute and biofilm-related infections by A. baumannii in an ex vivo human skin infection model and an in vivo murine skin infection model at concentrations above 5% [74].
2.1.2 Snake cathelicidins
The anti-A. baumannii activity among the cathelicidins isolated from snakes has been reported for the peptides cathelicidin-BF (Cath-BF) [75] and Naja atra cathelicidin (NA-CATH). One of the best-known cathelicidins is Cath-BF having an α-helical structure, isolated from the venous glands of the species Bungatus fasciatus [152]. It has been shown that Cath-BF causes bacterial death through two bacterial membrane disruption mechanisms and attacking intracellular targets [152]. According to available reports, this peptide is highly active against drug-resistant clinical isolates of A. baumannii, inhibiting its growth around 12.8 μg/ml concentration [75]. ZY4 cathelicidin-BF-15 derived, a cyclic peptide stabilized by a disulfide bridge with high stability in vivo (the half-life is 1.8 h), showed excellent activity against A. baumannii, including standard clinical MDR strains with MIC values ranging between 4.6 and 9.4 μg/mL. ZY4 killed bacteria by permeabilizing the bacterial membrane showed a low propensity to induce resistance, exhibited biofilm inhibition and eradication activities, and killed persister cells [76]. The peptide NA-CATH, produced by a cobra called N. atra, possesses an α-helical structure at N-terminal and an unstructured segment at C-terminal [77, 153]. This peptide exerts antimicrobial activity through the membrane lysis by membrane thinning or transient pore formation [154] and is highly active against drug-resistant and sensitive A. baumannii strains, completely inhibiting bacterial growth at a concentration of 10 μg/ml [77, 153]. In 2018, Zhao et al. identified a novel cathelicidin (OH-CATH) from the king cobra, with its analog DOH-CATH30 found to exhibit potent microbicidal activity (MIC 1.56 to 12.5 μg/mL) against several Gram-negative and Gram-positive bacteria, including MDR A. baumannii [78]. Other cathelicidins with antimicrobial activity, identified in the venous glands, are OH-CATH30, from the venom of the cobra and mirtoxin, from Myrmecia pilosula [78, 79], presenting antimicrobial activity through inhibition of planktonic bacterial growth and biofilm, eradication of persistent bacterial cells, and inhibition of inflammatory process [76, 78].
Compounds with similar activity have been identified in the venom of some scorpion species and tested against antibiotic-resistant bacteria. Therefore, Al-Asmari et al. evaluate the in vitro antimicrobial activities of the toxins extracted from three medically necessary Saudi Scorpions. Among these, only Leiurus quinquestriatus showed significant broad-spectrum antimicrobial activity in a dose-dependent manner from 5 to 20 mg/mL, inhibiting 50.6% of growth and survival of MDR A. baumannii [80]. High antimicrobial activity was also observed for AMPs ranalexin and danalexin obtained from Rana catesbeiana [81], LS-sarcotoxin, and LS-stomoxyn (Lucilla serricata) [82], and minibactenecins (Capra hircus) [83]. However, further in vivo studies are needed to improve the pharmacokinetics of systemic administration and find solutions to avoid their degradation by proteases despite the antimicrobial activity on A. baumannii strains of these compounds.
2.1.3 Alligator cathelicidins
Alligator mississippiensis (American alligator), a member of order Crocodilia, lives in bacteria-laden environments but cannot often succumb to bacterial infections. Serum of alligators has antibacterial activity beyond that of human sérum [155], killing a wide range of pathogens, and it is believed that this activity is attributable at least partially to the presence of CAMPs in the alligator plasma and extracts [156]. A study by Barksdale et al. (2017) reported the anti-A. baumannii effect of AMPs produced by American alligator: cathelicidin called AM-CATH36 and its two fragments including AM-CATH28 and AM-CATH21 [77]. Alligator cathelicidin can inhibit the growth of both drug-resistant and sensitive A. baumannii at the 2.5 μg/ml concentration. Furthermore, two shorter fragments of this peptide can inhibit the drug-resistant A. baumannii at a 10 μg/ml concentration. The anti-A. baumannii effect of these three peptides is through membrane permeabilization. Interestingly, MDR clinical isolates of A. baumannii were more susceptible to both the AM CATH21 and AM-CATH28 peptides than the sensitive strains.
2.1.4 Wallaby antimicrobial
The marsupial AMP Wallaby antimicrobial 1 (WAM-1) is a cathelicidin isolated from the mammary gland of the Tammar wallaby (Macropus eugenii) with antibacterial and antifungal activities with high potential to combat drug-resistant pathogens [84, 157]. Spencer et al. (2018) studied the AMP LL-37 and WARM-1 effects on MDR A. baumannii, and both peptides were able to inhibit biofilm formation in all clinical isolates at some concentrations of WAM-1 effectively dispersed 24-h biofilms in most isolates tested, including MDR strains [85]. The antibacterial effects of LL-37are diminished in the presence of human serum. However, this is not the case with WAM-1. Although the mechanism of action has yet to be determined, WAM-1 has been shown in vitro to be 12 to 80 times more effective than LL-37 in its ability to kill several bacterial pathogens, including several clinical isolates of A. baumannii. Unlike LL-37, WAM-1 is not inhibited by high NaCl concentrations and does not cause hemolysis in human red blood cells (RBC), so it has the potential to be used for in vivo applications [85].
2.1.5 Bovine cathelicidins (Indolicidin and Bactenecin)
Indolicidin is a short tryptophan-rich cationic AMP encoded by a member of the cathelicidin gene family, isolated from cytoplasmic granules of the bovine neutrophils [158, 159]. Indolicidin acts by displacing divalent cations from their binding sites on the surface of the cell membrane and causes bacterial death through channel formation in the cytoplasmic membrane [88]. Indolicidin not only forms pores in the membrane but can also inhibit DNA processing enzymes [160, 161]. This peptide is among the potent anti-A. baumannii AMPs with MIC of 4–32 and 16 μg/ml against sensitive and colistin-resistant clinical isolates, respectively [86]. In a study by Giacometti et al. were investigated the in vitro activity of indolicidin and other AMPs alone and in combination with antimicrobial agents, the MIC of indolicidin against 12 MDR clinical isolates was reported as 2–64 μg/ml [87]. Isolated from bovine, ovine, and caprine neutrophil granules, Bactenecin is a short cyclic, arginine-rich cationic AMP [89] with a type I β-turn structure and forms a loop due to the disulfide bond between cysteines 3 and 11 [90]. These AMPs act by permeabilizing the cell membrane and inhibiting protein and RNA synthesis in bacteria [70]. Vila-Farres et al. (2012) reported the anti-A. baumannii effect of this peptide can inhibit sensitive and colistin-resistant strains of A. baumannii at 16 and 64 μg/ml, respectively [86].
2.2 Defensins
Defensins are an evolutionarily ancient class of AMPs present in animals, plants, and fungi involved in the immune system of living organisms and contain six (invertebrates) to eight conserved cysteine residues in their structure. They are categorized into three subfamilies of α, β, and θ-defensins [162]. Most defensins bind to the cell membrane and make pores, leading to bacterial death [163].
2.2.1 α-Defensins (HNPs and HD5)
The subfamily of human neutrophil peptides (HNPs), also known as α-defensins, are secreted and released from polymorphonuclear neutrophil (PMN) granules upon activation and are conventionally involved in microbial killing [164]. Two important CAMPs HNP-1 and HNP-2, which differ in only one initial amino acid, can inhibit the growth of the standard strain of A. baumannii ATCC 19606 at a concentration of 50 μg/ml. Interestingly, the colistin-resistant mutant of A. baumannii ATCC 19606 is much more sensitive (MIC = 3.25 μg/ml) to HNP-1 than the standard strain [86]. Human defensin 5 (HD5) has a relatively low anti-A. baumannii effect (MIC = 320 μg/ml). However, an analog called HD5d5 obtained by sequence modification presented a stronger bactericidal effect (MIC = 40 μg / ml) against A. baumannii, exerting the effect through damage to the membrane, accumulation in the cytoplasm, and reduction of catalase and superoxide dismutase activities [165, 166].
2.2.2 β-Defensins
Human β-Defensin (HBD) 2, 3 of this subfamily have anti-Acinetobacter effects. HBD-2 is primarily produced by the epithelial lining of the respiratory and urinary tracts, and engaging is more effective on MDR clinical isolates than non-MDR isolates [167]. Longer than most of the natural AMPs, HBD-3 combined helix and β structure [147]. Even though the anti-Acinetobacter bactericidal effect is inhibited by exposure to human serum, it can kill all MDR and non-MDR A. baumannii clinical isolates at 4 μg/ml during 1.5 h in the serum-free environment. Thus, this peptide has the potential to be further studied for wounds infected by A. baumannii since it demonstrated wound-healing effects [97, 168].
2.2.3 α-Helical and antiparallel β-sheet defensins
CL-defensin, belonging to the family of insect defensins, is predicted to have a characteristic N-terminal loop, an α-helix, and an antiparallel β-sheet, which was supported by circular dichroism spectroscopy [95]. In addition, this peptide induces pore formation in other Gram-positive bacteria and causes a small amount of membrane permeabilization in A. baumannii [95].
2.3 Frog antimicrobial peptides
2.3.1 Magainin and pexiganan (its analog)
The Magainin-1 and 2 are cationic, α-helical, and amphipathic AMPs ionophores isolated from the skin of the African clawed frog (Xenopus laevis) [168, 169]. The primary mechanism of antimicrobial activity is probably pore formation in outer and inner membranes, although the exact mechanism of action is not yet precise [98, 170]. Despite both have anti-Acinetobacter training, Magainin-2 is much stronger and able to inhibit the growth of sensitive and MDR strains of A. baumannii at 4.9–64 μg/ml, while reported as 256 μg/ml for Magainin-1 [86, 98]. Magainin-2 has some advantages, such as anticancer effect, stability at physiological salt concentrations, lack of hemolytic activity, and toxicity for mammalian cells [98]. Furthermore, Magainin-2 can inhibit and eliminate the biofilm of A. baumannii [98]. Pexiganan AMP or MSI-78 is a synthetic analog of Magainin-2 with a potent and broad spectrum of action [171, 172]; it kills bacteria by forming toroidal pores in their cell membranes [172, 173]. Several studies have been performed on anti-Acinetobacter activity due to its being highly active against Acinetobacter. Pexiganan can inhibit the growth of MDR and sensitive clinical isolates of A. baumannii at a concentration of 1–8 μg/ml [100, 101, 174]. Jáskiewicz et al. studied the antimicrobial activity of eight peptides on A. baumannii ATCC 19606 reference strains. Among these, CAMEL and pexiganan showed potent antimicrobial and anti-biofilm activity [102].
2.3.2 Brevinin-2 related peptide (B2RP)
B2RP is an α-helical AMP isolated from the skin secretions of the mink frog Rana septentrionalis [175] and carpenter frog Rana virgatipes [176]. This peptide forms an α-helical structure adjacent to the target cell, resulting in the perturbation of the phospholipid bilayer that may lead to growth inhibition of bacterial death, and the application of this peptide for systemic use is limited due to the moderate toxicity for human red blood cells [177]. B2RP inhibited the growth of a susceptible strain of A. baumannii at 29 μg/ml concentration but inhibited the MDR isolates more efficiently at 7–13.9 μg/ml [103]. The analogs of these peptides (D4K, K16A, L18K) resulted in twofolds higher anti-A. baumannii activity and much lower hemolytic activity [103]. A study reported that the analog of B2RP with D4K substitution inhibited sensitive and colistin-resistant [103] and XDR isolates of A. baumannii [105].
2.3.3 B2RP-ERa
B2RP-ERa is a cationic AMP from the Brevinin family isolated from the skin of the Asian frog Hylarana erythraea [106, 178]. Shorter and with lower molecular weight, B2RP-ERa is structurally similar to B2RP. B2RP-ERa is an anti-inflammatory peptide with no toxic effect on peripheral blood mononuclear cells [179] with low hemolytic activity [178], which could inhibit the growth of sensitive and drug-resistant Acinetobacter strains at 8–32 and 8–64 μg/ml, respectively [104, 106].
2.3.4 Alyteserins
Alyteserins are a class of cationic AMPs, which firstly reported their presence in norepinephrine-stimulated skin secretions of the midwife toad [180]. However, initial studies show that Alyteserin-1c has more significant inhibitory activity against Gram-negative bacteria, while Alyteserin-2a is more active against Gram-positive bacteria [180], the anti-A. baumannii effects of these Alyteserins have already been proven [107, 108]. Alyteserin-1c is a cationic α-helical AMP with low hemolytic activity on human red blood cells firstly isolated from Alytes obstetricans [107, 180, 181]. The MIC and MBC against clinical isolates of MDR A. baumannii have been reported as 11.3–22.6 μg/ml [107]. Substitution of E4K on this AMP reduced the hemolytic activity, and enhanced the antimicrobial and cationic activity [107]. The analog [E4K] inhibits the growth of colistin-sensitive, colistin-resistant, and XDR A. baumannii isolates at concentrations of 4–16 μg/ml, 4–16 μg/ml [104], and 8–64 μg/ml, respectively [105]. Alyteserin-2a is also a tiny α-helical AMP that displays relatively weak antimicrobial and hemolytic activities. Despite its anti-A. baumannii potential was not high mainly, some structural changes resulted in lower toxicity against human erythrocytes and higher bactericidal effect (4–8 folds) against MDR isolates with MIC of 6.8–13.6 μg/ml [108].
2.3.5 Peptide glycine-leucine-amide
AM1 (PGLa-AM1) PGLa-AM1 is another Anti-Acinetobacter AMP isolated from the frog Xenopus amieti. In addition to the low hemolytic activity, it is also active against other pathogens, including E. coli and S. aureus [104, 106, 109], and can kill sensitive and colistin-resistant A. baumannii isolates at 16–128 μg/ ml concentration [104].
2.3.6 Caerulein precursor fragment (CPF)
CPF-AM1 is a cationic AMP firstly isolated from X. amieti [110]. This peptide is capable of bacterial binding LPS and has activity against Gram-negative and Gram-positive bacteria, primarily oral and respiratory pathogens, with advantages such as low hemolytic activity and lack of toxicity against fibroblast cells [109]. This anti-A. baumannii peptide inhibits the growth of sensitive and colistin-resistant strains at 16–128 and 4–128 μg/ml, respectively [104, 114]. CPF-B1, isolated from Marsabit clawed frog Xenopus borealis, is another anti-A. baumannii member of this family with low hemolytic activity. This peptide inhibits MDR A. baumannii clinical isolates at concentrations of 11.4–22.8 μg/ml [112]. Finally, CPF-C1 is a peptide member of this family with proved anti-A. baumannii effect with inhibitory activity against the strain at 5 μg/ml concentration [111].
2.3.7 Hymenochirins
Hymenochirins are a class of AMPs produced by two frogs of Pseudhymenochirus merlini and Hymenochirus boettgeri with letters P and B in the second part name of these peptides indicating the producing species of the peptide, respectively [37, 182]. Hymenochirin-1B is a cationic, α-helical amphibian host-defense peptide with antimicrobial, anticancer, and immunomodulatory properties. This peptide has anti-A. baumannii properties against MDR isolates with MIC of 19.1 μg/ml [113]. Among the analogs of hymenochirin-1B obtained by amino acid substitution method, [E6k and D9k] hymenochirin-1B reduced human erythrocytes’ toxicity and showed 3.9-folds higher activity against A. baumannii. [E6k and D9k] hymenochirin-1B is active against both MDR and XDR isolates and could inhibit the growth of these isolates at 4.9 μg/ml concentration [113]. Hymenochirin-1 Pa is another cationic member of this family with moderate hemolytic activity. This peptide inhibited the growth of XDR A. baumannii isolates at 7.5–15 μg/ml concentration [114, 182].
2.3.8 XT-7
XT-7 was first isolated from norepinephrine-stimulated skin secretions of Xenopus tropicalis [183]. The activity anti-Acinetobacteof this peptide was first reported against A. baumannii Euroclone I NM8 strain (MIC = 22.2 μg/ml) [111]. Later, the amino acid substitution of lysine at position 4 [G4K] increased the therapeutic index [115] principally. Subsequent studies were based on this new analog that inhibited sensitive and drug-resistant A. baumannii strains at concentrations of 4–32 and 4–64 μg/ml, respectively [104].
2.3.9 Buforins
Buforin II is a potent antimicrobial peptide derived from Burforin I, isolated from the stomach tissue of the Asian toad Bufo gargarizans [184]. It causes bacterial death by crossing the membrane, binding to intracellular targets, including DNA and RNA, and inhibiting cellular functions [116]. This peptide has a potent anti-Acinetobacter activity since it can hinder the growth of both sensitive and resistant isolates of A. baumannii at concentrations of 0.25–39 μg/ml [87, 98]. Buforin II alone or in combination with an antibiotic showed highly potent on A. baumannii sepsis treatment in a rat model [104].
2.4 Melittin
Melittin is a cationic amphipathic α-helical AMP isolated from the venom (approximately 50% of the dry weight) of the European honeybee (Apis mellifera) [185] with numerous reported properties such as antifungal [186], antiparasitic [187], antibacterial [185], antiviral, and anticancer properties [188]. The primary mechanism of melittin action is the membrane lysis through pore formation (a carpet-like mechanism) [189]. This potent anti-Acinetobacter peptide inhibits MDR and XDR clinical isolates at 0.125–2 μg/ml concentration [118, 119]. A study demonstrated that topical administration of melittin at concentrations of 16 and 32 μg/mL in mice killed 93.3% and 100% of an XDR A. baumannii on a third-degree burned area, respectively [118]. No toxicity was observed on the injured or healthy derma and circulating red blood cells in the examined mice. Recently, a study that evaluated the melittin against Brazilian clinical strains revealed that most strains were susceptible, except for one pan drug-resistant strain [190].
2.5 Cecropins
Cecropins, the lytic peptides, were initially isolated from the hemolymph of the giant silk moth, Hyalophora cecropia, and possess antibacterial and anticancer activity in vitro [191, 192]. The primary antimicrobial mechanism of cecropins is membrane lysis [193]. Cecropin A is a cationic amphipathic α-helical AMP that can induce apoptosis by oxidative stress in addition to attacking the membrane [194]. This peptide has potent antimicrobial activity against A. baumannii, inhibiting MDR clinical isolates at 0.5–32 μg/ml [99]. Vila-Farres et al. reported that this peptide inhibited the growth of sensitive and colistin-resistant strains of A. baumannii at 32 and 256 μg/ ml, respectively [86]. A pilot study that evaluated the viability of Caenorhabditis elegans infected by A. baumannii in the presence of 68 insect-derived AMPs identified 15 cecropin or cecropin-like peptides that prolonged the survival of worms infected with A. baumannii [121]. Interestingly, the direct investigation of the anti-Acinetobacter effect also showed that these 15 AMPs could inhibit the growth of A. baumannii at 4.5 to over 20 μg/ml concentrations. BR003-cecropin A, isolated from Aedes aegypti, is the most active member of this group. This peptide inhibited sensitive and MDR A. baumannii strains at 4.5 μg/ml [100]. Musca domestica cecropin (Mdc) isolated from the larvae of a housefly inhibits both standard (ATCC 19606) and MDR strains of A. baumannii at 4 μg/ml with high speed (half an hour) [122]. Cecropin P1, an AMP isolated from Ascaris suum of pig intestine, showed high activity against colistin-sensitive A. baumannii with MIC at 1.6 μg/ml. In contrast, there was less activity against the colistin-resistant strains with MIC >25 μg/ml [86].
Other peptides that showed great activity against susceptible MDR and extensively drug-resistant (XDR) A. baumannii strains were Cecropin-4, an α-helical synthetic AMP [124], and CAMEL, a hybrid AMP consisting of cecropin from H. cecropia and melittin from Apis melífera [102]. In addition, AMPs with activity against biofilms have been observed in cecropins identified in M. domestica [124], myxinidin isolated from Myxine glutinosa [104], and in the naturally occurring AMP complex isolated from the maggots of blowfly Calliphora vicina (Diptera, Calliphoridae) named FLIP7 (Fly Larvae Immune Peptides 7) [126].
2.6 Mastoparan
Mastoparan is a small cationic amphipathic α-helical AMP isolated from the hornet venom of Vespula lewisii [195, 196] with a robust anti-Acinetobacter activity. However, the anti-acinetobacter solid activity, the high hemolytic activity, and toxic effects affected highly therapeutic applications [197]. Mastoparan inhibited the growth of a sensitive wild-type A. baumannii ATCC 19606 and a colistin-resistant A. baumannii ATCC 19606 mutant at 4 and 1 μg/ml, respectively. This study also used 14 colistin-susceptible A. baumannii clinical isolates and 13 pan-resistant A. baumannii strains isolated in a hospital outbreak [198] and reported the MIC of 1–16 and 2–8 μg/ ml for sensitive and colistin-resistant isolates, respectively [86]. Mastoparan-AF (MP-AF), isolated from the hornet venom of Vespa affinis, also showed effective antimicrobial activity with MICs ranging from 2 to 16 μg/ml against MDR A. baumannii isolates [129]. Analogs of mastoparan were made to increase the stability of the peptide in serum. These analogs had an equal inhibitory effect with mastoparan against XDR A. baumannii strains (4 μg/ml); in addition, it showed stability in the presence of human serum for more than 24 h [86].
2.7 Histatins
Histatins belong to a distinct family of at least 12 low-molecular weight, histidine-rich cationic, salivary gland peptides with antimicrobial effect through the plasma membrane disruption [199]. Histatin-8, known as hemagglutination-inhibiting peptide [200], was the only member of this group that showed antimicrobial activity against A. baumannii, inhibiting the growth of both sensitive standard strains colistin-resistant mutant A. baumannii ATCC 19606 at 32 μg/ml [86].
2.8 Dermcidins
Dermcidin is an anionic AMP encoded by the DCD gene in humans essentially produced in eccrine sweat glands, secreted into a sweat, and further transported to the skin’s epidermal surface [130, 201]. It has two parts; N-terminal peptide promotes neural cell survival under severe oxidative stress conditions called DCD-1 L [130]. DCD-1 L, a C-terminal peptide with the net electric charge of −2, is the only anionic anti-Acinetobacter natural AMP found in the literature that shows partial helicity in solution [130, 182]. Interestingly, in exposure to this AMP, the PDR A. baumannii isolates are twice more susceptible as XDR isolates and the standard strain (ATCC 19606) (MIC = 8 μg/ ml) [131].
2.9 Tachyplesin III
Tachyplesin III, isolated from the hemolymph of the Southeast Asian horseshoe crabs Tachypleus gigas and Carcinoscorpius rotundicauda, consists of 17 amino acids with two disulfide bridges and is a representative antimicrobial peptide with a cyclic β-sheet structure. However, its potential toxicity hampers its use in mammalian cells [202]. Nevertheless, Tachyplesin III could inhibit the XDR A. baumannii strains (8–16 μg/ml) and at 2 × MIC, eliminating the XDR A. baumannii strains [203].
2.10 Computationally designed antimicrobial peptide
The biosynthesis of AMPs can be a starting point for obtaining AMPS with functions similar to natural ones, being an attractive therapeutic option for preventing and controlling infections. In this sense, bioinformatics and computer science have been widely used in various aspects in many studies of A. baumannii, such as design evaluation of AMPs [136, 204, 205, 206, 207, 208], which includes two general principles that increased antimicrobial activity and reduced toxicity against eukaryotic cells [209, 210]. As an example of synthetic AMPs, we have stapled AMP [137] and PNA (RXR) 4XB, an antisense nucleic acid peptide compound [138] with intense bactericidal activity. The synthetic RR is a small α-helical AMP with fast bactericidal activity capable of retaining the antimicrobial property at physiological concentrations of NaCl and MgCl2 [132]. The anti-A. baumannii effect of RR against sensitive and MDR strains inhibits the growth at 25–99 μg/ml concentration. Two new analogs of this peptide were introduced with much stronger anti-A. baumannii properties than RR, and the AMPs RR2 and RR4 inhibit the growth of sensitive and drug-resistant strains (3–6 μg/ml) [211]. The peptide DP7 inhibits the growth of antibiotic-resistant A. baumannii strains at 4–16 μg/ml concentration, and the synergistic effects were showed after simultaneous treatment of some drug-resistant A. baumannii isolates with DP7 and antibiotics such as amoxicillin, azithromycin, and vancomycin [133]. Zhang et al. showed that DP7 invades the microbial cell through various pathways after sequencing the transcriptome of the bacteria exposed to this peptide [134]. Omega76 is a cationic AMP with an α-helical structure, causing death in A. baumannii through membrane disruption. This peptide was designed based on the maximum common subgraph of helices and further introduced as an appropriate alternative for colistin due to its high anti-A. baumannii activity against carbapenem and tigecycline-resistant isolates (MBC = 2–8 μg/ml) and lack of toxicity in the mouse model [135].
3. Resistance to AMPS
Although AMPs have a low likelihood to select for resistance, similar to the conventional antibiotics, another challenge is represented by the numerous reports describing the development of resistance mechanisms against some AMPs, including proteolytic degradation or sequestration by secreted proteins, impedance by exopolymers, and biofilm matrix molecules, circumvention of attraction by cell surface/membrane alteration, and export by efflux pumps [212, 213, 214, 215, 216]. The development of resistance to colistin by A. baumannii following long-term clinical application was observed [217, 218]. In A. baumannii stable colistin resistance was also observed following direct plating with the complete loss of LPS production due to the inactivation of one of three genes involved in lipid A biosynthesis (lpxA, lpxD, or lpxC). Resistance to colistin is an important clinical issue, considering that colistin is a last-resort drug used to treat MDR nosocomial pathogens [218, 219, 220]. Several mechanisms have been reported responsible for resistance to AMPs, including expression of efflux pumps, increased secretion of proteolytic enzymes, and surface charge modification to avoid membrane-peptide electrostatic interactions [213, 221, 222].
For delivering the AMPs, several nanocarriers were developed, which may help avoid the low bioavailability, proteolysis, or susceptibility and toxicity associated with APMs [223, 224]. Changes in the molecular structure, modifications of biochemical characterization, and combination with common antibiotics have been reported to reduce AMP resistance [214]. The aprotinin is the first inhibitor identified to inhibit AMP resistance in multiple pathogens [225].
4. Conclusion(s)
A. baumannii is one of the ESKCAPE pathogens responsible for nosocomial and community-acquired infections, with the incidence of MDR and virulent clones increasingly worldwide. The enormous adaptability of A. baumannii, as well as the remarkable ability to acquire determinants of resistance, allied to your innate ability to form biofilms, contributes to the inefficiency of most current therapeutic strategies, determining the transition to the “post-antibiotic era” and highlighting the necessity to develop new therapeutic approaches. In this context, natural and synthetic AMPs emerge as potential next-generation antibiotics to mitigate a wide array of microbial infections, including those caused by MDR A. baumannii strains. Moreover, the antimicrobial activity of these peptides can be effectively increased by minor modifications through the development of computer science and bioinformatics. The synthetic AMPs present a promising solution to overcome the drawbacks of using natural AMPs. They contain critical features based on natural AMPs, with slight modifications to achieve higher antimicrobial efficiency and improved chemical stability. In this research, we observed the main properties of anti-A. baumannii peptides with some common characteristics, such as 1. The α-helical structure was predominant. 2. Most peptides have a positive charge, and in many cases, there is a direct relationship between an increased positive charge and your activity. 3. The action mechanisms of these peptides are direct membrane attack and intracellular targeting or both simultaneously. Unfortunately, considerable experimental data describe how bacteria can develop resistance to AMPs, such as colistin and polymyxin B in A. baumannii. Since AMPS are considered potential novel antimicrobial drugs, understanding the mechanism of bacterial resistance to direct killing of AMPS is of great significance.
Conflict of interest
The authors declare no conflict of interest.
Notes/thanks/other declarations
We thank D. Guilherme Curty Lechuga by the drawing of figures 1 and 2 of this chapter.
\n',keywords:"RAMP, Acinetobacter baumannii, resistance, action mechanism",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/81299.pdf",chapterXML:"https://mts.intechopen.com/source/xml/81299.xml",downloadPdfUrl:"/chapter/pdf-download/81299",previewPdfUrl:"/chapter/pdf-preview/81299",totalDownloads:19,totalViews:0,totalCrossrefCites:0,dateSubmitted:"July 23rd 2021",dateReviewed:"September 9th 2021",datePrePublished:"April 16th 2022",datePublished:null,dateFinished:"April 16th 2022",readingETA:"0",abstract:"Antibiotic poly-resistance (multi drug-, extreme-, and pan-drug resistance) is a major global threat to public health. Unfortunately, in 2017, the World Health Organization (WHO) introduced the carbapenemresistant isolates in the priority pathogens list for which new effective antibiotics or new ways of treating the infections caused by them are urgently needed. Acinetobacter baumannii is one of the most critical ESKAPE pathogens for which the treatment of resistant isolates have caused severe problems; its clinically significant features include resistance to UV light, drying, disinfectants, and antibiotics. Among the various suggested options, one of the antimicrobial agents with high potential to produce new anti-Acinetobacter drugs is the antimicrobial peptides (AMPs). AMPs are naturally produced by living organisms and protect the host against pathogens as a part of innate immunity. The main mechanisms action of AMPs are the ability to cause cell membrane and cell wall damage, the inhibition of protein synthesis, nucleic acids, and the induction of apoptosis and necrosis. AMPs would be likely among the main anti-A. baumannii drugs in the post-antibiotic era. Also, the application of computer science to increase anti-A. baumannii activity and reduce toxicity is also being developed.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/81299",risUrl:"/chapter/ris/81299",signatures:"Karyne Rangel and Salvatore Giovanni De-Simone",book:{id:"10874",type:"book",title:"Antimicrobial Peptides",subtitle:null,fullTitle:"Antimicrobial Peptides",slug:null,publishedDate:null,bookSignature:"Dr. Shymaa Enany, Dr. Jorge Adrian Masso-Silva and Ph.D. Anna Savitskaya",coverURL:"https://cdn.intechopen.com/books/images_new/10874.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-83969-714-2",printIsbn:"978-1-83969-713-5",pdfIsbn:"978-1-83969-715-9",isAvailableForWebshopOrdering:!0,editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Antimicrobial peptides",level:"1"},{id:"sec_2_2",title:"2.1 Cathelicidins",level:"2"},{id:"sec_2_3",title:"2.1.1 LL-37",level:"3"},{id:"sec_3_3",title:"2.1.2 Snake cathelicidins",level:"3"},{id:"sec_4_3",title:"2.1.3 Alligator cathelicidins",level:"3"},{id:"sec_5_3",title:"2.1.4 Wallaby antimicrobial",level:"3"},{id:"sec_6_3",title:"2.1.5 Bovine cathelicidins (Indolicidin and Bactenecin)",level:"3"},{id:"sec_8_2",title:"2.2 Defensins",level:"2"},{id:"sec_8_3",title:"2.2.1 α-Defensins (HNPs and HD5)",level:"3"},{id:"sec_9_3",title:"2.2.2 β-Defensins",level:"3"},{id:"sec_10_3",title:"2.2.3 α-Helical and antiparallel β-sheet defensins",level:"3"},{id:"sec_12_2",title:"2.3 Frog antimicrobial peptides",level:"2"},{id:"sec_12_3",title:"2.3.1 Magainin and pexiganan (its analog)",level:"3"},{id:"sec_13_3",title:"2.3.2 Brevinin-2 related peptide (B2RP)",level:"3"},{id:"sec_14_3",title:"2.3.3 B2RP-ERa",level:"3"},{id:"sec_15_3",title:"2.3.4 Alyteserins",level:"3"},{id:"sec_16_3",title:"2.3.5 Peptide glycine-leucine-amide",level:"3"},{id:"sec_17_3",title:"2.3.6 Caerulein precursor fragment (CPF)",level:"3"},{id:"sec_18_3",title:"2.3.7 Hymenochirins",level:"3"},{id:"sec_19_3",title:"2.3.8 XT-7",level:"3"},{id:"sec_20_3",title:"2.3.9 Buforins",level:"3"},{id:"sec_22_2",title:"2.4 Melittin",level:"2"},{id:"sec_23_2",title:"2.5 Cecropins",level:"2"},{id:"sec_24_2",title:"2.6 Mastoparan",level:"2"},{id:"sec_25_2",title:"2.7 Histatins",level:"2"},{id:"sec_26_2",title:"2.8 Dermcidins",level:"2"},{id:"sec_27_2",title:"2.9 Tachyplesin III",level:"2"},{id:"sec_28_2",title:"2.10 Computationally designed antimicrobial peptide",level:"2"},{id:"sec_30",title:"3. Resistance to AMPS",level:"1"},{id:"sec_31",title:"4. Conclusion(s)",level:"1"},{id:"sec_35",title:"Conflict of interest",level:"1"},{id:"sec_32",title:"Notes/thanks/other declarations",level:"1"}],chapterReferences:[{id:"B1",body:'O’Neill J. Tackling Drug-Resistance Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance. London, UK: Government of the United Kingdom; 2016. 84 p'},{id:"B2",body:'Tacconelli E, Carrara A, Savoldi S, Harbarth M, Mendelson DL, Monnet C, et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases. 2018;18(3):318-327'},{id:"B3",body:'Lewis K. Persister cells, dormancy, and infectious disease. Nature Reviews. Microbiology. 2007;5(1):48-56'},{id:"B4",body:'Lewis K. Persister cells. Annual Review of Microbiology. 2010;64:357-372. DOI: 10.1146/annurev.mi cro.112408.134306'},{id:"B5",body:'Fernández L, Breidenstein EBM, Hancock REW. Importance of adaptive and stepwise changes in the rise and spread of antimicrobial resistance. In: Keen P, Monforts M, editors. Antimicrobial Resistance in the Environment. Hoboken, New Jersey, EUA: Wiley-Blackwell; 2011. pp. 43-71. ISBN: 978-1-118-15623-0'},{id:"B6",body:'Olivares J, Bernardini A, Garcia-Leon G, Corona F, Sanchez MB, Martinez JL. The intrinsic resistome of bacterial pathogens. Frontiers in Microbiology. 2013;30(4):103'},{id:"B7",body:'Lewis K, Shan Y. Persister Awakening. Molecular Cell. 2016;63(1):3-4'},{id:"B8",body:'Conlon BP, Rowe SE, Gandt AB, Nuxoll AS, Donegan NP, Zalis EA, et al. Persister formation in Staphylococcus aureus is associated with ATP depletion. Nature Microbiology. 2016;1:16051'},{id:"B9",body:'Shan Y, Brown Gandt A, Rowe SE, Deisinger JP, Conlon BP, Lewis K. ATP-dependent persister formation in Escherichia coli. MBio. 2017;8(1):e02267-e02216'},{id:"B10",body:'Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, et al. Options and limitations in clinical investigation of bacterial biofilms. Clin Microbiol Ver. 2018;31(3):e00084-e00016'},{id:"B11",body:'Cameron DR, Shan Y, Zalis EA, Isabella V, Lewis K. A genetic determinant of persister cell formation in bacterial pathogens. Journal of Bacteriology. 2018;200(17):e00303-e00318'},{id:"B12",body:'Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global, multifaceted phenomenon. Pathog Global Health. 2015;109(7):309-318'},{id:"B13",body:'Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387(10014):176-187'},{id:"B14",body:'Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. Infectious Diseases. 2008;197(8):1079-1081'},{id:"B15",body:'Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clinical Microbiology and Infection. 2016;22(5):416'},{id:"B16",body:'Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist. 2018;15(11):2277-2299'},{id:"B17",body:'Cosgaya C, Mari-Almirall M, van Assche A, Fernandez-Orth D, Mosqueda N, Telli M, et al. Acinetobacter dijkshoorniae sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex mainly recovered from clinical samples in different countries. International Journal of Systematic and Evolutionary Microbiology. 2016;66(10):4105-4111'},{id:"B18",body:'Nemec A, Krizova L, Maixnerova M, Sedo O, Brisse S, Higgins PG. Acinetobacter seifertii sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex isolated from human clinical specimens. International Journal of Systematic and Evolutionary Microbiology. 2015;63(Pt 3):934-942'},{id:"B19",body:'Vijayakumar S, Biswas I, Veeraraghavan B. Accurate identification of clinically important Acinetobacter spp.: An update. Future Sci AO. 2019;5(6):FSO395'},{id:"B20",body:'Chen TL, Lee YT, Kuo SC, Yang SP, Fung CP, Lee SD. Rapid identification of Acinetobacter baumannii, Acinetobacter nosocomialis, and Acinetobacter pittii with a multiplex PCR assay. Journal of Medical Microbiology. 2014;63(Pt 9):1154-1159'},{id:"B21",body:'Marí-Almirall M, Cosgaya C, Higgins PG, Van Assche A, Telli M, Huys G, et al. MALDI-TOF/MS identification of species from the Acinetobacter baumannii (ab) group revisited: Inclusion of the novel a. seifertii and A. dijkshoorniae species. Clinical Microbiology and Infection. 2017;23(3):210.e1-210.e9'},{id:"B22",body:'Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: Emergence of a successful pathogen. Clinical Microbiology Reviews. 2008;21(3):538-582'},{id:"B23",body:'Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: Multidrug-resistant Acinetobacter baumannii. Nature Reviews. Microbiology. 2007;5(12):939-951'},{id:"B24",body:'Garnacho-Montero J, Timsit JF. Managing Acinetobacter baumannii infections. Current Opinion in Infectious Diseases. 2019;32(1):69-76'},{id:"B25",body:'Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pan drug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection. 2012;18(3):268-281'},{id:"B26",body:'Xie R, Zhang XD, Zhao Q, Peng B, Zheng J. Analysis of global prevalence of antibiotic resistance in Acinetobacter baumannii infections disclosed a faster increase in OECD countries. Emerg. Microb. Infect. 2018;7(1):1-10'},{id:"B27",body:'Willyard C. The drug-resistant bacteria that pose the greatest health threats. Nature. 2017;543(7643):15'},{id:"B28",body:'Barth VCJ, Rodrigues BÁ, Bonatto GD, Gallo SW, Pagnussatti VE, Ferreira CAS, et al. Heterogeneous persister cells formation in Acinetobacter baumannii. PLoS One. 2013;8(12):e84361'},{id:"B29",body:'Lukovic B, Gajic I, Dimkic I, Kekic D, Zornic S, Pozder T, et al. The first nationwide multicenter study of Acinetobacter baumannii recovered in Serbia: Emergence of OXA-72, OXA-23 and NDM-1-producing isolates. Antimicrobial Resistance and Infection Control. 2020;9(1):101'},{id:"B30",body:'Isler B, Doi Y, Bonomo RA, Paterson DL. New treatment options against carbapenem-resistant Acinetobacter baumannii infections. Antimicrobial Agents Chemother. 2019;63(1):e01110-e01118'},{id:"B31",body:'World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Available at: https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf. [Accessed in July 2021]'},{id:"B32",body:'Domalaon R, Zhanel GG, Schweizer F. Short antimicrobial peptides and peptide scaffolds as promising antibacterial agents. Current Topics in Medicine Chemistry. 2016;16(11):1217-1230'},{id:"B33",body:'Vrancianu CO, Gheorghe I, Czobor IB, Chifiriuc MC. Antibiotic resistance profiles, molecular mechanisms, and innovative treatment strategies of Acinetobacter baumannii. Microorganisms. 2020;8(6):935'},{id:"B34",body:'Falanga A, Galdiero S. Emerging therapeutic agents on the basis of naturally occurring antimicrobial peptides. In: SPR, Amino Acids, Peptides and Proteins. Vol. 42. Cambridge, UK: Royal Society of Chemistry; 2018. pp. 190-227. ISBN: 978-1-78801-002-3'},{id:"B35",body:'Kang HK, Kim C, Seo CH, Park Y. The therapeutic applications of antimicrobial peptides (AMPs): A patent review. Journal of Microbiology. 2017;55(1):1-12'},{id:"B36",body:'Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: Key components of the innate immune system. Critical Reviews in Biotechnology. 2012;32(2):143-171'},{id:"B37",body:'Wang G, Li X, Wang Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Research. 2015;44(D1):D1087-D1093'},{id:"B38",body:'Neshani A, Zare H, Akbari Eidgahi MR, Chichaklu AH, Movaqar A, Ghazvini K. Review of antimicrobial peptides with anti-helicobacter pylori activity. Helicobacter. 2019;24(1):e12555'},{id:"B39",body:'Mansour SC, Pena OM, Hancock REW. Host defense peptides: front-line immunomodulators. Trends in Immunology. 2014;35(9):443-450'},{id:"B40",body:'Falanga A, Lombardi L, Franci G, Vitiello M, Iovene MR, Morelli G, et al. Marine antimicrobial peptides: Nature provides templates for the design of novel compounds against pathogenic bacteria. International Journal of Molecular Sciences. 2016;17(5):785'},{id:"B41",body:'Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, et al. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Frontiers in Cellular and Infection Microbiology. 2021;11:668632'},{id:"B42",body:'Haney EF, Brito-Sánchez Y, Trimble MJ, Mansour SC, Cherkasov A, Hancock REW. Computer-aided discovery of peptides that specifically attack bacterial biofilms. Scientific Reports. 2018;8(1):1871'},{id:"B43",body:'Govender T, Dawood A, Esterhuyse AJ, Katerere DR. Antimicrobial properties of the skin secretions of frogs. South African Journal of Science. 2012;108:25-30'},{id:"B44",body:'Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Frontiers in Pharmacology. 2018;9:281'},{id:"B45",body:'Neshani A, Zare H, Akbari Eidgahi MR, Khaledi A, Ghazvini K. Epinecidin-1, a highly potent marine antimicrobial peptide with anticancer and immunomodulatory activities. BMC. Pharmacology & Toxicology. 2019;20(1):33. DOI: 10.1186/s40360-019-0309-7'},{id:"B46",body:'Neshani A, Tanhaeian A, Zare H, Eidgahi MRA, Ghazvini K. Preparation and evaluation of a new biopesticide solution candidate for plant disease control using pexiganan gene and Pichia pastoris expression system. Gene Rep. 2019;17:100509'},{id:"B47",body:'Fan L, Sun J, Zhou M, Zhou J, Lao X, Zheng H. DRAMP: A comprehensive data repository of antimicrobial peptides. Scientific Reports. 2016;14(6):24482'},{id:"B48",body:'Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial peptides: Diversity, mechanism of action, and strategies to improve the activity and biocompatibility in vivo. Biomolecules. 2018;8(1):4'},{id:"B49",body:'Zhang LJ, Gallo RL. Antimicrobial peptides. Current Biology. 2016;26(1):R14-R19'},{id:"B50",body:'Zhang G, Sunkara LT. Avian antimicrobial host defense peptides: From biology to therapeutic applications. Pharmaceuticals. 2014;7(3):220'},{id:"B51",body:'Cruz J, Ortiz C, Guzman F, Fernandez-Lafuente R, Torres R. Antimicrobial peptides: Promising compounds against pathogenic microorganisms. Current Medicinal Chemistry. 2014;21(20):2299'},{id:"B52",body:'Epand RM, Walker C, Epand RF, Magarvey NA. Molecular mechanisms of membrane targeting antibiotics. Biochimica et Biophysica Acta - Biomembranes. 2016;1858:980-987'},{id:"B53",body:'Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updated. 2016;26:43-57'},{id:"B54",body:'Ehrenstein G, Lecar H. Electrically gated ionic channels in lipid bilayers. Quarterly Reviews of Biophysics. 1977;10:1-34'},{id:"B55",body:'Brogden KA. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews. Microbiology. 2005;3:238-250'},{id:"B56",body:'Breukink E, de Kruijff B. The lantibiotic nisin, a special case or not? Biochimica et Biophysica Acta. 1999;1462:223-234'},{id:"B57",body:'Wimley WC. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chemical Biology. 2010;5:905-917'},{id:"B58",body:'Rapaport D, Shai Y. Interaction of fluorescently labeled pardaxin and its analogs with lipid bilayers. The Journal of Biological Chemistry. 1991;266:23769-23775'},{id:"B59",body:'Shai Y, Bach D, Yanovsky A. Channel formation properties of synthetic pardaxin and analogs. The Journal of Biological Chemistry. 1990;265:20202-20209'},{id:"B60",body:'Uematsu N, Matsuzaki K. Polar angle as a determinant of amphipathic α-helix-lipid interactions: A model peptide study. Biophysical Journal. 2000;79:2075-2083'},{id:"B61",body:'Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews. 2003;55:27-55'},{id:"B62",body:'Lee T-H, Hall KN, Aguilar M-I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Current Topics in Medicinal Chemistry. 2016;16:25-39'},{id:"B63",body:'Cheng JTJ, Hale JD, Elliot M, Hancock REW, Straus SK. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Biophysical Journal. 2009;96:552-565'},{id:"B64",body:'Sparr E, Ash WL, Nazarov PV, Rijkers DTS, Hemminga MA, Tieleman DP, et al. Self-association of transmembrane-helices in model membranes. The Journal of Biological Chemistry. 2005;280:39324-39331'},{id:"B65",body:'Cheng JTJ, Hale JD, Elliott M, Hancock REW, Straus SK. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Biochimica et Biophysica Acta - Biomembranes. 2011;1808:622-633'},{id:"B66",body:'Shai Y. Mode of action of membrane-active antimicrobial peptides. Biopolymers. 2002;66:236-248'},{id:"B67",body:'Fernandez DI, Le Brun AP, Whitwell TC, Sani M-A, James M, Separovic F. The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Physical Chemistry Chemical Physics. 2012;14:15739'},{id:"B68",body:'Sitaram N, Nagaraj R. Interaction of antimicrobial peptides with biological and model membranes: Structural and charge requirements for activity. Biochimica et Biophysica Acta. 1999;1462:29-54'},{id:"B69",body:'Rozek A, Friedrich CL, Hancock RE. Structure of the bovine antimicrobial peptide indolicidin bound to dodecyl phosphocholine and sodium dodecyl sulfate micelles. Biochemistry. 2000;39:15765-15774'},{id:"B70",body:'Gee ML, Burton M, Grevis-James A, Hossain MA, McArthur S, Palombo EA, et al. Imaging the action of antimicrobial peptides on living bacterial cells. Scientific Reports. 2013;3:1557'},{id:"B71",body:'Choi H, Rangarajan N, Weisshaar JC. Lights, camera, action! Antimicrobial peptide mechanisms imaging in space and time. Trends in Microbiology. 2016;24:111-122'},{id:"B72",body:'Manzini MC, Perez KR, Riske KA, Bozelli JC, Santos TL, da Silva MA, et al. Peptide: Lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Biochimica et Biophysica Acta - Biomembranes. 2014;1838:1985-1999'},{id:"B73",body:'Feng X, Sambanthamoorthy K, Palys T, Paranavitana C. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides. 2013;49:131-137'},{id:"B74",body:'de Breij A, Riool M, Cordfunke RA, Malanovic N, de Boer L, Koning RI, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl. 2018;10(423):eaan4044'},{id:"B75",body:'Tajbakhsh M, Akhavan MM, Fallah F, Karimi A. A recombinant snake cathelicidin derivative peptide: Antibiofilm properties and expression in Escherichia Coli. Biomolecules. 2018;8(4):118'},{id:"B76",body:'Mwangi J, Yin Y, Wang G, Yang M, Li Y, Zhang Z, et al. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii Infection. Proc Natl Acad Sci. USA. 2019;116(52):26516-26522'},{id:"B77",body:'Barksdale SM, Hrifko EJ, van Hoek ML. Cathelicidin antimicrobial peptide from Alligator mississippiensis has antibacterial activity against multi-drug resistant Acinetobacter baumanii and Klebsiella pneumoniae. Developmental and Comparative Immunology. 2017;70:135-144'},{id:"B78",body:'Zhao F, Lan XQ, Du Y, Chen PY, Zhao J, Zhao F, et al. King cobra peptide OH-CATH30 as a potential candidate drug through clinic drug-resistant isolates. Zoological Research. 2018;39(2):87-96'},{id:"B79",body:'Dekan Z, Headey SJ, Scanlon M, Baldo BA, Lee TH, Aguilar MI, et al. ∆-Myrtoxin-Mp1a is a helical heterodimer from the venom of the jack jumper ant that has antimicrobial, membrane-disrupting, and nociceptive activities. Angewandte Chemie (International Ed. in English). 2017;56(29):8495-8499'},{id:"B80",body:'Al-Asmari AK, Alamri MA, Almasoudi AS, Abbasmanthiri R, Mahfoud M. Evaluation of the in vitro antimicrobial activity of selected Saudi scorpion venoms tested against multidrug-resistant micro-organisms. J Glob Antimicrob Resist. 2017;10:14-18'},{id:"B81",body:'Domhan C, Uhl P, Kleist C, Zimmermann S, Umstätter F, Leotta K, et al. Replacement of L-amino acids by d-amino acids in the antimicrobial peptide ranalexin and its consequences for antimicrobial activity and biodistribution. Molecules. 2019;24(16):2987'},{id:"B82",body:'Hirsch R, Wiesner J, Marker A, Pfeifer Y, Bauer A, Hammann PE, et al. Profiling antimicrobial peptides from the medical maggot Lucilia sericata as potential antibiotics for MDR gram-negative bacteria. The Journal of Antimicrobial Chemotherapy. 2019;74(1):96-107'},{id:"B83",body:'Shamova OV, Orlov DS, Zharkova MS, Balandin SV, Yamschikova EV, Knappe D, et al. Minibactenecins ChBac7.Nα and ChBac7. Nβ—Antimicrobial peptides from leukocytes of the goat Capra hircus. Acta Naturae. 2016;8(3):136-146'},{id:"B84",body:'Spencer JJ, Pitts RE, Pearson RA, King LB. The effects of antimicrobial peptides WAM-1 and LL-37 on multidrug-resistant Acinetobacter baumannii. Pathogens and Disease. 2018;76(2):fty007'},{id:"B85",body:'Vila-Farres X, De La Maria CG, López-Rojas R, Pachón J, Giralt E, Vila J. In vitro activity of several antimicrobial peptides against colistin-susceptible and colistin-resistant Acinetobacter baumannii. Clinical Microbiology and Infection. 2012;18(4):383-387'},{id:"B86",body:'Giacometti A, Cirioni O, Del Prete MS, Barchiesi F, Paggi AM, Petrelli E, et al. Comparative activities of polycationic peptides and clinically used antimicrobial agents against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. The Journal of Antimicrobial Chemotherapy. 2000;46(5):807-810'},{id:"B87",body:'Falla TJ, Karunaratne DN, Hancock RE. Mode of action of the antimicrobial peptide indolicidin. The Journal of Biological Chemistry. 1996;271(32):19298-19303'},{id:"B88",body:'Romeo D, Skerlavaj B, Bolognesi M, Gennaro R. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. The Journal of Biological Chemistry. 1988;263(20):9573-9575'},{id:"B89",body:'Wu M, Hancock RE. Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. The Journal of Biological Chemistry. 1999;274(1):29-35'},{id:"B90",body:'Skerlavaj B, Romeo D, Gennaro R. Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infection and Immunity. 1990;58(11):3724-3730'},{id:"B91",body:'Shamova O, Orlov D, Stegemann C, Czihal P, Hoffmann R, Brogden K, et al. ChBac34: A novel proline-rich antimicrobial peptide from goat leukocytes. Int J Pept Res Therapy. 2009;15(1):31-42'},{id:"B92",body:'Seefeldt AC, Graf M, Pérébaskine N, Nguyen F, Arenz S, Mardirossian M, et al. Structure of the mammalian antimicrobial peptide Bac7(1-16) bound within the exit tunnel of a bacterial ribosome. Nucleic Acids Research. 2016;44(5):2429-2438'},{id:"B93",body:'Wang C, Zhao G, Wang S, Chen Y, Gong Y, Chen S, et al. A simplified derivative of human defensin 5 with potent and efficient activity against multidrug-resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy. 2018;62(2):e01504-e01517'},{id:"B94",body:'Kaushal A, Gupta K, van Hoek ML. Characterization of Cimex lectularius (bedbug) defensin peptide and its antimicrobial activity against human skin microflora. Biochemical and Biophysical Research Communications. 2016;470(4):955-960'},{id:"B95",body:'Routsias JG, Karagounis P, Parvulesku G, Legakis NJ, Tsakris A. In vitro bactericidal activity of human β-defensin 2 against nosocomial strains. Peptides. 2010;31(9):1654-1660'},{id:"B96",body:'Maisetta G, Batoni G, Esin S, Florio W, Bottai D, Favilli F, et al. In vitro bactericidal activity of human beta-defensin 3 against multidrug-resistant nosocomial strains. Antimicrobial Agents and Chemotherapy. 2006;50(2):806-809'},{id:"B97",body:'Kim MK, Kang N, Ko SJ, Park J, Park E, Shin DW, et al. Antibacterial and antibiofilm activity and mode of action of magainin 2 against drug-resistant Acinetobacter baumannii. International Journal of Molecular Sciences. 2018;19(10):3041'},{id:"B98",body:'Zasloff M. Magainins a class of antimicrobial peptides from Xenopus skin: Isolation characterization of two active forms and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA. 1987;84(15):5449-5453'},{id:"B99",body:'Flamm RK, Rhomberg PR, Simpson KM, Farrell DJ, Sader HS, Jones RN. In vitro spectrum of pexiganan activity when tested against pathogens from diabetic oot infections and with selected resistance mechanisms. Antimicrobial Agents and Chemotherapy. 2015;59(3):1751-1754'},{id:"B100",body:'Ge Y MacDonald, DL Holroyd, KJ Thornsberry C, Wexler H, Zasloff M. In vitro antibacterial properties of pexiganan an analog of magainin. Antimicrobial Agents and Chemotherapy 1999; 43(4):782-788.'},{id:"B101",body:'Jáskiewicz M, Neubauer D, Kazor K, Bartoszewska S, Kamysz W. Antimicrobial activity of selected antimicrobial peptides against planktonic culture and biofilm of Acinetobacter baumannii. Probiotics Antimicrob Proteins. 2019;11(1):317-324'},{id:"B102",body:'Conlon JM, Ahmed E, Condamine E. Antimicrobial properties of brevinin-2-related peptide and its analogs: Efficacy against multidrug-resistant Acinetobacter baumannii. Chemical Biology & Drug Design. 2009;74(5):488-493'},{id:"B103",body:'Conlon JM, Sonnevend A, Pál T, Vila-Farrés X. Efficacy of six frog skin-derived antimicrobial peptides against colistin-resistant strains of the Acinetobacter baumannii group. International Journal of Antimicrobial Agents. 2012;39(4):317-320'},{id:"B104",body:'Liu CB, Shan B, Bai HM, Tang J, Yan LZ, Ma YB. Hydrophilic/hydrophobic characters of antimicrobial peptides derived from animals and their effects on multidrug-resistant clinical isolates. Dongwuxue Yanjiu = Zool Res. 2015;36(1):41-47'},{id:"B105",body:'Al-Ghaferi N, Kolodziejek J, Nowotny N, Coquet L, Jouenne T, Leprince J, et al. Antimicrobial peptides from the skin secretions of the southeast Asian frog Hylarana erythraea (Ranidae). Peptides. 2010;31(4):548-554'},{id:"B106",body:'Conlon JM, Ahmed E, Pal T. A Sonnevend potent and rapid bactericidal action of alyteserin-1c and its [E4K] analog against multidrug-resistant strains of Acinetobacter baumannii. Peptides. 2010;31(10):1806-1810'},{id:"B107",body:'Conlon JM, Mechkarska M, Arafat K, Attoub S, Sonnevend A. Analogues of the frog skin peptide alyteserin-2a with enhanced antimicrobial activities against gram-negative bactéria. Journal of Peptide Science. 2012;18(4):270-275'},{id:"B108",body:'McLean DTF, McCrudden MTC, Linden GJ, Irwin CR, Conlon JM, Lundy FT. Antimicrobial and immunomodulatory properties of PGLa-AM1 CPFAM1 and magainin-AM1: Potent activity against oral pathogens. Regulatory Peptides. 2014;194-195:63-68'},{id:"B109",body:'Conlon JM, Al-Ghaferi N, Ahmed E, Meetani MA, Leprince JJ, Nielsen PF. Orthologs of magainin PGLa procaerulein-derived and proxenopsin-derived peptides from skin secretions of the octoploid frog Xenopus amieti (Pipidae). Peptides. 2010;31(6):989-994'},{id:"B110",body:'Conlon JM, Mechkarska M, Ahmed E, Leprince J, Vaudry H, King JD, et al. Purification and properties of antimicrobial peptides from skin secretions of the Eritrea clawed frog Xenopus clivii (Pipidae). Comp Biochem Physiol C Toxicol Pharmacol. 2011;153(3):350-354'},{id:"B111",body:'Mechkarska M, Ahmed E, Coquet L, Leprince J, Jouenne T, Vaudry H, et al. Antimicrobial peptides with therapeutic potential from skin secretions of the Marsabit clawed frog Xenopus borealis (Pipidae). Comp Biochem Physiol C Toxicol Pharmacol. 2010;152(4):467-472'},{id:"B112",body:'Mechkarska M, Prajeep M, Radosavljevic GD, Jovanovic IP, Al Baloushi A, Sonnevend A, et al. An analog of the host-defense peptide hymenochirin-1B with potent broad-spectrum activity against multidrug-resistant bacteria and immunomodulatory properties. Peptides. 2013;50:153-159'},{id:"B113",body:'Serra I, Scorciapino MA, Manzo G, Casu M, Rinaldi AC, Attoub S, et al. Conformational analysis and cytotoxic activities of the frog skin host-defense peptide hymenochirin-1Pa. Peptides. 2014;61:114-121'},{id:"B114",body:'Conlon JM, Galadari S, Raza H, Condamine E. Design of potent non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides ascaphin-8 and peptide XT-7. Chemical Biology & Drug Design. 2008;72(1):58-64'},{id:"B115",body:'Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochemical and Biophysical Research Communications. 1998;244(1):253-257'},{id:"B116",body:'Cirioni O, Silvestri C, Ghiselli R, Orlando F, Riva A, Gabrielli E, et al. Therapeutic efficacy of buforin II and rifampin in a rat model of Acinetobacter baumannii sepsis. Critical Care Medicine. 2009;37(4):1403-1407'},{id:"B117",body:'Pashaei F, Bevalian P, Akbari R, Bagheri KP. Single-dose eradication of extensively drug-resistant Acinetobacter spp. in a mouse model of burn infection by melittin antimicrobial peptide. Microbial Pathogenesis. 2019;127:60-69'},{id:"B118",body:'Akbari R, Hakemi-Vala M, Pashaie F, Bevalian P, Hashemi A, Bagheri KP. Highly synergistic effects of melittin with conventional antibiotics against multidrug-resistant isolates of Acinetobacter baumannii and Pseudomonas aeruginosa. Microbial Drug Resistance. 2019;25(2):193-202'},{id:"B119",body:'Giacometti A, Cirioni O, Kamysz W, D’Amato G, Silvestri C, Del Prete MS, et al. Comparative activities of cecropin a melittin and cecropin A-melittin peptide CA(1-7)M(2-9)NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. Peptides. 2003;24(9):1315-1318'},{id:"B120",body:'Jayamani E, Rajamuthiah R, Larkins-Ford J, Fuchs BB, Conery AL, Vilcinskas A, et al. Insect-derived cecropins display activity against Acinetobacter baumannii in a whole-animal high-throughput Caenorhabditis elegans model. Antimicrobial Agents and Chemotherapy. 2015;59(3):1728-1737'},{id:"B121",body:'Gui S, Li R, Feng Y, Wang S. Transmission electron microscopic morphological study and flow cytometric viability assessment of Acinetobacter baumannii susceptible to Musca domestica cecropin. Scientific World Journal. 2014;2014:657536'},{id:"B122",body:'Boman HG, Agerberth B, Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39 two antibacterial peptides from pig intestine. Infection and Immunity. 1993;61(7):2978-2984'},{id:"B123",body:'Peng J, Long H, Liu W, Wu Z, Wang T, Zeng Z, et al. Antibacterial mechanism of peptide cec4 against Acinetobacter baumannii. Infect Drug Resist. 2019;12:2417-2428'},{id:"B124",body:'Han HM, Ko S, Cheong M-J, Bang JK, Seo CH, Luchian T, et al. Myxinidin2 and myxinidin3 suppress inflammatory responses through STAT3 and MAPKs to promote wound healing. Oncotarget. 2017;8(50):87582-87597'},{id:"B125",body:'Gordya N, Yakovlev A, Kruglikova A, Tulin D, Potolitsina E, Suborova T, et al. Natural antimicrobial peptide complexes in the fighting of antibiotic-resistant biofilms: Calliphora vicina medicinal maggots. PLoS One. 2017;12(3):e0173559'},{id:"B126",body:'Vila-Farrés X, López-Rojas R, Pachón-Ibáñez ME, Teixidó M, Pachón J, Vila J, et al. Sequence-activity relationship and mechanism of action of mastoparan analogues against extended-drug resistant Acinetobacter baumannii. European Journal of Medicinal Chemistry. 2015;101:34-40'},{id:"B127",body:'Al-Khafaji Z, Al-Samaree M. Design of synthetic antimicrobial peptides against resistant Acinetobacter baumannii using computational approach. Int J Pharmaceut Sci Res. 2017;8:2033-2039255'},{id:"B128",body:'Lin CH, Lee MC, Tzen JTC, Lee HM, Chang SM, Tu WC, et al. Efficacy of mastoparan-AF alone and in combination with clinically used antibiotics on nosocomial multidrug-resistant Acinetobacter baumannii Saudi. Journal of Biological Sciences. 2017;24(5):1023-1029'},{id:"B129",body:'Tartar AS, Balın SO, Akbulut A, Yardım M, Aydın S. Roles of Dermcidin Salusin-α Salusin-β and TNF-α in the pathogenesis of human brucellosis. Iranian Journal of Immunology. 2019;16(2):182-189'},{id:"B130",body:'Farshadzadeh Z, Modaresi MH, Taheri B, Rahimi S, Bahador A. InVitro antimicrobial activity of dermcidin-1L against extensively-drug-resistant and pandrug resistant Acinetobacter baumannii. Jundishapur J Microbiol. 2017;10(5):e13201'},{id:"B131",body:'Mohamed MF, Hamed MI, Panitch A, Seleem MN. Targeting methicillin-resistant Staphylococcus aureus with short salt-resistant synthetic peptides. Antimicrobial Agents and Chemotherapy. 2014;58(7):4113-4122'},{id:"B132",body:'Mohamed MF, Brezden A, Mohammad H, Chmielewski J, Seleem MN. A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Scientific Reports. 2017;7(1):6953'},{id:"B133",body:'Wu X, Li Z, Li X, Tian Y, Fan Y, Yu C, et al. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug Des Dev Ther. 2017;11:939-946'},{id:"B134",body:'Zhang R, Wang Z, Tian Y, Yin Q, Cheng X, Lian M, et al. Efficacy of antimicrobial peptide DP7 designed by machine-learning method against methicillin-resistant Staphylococcus aureus. Frontiers in Microbiology. 2019;10:1175'},{id:"B135",body:'Nagarajan D, Roy N, Kulkarni O, Nanajkar N, Datey A, Ravichandran S, et al. Ω76: A designed antimicrobial peptide to combat carbapenem- and tigecycline resistant Acinetobacter baumannii. Science Advances. 2019;5(7):eaax1946'},{id:"B136",body:'Mourtada R, Herce HD, Yin DJ, Moroco JÁ, Wales TE, Engen JR, et al. Design of stapled antimicrobial peptides that are stable, nontoxic, and kill antibiotic-resistant bacteria in mice. Nature Biotechnology. 2019;37(10):1186-1197'},{id:"B137",body:'Rose M, Lapuebla A, Landman D, Quale J. In vitro and in vivo activity of a novel antisense peptide nucleic acid compound against multidrug-resistant Acinetobacter baumannii. Microbial Drug Resistance. 2019;25(7):961-965'},{id:"B138",body:'Gopal R, Kim YG, Lee JH, Lee SK, Chae JD, Son BK, et al. Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains. Antimicrobial Agents and Chemotherapy. 2014;58(3):1622-1629'},{id:"B139",body:'Hong MJ, Kim MK, Park Y. Comparative antimicrobial activity of Hp404 peptide and its analogs against Acinetobacter baumannii. International Journal of Molecular Sciences. 2021;22(11):5540'},{id:"B140",body:'Neshani A, Sedighian H, Mirhosseini SA, Ghazvini K, Zare H, Jahangiri A. Antimicrobial peptides as a promising treatment option against Acinetobacter baumannii infections. Microbial Pathogenesis. 2020;146:104238'},{id:"B141",body:'Jayathilaka EHTT, Rajapaksha DC, Nikapitiya C, De Zoysa M, Whang I. Antimicrobial and anti-biofilm peptide octominin for controlling multidrug-resistant Acinetobacter baumannii. International Journal of Molecular Sciences. 2021;22(10):5353'},{id:"B142",body:'Hacioglu M, Oyardi O, Bozkurt-Guzel C, Savage PB. Antibiofilm activities of ceragenins and antimicrobial peptides against fungal-bacterial mono and multispecies biofilms. Journal of Antibiotics (Tokyo). 2020;73(7):455-462'},{id:"B143",body:'Morroni G, Simonetti O, Brenciani A, Brescini L, Kamysz W, Kamysz E, et al. In vitro activity of protegrin-1 alone and in combination with clinically useful antibiotics against Acinetobacter baumannii strains isolated from surgical wounds. Medical Microbiology and Immunology. 2019;208(6):877-883'},{id:"B144",body:'Sharma D, Choudhary M, Vashistt J, Shrivastava R, SinghBisht G. Cationic antimicrobial peptide and its poly-N-substituted glycine congener: Antibacterial and antibiofilm potential against a baumannii. Biochemical and Biophysical Research Communications. 2019;518(3):472-478'},{id:"B145",body:'Mohan NM, Zorgani A, Jalowicki G, Kerr A, Khaldi N, Martins M. Unlocking nuripep 1653 from common pea protein: A potent antimicrobial peptide to tackle a pan-drug resistant Acinetobacter baumannii. Frontiers in Microbiology. 2019;10:2086'},{id:"B146",body:'Dowzinkly MJ, Chmelarová E. Antimicrobial susceptibility of gram-negative and gram-positive bacteria collected from Eastern Europe: Results from the Tigecycline evaluation and surveillance trial (T.E.S>T.), 2011-2016. J. Glob. Antimicrobial Resist. 2019;17(44):44-52. DOI: 10.1016/j.jgar.2018.11.007'},{id:"B147",body:'Björstad Å, Askarieh G, Brown KL, Christenson K, Forsman H, Önnheim K, et al. The host defense peptide LL-37 selectively permeabilizes apoptotic leukocytes. Antimicrob Ag Chemother. 2009;53(3):1027-1038. DOI: 10.1128/AAC.01310-08'},{id:"B148",body:'De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, et al. LL-37 the neutrophil granule-and epithelial cell-derived cathelicidin utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils monocytes and T cells. The Journal of Experimental Medicine. 2000;192(7):1069-1074. DOI: 10.1084/jem.192.7.1069'},{id:"B149",body:'Nijnik A, Hancock REW. Host defense peptides: Antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerg.Health Threats J. 2009;2:e1. DOI: 10.3134/ehtj.09.001'},{id:"B150",body:'Neshani A, Zare H, Eidgahi MRA, Kakhki RK, Safdari H, Khaledi A, et al. LL-37: A review of antimicrobial profile against sensitive and antibiotic-resistant human bacterial pathogens. Gene Rep. 2019;17:100519. DOI: 10.1016/j.genrep.2019.100519'},{id:"B151",body:'Esfandiyari R, Halabian R, Behzadi E, Sedighian H, Jafari R, Fooladi AAI. Performance evaluation of antimicrobial peptide ll-37 and hepcidin and β-defensin-2 secreted by mesenchymal stem cells. Heliyon. 2019;5(10):e02652. DOI: 10.1016/j.heliyon.2019.e02652'},{id:"B152",body:'Liu C, Shan B, Qi J, Ma Y. Systemic responses of multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii following exposure to the antimicrobial peptide cathelicidin-BF imply multiple intracellular targets. Frontiers in Cellular and Infection Microbiology. 2017;7:466. DOI: 10.3389/fcimb.2017.00466'},{id:"B153",body:'Zhao H, Gan TX, Liu XD, Jin Y, Lee WH, Shen JH, et al. Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides. 2008;29(10):1685-1691. DOI: 10.1016/j.peptides.2008.06.008'},{id:"B154",body:'Du H, Samuel RL, Massiah MA, Gillmor SD. The structure and behavior of the NA-CATH antimicrobial peptide with liposomes. Biochimica et Biophysica Acta. 2015;1848(10 Pt A):2394-2405. DOI: 10.1016/j.bbamem.2015.07.006'},{id:"B155",body:'Ikenaga M, Guevara R, Dean AL, Pisani C, Boyer JN. Changes in community structure of sediment bacteria along the Florida coastal everglades marsh-mangrove-seagrass salinity gradient. Microbial Ecology. 2010;59(2):284-295. DOI: 10.1007/s00248-009-9572-2'},{id:"B156",body:'Bishop BM, Juba ML, Devine MC, Barksdale SM, Rodriguez CA, Chung MC, et al. Bioprospecting the American alligator (Alligator mississippiensis) host defense peptidome. PLoS One. 2015;10(2):e0117394. DOI: 10.1371/journal.pone.0117394'},{id:"B157",body:'Daly KA, Digby MR, Lefévre C, Nicholas KR, Deane EM, Williamson P. Identification characterization and expression of cathelicidin in the pouch young of Tammar wallaby (Macropus eugenii). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology. 2008;149(3):524-533. DOI: 10.1016/j.cbpb.2007.12.002'},{id:"B158",body:'Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS. Indolicidin is a novel bactericidal tridecapeptide amide from neutrophils. The Journal of Biological Chemistry. 1992;267(7):4292-4295'},{id:"B159",body:'Végh AG, Nagy K, Bálint Z, Kerényi A, Rákhely G, Váró G, et al. Effect of antimicrobial peptide-amide: Indolicidin on biological membranes. Journal of Biomedicine & Biotechnology. 2011;2011:670589. DOI: 10.1155/2011/670589'},{id:"B160",body:'Hsu CH, Chen C, Jou ML, Lee AYL, Lin YC, Yu YP, et al. Structural and DNA-binding studies on the bovine antimicrobial peptide indolicidin: Evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Research. 2005;33(13):4053-4064. DOI: 10.1093/nar/gki725'},{id:"B161",body:'Marchand C, Krajewski K, Lee HF, Antony S, Johnson AA, Amin R, et al. Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites. Nucleic Acids Research. 2006;34(18):5157-5165. DOI: 10.1093/nar/gkl667'},{id:"B162",body:'Schneider JJ, Unholzer A, Schaller M, Schäfer-Korting M, Korting HC. Human defensins, Journal of Molecular Medicine (Berlin, Germany). 2005;83(8):587-595. DOI: 10.1007/s00109-005-0657-1'},{id:"B163",body:'Knutelski S, Awad M, Łukasz N, Bukowski M, Śmiałek J, Suder P, et al. Isolation, identification, and bioinformatic analysis of antibacterial proteins and peptides from immunized hemolymph of red palm weevil Rhynchophorus ferrugineus. Biomolecules. 2021;11(1):83. DOI: 10.3390/ iom11010083'},{id:"B164",body:'Lehrer RI, Lu W. α-Defensins in human innate immunity. Immunological Reviews. 2012;45(1):84-112. DOI: 10.1111/j.1600-065X.2011.01082.x'},{id:"B165",body:'Wang C, Zhao G, Wang S, Chen Y, Gong Y, Chen S, et al. A simplified derivative of human defensin 5 with potent and efficient activity against multidrug-resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy. 2018;62(2):e01504-e01517. DOI: 10.1128/AAC.01504-17'},{id:"B166",body:'Wanniarachchi YA, Kaczmarek P, Wan A, Nolan EM. Human defensin 5 disulfide array mutants: Disulfide bond deletion attenuates antibacterial activity against Staphylococcus aureus. Biochemistry. 2011;37:8005-8017. DOI: 10.1021/bi201043j'},{id:"B167",body:'Marcelino-Pérez G, Ruiz-Medrano R, Gallardo-Hernández S, Xoconostle-Cázares B. Adsorption of recombinant human β-defensin 2 and two mutants on mesoporous silica nanoparticles and its effect against Clavibacter michiganensis subsp. Michiganensis. Nanomaterials (Basel). 2021;11(8):2144. DOI: 10.3390/nano11082144'},{id:"B168",body:'Hirsch T, Spielmann M, Zuhaili B, Fossum M, Metzig M, Koehler T, et al. Human beta defensin-3 promotes wound healing in infected diabetic wounds. The Journal of Gene Medicine. 2009;11(3):220-228. DOI: 10.1002/jgm.1287'},{id:"B169",body:'Zerweck J, Strandberg E, Kukharenko O, Reichert J, Bürck J, Wadhwani P, et al. Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2. Scientific Reports. 2017;7:13153. DOI: 10.1038/s41598-017-12599-7'},{id:"B170",body:'Tamba Y, Yamazaki M. Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface. The Journal of Physical Chemistry. B. 2009;113(14):4846-4852. DOI: 10.1021/jp8109622'},{id:"B171",body:'Maloy WL, Kari UP. Structure-activity studies on magainins and other host defense peptides. Biopolymers. 1995;37(2):105-122. DOI: 10.1002/bip.360370206'},{id:"B172",body:'Gottler LM, Ramamoorthy A. Structure membrane orientation mechanism and function of pexiganan-a highly potent antimicrobial peptide designed from magainin. Biochimica et Biophysica Acta. 2009;1788(8):1680-1686'},{id:"B173",body:'Ramamoorthy A, Thennarasu S, Lee DK, Tan A, Maloy L. Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin. Biophysical Journal. 2006;91(1):206-216. DOI: 10.1529/biophysj.105.07 3890'},{id:"B174",body:'Fuchs PC, Barry AL, Brown SD. In vitro antimicrobial activity of MSI-78 a magainin analog. Antimicrobial Agents and Chemotherapy. 1998;42(5):1213-1216. DOI: 10.1128/AAC. 42.5.1213'},{id:"B175",body:'Bevier CR, Sonnevend A, Kolodziejek J, Nowotny N, Nielsen PF, Conlon JM. Purification and characterization of antimicrobial peptides from the skin secretions of the mink frog (Rana septentrionalis). Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 2004;139(1–3):31-38. DOI: 10.1016/j.cca.2004.08.019'},{id:"B176",body:'Conlon JM, Abraham B, Sonnevend A, Jouenne T, Cosette P, Leprince J, et al. Purification and characterization of antimicrobial peptides from the skin secretions of the carpenter frog Rana virgatipes (Ranidae, Aquarana). Regulatory Peptides. 2005;131(1–3):38-45. DOI: 10.1016/j.regpep.20 05.06.003'},{id:"B177",body:'Savelyeva A, Ghavami S, Davoodpour P, Asoodeh A, Los MJ. An overview of Brevinin superfamily: Structure function and clinical perspectives. Advances in Experimental Medicine and Biology. 2014;818:197-212. DOI: 10.1007/978-1-4471-6458-610'},{id:"B178",body:'Popovic S, Urbán E, Lukic M, Conlon JM. Peptides with antimicrobial and anti-inflammatory activities that have therapeutic potential for treatment of acne vulgaris. Peptides. 2012;34(2):275-282. DOI: 10.1016/j.peptides.2012.02.010'},{id:"B179",body:'Popovic S, Djurdjevic P, Zaric M, Mijailovic Z, Avramovic D, Baskic D. Effects of host defense peptides B2RP Brevinin-2GU D-Lys-Temporin Lys-XT-7 and DLys-Ascaphin-8 on peripheral blood mononuclear cells: Preliminary study. Periodicum Biologorum. 2017;119(2):113-118. DOI: 10.18054/pb.v119i2.4781'},{id:"B180",body:'Conlon JM, Demandt A, Nielsen PF, Leprince J, Vaudry H, Woodhams DC. The alyteserins: Two families of antimicrobial peptides from the skin secretions of the midwife toad Alytes obstetricans (Alytidae). Peptides. 2009;30(6):1069-1073. DOI: 10.1016/j.peptides.2009.03.004'},{id:"B181",body:'Subasinghage AP, O\'Flynn D, Conlon JM, Hewage CM. Conformational and membrane interaction studies of the antimicrobial peptide alyteserin-1c and its analog [E4K] alyteserin-1c. Biochimica et Biophysica Acta. 2011;1808(8):1975-1984. DOI: 10.1016/j.bbamem.2011.04.012'},{id:"B182",body:'Conlon JM, Prajeep M, Mechkarska M, Coquet L, Leprince J, Jouenne T, et al. Characterization of the host-defense peptides from skin secretions of Merlin’s clawed frog Pseudhymenochirus Merlini: Insights into phylogenetic relationships among the Pipidae. Comp. Biochem. Physiol. Part D Genom. Proteonomics. 2013;8(4):352-357. DOI: 10.1016/j.cbd.2013.10.002'},{id:"B183",body:'Ali MF, Soto A, Knoop FC, Conlon JM. Antimicrobial peptides isolated from skin secretions of the diploid frog Xenopus tropicalis (Pipidae). Biochimica et Biophysica Acta. 2001;1550(1):81-89. DOI: 10.1016/s0167-4838 (01)00272-2'},{id:"B184",body:'Park CB, Kim MS, Kim SC. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochemical and Biophysical Research Communications. 1996;218(1):408-413. DOI: 10.1006/bbrc.1996.0071'},{id:"B185",body:'Fennell JF, Shipman WH, Cole LJ. Antibacterial action of melittin, a polypeptide from bee venom. Proceedings of the Society for Experimental Biology and Medicine. 1968;127(3):707-710. DOI: 10.3181/ 00379727-127-32779'},{id:"B186",body:'Park J, Kwon O, An HJ, Park KK. Antifungal effects of bee venom components on Trichophyton rubrum: A novel approach of bee venom study for possible emerging antifungal agent. Annals of Dermatology. 2018;30(2):202-210. DOI: 10.5021/ ad.2018.30.2. 202'},{id:"B187",body:'Pereira AV, de Barros G, Pinto EG, Tempone AG, Orsi RO, Dos Santos LD, et al. Melittin induces in vitro death of Leishmania (Leishmania) infantum by triggering the cellular innate immune response. Journal of Venomous Animals and Toxins including Tropical Diseases. 2016;22:1. DOI: 10.1186/s40409-016-0055-x'},{id:"B188",body:'Kim YW, Chaturvedi PK, Chun SN, Lee YG, Ahn WS. Honeybee venom possesses anticancer and antiviral effects by differential inhibition of HPV E6 and E7 expression on cervical cancer cell line. Oncology Reports. 2015;33(4):1675-1682. DOI: 10.3892/or. 2015.3760'},{id:"B189",body:'Van den Bogaart G, Guzman JV, Mika JT, Poolman B. On the mechanism of pore formation by melittin. The Journal of Biological Chemistry. 2008;283(49):33854-33857. DOI: 10.1074/jbc.M805171200'},{id:"B190",body:'Rangel K, Lechuga GC, Almeida Souza AL, Carvalho JPRS, Villas-Bôas MHS, De Simone SG. Pan-drug resistant Acinetobacter baumannii but not other strains are resistant to the bee venom peptide melittin. Antibiotics (Basel). 2020;149(4):178. DOI: 10.3390/antibiotics9040178'},{id:"B191",body:'Steiner H, Hultmark D, Engström Å, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981;292(5820):246. DOI: 10.1038/292246a0'},{id:"B192",body:'Hui L, Leung K, Chen HM. The combined effects of antibacterial peptide cecropin a and anticancer agents on leukemia cells. Anticancer Research. 2002;22(5):2811-2816'},{id:"B193",body:'Wu Q, Patočka J, Kuča K. Insect Antimicrobial Peptides, a Mini Review. Toxins (Basel). 2018;10(11):461. DOI: 10.3390/toxins10110461'},{id:"B194",body:'Yun J, Lee DG. Cecropin A-induced apoptosis is regulated by ion balance and glutathione antioxidant system in Candida albicans. IUBMB Life. 2016;68(8):652-662. DOI: 10.1002/iub.1527'},{id:"B195",body:'Hirai Y, Yasuhara T, Yoshida H, Nakajima T, Fujino M, Kitada C. A new mast cell degranulating peptide “mastoparan” in the venom of Vespula lewisii. Chem Pharm Bull (Tokyo). 1979;27(8):1942-1944. DOI: 10.1248/cpb.27.1942'},{id:"B196",body:'Moreno M, Giralt E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin apamin and mastoparan. Toxins. 2015;7(4):1126-1150. DOI: 10.3390/toxins7041126'},{id:"B197",body:'Chen X, Zhang L, Wu Y, Wang L, Ma C, Xi X, et al. Evaluation of the bioactivity of a mastoparan peptide from wasp venom and of its analogues designed through targeted engineering. International Journal of Biological Sciences. 2018;14(6):599-607. DOI: 10.7150/ijbs.234 19'},{id:"B198",body:'Sun H, Hong Y, Xi Y, Zou Y, Gao J, Du J. Synthesis self-assembly and biomedical applications of antimicrobial peptide-polymer conjugates. Biomacromolecules. 2018;19(6):1701-1720. DOI: 10.1021/acs.biomac.8b00 208'},{id:"B199",body:'Oppenheim FG, Xu T, McMillian FM, Levitz SM, Diamond RD, Offner GD, et al. Histatins a novel family of histidine-rich proteins in human parotid secretion isolation characterization primary structure and fungistatic effects on Candida albicans. The Journal of Biological Chemistry. 1988;263(16):7472-7477'},{id:"B200",body:'Murakami Y, Tamagawa H, Shizukuishi S, Tsunemitsu A, Aimoto S. Biological role of an arginine residue present in a histidine-rich peptide which inhibits hemagglutination of Porphyromonas gingivalis. FEMS Microbiology Letters. 1992;77(1–3):201-204. DOI: 10.1016/0378-1097(92)90156-i'},{id:"B201",body:'Burian M, Schittek B. The secrets of dermcidin action. International Journal of Medical Microbiology. 2015;305(2):283-286. DOI: 10.1016/j.ijmm.2014.12.012'},{id:"B202",body:'Muta T, Fujimoto T, Nakajima H, Iwanaga S. Tachyplesins isolated from hemocyte of southeast Asian horseshoe crabs (Carcinoscorpius rotundicauda and Tachypleus gigas): Identification of a new tachyplesin tachyplesin III and a processing intermediate of its precursor. Journal of Biochemistry. 1990;108(9):261-266. DOI: 10.1093/oxfordjournals. jbchem.a123191'},{id:"B203",body:'Liu C, Qi J, Shan B, Ma Y. Tachyplesin causes membrane instability that kills multidrug-resistant bacteria by inhibiting the 3-ketoacyl carrier protein reductase FabG. Frontiers in Microbiology. 2018;9:825. DOI: 10.3389/fmicb.2018.00825'},{id:"B204",body:'Rahbar MR, Zarei M, Jahangiri A, Khalili S, Nezafat N, Negahdaripour M, et al. Pierce into the native structure of Ata, a trimeric autotransporter of Acinetobacter baumannii ATCC 17978. Int. J. Pept. Res. Therapeut. 2020;26:1269-1282'},{id:"B205",body:'Jahangiri A, Rasooli I, Owlia P, Fooladi AAI, Salimian J. An integrative in silico approach to the structure of Omp33-36 in Acinetobacter baumannii. Computational Biology and Chemistry. 2018;72:77-86. DOI: 10.1016/j.compbiolchem.2018.01.003'},{id:"B206",body:'Rasooli I, Abdolhamidi R, Jahangiri A, Astaneh DAS. Outer membrane protein Oma87 prevents Acinetobacter baumannii infection. International Journal of Peptide Research and Therapeutics. 2020;9:1-8. DOI: 10.1007/s10989-020-10056-0'},{id:"B207",body:'Rahbar MR, Zarei M, Jahangiri A, Khalili S, Nezafat N, Negahdaripour M, et al. Trimeric autotransporter adhesins in Acinetobacter baumannii coincidental evolution at work. Infection, Genetics and Evolution. 2019;71:116-127. DOI: 10.1016/j. meegid.2019.03.023'},{id:"B208",body:'Nagarajan D, Nagarajan T, Roy N, Kulkarni O, Ravichandran S, Mishra M, et al. The Journal of Biological Chemistry. 2018;293(10):3492-3509. DOI: 10.1074/jbc.M117.805499'},{id:"B209",body:'Misawa T, Goto C, Shibata N, Hirano M, Kikuchi Y, Naito M, et al. Rational design of novel amphipathic antimicrobial peptides focused on the distribution of cationic amino acid residues. Med. Chem. Comm. 2019;10(6):896-900. DOI: 10.1039/c9md0 0166b'},{id:"B210",body:'Khan MTH. Recent Trends on QSAR in the Pharmaceutical Perceptions. Sharjah, United Arab Emirates: Bentham Science Publishers; 2012. ISBN: 978-1-60805-433-6'},{id:"B211",body:'Wu X, Wang Z, Li X, Fan Y, He G, Wan Y, et al. In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method. Antimicrobial Agents and Chemotherapy. 2014;58(9):5342-5349'},{id:"B212",body:'Ageitos JM, Sánchez-Pérez A, Calo-Mata P, Villa TG. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochemical Pharmacology. 2017;133:117. DOI: 10.1016/j.bcp.2016.09.018'},{id:"B213",body:'Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resistance Updates. 2016;26:43-57. DOI: 10.1016/j.drup. 2016.04.002'},{id:"B214",body:'Moravej H, Moravej Z, Yazdanparast M, Heiat M, Mirhosseini A, Moghaddam MM, et al. Antimicrobial peptides: Features action and their resistance mechanisms in bacteria. Microbial Drug Resistance. 2018;24(6):747. DOI: 10.1089/mdr.2017.0392'},{id:"B215",body:'Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 2016;371(1695):20150292. DOI: 10.1098/rstb. 2015.0292'},{id:"B216",body:'Omardien S, Brul S, Zaat SAJ. Antimicrobial activity of cationic antimicrobial peptides against gram-positive: Current progress made in understanding the mode of action and the response of bacteria. Front. Cell. Develop. Biol. 2016;4:111. DOI: 10.3389/fcell.2016.00111'},{id:"B217",body:'Jeannot K, Bolard A, Plésiat P. Resistance to polymyxins in gram-negative organisms. Int. J. Antimicr Ag. 2017;49(5):526-535. DOI: 10.1016/j.ijantimicag.2016. 11.029'},{id:"B218",body:'Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases. 2016;16(2):161-168. DOI: 10.1016/S1473-3099(15)00424-7'},{id:"B219",body:'Paterson DL, Harris PNA. Colistin resistance: A major breach in our last line of defense. The Lancet Infectious Diseases. 2016;16(2):132-133. DOI: 10.1016/S1473-3099(15)00463-6'},{id:"B220",body:'Macnair CR, Stokes JM, Carfrae LA, Fiebig-Comyn AA, Coombes BK, Mulvey MR, et al. Overcoming mcr-1 mediated colistin resistance with colistin in combination with other antibiotics. Nature Communications. 2018;9(1):458. DOI: 10.1038/s41467-018-02875-z'},{id:"B221",body:'Morita Y, Tomida J, Kawamura Y. MexXY multidrug efflux system of Pseudomonas aeruginosa. Frontiers in Microbiology. 2012;3:408. DOI: 10.3389/fmicb.2012.00408'},{id:"B222",body:'Bechinger B, Gorr SU. Antimicrobial peptides: Mechanisms of action and resistance. Journal of Dental Research. 2017;96(3):254-260. DOI: 10.1177/0022034516679973'},{id:"B223",body:'Gheorghe I, Saviuc C, Ciubuca B, Lazar V, Chifiriuc MC. Chapter 8—Nano drug delivery. In: Grumezescu AM, editor. Nanomaterials for Drug Delivery and Therapy. Norwich NY USA: William Andrew Publishing; 2019. pp. 225-244. ISBN: 978-0-12-816505-8'},{id:"B224",body:'Sun B, Wibowo D, Middelberg APJ, Zhao CX. Cost-effective downstream processing of recombinantly produced pexiganan peptide and its antimicrobial activity. AMB Express. 2018;8(1):1-14. DOI: 10.1186/s13568-018-0541-3'},{id:"B225",body:'Brannon JR, Burk DL, Leclerc JM, Thomassin JL, Portt A, Berghuis AM, et al. Inhibition of outer membrane proteases of the omptin family by aprotinin. Infection and Immunity. 2015;83(6):2300-2311. DOI: 10.1128/IAI.00136-15'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Karyne Rangel",address:null,affiliation:'
Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), FIOCRUZ, Brazil
'},{corresp:"yes",contributorFullName:"Salvatore Giovanni De-Simone",address:"dsimone@cdts.fiocruz.br",affiliation:'
Center for Technological Development in Health (CDTS)/National Institute of Science and Technology for Innovation in Neglected Diseases Populations (INCT-IDPN), FIOCRUZ, Brazil
Epidemiology and Molecular Systematics Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Brazil
Biology Institute, Molecular and Cellular Biology, Department, Federal Fluminense University, Brazil
'}],corrections:null},book:{id:"10874",type:"book",title:"Antimicrobial Peptides",subtitle:null,fullTitle:"Antimicrobial Peptides",slug:null,publishedDate:null,bookSignature:"Dr. Shymaa Enany, Dr. Jorge Adrian Masso-Silva and Ph.D. Anna Savitskaya",coverURL:"https://cdn.intechopen.com/books/images_new/10874.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-83969-714-2",printIsbn:"978-1-83969-713-5",pdfIsbn:"978-1-83969-715-9",isAvailableForWebshopOrdering:!0,editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"53145",title:"Prof.",name:"Ricardo",middleName:null,surname:"Ishak",email:"rishak@ufpa.br",fullName:"Ricardo Ishak",slug:"ricardo-ishak",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"22353",title:"Molecular Epidemiology of HIV-1 Infection in the Amazon Region",slug:"molecular-epidemiology-of-hiv-1-infection-in-the-amazon-region",abstract:null,signatures:"Antonio Carlos Rosário Vallinoto, Luiz Fernando Almeida Machado, Marluísa de Oliveira Guimarães Ishak and Ricardo Ishak",authors:[{id:"47350",title:"Dr.",name:"Antonio Carlos",surname:"Vallinoto",fullName:"Antonio Carlos Vallinoto",slug:"antonio-carlos-vallinoto",email:"vallinoto@ufpa.br"},{id:"53143",title:"Dr.",name:"Luiz Fernando",surname:"Machado",fullName:"Luiz Fernando Machado",slug:"luiz-fernando-machado",email:"lfam@ufpa.br"},{id:"53144",title:"Dr.",name:"null",surname:"Ishak",fullName:"null Ishak",slug:"null-ishak",email:"marluisa@ufpa.br"},{id:"53145",title:"Prof.",name:"Ricardo",surname:"Ishak",fullName:"Ricardo Ishak",slug:"ricardo-ishak",email:"rishak@ufpa.br"},{id:"137423",title:"Dr.",name:"Marluísa De Oliveira",surname:"Guimarães Ishak",fullName:"Marluísa De Oliveira Guimarães Ishak",slug:"marluisa-de-oliveira-guimaraes-ishak",email:"marlusa_de_oliveira_guimares_ishak@intechweb.com"}],book:{id:"278",title:"HIV and AIDS",slug:"hiv-and-aids-updates-on-biology-immunology-epidemiology-and-treatment-strategies",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"44594",title:"Dr.",name:"Edna",surname:"Reiche",slug:"edna-reiche",fullName:"Edna Reiche",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Londrina State University",institutionURL:null,country:{name:"Brazil"}}},{id:"52335",title:"Prof.",name:"Luciana",surname:"Costa",slug:"luciana-costa",fullName:"Luciana Costa",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"53302",title:"Dr.",name:"Andrea",surname:"Name Colado Simão",slug:"andrea-name-colado-simao",fullName:"Andrea Name Colado Simão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"53874",title:"Ms",name:"Thatiane",surname:"Sampaio",slug:"thatiane-sampaio",fullName:"Thatiane Sampaio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"53875",title:"MSc.",name:"Luiza",surname:"Mendonça",slug:"luiza-mendonca",fullName:"Luiza Mendonça",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"53887",title:"Dr.",name:"Nitin",surname:"Saksena",slug:"nitin-saksena",fullName:"Nitin Saksena",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"53890",title:"Prof.",name:"Dominic",surname:"Dwyer",slug:"dominic-dwyer",fullName:"Dominic Dwyer",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"53893",title:"Dr.",name:"Bin",surname:"Wang",slug:"bin-wang",fullName:"Bin Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"55989",title:"Dr.",name:"Leonor",surname:"Huerta",slug:"leonor-huerta",fullName:"Leonor Huerta",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",institutionURL:null,country:{name:"Mexico"}}},{id:"106494",title:"BSc.",name:"Cesar Noe",surname:"Cortes-Rubio",slug:"cesar-noe-cortes-rubio",fullName:"Cesar Noe Cortes-Rubio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"OA-publishing-fees",title:"Open Access Publishing Fees",intro:"
The Open Access model is applied to all of our publications and is designed to eliminate subscriptions and pay-per-view fees. This approach ensures free, immediate access to full text versions of your research.
As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 140,000 international scientists and researchers.
\\n\\n
The Open Access Publishing Fee (OAPF) is payable only after your book chapter, monograph or journal article is accepted for publication.
\\n\\n
OAPF Publishing Options
\\n\\n
\\n\\t
1,400 GBP Chapter - Edited Volume
\\n\\t
850 GBP Chapter - Book Series Topic (Annual Volume)
\\n\\t
10,000 GBP Monograph - Long Form
\\n\\t
4,000 GBP Compacts Monograph - Short Form
\\n\\t
850 GBP Journal Article (Across Portfolio)
\\n
\\n\\n
During the launching phase journals do not charge an APC, rather they will be funded by IntechOpen.
\\n\\n
*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\\n\\n
Services included are:
\\n\\n
\\n\\t
An online manuscript tracking system to facilitate your work
\\n\\t
Personal contact and support throughout the publishing process from your dedicated Author Service Manager
\\n\\t
Assurance that your manuscript meets the highest publishing standards
\\n\\t
English language copyediting and proofreading, including the correction of grammatical, spelling, and other common errors
\\n\\t
XML Typesetting and pagination - web (PDF, HTML) and print files preparation
\\n\\t
Discoverability - electronic citation and linking via DOI
\\n\\t
Permanent and unrestricted online access to your work
\\n
\\n\\n
What isn't covered by the Open Access Publishing Fee?
\\n\\n
If your manuscript:
\\n\\n
\\n\\t
Exceeds the number of pages defined by the publishing guidelines, an additional fee per page may be required
\\n\\t
If a manuscript requires Heavy Editing or Language Polishing, this will incur additional fees.
\\n
\\n\\n
Your Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\\n\\n
Open Access Funding
\\n\\n
To explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at funders@intechopen.com for further details or assistance.
\\n\\n
For Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\\n\\n
Added Value of Publishing with IntechOpen
\\n\\n
Choosing to publish with IntechOpen ensures the following benefits:
\\n\\n
\\n\\t
Indexing and listing across major repositories, see details ...
\\n\\t
Long-term archiving
\\n\\t
Visibility on the world's strongest OA platform
\\n\\t
Live Performance Metrics to track readership and the impact of your chapter
\\n\\t
Dissemination and Promotion
\\n
\\n\\n
Benefits of Publishing with IntechOpen
\\n\\n
\\n\\t
Proven world leader in Open Access book publishing with over 10 years experience
\\n\\t
+5,700 OA books published
\\n\\t
Most competitive prices in the market
\\n\\t
Fully compliant with OA funding requirements
\\n\\t
Optimized processes that assure your research is made available to the scientific community without delay
\\n\\t
Personal support during every step of the publication process
\\n\\t
+184,650 citations in Web of Science databases
\\n\\t
Currently strongest OA platform with over 175 million downloads
As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 140,000 international scientists and researchers.
\n\n
The Open Access Publishing Fee (OAPF) is payable only after your book chapter, monograph or journal article is accepted for publication.
\n\n
OAPF Publishing Options
\n\n
\n\t
1,400 GBP Chapter - Edited Volume
\n\t
850 GBP Chapter - Book Series Topic (Annual Volume)
\n\t
10,000 GBP Monograph - Long Form
\n\t
4,000 GBP Compacts Monograph - Short Form
\n\t
850 GBP Journal Article (Across Portfolio)
\n
\n\n
During the launching phase journals do not charge an APC, rather they will be funded by IntechOpen.
\n\n
*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\n\n
Services included are:
\n\n
\n\t
An online manuscript tracking system to facilitate your work
\n\t
Personal contact and support throughout the publishing process from your dedicated Author Service Manager
\n\t
Assurance that your manuscript meets the highest publishing standards
\n\t
English language copyediting and proofreading, including the correction of grammatical, spelling, and other common errors
\n\t
XML Typesetting and pagination - web (PDF, HTML) and print files preparation
\n\t
Discoverability - electronic citation and linking via DOI
\n\t
Permanent and unrestricted online access to your work
\n
\n\n
What isn't covered by the Open Access Publishing Fee?
\n\n
If your manuscript:
\n\n
\n\t
Exceeds the number of pages defined by the publishing guidelines, an additional fee per page may be required
\n\t
If a manuscript requires Heavy Editing or Language Polishing, this will incur additional fees.
\n
\n\n
Your Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\n\n
Open Access Funding
\n\n
To explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at funders@intechopen.com for further details or assistance.
\n\n
For Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\n\n
Added Value of Publishing with IntechOpen
\n\n
Choosing to publish with IntechOpen ensures the following benefits:
\n\n
\n\t
Indexing and listing across major repositories, see details ...
\n\t
Long-term archiving
\n\t
Visibility on the world's strongest OA platform
\n\t
Live Performance Metrics to track readership and the impact of your chapter
\n\t
Dissemination and Promotion
\n
\n\n
Benefits of Publishing with IntechOpen
\n\n
\n\t
Proven world leader in Open Access book publishing with over 10 years experience
\n\t
+5,700 OA books published
\n\t
Most competitive prices in the market
\n\t
Fully compliant with OA funding requirements
\n\t
Optimized processes that assure your research is made available to the scientific community without delay
\n\t
Personal support during every step of the publication process
\n\t
+184,650 citations in Web of Science databases
\n\t
Currently strongest OA platform with over 175 million downloads
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{"933869@":null},profiles:[],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndSecondStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Pandemics",subtitle:null,isOpenForSubmission:!0,hash:"bc9e4cab86c76f35cd70b39086d9b69e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality",subtitle:null,isOpenForSubmission:!0,hash:"20307129f7fb39aa443d5449acb6a784",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11546",title:"Smart and Sustainable Transportation",subtitle:null,isOpenForSubmission:!0,hash:"e8ea27a1ff85cde00efcb6f6968c20f8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11546.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11554",title:"Information Systems Management",subtitle:null,isOpenForSubmission:!0,hash:"3134452ff2fdec020663f241c7a9a748",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11554.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11588",title:"Autism",subtitle:null,isOpenForSubmission:!0,hash:"0c5043c6174db167599cb3f762e8bba8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11588.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11605",title:"Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"378d957561b27c86b750a9c7841a5d18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11605.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11612",title:"Landraces",subtitle:null,isOpenForSubmission:!0,hash:"06316c41a6f6317ad2bee244dc98c6a4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11612.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:769},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4383},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"208",title:"Material Science",slug:"nanotechnology-and-nanomaterials-material-science",parent:{id:"17",title:"Nanotechnology and Nanomaterials",slug:"nanotechnology-and-nanomaterials"},numberOfBooks:99,numberOfSeries:0,numberOfAuthorsAndEditors:2716,numberOfWosCitations:4236,numberOfCrossrefCitations:1964,numberOfDimensionsCitations:4604,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"208",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editedByType:"Edited by",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editedByType:"Edited by",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization and Applications",subtitle:null,isOpenForSubmission:!1,hash:"3478d05926950f475f4ad2825d340963",slug:"crystallization-and-applications",bookSignature:"Youssef Ben Smida and Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:"Edited by",editors:[{id:"311698",title:"Dr.",name:"Youssef",middleName:null,surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10644",title:"Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization",subtitle:null,isOpenForSubmission:!1,hash:"30a4c22b98d8dd2b18e5c33dade4b94b",slug:"recent-developments-in-atomic-force-microscopy-and-raman-spectroscopy-for-materials-characterization",bookSignature:"Chandra Shakher Pathak and Samir Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10644.jpg",editedByType:"Edited by",editors:[{id:"318029",title:"Dr.",name:"Chandra Shakher",middleName:null,surname:"Pathak",slug:"chandra-shakher-pathak",fullName:"Chandra Shakher Pathak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10386",title:"Ionic Liquids",subtitle:"Thermophysical Properties and Applications",isOpenForSubmission:!1,hash:"e995617af1c5e63353ae91bbdac4c894",slug:"ionic-liquids-thermophysical-properties-and-applications",bookSignature:"S. M. Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/10386.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10281",title:"Nanopores",subtitle:null,isOpenForSubmission:!1,hash:"73c465d2d70f8deca04b05d7ecae26c4",slug:"nanopores",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10281.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",middleName:null,surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10479",title:"21st Century Advanced Carbon Materials for Engineering Applications",subtitle:"A Comprehensive Handbook",isOpenForSubmission:!1,hash:"712d04d43dbe1dca7dec9fcc08bc8852",slug:"21st-century-advanced-carbon-materials-for-engineering-applications-a-comprehensive-handbook",bookSignature:"Mujtaba Ikram and Asghari Maqsood",coverURL:"https://cdn.intechopen.com/books/images_new/10479.jpg",editedByType:"Edited by",editors:[{id:"286820",title:"Dr.",name:"Mujtaba",middleName:null,surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9913",title:"Carbon Nanotubes",subtitle:"Redefining the World of Electronics",isOpenForSubmission:!1,hash:"43a22b8570e841b7a26d70159b2f755d",slug:"carbon-nanotubes-redefining-the-world-of-electronics",bookSignature:"Prasanta Kumar Ghosh, Kunal Datta and Arti Dinkarrao Rushi",coverURL:"https://cdn.intechopen.com/books/images_new/9913.jpg",editedByType:"Edited by",editors:[{id:"294687",title:"Dr.",name:"Prasanta",middleName:"Kumar",surname:"Ghosh",slug:"prasanta-ghosh",fullName:"Prasanta Ghosh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10411",title:"Materials at the Nanoscale",subtitle:null,isOpenForSubmission:!1,hash:"be29908600b7067c583ac21da1544a2d",slug:"materials-at-the-nanoscale",bookSignature:"Awadesh Kumar Mallik",coverURL:"https://cdn.intechopen.com/books/images_new/10411.jpg",editedByType:"Edited by",editors:[{id:"178218",title:"Dr.",name:"Awadesh",middleName:null,surname:"Mallik",slug:"awadesh-mallik",fullName:"Awadesh Mallik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10465",title:"Silver Micro-Nanoparticles",subtitle:"Properties, Synthesis, Characterization, and Applications",isOpenForSubmission:!1,hash:"dcc19a2b44c91940e16d82fd5eb8fffa",slug:"silver-micro-nanoparticles-properties-synthesis-characterization-and-applications",bookSignature:"Samir Kumar, Prabhat Kumar and Chandra Shakher Pathak",coverURL:"https://cdn.intechopen.com/books/images_new/10465.jpg",editedByType:"Edited by",editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10469",title:"Nanofibers",subtitle:"Synthesis, Properties and Applications",isOpenForSubmission:!1,hash:"28dc655dde01b94399cab954663f8bff",slug:"nanofibers-synthesis-properties-and-applications",bookSignature:"Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10469.jpg",editedByType:"Edited by",editors:[{id:"176093",title:"Dr.",name:"Brajesh",middleName:null,surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10505",title:"Colloids",subtitle:"Types, Preparation and Applications",isOpenForSubmission:!1,hash:"55025219ea1a8b915ec8aa4b9f497a8d",slug:"colloids-types-preparation-and-applications",bookSignature:"Mohamed Nageeb Rashed",coverURL:"https://cdn.intechopen.com/books/images_new/10505.jpg",editedByType:"Edited by",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:99,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"50566",doi:"10.5772/63234",title:"Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst",slug:"influences-of-doping-on-photocatalytic-properties-of-tio2-photocatalyst",totalDownloads:5395,totalCrossrefCites:23,totalDimensionsCites:75,abstract:"As a kind of highly effective, low‐cost, and stable photocatalysts, TiO2 has received substantial public and scientific attention. However, it can only be activated under ultraviolet light irradiation due to its wide bandgap, high recombination, and weak separation efficiency of carriers. Doping is an effective method to extend the light absorption to the visible light region. In this chapter, we will address the importance of doping, different doping modes, preparation method, and photocatalytic mechanism in TiO2 photocatalysts. Thereafter, we will concentrate on Ti3+ self‐doping, nonmetal doping, metal doping, and codoping. Examples of progress can be given for each one of these four doping modes. The influencing factors of preparation method and doping modes on photocatalytic performance (spectrum response, carrier transport, interfacial electron transfer reaction, surface active sites, etc.) are summed up. The main objective is to study the photocatalytic processes, to elucidate the mechanistic models for a better understanding the photocatalytic reactions, and to find a method of enhancing photocatalytic activities.",book:{id:"5139",slug:"semiconductor-photocatalysis-materials-mechanisms-and-applications",title:"Semiconductor Photocatalysis",fullTitle:"Semiconductor Photocatalysis - Materials, Mechanisms and Applications"},signatures:"Fei Huang, Aihua Yan and Hui Zhao",authors:[{id:"178389",title:"Dr.",name:"Fei",middleName:null,surname:"Huang",slug:"fei-huang",fullName:"Fei Huang"},{id:"185126",title:"Dr.",name:"Aihua",middleName:null,surname:"Yan",slug:"aihua-yan",fullName:"Aihua Yan"},{id:"185127",title:"Ms.",name:"Hui",middleName:null,surname:"Zhao",slug:"hui-zhao",fullName:"Hui Zhao"}]},{id:"17184",doi:"10.5772/17039",title:"Polymer Nanocomposites: From Synthesis to Applications",slug:"polymer-nanocomposites-from-synthesis-to-applications",totalDownloads:17294,totalCrossrefCites:31,totalDimensionsCites:68,abstract:null,book:{id:"1045",slug:"nanocomposites-and-polymers-with-analytical-methods",title:"Nanocomposites and Polymers with Analytical Methods",fullTitle:"Nanocomposites and Polymers with Analytical Methods"},signatures:"S. Anandhan and S. Bandyopadhyay",authors:[{id:"27050",title:"Prof.",name:"Sri",middleName:null,surname:"Bandyopadhyay",slug:"sri-bandyopadhyay",fullName:"Sri Bandyopadhyay"},{id:"44992",title:"Prof.",name:"Anandhan",middleName:null,surname:"Srinivasan",slug:"anandhan-srinivasan",fullName:"Anandhan Srinivasan"}]},{id:"9725",doi:"10.5772/8508",title:"Biosynthesis and Application of Silver and Gold Nanoparticles",slug:"biosynthesis-and-application-of-silver-and-gold-nanoparticles",totalDownloads:27930,totalCrossrefCites:23,totalDimensionsCites:58,abstract:null,book:{id:"3621",slug:"silver-nanoparticles",title:"Silver Nanoparticles",fullTitle:"Silver Nanoparticles"},signatures:"Zygmunt Sadowski",authors:null},{id:"17194",doi:"10.5772/21694",title:"Properties of Nanofillers in Polymer",slug:"properties-of-nanofillers-in-polymer",totalDownloads:20390,totalCrossrefCites:9,totalDimensionsCites:56,abstract:null,book:{id:"1045",slug:"nanocomposites-and-polymers-with-analytical-methods",title:"Nanocomposites and Polymers with Analytical Methods",fullTitle:"Nanocomposites and Polymers with Analytical Methods"},signatures:"Damien M. Marquis, Éric Guillaume and Carine Chivas-Joly",authors:[{id:"44307",title:"Dr",name:"Damien",middleName:"Michel",surname:"Marquis",slug:"damien-marquis",fullName:"Damien Marquis"},{id:"44317",title:"Prof.",name:"Carine",middleName:null,surname:"Chivas-Joly",slug:"carine-chivas-joly",fullName:"Carine Chivas-Joly"}]},{id:"52860",doi:"10.5772/65937",title:"Cerium Oxide Nanostructures and their Applications",slug:"cerium-oxide-nanostructures-and-their-applications",totalDownloads:5377,totalCrossrefCites:24,totalDimensionsCites:58,abstract:"Due to excellent physical and chemical properties, cerium oxide (ceria, CeO2) has attracted much attention in recent years. This chapter aimed at providing some basic and fundamental properties of ceria, the importance of oxygen vacancies in this material, nano‐size effects and various synthesis strategies to form diverse structural morphologies. Finally, some key applications of ceria‐based nanostructures are reviewed. We conclude this chapter by expressing personal perspective on the probable challenges and developments of the controllable synthesis of CeO2 nanomaterials for various applications.",book:{id:"5510",slug:"functionalized-nanomaterials",title:"Functionalized Nanomaterials",fullTitle:"Functionalized Nanomaterials"},signatures:"Adnan Younis, Dewei Chu and Sean Li",authors:[{id:"191574",title:"Dr.",name:"Adnan",middleName:null,surname:"Younis",slug:"adnan-younis",fullName:"Adnan Younis"}]}],mostDownloadedChaptersLast30Days:[{id:"71103",title:"Preparation of Nanoparticles",slug:"preparation-of-nanoparticles",totalDownloads:3140,totalCrossrefCites:11,totalDimensionsCites:25,abstract:"Innovative developments of science and engineering have progressed very fast toward the synthesis of nanomaterials to achieve unique properties that are not the same as the properties of the bulk materials. The particle reveals interesting properties at the dimension below 100 nm, mostly from two physical effects. The two physical effects are the quantization of electronic states apparent leading to very sensitive size-dependent effects such as optical and magnetic properties and the high surface-to-volume ratio modifies the thermal, mechanical, and chemical properties of materials. The nanoparticles’ unique physical and chemical properties render them most appropriate for a number of specialist applications.",book:{id:"9109",slug:"engineered-nanomaterials-health-and-safety",title:"Engineered Nanomaterials",fullTitle:"Engineered Nanomaterials - Health and Safety"},signatures:"Takalani Cele",authors:[{id:"305934",title:"Dr.",name:"Takalani",middleName:null,surname:"Cele",slug:"takalani-cele",fullName:"Takalani Cele"}]},{id:"72636",title:"Nanocomposite Materials",slug:"nanocomposite-materials",totalDownloads:2139,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Nanocomposites are the heterogeneous/hybrid materials that are produced by the mixtures of polymers with inorganic solids (clays to oxides) at the nanometric scale. Their structures are found to be more complicated than that of microcomposites. They are highly influenced by the structure, composition, interfacial interactions, and components of individual property. Most popularly, nanocomposites are prepared by the process within in situ growth and polymerization of biopolymer and inorganic matrix. With the rapid estimated demand of these striking potentially advanced materials, make them very much useful in various industries ranging from small scale to large to very large manufacturing units. With a great deal to mankind with environmental friendly, these offer advanced technologies in addition to the enhanced business opportunities to several industrial sectors like automobile, construction, electronics and electrical, food packaging, and technology transfer.",book:{id:"10072",slug:"nanotechnology-and-the-environment",title:"Nanotechnology and the Environment",fullTitle:"Nanotechnology and the Environment"},signatures:"Mousumi Sen",authors:[{id:"310218",title:"Dr.",name:"Mousumi",middleName:null,surname:"Sen",slug:"mousumi-sen",fullName:"Mousumi Sen"}]},{id:"38951",title:"Carbon Nanotube Transparent Electrode",slug:"carbon-nanotube-transparent-electrode",totalDownloads:3985,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"3077",slug:"syntheses-and-applications-of-carbon-nanotubes-and-their-composites",title:"Syntheses and Applications of Carbon Nanotubes and Their Composites",fullTitle:"Syntheses and Applications of Carbon Nanotubes and Their Composites"},signatures:"Jing Sun and Ranran Wang",authors:[{id:"153508",title:"Prof.",name:"Jing",middleName:null,surname:"Sun",slug:"jing-sun",fullName:"Jing Sun"},{id:"153596",title:"Ms.",name:"Ranran",middleName:null,surname:"Wang",slug:"ranran-wang",fullName:"Ranran Wang"}]},{id:"49413",title:"Electrodeposition of Nanostructure Materials",slug:"electrodeposition-of-nanostructure-materials",totalDownloads:3732,totalCrossrefCites:1,totalDimensionsCites:7,abstract:"We are conducting a multi-disciplinary research work that involves development of nanostructured thin films of semiconductors for different applications. Nanotechnology is widely considered to constitute the basis of the next technological revolution, following on from the first Industrial Revolution, which began around 1750 with the introduction of the steam engine and steelmaking. Nanotechnology is defined as the design, characterization, production, and application of materials, devices and systems by controlling shape and size of the nanoscale. The nanoscale itself is at present considered to cover the range from 1 to 100 nm. All samples prepared in thin film forms and the characterization revealed their nanostructure. The major exploitation of thin films has been in microelectronics, there are numerous and growing applications in communications, optical electronics, coatings of all kinds, and in energy generation. A great many sophisticated analytical instruments and techniques, largely developed to characterize thin films, have already become indispensable in virtually every scientific endeavor irrespective of discipline. Among all these techniques, electrodeposition is the most suitable technique for nanostructured thin films from aqueous solution served as samples under investigation. The electrodeposition of metallic layers from aqueous solution is based on the discharge of metal ions present in the electrolyte at a cathodic surface (the substrate or component.) The metal ions accept an electron from the electrically conducting material at the solid- electrolyte interface and then deposit as metal atoms onto the surface. The electrons necessary for this to occur are either supplied from an externally applied potential source or are surrendered by a reducing agent present in solution (electroless reduction). The metal ions themselves derive either from metal salts added to solution, or by the anodic dissolution of the so-called sacrificial anodes, made of the same metal that is to be deposited at the cathode.",book:{id:"4718",slug:"electroplating-of-nanostructures",title:"Electroplating of Nanostructures",fullTitle:"Electroplating of Nanostructures"},signatures:"Souad A. M. Al-Bat’hi",authors:[{id:"174793",title:"Dr.",name:"Mohamad",middleName:null,surname:"Souad",slug:"mohamad-souad",fullName:"Mohamad Souad"}]},{id:"71346",title:"Application of Nanomaterials in Environmental Improvement",slug:"application-of-nanomaterials-in-environmental-improvement",totalDownloads:1691,totalCrossrefCites:0,totalDimensionsCites:13,abstract:"In recent years, researchers used many scientific studies to improve modern technologies in the field of reducing the phenomenon of pollution resulting from them. In this chapter, methods to prepare nanomaterials are described, and the main properties such as mechanical, electrical, and optical properties and their relations are determined. The investigation of nanomaterials needed high technologies that depend on a range of nanomaterials from 1 to 100 nm; these are scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffractions (XRD). The applications of nanomaterials in environmental improvement are different from one another depending on the type of devices used, for example, solar cells for producing clean energy, nanotechnologies in coatings for building exterior surfaces, and sonochemical decolorization of dyes by the effect of nanocomposite.",book:{id:"10072",slug:"nanotechnology-and-the-environment",title:"Nanotechnology and the Environment",fullTitle:"Nanotechnology and the Environment"},signatures:"Ali Salman Ali",authors:[{id:"313275",title:"Associate Prof.",name:"Ali",middleName:null,surname:"Salman",slug:"ali-salman",fullName:"Ali Salman"}]}],onlineFirstChaptersFilter:{topicId:"208",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81438",title:"Research Progress of Ionic Thermoelectric Materials for Energy Harvesting",slug:"research-progress-of-ionic-thermoelectric-materials-for-energy-harvesting",totalDownloads:24,totalDimensionsCites:0,doi:"10.5772/intechopen.101771",abstract:"Thermoelectric material is a kind of functional material that can mutually convert heat energy and electric energy. It can convert low-grade heat energy (less than 130°C) into electric energy. Compared with traditional electronic thermoelectric materials, ionic thermoelectric materials have higher performance. The Seebeck coefficient can generate 2–3 orders of magnitude higher ionic thermoelectric potential than electronic thermoelectric materials, so it has good application prospects in small thermoelectric generators and solar power generation. According to the thermoelectric conversion mechanism, ionic thermoelectric materials can be divided into ionic thermoelectric materials based on the Soret effect and thermocouple effect. They are widely used in pyrogen batteries and ionic thermoelectric capacitors. The latest two types of ionic thermoelectric materials are in this article. The research progress is explained, and the problems and challenges of ionic thermoelectric materials and the future development direction are also put forward.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Jianwei Zhang, Ying Xiao, Bowei Lei, Gengyuan Liang and Wenshu Zhao"},{id:"77670",title:"Thermoelectric Elements with Negative Temperature Factor of Resistance",slug:"thermoelectric-elements-with-negative-temperature-factor-of-resistance",totalDownloads:72,totalDimensionsCites:0,doi:"10.5772/intechopen.98860",abstract:"The method of manufacturing of ceramic materials on the basis of ferrites of nickel and cobalt by synthesis and sintering in controllable regenerative atmosphere is presented. As the generator of regenerative atmosphere the method of conversion of carbonic gas is offered. Calculation of regenerative atmosphere for simultaneous sintering of ceramic ferrites of nickel and cobalt is carried out. It is offered, methods of the dilated nonequilibrium thermodynamics to view process of distribution of a charge and heat along a thermoelement branch. The model of a thermoelement taking into account various relaxation times of a charge and warmth is constructed.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Yuri Bokhan"},{id:"79236",title:"Processing Techniques with Heating Conditions for Multiferroic Systems of BiFeO3, BaTiO3, PbTiO3, CaTiO3 Thin Films",slug:"processing-techniques-with-heating-conditions-for-multiferroic-systems-of-bifeo3-batio3-pbtio3-catio",totalDownloads:96,totalDimensionsCites:0,doi:"10.5772/intechopen.101122",abstract:"In this chapter, we have report a list of synthesis methods (including both synthesis steps & heating conditions) used for thin film fabrication of perovskite ABO3 (BiFeO3, BaTiO3, PbTiO3 and CaTiO3) based multiferroics (in both single-phase and composite materials). The processing of high quality multiferroic thin film have some features like epitaxial strain, physical phenomenon at atomic-level, interfacial coupling parameters to enhance device performance. Since these multiferroic thin films have ME properties such as electrical (dielectric, magnetoelectric coefficient & MC) and magnetic (ferromagnetic, magnetic susceptibility etc.) are heat sensitive, i.e. ME response at low as well as higher temperature might to enhance the device performance respect with long range ordering. The magnetoelectric coupling between ferromagnetism and ferroelectricity in multiferroic becomes suitable in the application of spintronics, memory and logic devices, and microelectronic memory or piezoelectric devices. In comparison with bulk multiferroic, the fabrication of multiferroic thin film with different structural geometries on substrate has reducible clamping effect. A brief procedure for multiferroic thin film fabrication in terms of their thermal conditions (temperature for film processing and annealing for crystallization) are described. Each synthesis methods have its own characteristic phenomenon in terms of film thickness, defects formation, crack free film, density, chip size, easier steps and availability etc. been described. A brief study towards phase structure and ME coupling for each multiferroic system of BiFeO3, BaTiO3, PbTiO3 and CaTiO3 is shown.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Kuldeep Chand Verma and Manpreet Singh"},{id:"78034",title:"Quantum Physical Interpretation of Thermoelectric Properties of Ruthenate Pyrochlores",slug:"quantum-physical-interpretation-of-thermoelectric-properties-of-ruthenate-pyrochlores",totalDownloads:78,totalDimensionsCites:0,doi:"10.5772/intechopen.99260",abstract:"Lead- and lead-yttrium ruthenate pyrochlores were synthesized and investigated for Seebeck coefficients, electrical- and thermal conductivity. Compounds A2B2O6.5+z with 0 ≤ z < 0.5 were defect pyrochlores and p-type conductors. The thermoelectric data were analyzed using quantum physical models to identify scattering mechanisms underlying electrical (σ) and thermal conductivity (κ) and to understand the temperature dependence of the Seebeck effect (S). In the metal-like lead ruthenates with different Pb:Ru ratios, σ (T) and the electronic thermal conductivity κe (T) were governed by ‘electron impurity scattering’, the lattice thermal conductivity κL (T) by the 3-phonon resistive process (Umklapp scattering). In the lead-yttrium ruthenate solid solutions (Pb(2-x)YxRu2O(6.5±z)), a metal–insulator transition occurred at 0.2 moles of yttrium. On the metallic side (<0.2 moles Y) ‘electron impurity scattering’ prevailed. On the semiconductor/insulator side between x = 0.2 and x = 1.0 several mechanisms were equally likely. At x > 1.5 the Mott Variable Range Hopping mechanism was active. S (T) was discussed for Pb-Y-Ru pyrochlores in terms of the effect of minority carrier excitation at lower- and a broadening of the Fermi distribution at higher temperatures. The figures of merit of all of these pyrochlores were still small (≤7.3 × 10−3).",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Sepideh Akhbarifar"},{id:"77635",title:"Optimization of Thermoelectric Properties Based on Rashba Spin Splitting",slug:"optimization-of-thermoelectric-properties-based-on-rashba-spin-splitting",totalDownloads:124,totalDimensionsCites:0,doi:"10.5772/intechopen.98788",abstract:"In recent years, the application of thermoelectricity has become more and more widespread. Thermoelectric materials provide a simple and environmentally friendly solution for the direct conversion of heat to electricity. The development of higher performance thermoelectric materials and their performance optimization have become more important. Generally, to improve the ZT value, electrical conductivity, Seebeck coefficient and thermal conductivity must be globally optimized as a whole object. However, due to the strong coupling among ZT parameters in many cases, it is very challenging to break the bottleneck of ZT optimization currently. Beyond the traditional optimization methods (such as inducing defects, varying temperature), the Rashba effect is expected to effectively increase the S2σ and decrease the κ, thus enhancing thermoelectric performance, which provides a new strategy to develop new-generation thermoelectric materials. Although the Rashba effect has great potential in enhancing thermoelectric performance, the underlying mechanism of Rashba-type thermoelectric materials needs further research. In addition, how to introduce Rashba spin splitting into current thermoelectric materials is also of great significance to the optimization of thermoelectricity.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Zhenzhen Qin"},{id:"75364",title:"Challenges in Improving Performance of Oxide Thermoelectrics Using Defect Engineering",slug:"challenges-in-improving-performance-of-oxide-thermoelectrics-using-defect-engineering",totalDownloads:214,totalDimensionsCites:0,doi:"10.5772/intechopen.96278",abstract:"Oxide thermoelectric materials are considered promising for high-temperature thermoelectric applications in terms of low cost, temperature stability, reversible reaction, and so on. Oxide materials have been intensively studied to suppress the defects and electronic charge carriers for many electronic device applications, but the studies with a high concentration of defects are limited. It desires to improve thermoelectric performance by enhancing its charge transport and lowering its lattice thermal conductivity. For this purpose, here, we modified the stoichiometry of cation and anion vacancies in two different systems to regulate the carrier concentration and explored their thermoelectric properties. Both cation and anion vacancies act as a donor of charge carriers and act as phonon scattering centers, decoupling the electrical conductivity and thermal conductivity.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Jamil Ur Rahman, Gul Rahman and Soonil Lee"}],onlineFirstChaptersTotal:6},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:9,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",slug:"attilio-rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Cath