Factor levels in the experimental design.
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5517",leadTitle:null,fullTitle:"Hemorrhagic Stroke - An Update",title:"Hemorrhagic Stroke",subtitle:"An Update",reviewType:"peer-reviewed",abstract:"The present book Hemorrhagic Stroke - An Update includes the updated information for professionals who are involved in the management of spontaneous intracerebral hemorrhage. This book contains detailed information about the pathophysiology of spontaneous intracerebral hemorrhage, neuroimaging approach in intracerebral hemorrhage, how to go about surgical intervention decision-making in these patients, and the rehabilitation issues in acute care and in long-term survivors. I hope that the collective contribution from the experts will make this book a valuable guide to further develop their understanding about spontaneous intracerebral hemorrhage. I am grateful to all the authors who have contributed their tremendous expertise to the present book and to my wife and daughter for their passionate support, and last but not least, I wish to acknowledge the outstanding support of Ms. Romina Skomersic, Publishing Process Manager, InTech Open Science, Croatia, who collaborated tirelessly in crafting this book.",isbn:"978-953-51-3522-7",printIsbn:"978-953-51-3521-0",pdfIsbn:"978-953-51-4629-2",doi:"10.5772/63253",price:100,priceEur:109,priceUsd:129,slug:"hemorrhagic-stroke-an-update",numberOfPages:80,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"33690ae286c58afffac09491a13b3a29",bookSignature:"Amit Agrawal",publishedDate:"October 4th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5517.jpg",numberOfDownloads:7743,numberOfWosCitations:1,numberOfCrossrefCitations:2,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:2,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:5,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 10th 2016",dateEndSecondStepPublish:"May 31st 2016",dateEndThirdStepPublish:"November 30th 2016",dateEndFourthStepPublish:"January 3rd 2017",dateEndFifthStepPublish:"March 15th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"100142",title:"Prof.",name:"Amit",middleName:null,surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal",profilePictureURL:"https://mts.intechopen.com/storage/users/100142/images/system/100142.jfif",biography:"Dr. Agrawal completed his neurosurgery training at the National Institute of Mental Health and Neurosciences, Bangalore, India, in 2003. He is a self-motivated, enthusiastic, and results-oriented professional with more than eighteen years of experience in research and development, as well as teaching and mentoring in the field of neurosurgery. He is proficient in managing and leading teams for running successful process operations and has experience in developing procedures and service standards of excellence. He has attended and participated in many international and national symposiums and conferences and delivered lectures on vivid topics. Dr. Agrawal has published more than 750 scientific articles in various national and international journals. His expertise is in identifying training needs, designing training modules, and executing the same while working with limited resources. He has excellent communication, presentation, and interpersonal skills with proven abilities in teaching and training various academic and professional courses. Presently, he is working at the All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India.",institutionString:"All India Institute of Medical Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"8",institution:{name:"All India Institute of Medical Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1029",title:"Hemorheology",slug:"hemorheology"}],chapters:[{id:"56215",title:"Introductory Chapter: An Introduction to Hypertension-Related Intracerebral Hematomas",doi:"10.5772/intechopen.70048",slug:"introductory-chapter-an-introduction-to-hypertension-related-intracerebral-hematomas",totalDownloads:1158,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Ravi Dadlani and Amit Agrawal",downloadPdfUrl:"/chapter/pdf-download/56215",previewPdfUrl:"/chapter/pdf-preview/56215",authors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],corrections:null},{id:"53545",title:"Intracerebral Hematoma",doi:"10.5772/66867",slug:"intracerebral-hematoma",totalDownloads:1423,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Intracerebral hematoma occurs in about 35/100,000 population and the incidence is likely increase over the next few decades as the population ages. The most common causes are hypertension and amyloid angiopathy. Bleeds due to these two causes are classified as primary while all other causes, such as AVM bleeds, coagulopathies, and so on, are classified as secondary. Primary tissue damage due to the intracerebral hematoma is followed by edema, neuronal damage, and secondary damage due to cellular breakdown. Basal ganglia are the most common site of intracerebral hemorrhage, accounting for nearly 50% of cases. CT scan, CT angiogram, DSA, and MRI are the investigations of choice. The initial management is medical, with control of blood pressure and antiedema measures forming the mainstay of treatment. Surgical option includes external ventricular drainage, endoscopic evacuation of hematoma, craniotomy and evacuation of hematoma, and decompressive craniectomy and is usually reserved for patients who deteriorate while on treatment.",signatures:"Shankar Ayyappan Kutty",downloadPdfUrl:"/chapter/pdf-download/53545",previewPdfUrl:"/chapter/pdf-preview/53545",authors:[{id:"191385",title:"Dr.",name:"Shankar",surname:"Ayyappan Kutty",slug:"shankar-ayyappan-kutty",fullName:"Shankar Ayyappan Kutty"}],corrections:null},{id:"54419",title:"Surgical Management of Intracerebral Hemorrhage",doi:"10.5772/67633",slug:"surgical-management-of-intracerebral-hemorrhage",totalDownloads:1814,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Intracerebral hemorrhage (ICH), defined as bleeding within the brain parenchyma, remains a challenging and controversial neurosurgical entity to treat. ICH has a broad range of etiology—stemming from complications associated with traumatic head injury to complications of hemorrhagic stroke. The role of medical management lies in optimizing blood pressure and intracerebral pressure, preventing secondary injury from complications of the hematoma such as seizures, and correcting coagulopathy. Given the mass effect of a hematoma and the possibility of expansion, surgical interventions attempt to evacuate the clot to restore normal intracerebral pressure and prevent worsening neurologic injury. This chapter reviews the recent controversy associated with surgical evacuation of intracerebral hemorrhage placing particular emphasis on the size and location of the hemorrhage and the methods used to evacuate the expanding ICH. Moreover, this chapter reviews considerations and therapeutic goals of the preoperative and postoperative window to minimize complications and optimize patient care.",signatures:"Arvin R. Wali, Kevin Porras, Peter Abraham, Michael G. Brandel,\nDavid Santiago Dieppa, Jeffrey Steinberg, Scott Pannell and\nAlexander A. Khalessi",downloadPdfUrl:"/chapter/pdf-download/54419",previewPdfUrl:"/chapter/pdf-preview/54419",authors:[{id:"181029",title:"Dr.",name:"J. Scott",surname:"Pannell",slug:"j.-scott-pannell",fullName:"J. Scott Pannell"},{id:"181030",title:"Dr.",name:"Alexander",surname:"Khalessi",slug:"alexander-khalessi",fullName:"Alexander Khalessi"},{id:"187843",title:"Mr.",name:"Arvin",surname:"Wali",slug:"arvin-wali",fullName:"Arvin Wali"},{id:"204578",title:"Mr.",name:"Kevin",surname:"Porras",slug:"kevin-porras",fullName:"Kevin Porras"},{id:"204579",title:"Mr.",name:"Peter",surname:"Abraham",slug:"peter-abraham",fullName:"Peter Abraham"},{id:"204580",title:"Mr.",name:"Michael",surname:"Brandel",slug:"michael-brandel",fullName:"Michael Brandel"},{id:"204581",title:"Dr.",name:"David",surname:"Santiago-Dieppa",slug:"david-santiago-dieppa",fullName:"David Santiago-Dieppa"},{id:"204582",title:"Dr.",name:"Jeffrey",surname:"Steinberg",slug:"jeffrey-steinberg",fullName:"Jeffrey Steinberg"}],corrections:null},{id:"54001",title:"Neuroimaging in Intracerebral Hemorrhage",doi:"10.5772/67303",slug:"neuroimaging-in-intracerebral-hemorrhage",totalDownloads:1905,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Hemorrhagic stroke accounts for 15% of all strokes but results in nearly a third of the mortality. Neuroimaging forms the mainstay in diagnosis, which has resulted in improved treatment outcomes. The mandate of neuroimaging includes management, risk assessment, prognostication, and research. This involves rapid identification not only to direct treatment but also to discover the underlying etiology such as vascular malformations or tumors, monitor the evolving course of the hemorrhage and rapidly identify complications. While computed tomography (CT) remains the imaging of choice to rapidly detect acute hemorrhage, growing evidence shows that magnetic resonance imaging (MRI) is comparable to CT for detecting blood in the immediate setting and superior in this regard at subacute and chronic time points. Several advances have been made in the image sequencing protocols to detect bleeds at varying time points and to distinguish possible etiology. Initial and serial imaging is used to identify patients who may benefit from intervention. Advances in this field such as diffusion tensor imaging and functional MRI are being studied for their impact in understanding the extent of injury and possible recovery mechanisms, possibly allowing prognostication for patients.",signatures:"Shazia Mirza and Sankalp Gokhale",downloadPdfUrl:"/chapter/pdf-download/54001",previewPdfUrl:"/chapter/pdf-preview/54001",authors:[{id:"189064",title:"M.D.",name:"Sankalp",surname:"Gokhale",slug:"sankalp-gokhale",fullName:"Sankalp Gokhale"},{id:"189066",title:"Dr.",name:"Shazia",surname:"Mirza",slug:"shazia-mirza",fullName:"Shazia Mirza"}],corrections:null},{id:"56777",title:"Intracerebral Hemorrhage: Issues in Rehabilitation",doi:"10.5772/intechopen.70586",slug:"intracerebral-hemorrhage-issues-in-rehabilitation",totalDownloads:1443,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"While the advancements in the management of the spontaneous intracerebral hemorrhage (SICH) have resulted an increase in survival, this has also resulted in the number of survivors with significant functional morbidity that require long-term care and rehabilitation services. SICH can lead to various impairments, and the deficits related to SICH may include impairment in motor and sensory functions, emotional labiality, language dysfunctions, perception deficits and cognitive dysfunctions. In the present chapter, we present an overview of the issues in rehabilitation which are faced by medical personnel’s while managing the patients with SICH.",signatures:"Ravi Dadlani and Amit Agrawal",downloadPdfUrl:"/chapter/pdf-download/56777",previewPdfUrl:"/chapter/pdf-preview/56777",authors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"},{id:"214554",title:"Dr.",name:"Ravi",surname:"Dadlani",slug:"ravi-dadlani",fullName:"Ravi Dadlani"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"563",title:"Brain Injury",subtitle:"Pathogenesis, Monitoring, Recovery and Management",isOpenForSubmission:!1,hash:"6e40d2cf6eebee2041b76a70987f4258",slug:"brain-injury-pathogenesis-monitoring-recovery-and-management",bookSignature:"Amit Agrawal",coverURL:"https://cdn.intechopen.com/books/images_new/563.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2034",title:"Brain Injury",subtitle:"Functional Aspects, Rehabilitation and Prevention",isOpenForSubmission:!1,hash:"97fb870ccfe237f3270c3ae1b7a7dacd",slug:"brain-injury-functional-aspects-rehabilitation-and-prevention",bookSignature:"Amit Agrawal",coverURL:"https://cdn.intechopen.com/books/images_new/2034.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5261",title:"Neurooncology",subtitle:"Newer Developments",isOpenForSubmission:!1,hash:"ae1dcb26219bb62290c5a171c87d6936",slug:"neurooncology-newer-developments",bookSignature:"Amit Agrawal",coverURL:"https://cdn.intechopen.com/books/images_new/5261.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6503",title:"Brain Tumors",subtitle:"An Update",isOpenForSubmission:!1,hash:"055b45888e92391890d4992da9e8a4c3",slug:"brain-tumors-an-update",bookSignature:"Amit Agrawal, Luis Rafael Moscote-Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/6503.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10705",title:"Healthcare Access",subtitle:null,isOpenForSubmission:!1,hash:"e8e9561a91e5f7771932aa5d49c3b687",slug:"healthcare-access",bookSignature:"Amit Agrawal and Srinivas Kosgi",coverURL:"https://cdn.intechopen.com/books/images_new/10705.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2607",title:"Blood Cell",subtitle:"An Overview of Studies in Hematology",isOpenForSubmission:!1,hash:"7c47fe55b6adb4aaadb74f8e977e46e5",slug:"blood-cell-an-overview-of-studies-in-hematology",bookSignature:"Terry E. Moschandreou",coverURL:"https://cdn.intechopen.com/books/images_new/2607.jpg",editedByType:"Edited by",editors:[{id:"146196",title:"Dr.",name:"Terry E.",surname:"Moschandreou",slug:"terry-e.-moschandreou",fullName:"Terry E. Moschandreou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3836",title:"Fibrinolysis and Thrombolysis",subtitle:null,isOpenForSubmission:!1,hash:"85a8a3555ffe9c09b7131f5aea5e21ea",slug:"fibrinolysis-and-thrombolysis",bookSignature:"Krasimir Kolev",coverURL:"https://cdn.intechopen.com/books/images_new/3836.jpg",editedByType:"Edited by",editors:[{id:"19421",title:"Dr.",name:"Krasimir1",surname:"Kolev",slug:"krasimir1-kolev",fullName:"Krasimir1 Kolev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1150",title:"Iron Metabolism",subtitle:null,isOpenForSubmission:!1,hash:"438ac8e80077fd9285ca365a11a773ce",slug:"iron-metabolism",bookSignature:"Sarika Arora",coverURL:"https://cdn.intechopen.com/books/images_new/1150.jpg",editedByType:"Edited by",editors:[{id:"107238",title:"Dr.",name:"Sarika",surname:"Arora",slug:"sarika-arora",fullName:"Sarika Arora"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5834",title:"Role of Neutrophils in Disease Pathogenesis",subtitle:null,isOpenForSubmission:!1,hash:"a626ce289341f74b7e3bba3bbcfb2aea",slug:"role-of-neutrophils-in-disease-pathogenesis",bookSignature:"Maitham Abbas Khajah",coverURL:"https://cdn.intechopen.com/books/images_new/5834.jpg",editedByType:"Edited by",editors:[{id:"173123",title:"Dr.",name:"Maitham",surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4463",title:"The Non-Thrombotic Role of Platelets in Health and Disease",subtitle:null,isOpenForSubmission:!1,hash:"edb4b5dc59bbc5b361f367d33ff13ba6",slug:"the-non-thrombotic-role-of-platelets-in-health-and-disease",bookSignature:"Steve Kerrigan and Niamh Moran",coverURL:"https://cdn.intechopen.com/books/images_new/4463.jpg",editedByType:"Edited by",editors:[{id:"73961",title:"Dr.",name:"Steve W.",surname:"Kerrigan",slug:"steve-w.-kerrigan",fullName:"Steve W. Kerrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"73639",slug:"corrigendum-to-single-photon-emission-computed-tomography-spect-radiopharmaceuticals",title:"Corrigendum to: Single-Photon Emission Computed Tomography (SPECT) Radiopharmaceuticals",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/73639.pdf",downloadPdfUrl:"/chapter/pdf-download/73639",previewPdfUrl:"/chapter/pdf-preview/73639",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/73639",risUrl:"/chapter/ris/73639",chapter:{id:"73033",slug:"single-photon-emission-computed-tomography-spect-radiopharmaceuticals",signatures:"Syed Ali Raza Naqvi and Muhammad Babar Imran",dateSubmitted:"May 13th 2019",dateReviewed:"July 22nd 2020",datePrePublished:"August 21st 2020",datePublished:"January 7th 2021",book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",fullName:"Syed Ali Raza Naqvi",slug:"syed-ali-raza-naqvi",email:"drarnaqvi@gmail.com",position:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"302793",title:"Dr.",name:"Muhammad Babar",middleName:null,surname:"Imran",fullName:"Muhammad Babar Imran",slug:"muhammad-babar-imran",email:"muhammadbabarimran@yahoo.com",position:null,institution:null}]}},chapter:{id:"73033",slug:"single-photon-emission-computed-tomography-spect-radiopharmaceuticals",signatures:"Syed Ali Raza Naqvi and Muhammad Babar Imran",dateSubmitted:"May 13th 2019",dateReviewed:"July 22nd 2020",datePrePublished:"August 21st 2020",datePublished:"January 7th 2021",book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",fullName:"Syed Ali Raza Naqvi",slug:"syed-ali-raza-naqvi",email:"drarnaqvi@gmail.com",position:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"302793",title:"Dr.",name:"Muhammad Babar",middleName:null,surname:"Imran",fullName:"Muhammad Babar Imran",slug:"muhammad-babar-imran",email:"muhammadbabarimran@yahoo.com",position:null,institution:null}]},book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11503",leadTitle:null,title:"Functional Calculus - Recent Advances and Development",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tFunctional calculus is a widely explored area of applied research. Various tools from applied functional calculus and functional analysis have been derived to study various natural and engineering phenomena. This book aims to address the new developments in the theory, covering topics such as application of new developments to the problem of applied nature, development in the theory of functional analysis, and its application to understanding the behavior of solutions of advanced variants of boundary value problems, existing results of solution of ODE’s and PDE’s, approach of upper and lower solution methods and topological degree theory, investigation in the theory of fundamental numerical analysis, various variants of numerical methods and developments, recent development and advances in the theory of dynamical systems, as well as the discrete systems.
",isbn:"978-1-80356-333-6",printIsbn:"978-1-80356-332-9",pdfIsbn:"978-1-80356-334-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"ea3923dea83de1bec4d3fc5e43173856",bookSignature:"Dr. Hammad Khalil",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11503.jpg",keywords:"Functional Calculus, Mathematical Investigation, Numerical Investigation, Non-linear Dynamics, Existence Theory, Spectral Method, Bifurcation Analysis, Topology Degree, Discrete Method, Chaos Theory, Equilibrium State, Semi-analytic Theory",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 17th 2022",dateEndSecondStepPublish:"April 22nd 2022",dateEndThirdStepPublish:"June 21st 2022",dateEndFourthStepPublish:"September 9th 2022",dateEndFifthStepPublish:"November 8th 2022",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Hammad Khalil published more than 60 articles in various reputed journals. His areas of research include numerical analysis, fractional calculus, image processing, and chaos theory.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"411171",title:"Dr.",name:"Hammad",middleName:null,surname:"Khalil",slug:"hammad-khalil",fullName:"Hammad Khalil",profilePictureURL:"https://mts.intechopen.com/storage/users/411171/images/system/411171.jpg",biography:"Dr. Hammad Khalil completed his PhD in 2016 from the University of Malakand, lower Dir Chakdara. Throughout his PhD studies, he studied fractional calculus and introduced interesting results in this field. After getting his PhD, he joined the University of Poonch, Rawalakot, and supervised several MPhil scholars there on different applied topics. He published more than 60 articles in various reputed journals. His areas of research include numerical analysis, fractional calculus, image processing, and chaos theory. He is currently an assistant professor at the University of Education, Lahore.",institutionString:"University of Education, Lahore",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347258",firstName:"Marica",lastName:"Novakovic",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"marica@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"59225",title:"Heavy Metal Pollution as a Biodiversity Threat",doi:"10.5772/intechopen.74052",slug:"heavy-metal-pollution-as-a-biodiversity-threat",body:'Heavy metals can be emitted into the environment by natural sources and anthropogenic activities, being the anthropogenic activities the main causes of emission. Among these, mining operations represent the greatest threat to ecosystem integrity due to the persistence of heavy metals in the environment, which persist for hundreds of years after the cessation of mining operations [1]. In environmental exposures, these toxicants exert their effects trough different mechanisms, being chronic exposures at low doses of complex metal mixtures the responsible for the effects observed in wild animal populations and communities, with implications at the ecosystem level [2]. Therefore, this type of exposure represents a threat to biodiversity.
Exposed individuals integrate exposure to contaminants in their environment and respond in some measurable and predictable way, being these responses observed across different levels of biological organization [3]. Hence, to better understand the ecological consequences of metal exposure, the use of biological markers or biomarkers is necessary. Biomarkers are tools that enable the analysis of the extent of exposure and the effects of environmental chemical contamination [4]. These measures offer valuable predictors of ecologically relevant effects. However, in ecotoxicology, where exposed populations, communities and the consequences at the ecosystem level are the point of interest, the use of biomarkers is not an easy task, since the responses to toxic chemical stress become less specific and many variables interfere with physiological responses. In this context, Bickham and coworkers explain that although the damage from xenobiotic exposure is at the cellular or genetic levels, effects can be observed at higher levels of biological organization (emergent effects) [5]. It is important to take into consideration that the biomarker response must be tightly and regularly connected to responses at these higher levels, particularly if the biomarkers are to be used as effect indicators [6]. Also, biomarkers of exposure (external dose, internal dose; bioaccumulation levels), biomarkers of biological effective dose (DNA adducts) and biomarkers of effect (DNA breaks) must be used to analyze the relationship between the cellular and genetic effects with ecological responses.
At the population level, some considerations must be taken into account when analyzing the emergent effects. Some of these effects are: Shifts in sex proportions, age structure alterations, low reproductive success, inbreeding, genetic structure and diversity alterations, low fitness and population declines [7]. However, these effects are not specific to environmental metal exposures. Hence, differences in biomarker response among populations of a species may be taken carefully by analyzing geographical influences, habitat influence, population vulnerability (specific to the population in question) and exposure history [6]. In the last decade, one of the emergent effects that has been evaluated in environmentally exposed populations are shifts in their genetic pool, which were defined by Mussali-Galante and collaborators as permanent biomarkers [2].
At the community level: Shifts in diversity and species richness, changes in dominant species, changes in species composition and biodiversity loss may be some of the emergent effects. However, due to the complexity of species interactions, such effects cannot be accurately predicted from effects at the population level, as was recognized many years ago [8, 9, 10].
Studies assessing community level responses to environmental metal stress are mostly conducted in aquatic ecosystems using invertebrate and fish communities. Among the few studies conducted in terrestrial ecosystems, insect communities are the point of interest [11, 12]. In these type of studies bioaccumulation levels are analyzed in different invertebrate groups and the relationship between bioaccumulation levels and community effects (mainly species richness and composition) is examined.
At the ecosystem level, biomagnification (bioaccumulation within successive trophic levels) has been well documented for some metals. Trophic chain effects have been observed where individuals that feed lower on the food chain generally are exposed to lower metal concentrations. In these type of studies, the primary producers (plants) represent an important step in metal transfer since they constitute the foundation of the food chain. Hence, certain metals can be transported from plants to higher strata of the food chain, representing a threat to biodiversity and to ecosystem integrity [13].
Heavy metal (HM) exposure affect the health and survival of the individuals, resulting in negative impacts in the subsequent levels of biological organization, like populations and communities. The first step in ecotoxicological studies is to determine HM concentrations in soil and in the organism in question and then, to analyze the effects at the population level using emergent properties like male/female ratio, age class, reproductive success, inbreeding, genetic diversity and fitness. At the community level, species richness and diversity, dominant species, and species composition [7] are some of the characteristics that have been analyzed. In general, the Shannon-Wiener diversity index is one of the most used parameters in ecotoxicological studies. For a better understanding of the effects of HM on terrestrial ecosystems, the study of the functioning of detritivore soil communities [14, 15, 16] has been incorporated, where parameters such as biomass, soil organic matter content, microbial respiration, microbial biomass carbon, and the phosphatase activity have been analyzed.
Heavy metals may enter the trophic chain trough primary producers and invertebrates that live in soils [17]. Invertebrate are widely used in ecotoxicological studies due to their easy capture, wide distribution, high abundance, their key ecological roles such as soil decomposers, constitute the first step in trophic chains, low mobility, and are in close contact with soils [18, 19, 20]. For example, Gramigni et al. detected a relationship between HM (Zn, Ni, Mn, Cd and Pb) in soils and their bioaccumulation in ants
In invertebrate communities HM bioaccumulation has been observed in target organs. For example: Wilczek and Babczyńska found that spiders (
Some of the most invertebrate Phyla used in ecotoxicological studies are Arthropoda and Annelida [18]. Bioaccumulation patterns depend on the species or taxonomic group in question (Class, Order, Family, Genera). For example, Wilczek and Babczyńska studied different spider species (
It has been documented that HM bioaccumulation in organisms may modify their body size. For example: Jones and Hopkin studied woodlice populations (
In ecotoxicology, gradient studies are necessary. They offer the visualization of gradual changes in HM soil concentrations in polluted sites and their relationship with population distribution and abundance and with some community structure parameters. Spurgeon and Hopkin found a negative correlation between the distance from the pollution source and HM concentrations (Pb, Cd, Zn and Cu) [24]. Also, a negative correlation was registered between HM concentration and the absolute abundance of six earthworm species (Phyllum Annelida:
Also, there are studies that have shown that HM exposure does not affect some taxonomic groups. For example, Zaitsev and van Straalen studied the mite community (Phyllum Arthropoda) from contaminated soils (Pb, Zn, Cu, Fe, Cd) [19]. They evidenced that although a metal contamination gradient was found in the soils, this gradient was not detected in bioaccumulation of HM in mites, and no effects were found in the community structure. Likewise, Migliorini et al. did not find differences between the abundance of some arthropod groups (Collembola, Protura and Diplura), in contaminated sites by Pb and Sb, while other groups were absent (Symplyla) [20]. Hence, HM exposure affects differently the community structure of different invertebrate groups. Through the study of the functioning of detritivore soil communities [14, 15, 16] some parameters like biomass, soil organic matter content, microbial respiration, microbial biomass carbon, and the phosphatase activity are analyzed as biomarkers for HM effects at the community level. Hobbelen and colleagues studied millipedes, isopods, and earthworms in contaminated zones (Zn, Cu, Cd), where no correlation was found between community structure (richness and density) and soil metal content [14]. On the contrary, Zn concentration correlated positively with biomass of the earthworm
The aforementioned studies evidenced that community structure and function of terrestrial invertebrates, facilitates the evaluation of HM impact on the first trophic chain levels, as well as their incorporation and biomagnification patterns. Therefore, studies assessing HM bioaccumulation in other trophic levels like terrestrial vertebrates complete the knowledge of the effects of HM in the ecosystem health.
In wild vertebrates, information regarding HM bioaccumulation and their effects on target organs is vast. Some examples of wild vertebrate species used in ecotoxicological studies are: Brown bears (
In general, studies on HM bioaccumulation on wild life, have detected an effect of the study species and the target organ on bioaccumulation patterns. For example, Bilandžić and collaborators analyzed HM bioaccumulation on wild carnivores, the authors report that the highest Cd concentration was present in kidney and liver of the Eurasian badger (
In contrast, other studies have detected histological changes in exposed individuals to HM. Damek-Poprawa and Sawicka-Kapusta found that yellow-necked mouse individuals that live in a polluted site, bioaccumulate more Pb and Cd that unexposed individuals [28]. In particular, individuals bioaccumulate Pb in their femur and Cd in kidneys. Also, histopathological studies showed that exposed individuals presented multiple organ alterations in liver, kidneys and testicles. Similar results were found for wood mice and the greater white-toothed living in landfill zones [31].
Studies assessing the effects of HM bioaccumulation on population and community parameters are scarce, a fact that may be attributed to sampling technique, which is influenced by the size and mobility of the individuals and trapping success (e.g. site perturbance, water availability, predator activity, migration index, etc.), among others. Therefore, in order to infer the population health status, some studies have considered the gender, age, (age class), reproductive condition, litter size (number of embryos, placental scars; embryos/scars per female) embryos weight, trap success, and condition index. In this regard, Santolo documented that male and female individuals of the deer mice exposed to Se from a contaminated site, had a lower condition Index than those from the reference site [37]. In addition, the ratio of males to females age class and reproductive condition were similar between individuals from both sites. Except from individuals from the polluted site that their reproductive condition was lower. This last result suggest that Se exposure affects negatively rodent populations, among other factors.
In addition, in terrestrial vertebrate communities, changes or alterations in community parameters may be due to the competitive selection of the most tolerant species. Moreover, some species may be opportunistic and HM residues may serve a protection mechanism against their predators [38].
Other parameters used as population level biomarkers are: residual index “RI” (linear regression between body weight and body length without tail) and kidney size proportion. RI is used as “energy reserve” measure. Individuals with positive RI values are considered as better fitted individuals, and the increase in kidney relative weight suggest the presence of a stressor [38].
Although HM exposure has immediate effects at the molecular and cellular levels, they may extend to higher levels of biological organization, like the genetic structure and diversity of the exposed populations [3]. Chronic exposures at low doses is one of the factor implicated in changes in the genetic pool of the populations, especially if chemical agents are capable of inducing DNA damage, such as HM. In general, there are four mechanisms by which HM exert their effects on the genetic diversity of exposed populations: (1) Some HM are genotoxic, mutagenic and alter DNA repair processes, increasing the mutational load of the individuals; (2) HM exposure favors the presence of tolerant genotypes and the elimination of intolerant ones, changing the genetic composition of the exposed population; (3) HM may cause bottlenecks and (4) alter migration patterns, increasing or decreasing genetic flow between populations [39, 40, 41].
Exposed population to HM pollution may have two types of response on genetic diversity levels: (a) increase in genetic diversity levels as a consequence of induced mutations by genotoxins or (b) decrease in genetic diversity levels as a result of bottlenecks [7]. In both cases, these responses are the consequence of the adaptation of the population to polluted environments [3, 41, 42, 43, 44].
In general, studies where 11 mammal species were analyzed for the effects of HM exposure (being Cd, Zn, Cu and Pb the most common) on genetic diversity, the pattern found was that 45.4% of the analyzed species displayed a decrease in genetic diversity levels in comparison to non-exposed populations. Some examples are:
Changes in genetic diversity levels as a consequence of metal pollution may serve as a biomarker of permanent effects. Mussali-Galante et al. defined permanent biomarkers as changes in genetic structure and diversity due to metal pollution that cannot be the same as they were before the exposure [2].
Finally, polluted environments may be considered as unique systems because their different origin, pollution type and degree are specific for each site. Additionally, edaphic characteristics, weather and vegetation type differ between sites. Hence, it is expected that there will be differences among exposed sites that may or may not alter populations and communities; therefore, the use of bioindicator o sentinel species becomes important. Species that represent biological diversity in terms of feeding preferences, life cycles, trophic chain position, etc. are the point of interest. This last initiative permits to identify susceptible species to environmental stressors such as HM. Basu et al. suggested that sentinel species should have: wide geographical distribution, high abundance, capacity to bioaccumulate HM, easy capture and sampling, low mobility and well known biology [52]. In terrestrial environments, small mammals are commonly used because of their similar physiological systems to humans.
Ecosystems are open thermodynamic systems of matter and energy effluxes, which maintain stable from the balance of their biotic and abiotic components [53]. Ecosystem stability may be altered because of the incorporation of HM, derived from mining activities [54]. HM incorporation in the ecosystem depends mainly on their bioavailability and thereafter, through their incorporation into the trophic chain, reaching their highest concentrations in the last levels of the chain, a process known as “biomagnification” [55, 56]. Under this situation, ecosystems may be or may not be affected by HM, depending on the magnitude and exposure time, or if one of the functions that maintain the ecosystem integrity is compromised (e.g. nutrient cycles, energy efflux) due to biodiversity loss [57].
Many ecotoxicological studies that assess HM effects on terrestrial ecosystems have focused on the analysis of HM concentrations in soils, their bioavailability and bioaccumulation, but few have analyzed their biomagnification trough the trophic chain and their effects on ecosystem integrity [54].
The first step of HM incorporation into the ecosystems is because their bioavailability potential and soil mobility, where metallic cations adhere to negative charged particles like clay and organic matter, when metals separate from these soil particles, they enter the soluble soil fraction, being bioavailable and having the potential to bioaccumulate in different organisms [56]. Microorganisms, plants and invertebrate species have mechanisms to incorporate trace metals for their development and survival (e.g. Cu, Ni, Fe, Co, Mn and Mg), however, these can be toxic in higher concentrations. Also, these same mechanisms facilitate the entrance of non-trace metals (As, Cd, Hg and Pb) in the organisms, which are highly toxic at low concentrations [58].
Microorganism are vital elements of soils, they participate in nutrient and inorganic element recycling, like minerals and trace metals, for plants that constitute the first trophic level in terrestrial ecosystems [59]. However, HM pollution may affect microorganism communities, generating changes in their structure and biodiversity, which in turn, has consequences on the soil processes in which they participate [60, 61]. For example, development alterations and in biochemical processes of microorganism have been reported [61, 62, 63]. Such alterations affect organic matter decomposition process, reducing nutrient accumulation and availability for plants and compromising matter and energy fluxes at the base of the trophic chains [61]. On the other hand, soil invertebrates can bioaccumulate HM because of their feeding preferences, like crustaceans, snails, and earthworms that inhabit leaf litter and feed on organic matter with high HM concentrations [64, 65]. In fact, it has been proven that these invertebrate groups had the highest HM concentrations in comparison to beetles or butterflies, or even higher concentrations than some vertebrate groups [18, 64].
In particular, it has been suggested that HM hyperaccumulation by plants as a defense mechanism against herbivores, may transcend to higher trophic levels. For example, the plant
HM transfer along the trophic chains varies depending on the type of metal, the trophic level in question and the number and type of species that integrate it. For example, [18] report that Cd, Cu, Pb and Zn concentrations among invertebrate groups registered the next pattern: Isopoda > Lumbricidae > Coleoptera which is attributed to their different feeding patterns [57]. Another interesting example is that Cd is more mobile towards herbivores and their predators, while Zn is less efficient in its transfer to higher trophic levels [67, 68].
HM transfer along the trophic chain has been reported, for example for the Ni hyperaccumulator plant
Additionally, HM bioaccumulation in plants may also affect interactions with their pollinators, since HM can transfer to nectar, a fact that alters pollinators feeding patterns, suggesting that metals and metalloids such as Se found in pollen and nectar affect negatively the pollinators, which results in changes in plant communities due to the nonappearance of pollinators on such plants [74, 75, 76, 77].
Most of the studies about metal transfer along trophic chains in terrestrial ecosystems focus on at least three trophic chains levels. In contrast, a study by Hsu and collaborators in more than three trophic levels, they report high levels of Cd, Hg, Pb and Sn and their biomagnification in all analyzed levels, being the snails and the earthworms the groups who registered the highest metal concentrations [64].
All the aforementioned studies have evaluated HM transfer in small trophic chains in terrestrial ecosystems, the majority of them analyze three trophic levels. These studies are of great importance because the information generated helps to understand the general patterns of HM transfer along trophic chains, especially for the most common metals like Cd, Cu, Pb and Zn. Also, these studies highlight that HM transfer, assimilation and excretion in organisms along the trophic chain, can have extended effects, at the individual level (altering their health and physiology) at the population level (modifying population dynamics, abundance, distribution and their genetic pool) at the community level (altering species richness and diversity), affecting then, the ecosystem dynamics. Therefore, is very important to conduct studies where more than three trophic chain levels are analyzed and to integrate new biomarkers (e.g. stable isotope techniques; which enable to follow HM transfer along trophic chains by knowing the extent of the pollutant flux in the chain [78]).
Chronic environmental metal exposures exert their negative effects on individuals health, having consequences at the population and community levels, putting ecosystem integrity at risk. However, the recognition and use of biomarkers in ecotoxicology has been a difficult task, due to the unspecific responses and multiple variables that affect physiological responses to toxic stress. Therefore, it becomes necessary that ecotoxicological studies include: HM concentrations in soils, bioaccumulation parameters in vertebrate and invertebrate species, the relationship between these biomarkers with morphological, anatomic and physiological alterations that may alter population parameters. In particular, the use of bioindicator or sentinel species is necessary in order to evidence the consequences of HM exposure in wild populations.
Terrestrial invertebrates have been used as an ideal system to evaluate community responses to environmental chemical stress, due their easy capture, wide distribution, great abundance, low mobility and close contact to HM from soils. Especially, earthworms and arthropods are the most studied organisms. On the contrary, the studies that evaluate HM effects on vertebrate community structure are scarce, probably due to their body size, mobility and sampling difficulties. However, when working with vertebrates, an excellent alternative has been the study of small mammal species that serve as good bioindicators and the results may be easily compared to humans. Also, a methodological strategy in many studies has been the use of pollution gradients in order to visualize slight changes in HM concentrations along the soil gradient and to relate these changes to some community structure parameters. At the moment, we can conclude that HM affect differently the community structure and the community functioning of the different animal groups studied so far.
At the community level, the search for new biomarkers continues. In this context, abundance changes in different guilds that conform the community may also be used as a biomarker since changes in abundance or guild disappearance in exposed communities may serve as an ecological response to chemical stress.
At the ecosystem level, ecotoxicological studies are very limited. Trophic chain alterations, biomagnification and modifications in nutrient and energy cycles have been reported. Studies generally asses HM transfer along three trophic levels, such studies have concluded that metal flux depends on the biology of the species, on the trophic position in the chain and on the metal type or metal mixture in question. Mainly, HM transfer from plants to invertebrate herbivores (insects) and from insects to other invertebrates (spiders) or predator vertebrates (small mammals) has been the point of interest. The information from these studies has gained attention, especially because human beings represent the last level of the trophic chain, such as in the case of agroecosystems. It is desirable to use as biomarkers in ecosystem studies, measures of stable carbon and nitrogen isotopes for evaluation of HM transfer along terrestrial trophic chains.
Finally, it necessary that future efforts integrate different biological and ecological responses across all levels of biological organization as a result of biomarker approaches. Moreover, study designs should be more rigorous, including multispecies and multibiomarkers that permit the evaluation of HM exposure in a more realistic way, which in turn will allow to predict, understand and resolve in a better way HM pollution problems worldwide.
We thank the Consejo Nacional de Ciencia y Tecnología (CONACyT) for the scholarships to IHP and to MSM.
The authors declare that there is no conflict of interest.
Abrasive cutting is widely used in industry due to its high production rate (machining is performed at a speed of 100–200 mm2/s) and low labor costs. It is characterized by high temperatures (above 1000°C) in the cutting zone, intensive wear and deterioration of the abrasive tool cutting ability, spark generation, increased emissions of environmentally harmful gases, high noise level, risk of accidents, changes in the microstructure of surface materials and occurrence of thermal flaws [1, 2, 3, 4, 5, 6, 7]. Those disadvantages are related to the high cutting speed (above 50 m/s), constant changes in cutting conditions within a cut-off cycle, and unfavorable geometry of abrasive grains (negative rake angles).
Almost all mechanical work (over 97%) converts into thermal energy and only a small part of it transforms into hidden energy to change the crystal lattice of the material being machined [8, 9].
As a result of the conversion of the mechanical energy used in the cutting process into thermal energy, various heat sources emerge and the process of generating that heat depends on cutting conditions.
As far as every physical phenomenon has two sides—quantitative and qualitative, then, as a rule, the control of the energy transfer in a specific physical phenomenon involves the measurement of two quantities. When controlling heat exchange processes, the two quantities to be measured are temperature and thermal flux. Measuring the thermal parameters of thermal non-stationary processes, in particular, a rapidly changing thermal flux remains relevant today. Among the techniques for measuring unstable thermal fluxes, those using infrared cameras are preferred [10, 11, 12]. Infrared thermography provides remote and wireless real-time measurements of temperature fields of high-speed moving objects. However, to obtain accurate measurements, all emerging noises and interferences need to be compensated or minimized, which is а kind of a “payoff” for the universality of the thermographic thermal control.
By changing the abrasive cutting conditions, which directly define the thickness of the layer of material being cut, and, as a result, the temperatures of the tool, chip, workpiece, and cut piece, the thermal fluxes are controlled and conditions for increasing the tool life, the intensity of the cutting process and the quality of the machined surfaces are provided. Therefore, to improve the effectiveness and applicability of abrasive cutting, it is necessary to study and model the parameters of the process and to optimize the conditions for its implementation. This allows us to apply thermographic monitoring for preventive detection of unexpected changes in the parameters of the elastic abrasive cutting process and for ensuring a high-quality process.
To study the thermal phenomena in elastic abrasive cutting, an innovative approach has been used. It involves a wireless thermal control provided by infrared thermography and the application of the methodology of planned experiments and multi-objective optimization. An original thermographic procedure for increasing the precision of the thermal control during abrasive cutting is offered.
The manufacture of workpieces by cutting is implemented on various machines and installations (automatic lathes, band cutting machines, mechanical hacksaws, band saws circular saws, abrasive cut-off machines, presses, electric spark, and electrochemical installations) depending on the dimensions, profile, type and physico-mechanical properties of the input material and the admissible deviation from nominal dimensions. When comparing cutting methods by technological criteria, the most important criteria are cutting intensity (production rate), tool life, and material loss in the form of chips related to the cut width. Choosing an optimal variant for workpiece cutting is a technical and economic task, which has a considerable impact on the cost of the machine-building production.
Abrasive cutting is a universal method that is applied to manufacturing workpieces of metal and non-metal materials of different hardness by means of high-speed reinforced abrasive (cut-off) wheels of a diameter
Reinforced cut-off wheels whose grain size is in compliance with ISO 8486—grain numbers from 24 (coarse) to 60 (fine); medium-hard (
Abrasive cutting is a complex and varied process performed under different kinematic schema (Figure 1) where the cut-off wheel performs the main rotary motion (at a rotational frequency
Schemas of abrasive cutting.
The oscillatory motion facilitates the cutting process and helps to reduce the cost of the abrasive wheels. However, some shocks occur at both ends of the oscillatory motion, which leads to overloading the cut-off wheel, occurrence of vibrations, and an increase in wear. The implementation of such a motion makes the machine complex and costly. Those disadvantages are avoided when using the schema including a rotary motion of the workpiece (Figure 1c). If we compare abrasive cutting schemas, it can be seen that when performing a cut-off cycle (cutting one workpiece), the cut-off wheel working stroke upon cutting a rotating workpiece (Figure 1c) is approximately twice as short as that for the schemas in Figure 1a and b. It results in reducing the cut-off time and the friction forces between the lateral surfaces of the cut-off wheel and workpiece thus, on one hand, decreasing the temperature in the cutting zone and cut-off wheel wear and, on the other hand, increasing process production rate. When cutting a rotating workpiece, the lower cut-off wheel wear and the higher production rate is also due to the shorter length
The cut-off wheel can be fed into the workpiece at a constant speed of radial feed (
The kinematic schemas of rigid abrasive cutting are similar to those in external cylindrical grinding, where dependencies for defining the tool-workpiece contact area, contact arc length, and thickness of layer being cut, pointed in [14, 18, 19, 20], are required. The principal disadvantage of this method is the change in the power and heat loads of the cut-off wheel within one cut-off cycle, which is related to the change in the instantaneous cross-sectional area of the layer is cut. This results from the fact that with the cut-off wheel feed from the periphery to the center of the workpiece being cut the contact arc length between the cut-off wheel and the piece changes as the instantaneous thickness of the layer being cut
Within one cycle of elastic abrasive cutting, the length of the contact arc
The increase of the compression force
The increase in the workpiece rotational frequency
As the cut-off wheel diameter
The analysis has been carried out shows that elastic abrasive cutting is a sophisticated multi-parameter and multi-factor subject of study, modeling, and optimization [24]. It is characterized by a number of target parameters—economic (productivity and cost), dynamic (cutting forces and power) and technological (cut-off wheel wear and tool life, cutting temperature, noise, roughness and precision of machined surfaces, physico-mechanical properties of the surface layer—structure, microhardness, surface residual stresses, flaws, etc.). Each of the above parameters has a specific meaning in relation to abrasive cutting yet is insufficient for its optimum control.
The parameters of elastic abrasive cutting are determined by numerous control factors—physico-mechanical properties of the materials being machined, methods and components of the cutting mode, cut-off wheel type and characteristics, type and way of supplying cooling fluids, etc.
In the course of abrasive cutting, a number of interrelated, yet of a different type, nature, and intensity, phenomena occur and various materials, cut-off wheels, and cutting modes are used. Each abrasive cutting process is unique and could be studied from different perspectives: technological, energetic, informational, organizational, etc. When it is investigated, new experimental data and models are obtained, which differ from those of the preceding processes. Therefore, its investigation, modeling, analyzing, control, and optimization are always specific.
The mechanical work done in cutting involves deformation (elastic and plastic) of the material being machined, action of friction forces on the face and flank of cutting abrasive grains, and formation of new surfaces (dispersion). The amount of heat generated in cutting per unit of time, expressed by the work done in cutting and the mechanical equivalent of heat (
where:
Intensive thermal fluxes flow through the tool, chip, and material being machined in high-speed abrasive cutting. The large amount of heat generated in the course of abrasive cutting is transferred to the workpiece (
A wide range of changes in the thermal flux components depending on the selected schema for process implementation (rigid or elastic abrasive cutting), the characteristic of the cut-off wheel, the physico-mechanical properties of the material being machined and the cutting mode has been established.
Actually, the whole action of the friction forces in the contact zone below the neutral line
Schema of chip formation in abrasive cutting.
During the initial contact between the abrasive grain and the workpiece, taking into account the comma-shaped cross-section of the layer being cut when
When the values of the layer being cut are
The part of heat transferred to the workpiece is reduced when increasing the cutting speed because of the change in the ratio between the cutting speed and the heat dissipation rate in the deformation zone [14, 17, 19]. The dissipation rate of generated heat depends on the gradient of the temperatures along the shear surface and the heat conductivity of the material being machined. When the cutting speed, i.e. the speed at which the abrasive grain crosses the thermal flux, is low, the heat from the shear surface is transferred unobstructed to the workpiece. As the cutting speed increases, the cutting abrasive grain crosses the thermal flux faster and faster. As a result, a smaller amount of heat is transferred to the workpiece and a larger amount of heat remains in the chip:
where
Since a large part of heat (almost all the heat generated by plastic deformation and part of the heat generated by friction) is generated in the chip, the largest part of process heat remains there. Heat in the abrasive grain occurs externally as a result of friction and heat transfer from the hot chip to the colder abrasive grain, from plastic deformation, from the shear of the material under the neutral line, as well as from friction along the grain flank. As a consequence of conduction, the heat generated on the surface AB (Figure 2) is transferred to the abrasive grain and workpiece. The better the heat transfer from the surfaces being heated, the lower the temperature of those surfaces, i.e. the properties of heat conductivity and heat resistance influence the performance of cut-off wheels and the quality of machined surfaces.
The temperature of the cut-off wheel work surfaces (above 100°C) depends on the thermal flux density
The cutting process in abrasive cutting is accompanied by melting of chips and plenty of sparking, which result from a large amount of heat generated in the cutting zone by friction forces, deformation of the material being machined, and reaction during burning. During burning every material has a specific point at which it ignites. When reaching the ignition temperature under the influence of oxygen, the physically and chemically clean surfaces of the steel workpieces being machined are oxidized to form iron oxide and slag. During oxidation, a considerable amount of heat is released, which provides additional heating of the very small volumes of metal of the chips removed by the abrasive grains up to the melting temperature. The presence of carbon in the material being machined increases burning and the temperature in the cutting zone, which is the reason for the different colors of the formed sparks in abrasive machining. Under the influence of the high speed of the abrasive cut-off wheel grains, the slag and iron oxide been formed are removed as glowing sparks [17]. The oxidation of the chip and the material being machined is useful since the oxide crust is fragile and facilitates chip removal. In accordance with the foregoing, the melting of the chip can be viewed as a positive factor because after melting the chip decreases its dimensions, which contributes to its easier removal by the cut-off wheel and to avoiding the filling of the tool pores with chips.
The burning of materials in abrasive cutting does not allow us to directly measure the temperature of the removed chip since it ignites when it forms or immediately after that. The brightness and type of sparks formed during abrasive machining (a product of burning) are defined solely by the content of the chemical elements in the material being machined. The density and length of the spark flow depend on the components of the cutting mode.
The increase of the heat entering the cut-off wheel intensifies tool wear and decreases tool reliability and cutting intensity as a result of a decrease in the relative pressure of the abrasive grains on the surface being machined (because of the softening of the cut-off wheel bond). Heating up the workpiece in the cutting zone leads to changes in the microstructure of the surface material and the occurrence of thermal flaws. Structural changes in the cross-section of the cut, which require further machining, also occur as a result of smearing and chipping parts of the cut-off wheel, as well as of friction between its lateral surfaces and workpiece face [6, 7]. All the above mentioned demonstrates the decisive role of temperature in abrasive cutting regarding cut-off wheel performance and quality of machined surfaces. It also shows that the heat released in the course of abrasive cutting is an important informative factor for optimizing the operating conditions in abrasive cutting and enhancing the effectiveness of the process and the quality of machined surfaces. Therefore, it needs to be studied, modeled, and optimized. The investigation and measurement of temperature distribution in abrasive cutting play a key role in machine building.
A great number of studies [4, 7, 15, 21, 22, 28] show that by controlling the thermal fluxes in the cutting zone, possibilities for improving the cut-off thermal mode are provided thus ensuring longer tool life, higher intensity of the cutting process and higher quality of machined surfaces. This could be achieved not only by changing abrasive cutting conditions (cutting schema and parameters of cutting mode), which directly determine the thickness of the layer being cut, and respectively the temperatures of the tool, chip, workpiece, and cut piece, but also by choosing the cut-off wheel characteristic.
Depending on the specific nature of cutting processes, various methods for investigating temperature are applied [27]:
Analytical and numerical methods (heat source method; finite difference method; finite element method)—They are based on the heat balance equation and the differential equation of heat conduction [27]:
where:
Experimental methods—They are used to measure the average and local temperatures, determine the zone of temperature distribution, and to visualize the temperature field. According to the way of measurement they are as follows:
Contact methods—Indirect (calorimetric technique, microstructural analysis technique, method of chip coloring, thermal pain technique, and electrical modeling) and direct—thermocouple technique (artificial, semi-artificial, natural, and running). With those methods, the energy exchange between the environment and thermometric substance is based on heat conduction [29].
Wireless measurement methods—They are based on the laws of thermal radiation of bodies. The wireless temperature measurement devices used in practice are as follows: optical pyrometers, spectral ratio pyrometers, radiation pyrometers, infrared thermometers, thermal imaging cameras [29, 30]. Choosing a proper device depends on a number of factors—temperature range, material, object dimensions, distance, ambient temperature. It should also be taken into account that the devices record the total energy in their range of vision. When measuring, they also include additional energy sources, including reflected energy, if they are in the range of vision.
Measuring temperature in abrasive cutting is difficult because of the small dimensions of the zone being heated (only tenths of mm2), high temperatures (hundreds of degrees Celsius), high-temperature gradient (more than 200оС/mm2), high mechanical load, and high heating speed. This predetermines the preferential use of analytical and numeric methods, as well as wireless methods, for investigating the thermal phenomena in that process.
The thermal phenomena in rigid abrasive cutting are well studied unlike those in elastic abrasive cutting. Numeric, analytical, and finite-element models were developed to define and analyze temperature distribution [3, 13, 18, 20, 31]. Thermal fluxes were investigated under different cutting conditions and strategies for optimizing the parameters of rigid abrasive cutting with regard to decreasing the temperature in the cutting zone were proposed [32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. In addition, a high-accuracy simulation model for forecasting temperature was proposed. It can be used for forecasting and preventing thermal flaws [33].
Analytical models for determining the temperature in elastic abrasive cutting were also proposed. On the basis of the analysis of thermal phenomena, the inability to directly measure chip temperature was justified and a methodology and an analytical dependency for the theoretic definition of chip temperature, reflecting the effect of the cutting speed and the workpiece rotational frequency, were proposed [42]. A model of the chip temperature, proving the decisive influence of the thickness of the layer being cut by one abrasive grain on it, was developed. An approach to the theoretical and experimental definition of the amount of heat released for one cut-off cycle and transferred to the workpiece being machined, as well as of the cut piece temperature, was proposed [43].
By applying the calorimetric technique for measuring temperature and the methodology of the planned experiment, a theoretical and experimental model for the temperature of the cut piece made of С45 steel depending on the cut-off wheel speed and workpiece rotational frequency was built. It was established that cut piece temperature decreases as cutting speed decreases and workpiece rotational frequency increases. This effect is related to the enhanced heat removal resulting from an increase in the thickness of the layer being cut, the cross-section of the chip being cut by one abrasive grain, and time per cut.
The possibilities for wireless temperature measurement and monitoring by applying infrared thermography are studied in [4, 7, 25, 44]. It was found that the cut-off wheel compression force on the workpiece had the greatest effect on the maximum cut-off wheel temperature, respectively on the tool life [4, 7]. It was also found that temperature increased as the workpiece diameter increased. Furthermore, when cutting fixed workpieces, the combination of larger cut-off wheel diameter and a greater compression force results in generating higher temperatures and obtaining lower values of G-ratio. Studies were done with a focus on the possibilities of using infrared thermography as a tool for wireless and non-invasive thermal investigation of the process and tools of elastic abrasive cutting of rotating workpieces [25, 44]. Experimental data from thermographic measurements done by an infrared camera regarding the effect of workpiece rotational frequency, compression workforce, and cut-off wheel diameter when machining various materials on the temperature distribution on workpiece surface, cut-off wheel, and cut piece were presented.
The analysis of the methods and approaches used for investigating and monitoring temperature in abrasive cutting shows the advantages of wireless measurement methods such as infrared thermography (IRT). This method is increasingly recognized and widely used as a reliable and effective tool for thermal wireless non-destructive testing under real conditions of dynamic processes such as abrasive cutting [4, 7, 12, 25, 29, 44]. Its application allows us to enhance the effectiveness of abrasive cutting. However, the use of IRT has some disadvantages.
The availability of metal parts in equipment leads to a number of reflections that impede temperature measurements on the surfaces under study and vary depending on their orientation, temperature, and wavelength. Temperature measurements by using thermography do not provide us with absolute temperature values. To obtain such values, we should use modeling and look for a correlation with the change in surface temperature. IRT measurements are indirect with regard to temperature measurements in the cutting zone. Although the cut-off zone can be observed from the side at a specific position of the camera, the infrared radiation from the cut-off wheel, workpiece, and produced chips affect the results from the temperature measurement of the surface being observed. Therefore, a thorough study of the possibilities for applying infrared thermography in abrasive cutting is required.
There is a qualitative and quantitative non-contact thermographic temperature control. Qualitative control does not require obtaining an accurate surface temperature, but it is sufficient to obtain thermal signatures, which are characteristic models of relative temperature phenomena at different combinations of the abrasive cutting process control factors values. The relative temperature values of the objects in the cutting area to the temperatures of the other equipment objects with similar conditions are used. Quality visual inspection is appropriate for collecting a large number of detailed data and transmitting them for easy interpretation. It is suitable for controlling the efficiency of the process by monitoring the temperatures of the cut-off wheel, workpiece, cut piece, and chip under certain conditions of the abrasive cutting process.
In quantitative thermographic measurement, the ambient temperature is the reference. The observation of the abrasive cutting is established by measuring the absolute temperature of the studied object, under the same environmental conditions. As the reference temperature must be measured, this requires even better knowledge of the variables affecting the radiometric measurement, as well as taking into account the limitations.
The transition from qualitative to quantitative thermographic control is associated with the need to solve four tasks:
Methodical provision of the procedure for determining the surface temperature of the objects participating in the cutting process with the respective metrological analyses;
Obtaining information about the spectral normal emissivity of the object and its surrounding background for the entire spectral range of the optoelectronic system;
Taking into account the influence of the layers covering the surface of the controlled objects, partially transparent to the heat radiation, on the accuracy of determining the surface temperature by non-contact methods;
Measurement of temperatures comparable to the temperature background, taking into account the influence of the background heat radiation on the experimental results.
The aim of the study is first to develop a methodology for monitoring the evolution of surface temperature to identify the process of elastic abrasive cutting by IRT. For this purpose, a modular thermographic measuring system is proposed to monitor the process from different positions.
The illustrated in Figure 3a and b setup is a part of the more complex experimental framework, which is not the object of the present study [13, 25, 31, 44, 45].
Elements of workstand for elastic abrasive cutting, (a); setup for remote thermal control of cutting process, (b); a thermogram of the abrasive cutting made from the direction to profile of the cut-off wheel, (c); a thermogram of the abrasive cutting made from the direction to full-face of the cut-off wheel, (d).
Special attachment is developed, which is fixed to the main carriage of a combined lathe, having a device for step-less adjustment of rotational frequency workpiece to perform the elastic abrasive cutting process [46, 47]. In this way, a constant rotational frequency of the cut-off wheel can be provided and adjust the amount of compression power
Cut-off area of the workstand for elastic abrasive cutting
Setup of abrasive cutting’s remote non-destructive thermal control
Raw thermogram from the camera (3) Raw thermogram from the camera (4)
Unlike previous studies, thermographic measurement of the surface temperatures is performed simultaneously with two factory-calibrated FLIR SC660 infrared cameras (3) and (4), which work synchronously with the same or different frame rates and are located orthogonally. The cameras have a temperature range from −40°C to +2000°C, temperature sensitivity (NETD) <0.045°C and IP-link using FireWire. Matlab, FLIR ResearchIR Max and SDK softwares are used for thermal analysis and supporting cameras communication with the computer (6). The PASCO PS-3209 wireless sensor (5) is used in data collection mode for ambient temperature and relative humidity during thermographic measurements.
LabIR @ thermographic high-temperature applications paint, with high mechanical resistance for long-term uses and high emissivity is sprayed to cover the entire work surface of the workpiece, the cut-off wheel, and exposed metal parts of the equipment. The layer paint thickness is measured by TROTEC BB20. Infrared cameras are located in isolating boxes with IR windows (shown in Figure 3). The outside of the boxes is also coated with paint to minimize the reflections from cameras.
A problem in the quantitative thermographic control of elastic abrasive cutting is the identification and suppression of thermal reflections in thermograms. The approach for thermal measurements of the process at an angle from 40 to 60″C was applied. Cold image subtraction and/or background subtraction is used as image processing methods for reflection reduction in thermograms.
After conducting the experiments for thermographic measurement to verify the calculated maximum temperatures of the cut-off wheel, workpiece, and cut piece and derive the corresponding correlation dependencies, the need to use a second infrared camera was eliminated. For the needs of elastic abrasive cutting online thermographic quality monitoring, only one camera is sufficient (camera (3) in Figure 3b.
Thermographic measurements were also performed with other approaches, which is not part of the present study. These relate to quantity thermography, such as the use of IR polarizing filters and deep learning to assess the condition of the elastic abrasive cutting process.
IRT used to detect the cut-off wheel wear can help abrasive cutting process automation and dynamically control.
The introduction of an online thermographic inspection system allows continuous monitoring of temperature evolution and thus prevents damage to the workpiece or machine. The following are illustrated possible information criteria for use in such a system.
Figure 4 illustrates the possibility of the IRT system to measure and record the surface temperatures (optional maximum, minimum, average values) in the camera field of vision. Areas (regions of interest—ROI, lines, polygons, etc.) can be selected to identify the temperature distribution and evolution in the process of abrasive cutting in the form of graphs. Such a local inspection of the change in surface temperature significantly increases the visual resolution of the selected area. This visualizes the momentary disturbances from the spark’s temperatures. Figure 4a shows the temperature curves for the marked lines on the workpiece and the cut piece in a direction transverse to the workpiece axis and close to the cutting area. The temperature profile longitudinally on the axis of the workpiece in the area of the marked line is shown in Figure 4c. The temperature profiles for different lines passing through the axis of the cut-off wheel show the change in surface temperature near the cutting area and at the farthest end from this area. Figure 4d shows the regions of interest (ROI) for the workpiece, the cut-off wheel, and the cut piece whose maximum temperatures are measured.
Thermograms image with chosen regions and temperature distribution along with selections. (a) Thermogram from camera
Due to the lack of a standardized format for reading IR images, software for processing and computer analysis of thermographic images has been developed. So thermal images can be processed regardless of what type of camera they were shot. The wear of the cut-off wheels has been checked. For this purpose, they are divided into four categories: standard (new cut-off wheel, as a reference), slightly worn, critically worn, and worn, which can no longer be used. One or another classification can be prepared on the basis of different criteria for different applications of elastic abrasive cutting. During data processing, areas with elevated temperatures and possible causes of wear are identified. Thus, on the basis of the initial thermal histograms, criteria for diagnosing and evaluating the resources of the cut-off wheels are formed.
The thermal histogram family (according to the camera view of vision) of the entire thermogram or the thermal histogram family of a selected ROI can be used to account for deviations in the quality of the elastic abrasive cutting process relative to a pre-selected optimal process.
Figure 5 shows (according to the camera’s view) a raw thermogram with selected ROI (rectangular area), and the area of the cut-off wheel marked with a black outline. Figure 6 shows a raw 3D thermogram of the selected ROI. Figure 7 shows the family of thermal histograms for the same ROI.
Infrared image captured with a standard thermal camera.
3D thermogram of the selected ROI in
3D layered thermal histograms (a family) for IR image sequence of the selected ROI with the workpiece, cut-off wheel, and cut piece.
There are three density modes of temperature calculation in the histograms:
High: per each pixel;
Medium: average temperature using aperture size 3 × 3;
Low: average temperature using aperture size 5 × 5.
Medium and Low approximations automatically exclude any garbage colors detected inside the camera apertures.
The general form of the models describes the dependency between the workpiece temperature
where:
Factors | Factor levels | |||
---|---|---|---|---|
-1 | 0 | +1 | ||
120 | 150 | 180 | ||
1 | 2 | 3 | ||
22 | 91 | 160 |
Factor levels in the experimental design.
To build the models (4), multi-factor experiments were conducted using an orthogonal central-composite design with a number of trials
The models (4) were built using the measured values of the workpiece maximum instantaneous temperature, cut-off wheel maximum contact temperature, and cut piece temperature at the end of the cut-off cycle.
After statistical analysis of the experimental results by applying the multi-factor regression analysis method and QstatLab software [48], the following regression models for the workpiece temperature, cut-off wheel temperature, and cut piece temperature were built:
when machining С45 steels:
when machining 42Cr4 steels:
The models built extremely accurately describe the dependency between the variables and control factors. The values of the determination coefficients are
In Figure 8 and Figure 9 the bar diagrams of measured and calculated maximum temperatures are presented, at different parameters of the abrasive cutting process for both materials with the same workpiece diameter. The maximum temperatures are the averages of five measurements for the cut-off wheel, the workpiece, and the cut piece. The error of the calculated values does not exceed 2% (under 20°C) in the worst case.
Temperature bar diagrams for different parameters of the elastic abrasive cutting of 42Cr4.
Temperature bar diagrams for different parameters of the elastic abrasive cutting of C45.
The analysis of the models built makes possible the evaluation of the effect of the operating conditions on the temperatures of the workpiece, cut-off wheel, and cut piece:
Among all factors under study, the workpiece rotational frequency has the highest effect on temperature in elastic abrasive cutting. As
As the cut-off wheel diameter
The compression force has the least effect on temperature. As it increases, the temperatures of the cut piece, cut-off wheel, and workpiece increase by 5–11%. The minimum effect of the compression force is related to the fact that when
The nature of influence of workpiece rotational frequency, cut-off wheel diameter and compression force on the temperature in elastic abrasive cutting are equal for the two materials under study (C45 and 42Cr4 steels). Nevertheless, the temperatures of cut-off wheel, workpiece, and cut piece are higher when machining 42Cr4 steel (by 4–7%), which is related to the higher hardness and strength of this material.
Each studied temperature parameter of the elastic abrasive cutting process has a specific meaning yet is insufficient for its optimum control. The optimum values of the temperatures of the cut piece, cut-off wheel, and workpiece for each material being machined will be obtained at different combinations of values of control factors (cut-off wheel diameter, compression force, and workpiece rotational frequency). Therefore, optimization by one parameter is irrelevant. Multi-objective optimization provides much more information so as to make a justified decision on the selection of optimum elastic abrasive cutting conditions. There are various algorithms for its implementation, which differ in the type and number of target parameters, as well as in the method for determining the optimal solution [45, 49]. To determine the optimum elastic abrasive cutting conditions, multi-purpose optimization was implemented as the area where the temperature parameters under study obtain minimum values were determined. The optimization problem is reduced to solving the following system of inequalities:
where
Functions
The optimum conditions of elastic abrasive cutting, providing the best combination of minimum values of the temperatures of workpiece, cut-off wheel, and cut piece, were determined by applying two methods—genetic algorithm and random search method with increasing density. The optimization problem was solved upon machining of С45 and 42Cr4 steels by using QStatLab software [48].
The defined optimum conditions of the elastic abrasive cutting process are presented in Table 2.
Steel, type | Optimization method | Control factors | Response variables | ||||
---|---|---|---|---|---|---|---|
C45 | Genetic algorithm | 150 | 2 | 91 | 863.15 | 168.53 | 199.2 |
Random search method with increasing density | 120 | 0.96 | 159.48 | 1057.03 | 133.02 | 133.02 | |
42Cr4 | Genetic algorithm | 150 | 2 | 91 | 864.56 | 176.67 | 212.20 |
Random search method with increasing density | 120 | 0.8 | 159.99 | 1034.02 | 140.97 | 146.35 |
Optimum conditions of elastic abrasive cutting.
This chapter considers the specifics of implementing the process of elastic abrasive cutting and analyzes the conditions for stabilizing the dynamic thermal phenomena accompanying it. The processes of heat generation and heat removal in abrasive cutting are generally analyzed, as well as the methods and tools applied to investigate temperature and thermal fluxes. An innovative approach to non-destructive thermal measurement and control of elastic abrasive cutting experimented for two types of structural steels by applying the methodology of planned experiment and multi-objective optimization has been proposed.
Latest trends show that there is a need to apply an automatic smart system for controlling thermal fluxes in the cutting zone so as to ensure a higher quality of machined surfaces and longer cutting tool life. This is also linked to the design of a new approach to non-destructive thermal control of abrasive cutting when developing a smart thermographic system.
The authors would like to thank for the financial support from National Science Fund under which Project No. DN 17/16 the present work was conducted.
a | cutting depth, mm |
bs | thickness of the cut-off wheel, mm |
ds | diameter of the cut-off wheel, mm |
dw | diameter of the workpiece, mm |
F | cut-off wheel compression force, N |
h | thickness of the layer being cut, mm |
L | length of the contact arc, mm |
ns | rotational frequency of the cut-off wheel, min−1 |
nw | rotational frequency of the workpiece, min−1 |
Td | temperature of the cut piece,oC |
Q | heat generated in cutting per unit time |
Qch | heat transferred to the chip |
Qd | heat generated as a result of deformation |
Qf | heat transformed from friction force |
Qp | heat transferred into environment |
Qs | heat transferred to the cut-off wheel |
Qw | heat transferred to the workpiece |
IntechOpen publishes different types of publications
",metaTitle:"Types of publications",metaDescription:"IntechOpen publishes different types of publications",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\\n\\nEdited Volumes can be comprised of different types of chapters:
\\n\\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\\n\\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\\n\\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\\n\\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\\n\\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\\n\\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\\n\\nTYPES OF MONOGRAPHS:
\\n\\nSingle or multiple author manuscript
\\n\\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\\n\\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\\n\\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\\n"}]'},components:[{type:"htmlEditorComponent",content:"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\n\nEdited Volumes can be comprised of different types of chapters:
\n\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\n\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\n\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\n\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\n\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\n\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\n\nTYPES OF MONOGRAPHS:
\n\nSingle or multiple author manuscript
\n\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\n\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\n\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,9,11,14,15,17,20,22,24"},books:[{type:"book",id:"11555",title:"Ubiquitous and Pervasive Computing - New Trends and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"42b6f15e5d9044c3abd00c231efec806",slug:null,bookSignature:"Prof. Rodrigo da Rosa Righi",coverURL:"https://cdn.intechopen.com/books/images_new/11555.jpg",editedByType:null,editors:[{id:"69889",title:"Prof.",name:"Rodrigo",surname:"da Rosa Righi",slug:"rodrigo-da-rosa-righi",fullName:"Rodrigo da Rosa Righi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11551",title:"Blockchain",subtitle:null,isOpenForSubmission:!0,hash:"26f3d47bfbfd96e25e5b46001876cc48",slug:null,bookSignature:"Prof. Vardan Mkrttchian",coverURL:"https://cdn.intechopen.com/books/images_new/11551.jpg",editedByType:null,editors:[{id:"333134",title:"Prof.",name:"Vardan",surname:"Mkrttchian",slug:"vardan-mkrttchian",fullName:"Vardan Mkrttchian"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11458",title:"Human-Robot Interaction - Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"2003e3388833e911f610e0cd9788a5e7",slug:null,bookSignature:"Dr. Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/11458.jpg",editedByType:null,editors:[{id:"196746",title:"Dr.",name:"Ramana",surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11506",title:"Antenna Arrays",subtitle:null,isOpenForSubmission:!0,hash:"1b378e33d6f6e73721ee0dacbbb89aa1",slug:null,bookSignature:"Prof. Hussain Al-Rizzo, Dr. Nijas Kunju and Dr. Aldebaro Klautau",coverURL:"https://cdn.intechopen.com/books/images_new/11506.jpg",editedByType:null,editors:[{id:"153384",title:"Prof.",name:"Hussain",surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11470",title:"Graphene - Recent Advances, Future Perspective and Applied Applications",subtitle:null,isOpenForSubmission:!0,hash:"409e022e3baf48795e816576a6ee66e3",slug:null,bookSignature:"Dr. Mujtaba Ikram, Dr. Asghari Maqsood and Dr. Aneeqa Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/11470.jpg",editedByType:null,editors:[{id:"286820",title:"Dr.",name:"Mujtaba",surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11445",title:"Multi-Agent Technologies and Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"d980826615baa6e33456e2a79064c5e8",slug:null,bookSignature:"Prof. Igor Sheremet",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",editedByType:null,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11519",title:"Vibration Monitoring and Analysis - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"f0d2d82a5c1a49020abf39dc8aabd89d",slug:null,bookSignature:"Dr.Ing. Louay Yousuf",coverURL:"https://cdn.intechopen.com/books/images_new/11519.jpg",editedByType:null,editors:[{id:"322417",title:"Dr.Ing.",name:"Louay",surname:"Yousuf",slug:"louay-yousuf",fullName:"Louay Yousuf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11525",title:"Wood Industry - Past, Present and Future Outlook",subtitle:null,isOpenForSubmission:!0,hash:"ccb74142053c89e0e572ac1c5d717a11",slug:null,bookSignature:"Prof. Guanben Du and Dr. Xiaojian Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/11525.jpg",editedByType:null,editors:[{id:"291315",title:"Prof.",name:"Guanben",surname:"Du",slug:"guanben-du",fullName:"Guanben Du"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11468",title:"High Entropy Alloys - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"3b4ef3ce01f8f9b113dc28ac847b8c0d",slug:null,bookSignature:"Prof. Yong A Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/11468.jpg",editedByType:null,editors:[{id:"203937",title:"Prof.",name:"Yong",surname:"Zhang",slug:"yong-zhang",fullName:"Yong Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11484",title:"Thin Film Deposition - Fundamentals, Processes, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9c10a55203c2f0f7d47c743e6cfa2492",slug:null,bookSignature:"Dr. Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11484.jpg",editedByType:null,editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11121",title:"Crystal Growth - Technologies and Applications",subtitle:null,isOpenForSubmission:!0,hash:"81f076fab2acb567946aeaa4b7281fc1",slug:null,bookSignature:"Dr. Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/11121.jpg",editedByType:null,editors:[{id:"300527",title:"Dr.",name:"Riadh",surname:"Marzouki",slug:"riadh-marzouki",fullName:"Riadh Marzouki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:28},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:166},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"227",title:"Nuclear Physics",slug:"nuclear-physics",parent:{id:"20",title:"Physics",slug:"physics"},numberOfBooks:8,numberOfSeries:0,numberOfAuthorsAndEditors:139,numberOfWosCitations:184,numberOfCrossrefCitations:108,numberOfDimensionsCitations:246,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"227",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10074",title:"Recent Techniques and Applications in Ionizing Radiation Research",subtitle:null,isOpenForSubmission:!1,hash:"129deeec2186f6392f154ed41f64477a",slug:"recent-techniques-and-applications-in-ionizing-radiation-research",bookSignature:"Ahmed M. Maghraby and Basim Almayyahi",coverURL:"https://cdn.intechopen.com/books/images_new/10074.jpg",editedByType:"Edited by",editors:[{id:"102209",title:"Dr.",name:"Ahmed M.",middleName:null,surname:"Maghraby",slug:"ahmed-m.-maghraby",fullName:"Ahmed M. Maghraby"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8437",title:"Fusion Energy",subtitle:null,isOpenForSubmission:!1,hash:"ae4950c5b74da69a166ed0405f3f5ade",slug:"fusion-energy",bookSignature:"Aamir Shahzad",coverURL:"https://cdn.intechopen.com/books/images_new/8437.jpg",editedByType:"Edited by",editors:[{id:"288354",title:"Dr.",name:"Aamir",middleName:null,surname:"Shahzad",slug:"aamir-shahzad",fullName:"Aamir Shahzad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6607",title:"Ion Beam Applications",subtitle:null,isOpenForSubmission:!1,hash:"53c2938c2e40ea953ca3cb4a686d348c",slug:"ion-beam-applications",bookSignature:"Ishaq Ahmad and Malik Maaza",coverURL:"https://cdn.intechopen.com/books/images_new/6607.jpg",editedByType:"Edited by",editors:[{id:"204045",title:"Dr.",name:"Ishaq",middleName:null,surname:"Ahmad",slug:"ishaq-ahmad",fullName:"Ishaq Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6149",title:"Ionizing Radiation Effects and Applications",subtitle:null,isOpenForSubmission:!1,hash:"9d3bc531cb8e2ffbe4a436ab42b70653",slug:"ionizing-radiation-effects-and-applications",bookSignature:"Boualem Djezzar",coverURL:"https://cdn.intechopen.com/books/images_new/6149.jpg",editedByType:"Edited by",editors:[{id:"18189",title:"Prof.",name:"Boualem",middleName:null,surname:"Djezzar",slug:"boualem-djezzar",fullName:"Boualem Djezzar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5451",title:"New Insights on Gamma Rays",subtitle:null,isOpenForSubmission:!1,hash:"0fe8c3174bbb6d68493d39220cdec7ca",slug:"new-insights-on-gamma-rays",bookSignature:"Ahmed M. Maghraby",coverURL:"https://cdn.intechopen.com/books/images_new/5451.jpg",editedByType:"Edited by",editors:[{id:"102209",title:"Dr.",name:"Ahmed M.",middleName:null,surname:"Maghraby",slug:"ahmed-m.-maghraby",fullName:"Ahmed M. Maghraby"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5094",title:"Neutron Scattering",subtitle:null,isOpenForSubmission:!1,hash:"8c7f3fac75e54e8345b01ca5cb1a4e68",slug:"neutron-scattering",bookSignature:"Waldemar Alfredo Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/5094.jpg",editedByType:"Edited by",editors:[{id:"118821",title:"Dr.",name:"Waldemar Alfredo",middleName:null,surname:"Monteiro",slug:"waldemar-alfredo-monteiro",fullName:"Waldemar Alfredo Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1616",title:"Particle Physics",subtitle:null,isOpenForSubmission:!1,hash:"29e08be0c8877548d8d9daa55a06fe3b",slug:"particle-physics",bookSignature:"Eugene Kennedy",coverURL:"https://cdn.intechopen.com/books/images_new/1616.jpg",editedByType:"Edited by",editors:[{id:"101837",title:"Dr.",name:"Eugene",middleName:null,surname:"Kennedy",slug:"eugene-kennedy",fullName:"Eugene Kennedy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1590",title:"Gamma Radiation",subtitle:null,isOpenForSubmission:!1,hash:"30f1336f3c9399366ea01d1f1a33f920",slug:"gamma-radiation",bookSignature:"Feriz Adrovic",coverURL:"https://cdn.intechopen.com/books/images_new/1590.jpg",editedByType:"Edited by",editors:[{id:"106756",title:"Prof.",name:"Feriz",middleName:null,surname:"Adrovic",slug:"feriz-adrovic",fullName:"Feriz Adrovic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:8,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"32842",doi:"10.5772/34901",title:"Sterilization by Gamma Irradiation",slug:"sterilization-by-gamma-irradiation",totalDownloads:74720,totalCrossrefCites:36,totalDimensionsCites:82,abstract:null,book:{id:"1590",slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Kátia Aparecida da Silva Aquino",authors:[{id:"102109",title:"Dr.",name:"Katia",middleName:"Aparecida Da S.",surname:"Aquino",slug:"katia-aquino",fullName:"Katia Aquino"}]},{id:"58998",doi:"10.5772/intechopen.73234",title:"Ionizing Radiation-Induced Polymerization",slug:"ionizing-radiation-induced-polymerization",totalDownloads:1751,totalCrossrefCites:8,totalDimensionsCites:17,abstract:"Ionizing radiation can induce some kinds of reactions, other than polymerization, such as dimerization, oligomerization, curing, and grafting. These reactions occur through a regular radical chain causing growth of polymer by three steps, namely, initiation, propagation, and termination. To understand ionizing radiation-induced polymerization, the water radiolysis must be taken into consideration. This chapter explores the mechanism of water molecules radiolysis paying especial attention to the basic regularities of solvent radicals’ interaction with the polymer molecules for forming the crosslinked polymer. Water radiolysis is the main engine of the polymerization processes, especially the “free-radical polymerization.” The mechanisms of the free-radical polymerization and crosslinking will be discussed in detail later. Since different polymers respond differently to radiation, it is useful to quantify the response, namely in terms of crosslinking and chain scission. A parameter called the G-value is frequently used for this purpose. It represents the chemical yield of crosslinks, scissions and double bonds, etc. For the crosslinked polymer, the crosslinking density increases with increasing the radiation dose, this is reflected by the swelling degree of the polymer while being immersed in a compatible solvent. If crosslinking predominates, the crosslinking density increases and the extent of swelling decreases. If chain scission predominates, the opposite occurs. A further detailed discussion of these aspects is presented throughout this chapter.",book:{id:"6149",slug:"ionizing-radiation-effects-and-applications",title:"Ionizing Radiation Effects and Applications",fullTitle:"Ionizing Radiation Effects and Applications"},signatures:"Mohamed Mohamady Ghobashy",authors:[{id:"212371",title:"Dr.",name:"Mohamed",middleName:null,surname:"Mohamady Ghobashy",slug:"mohamed-mohamady-ghobashy",fullName:"Mohamed Mohamady Ghobashy"}]},{id:"32846",doi:"10.5772/36950",title:"Current Importance and Potential Use of Low Doses of Gamma Radiation in Forest Species",slug:"current-importance-and-potential-use-of-low-doses-of-gamma-radiation-in-forest-species",totalDownloads:5252,totalCrossrefCites:2,totalDimensionsCites:12,abstract:null,book:{id:"1590",slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"L. G. Iglesias-Andreu, P. Octavio-Aguilar and J. Bello-Bello",authors:[{id:"110581",title:"Dr.",name:"Lourdes",middleName:null,surname:"Iglesias-Andreu",slug:"lourdes-iglesias-andreu",fullName:"Lourdes Iglesias-Andreu"}]},{id:"58410",doi:"10.5772/intechopen.72074",title:"Radiation-Induced Degradation of Organic Compounds and Radiation Technologies for Purification of Aqueous Systems",slug:"radiation-induced-degradation-of-organic-compounds-and-radiation-technologies-for-purification-of-aq",totalDownloads:1378,totalCrossrefCites:7,totalDimensionsCites:11,abstract:"Environmental application of radiation technologies is an important part of radiation processing. Radiation treatment of aqueous systems contaminated with organic compounds is a promising method of water and wastewater purification and corresponding technologies are being developed. In this chapter, the following aspects of radiation treatment process are considered: sources of contamination and major contaminants of water and wastewater; primary processes in aqueous systems initiated by ionizing radiation; principal ways of contaminant conversion as consequences of primary processes (complete mineralization of organic compounds, partial decomposition of organic molecules resulted in detoxification, decolorization, disinfection of polluted water, and improvement in biological degradation of contaminant, polymerization of monomers’ contaminants, oxidation-reduction processes, and coagulation of colloids); sources of ionizing radiation; and main equipment applied in radiation technologies of aqueous system purification.",book:{id:"6149",slug:"ionizing-radiation-effects-and-applications",title:"Ionizing Radiation Effects and Applications",fullTitle:"Ionizing Radiation Effects and Applications"},signatures:"Igor E. Makarov and Alexander V. Ponomarev",authors:[{id:"213652",title:"Dr.",name:"Igor",middleName:null,surname:"Makarov",slug:"igor-makarov",fullName:"Igor Makarov"},{id:"213657",title:"Dr.",name:"Alexander",middleName:null,surname:"Ponomarev",slug:"alexander-ponomarev",fullName:"Alexander Ponomarev"}]},{id:"53504",doi:"10.5772/66925",title:"Applications of Ionizing Radiation in Mutation Breeding",slug:"applications-of-ionizing-radiation-in-mutation-breeding",totalDownloads:3454,totalCrossrefCites:7,totalDimensionsCites:11,abstract:"As a predicted result of increasing population worldwide, improvements in the breeding strategies in agriculture are valued as mandatory. The natural resources are limited, and due to the natural disasters like sudden and severe abiotic stress factors, excessive floods, etc., the production capacities are changed per year. In contrast, the yield potential should be significantly increased to cope with this problem. Despite rich genetic diversity, manipulation of the cultivars through alternative techniques such as mutation breeding becomes important. Radiation is proven as an effective method as a unique method to increase the genetic variability of the species. Gamma radiation is the most preferred physical mutagen by plant breeders. Several mutant varieties have been successfully introduced into commercial production by this method. Combinational use of in vitro tissue culture and mutation breeding methods makes a significant contribution to improve new crops. Large populations and the target mutations can be easily screened and identified by new methods. Marker assisted selection and advanced techniques such as microarray, next generation sequencing methods to detect a specific mutant in a large population will help to the plant breeders to use ionizing radiation efficiently in breeding programs.",book:{id:"5451",slug:"new-insights-on-gamma-rays",title:"New Insights on Gamma Rays",fullTitle:"New Insights on Gamma Rays"},signatures:"Özge Çelik and Çimen Atak",authors:[{id:"147362",title:"Dr.",name:"Özge",middleName:null,surname:"Çelik",slug:"ozge-celik",fullName:"Özge Çelik"},{id:"147364",title:"Prof.",name:"Çimen",middleName:null,surname:"Atak",slug:"cimen-atak",fullName:"Çimen Atak"}]}],mostDownloadedChaptersLast30Days:[{id:"32842",title:"Sterilization by Gamma Irradiation",slug:"sterilization-by-gamma-irradiation",totalDownloads:74724,totalCrossrefCites:36,totalDimensionsCites:82,abstract:null,book:{id:"1590",slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Kátia Aparecida da Silva Aquino",authors:[{id:"102109",title:"Dr.",name:"Katia",middleName:"Aparecida Da S.",surname:"Aquino",slug:"katia-aquino",fullName:"Katia Aquino"}]},{id:"32837",title:"Environmental Gamma-Ray Observation in Deep Sea",slug:"environmental-gamma-ray-observation-in-deep-sea-",totalDownloads:2897,totalCrossrefCites:4,totalDimensionsCites:6,abstract:null,book:{id:"1590",slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Hidenori Kumagai, Ryoichi Iwase, Masataka Kinoshita, Hideaki Machiyama, Mutsuo Hattori and Masaharu Okano",authors:[{id:"108174",title:"Dr.",name:"Hidenori",middleName:null,surname:"Kumagai",slug:"hidenori-kumagai",fullName:"Hidenori Kumagai"},{id:"108237",title:"Dr.",name:"Masa",middleName:null,surname:"Kinoshita",slug:"masa-kinoshita",fullName:"Masa Kinoshita"},{id:"137650",title:"Dr.",name:"Ryoichi",middleName:null,surname:"Iwase",slug:"ryoichi-iwase",fullName:"Ryoichi Iwase"},{id:"137656",title:"Dr.",name:"Hideaki",middleName:null,surname:"Machiyama",slug:"hideaki-machiyama",fullName:"Hideaki Machiyama"},{id:"146918",title:"Dr.",name:"Mutsuo",middleName:null,surname:"Hattori",slug:"mutsuo-hattori",fullName:"Mutsuo Hattori"},{id:"146919",title:"Dr.",name:"Masaharu",middleName:null,surname:"Okano",slug:"masaharu-okano",fullName:"Masaharu Okano"}]},{id:"58998",title:"Ionizing Radiation-Induced Polymerization",slug:"ionizing-radiation-induced-polymerization",totalDownloads:1755,totalCrossrefCites:8,totalDimensionsCites:17,abstract:"Ionizing radiation can induce some kinds of reactions, other than polymerization, such as dimerization, oligomerization, curing, and grafting. These reactions occur through a regular radical chain causing growth of polymer by three steps, namely, initiation, propagation, and termination. To understand ionizing radiation-induced polymerization, the water radiolysis must be taken into consideration. This chapter explores the mechanism of water molecules radiolysis paying especial attention to the basic regularities of solvent radicals’ interaction with the polymer molecules for forming the crosslinked polymer. Water radiolysis is the main engine of the polymerization processes, especially the “free-radical polymerization.” The mechanisms of the free-radical polymerization and crosslinking will be discussed in detail later. Since different polymers respond differently to radiation, it is useful to quantify the response, namely in terms of crosslinking and chain scission. A parameter called the G-value is frequently used for this purpose. It represents the chemical yield of crosslinks, scissions and double bonds, etc. For the crosslinked polymer, the crosslinking density increases with increasing the radiation dose, this is reflected by the swelling degree of the polymer while being immersed in a compatible solvent. If crosslinking predominates, the crosslinking density increases and the extent of swelling decreases. If chain scission predominates, the opposite occurs. A further detailed discussion of these aspects is presented throughout this chapter.",book:{id:"6149",slug:"ionizing-radiation-effects-and-applications",title:"Ionizing Radiation Effects and Applications",fullTitle:"Ionizing Radiation Effects and Applications"},signatures:"Mohamed Mohamady Ghobashy",authors:[{id:"212371",title:"Dr.",name:"Mohamed",middleName:null,surname:"Mohamady Ghobashy",slug:"mohamed-mohamady-ghobashy",fullName:"Mohamed Mohamady Ghobashy"}]},{id:"53780",title:"Gamma-Ray Spectrometry and the Investigation of Environmental and Food Samples",slug:"gamma-ray-spectrometry-and-the-investigation-of-environmental-and-food-samples",totalDownloads:2476,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Gamma radiation consists of high‐energy photons and penetrates matter. This is an advantage for the detection of gamma rays, as gamma spectrometry does not need the elimination of the matrix. The disadvantage is the need of shielding to protect against this radiation. Gamma rays are everywhere: in the atmosphere; gamma nuclides are produced by radiation of the sun; in the Earth, the primordial radioactive nuclides thorium and uranium are sources for gamma and other radiation. The technical enrichment and use of radioisotopes led to the unscrupulously use of radioactive material and to the Cold War, with over 900 bomb tests from 1945 to 1990, combined with global fallout over the northern hemisphere. The friendly use of radiation in medicine and for the production of energy at nuclear power plants (NPPs) has caused further expositions with ionising radiation. This chapter describes in a practical manner the instrumentation for the detection of gamma radiation and some results of the use of these techniques in environmental and food investigations.",book:{id:"5451",slug:"new-insights-on-gamma-rays",title:"New Insights on Gamma Rays",fullTitle:"New Insights on Gamma Rays"},signatures:"Markus R. Zehringer",authors:[{id:"311750",title:"Dr.",name:"Markus R.",middleName:null,surname:"Zehringer",slug:"markus-r.-zehringer",fullName:"Markus R. Zehringer"}]},{id:"54118",title:"Gamma Rays from Space",slug:"gamma-rays-from-space",totalDownloads:2005,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"An overview of gamma rays from space is presented. We highlight the most powerful astrophysical explosions, known as gamma-ray bursts. The main features observed in detectors onboard satellites are indicated. In addition, we also highlight a chronological description of the efforts made to observe their high energy counterpart at ground level. Some candidates of the GeV counterpart of gamma-ray bursts, observed by Tupi telescopes, are also presented.",book:{id:"5451",slug:"new-insights-on-gamma-rays",title:"New Insights on Gamma Rays",fullTitle:"New Insights on Gamma Rays"},signatures:"Carlos Navia and Marcel Nogueira de Oliveira",authors:[{id:"189908",title:"Dr.",name:"Carlos",middleName:null,surname:"Navia",slug:"carlos-navia",fullName:"Carlos Navia"},{id:"243084",title:"MSc.",name:"Marcel",middleName:null,surname:"De Oliveira",slug:"marcel-de-oliveira",fullName:"Marcel De Oliveira"}]}],onlineFirstChaptersFilter:{topicId:"227",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",isOpenForSubmission:!0,annualVolume:11406,editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",isOpenForSubmission:!0,annualVolume:11407,editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",isOpenForSubmission:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}}},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",isOpenForSubmission:!0,annualVolume:11409,editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"26",type:"subseries",title:"Machine Learning and Data Mining",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}},{id:"16614",title:"Prof.",name:"Juan Ignacio",middleName:null,surname:"Guerrero Alonso",slug:"juan-ignacio-guerrero-alonso",fullName:"Juan Ignacio Guerrero Alonso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6HB8QAM/Profile_Picture_1627901127555",institutionString:null,institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}},{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/3095/images/1592_n.jpg",institutionString:null,institution:{name:"University of Chicago",institutionURL:null,country:{name:"United States of America"}}},{id:"214067",title:"Dr.",name:"W. David",middleName:null,surname:"Pan",slug:"w.-david-pan",fullName:"W. David Pan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEI9QAO/Profile_Picture_1623656213532",institutionString:null,institution:{name:"University of Alabama in Huntsville",institutionURL:null,country:{name:"United States of America"}}},{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk",profilePictureURL:"https://mts.intechopen.com/storage/users/72920/images/system/72920.jpeg",institutionString:"Dalarna University, Faculty of Data and Information Sciences",institution:{name:"Dalarna University",institutionURL:null,country:{name:"Sweden"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:91,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:175,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"onlineFirst.detail",path:"/online-first/81191",hash:"",query:{},params:{id:"81191"},fullPath:"/online-first/81191",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()