\r\n\t
",isbn:"978-1-80356-645-0",printIsbn:"978-1-80356-644-3",pdfIsbn:"978-1-80356-646-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"a154e7a16dd810077db03da0c31367b3",bookSignature:"Dr. Mohammad Mehdi Ghiai, Dr. Samad M.E. M.E. Sepasgozar and Dr. Farzaneh Soflaei",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11926.jpg",keywords:"3D modeling, Facility Management, Risk Management, Life Cycle Management, Energy Efficiency, Cost Management, Sustainable Design, Climate Change, Artificial Intelligence, Virtual Reality, Geographical Information System, Internet of Things",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 18th 2022",dateEndSecondStepPublish:"April 15th 2022",dateEndThirdStepPublish:"June 14th 2022",dateEndFourthStepPublish:"September 2nd 2022",dateEndFifthStepPublish:"November 1st 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A registered architect, a visiting researcher at the College of Architecture in Texas, USA with a focus on sustainable architecture, experienced faculty member, LEED Green Associate.",coeditorOneBiosketch:"Dr. Sepasgozar is recognized as one of the world's top 2% researchers by Stanford University in 2020, Associate Editor and Editorial board member for Q1 & Q2 journals, reviewer of 33 leading journals including Cleaner Production, Automation in Construction, Construction Innovation. He is an active researcher and emerging scholar in digital technology development and adoption.",coeditorTwoBiosketch:"Dr. Farzaneh Soflaei is an Assistant Professor in the Department of Architecture. She earned her Ph.D. in Urban Design in 2013 from Tsinghua University, China, with a full scholarship from the China Scholarship Council (CSC), and also a Ph.D. in Architecture in 2006, from Azad University, Iran. She works in the field of sustainability and published in peer-reviewed journals including Renewable and Sustainable Energy Review and Energy and Buildings.",coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"454416",title:"Dr.",name:"Mohammad Mehdi",middleName:null,surname:"Ghiai",slug:"mohammad-mehdi-ghiai",fullName:"Mohammad Mehdi Ghiai",profilePictureURL:"https://mts.intechopen.com/storage/users/454416/images/system/454416.jpg",biography:"Dr. Mohammad Mehdi Ghiai has obtained a Ph.D. in Architecture with a focus on Sustainability. I am currently a visiting researcher at Texas Tech University, College of Architecture in Lubbock, USA. I am also a faculty member since 2008 at Azad University, Tehran, Iran. I have both research and teaching experiences in the field of architecture. I taught different courses at the graduate and undergraduate levels. I published more than 20 peer-reviewed articles in various journals. I also reviewed many papers for scientific journals.",institutionString:"Texas Tech University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Texas Tech University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:{id:"221172",title:"Dr.",name:"Samad M.E.",middleName:null,surname:"Sepasgozar",slug:"samad-m.e.-sepasgozar",fullName:"Samad M.E. Sepasgozar",profilePictureURL:"https://mts.intechopen.com/storage/users/221172/images/system/221172.png",biography:"Dr. Samad M.E. Sepasgzoar is a senior lecturer and the co-convenor for the smart city and infrastructure cluster. He is also an associate editor, editorial board member, guest editor, or reviewer for more than thirty-five peer-reviewed journals. He has published 137 research articles. His research is cross-interdisciplinary, using mixed statistical, experimentation, and computational methods to analyse complex issues of digital technology development and implementation processes. Due to the quality of his research projects, Dr. Sepasgzoar has been recognised internationally by different industrial bodies with awards such as ‘Best Paper’. He was also a finalist for the ‘Australian Construction Awards’.",institutionString:null,position:null,outsideEditionCount:null,totalCites:0,totalAuthoredChapters:"10",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"UNSW Sydney",institutionURL:null,country:{name:"Australia"}}},coeditorTwo:{id:"457558",title:"Dr.",name:"Farzaneh",middleName:null,surname:"Soflaei",slug:"farzaneh-soflaei",fullName:"Farzaneh Soflaei",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Sustainability has always been my key interest in design research. Throughout my career, I have explored different aspects of this multi-dimensional issue in a wide range of buildings and urban scale projects. In my Ph.D. research in architecture, I worked on the impact of courtyards as passive cooling/heating strategies on improving thermal comfort and reducing costs and consumption in low-energy housing design. On the other hand, my Ph.D. dissertation in urban design was carried out on the role of public open spaces as potential venues for democratic participation and interactions, in urban social sustainability. Since 2004, I have actively worked in this field and published in peer-reviewed journals including Renewable and Sustainable Energy Review (IF=9.1) and Energy and Buildings (IF=4.4).",institutionString:"State University of New York at Delhi",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"State University of New York at Delhi",institutionURL:null,country:{name:"United States of America"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347258",firstName:"Marica",lastName:"Novakovic",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"marica@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"65886",title:"Leptin and Gestational Diabetes Mellitus",doi:"10.5772/intechopen.84885",slug:"leptin-and-gestational-diabetes-mellitus",body:'\nAdipose tissue acts as an endocrine organ, secreting different molecules or adipokines. A link between body weight, adipokines, and success of pregnancy has been proposed, although it is not fully understood [1]. Leptin was the first adipokine claimed to be the “missing link” between fat and reproduction [2]. Leptin is considered as a pleiotropic hormone that regulates not only body weight but also many other functions, including the normal physiology of the reproductive system [3]. Importantly, this hormone is also produced by other tissues, especially placenta [4].
\nPlacental formation during human gestation is crucial for embryonic progress and successful pregnancy outcome, allowing metabolic exchange and producing steroids, hormones, growth factors, and cytokines that are critical for the maintenance of pregnancy [5, 6]. Trophoblast cells play an essential role in the development of placenta. These cells differentiate in two distinct types: extravillous and villous trophoblast. In the extravillous pathway, cytotrophoblasts proliferate, differentiate into an invasive phenotype, and penetrate in the maternal decidua and myometrium. Meanwhile, in the villous pathway, mononuclear cytotrophoblasts fuse to form a specialized multinuclear syncytium called syncytiotrophoblast [7]. In normal pregnancy, trophoblast invasion is a critical step in remodeling the maternal spiral arteries to adequately perfuse the developing placenta and fetus [8]. In this sense, deregulation of leptin levels has been implicated in the pathogenesis of gestational diabetes mellitus (GDM) [9].
\nReproductive function depends on the energy reserves stored in the adipose tissue. The large energy needs for a hypothetical pregnancy was the original rationale to explain the disruption of reproductive function by low fat reserves. This led to the hypothesis of an endocrine signal that conveys information to the brain about the size of fat stores [10]. Thus, leptin was the first adipokine claimed to be the “missing link” between fat and reproduction [2]. Leptin modulates satiety and energy homeostasis [11, 12] but is also produced by the placenta. Thus, it was suggested that the effects of placental leptin on the mother may contribute to endocrine-mediated alterations in energy balance, such as the mobilization of maternal fat, which occurs during the second half of pregnancy [13, 14]. In addition, leptin has been found to influence several reproductive functions, including embryo development and implantation [15]. Moreover, animal models have demonstrated that leptin-deficient mice are subfertile and fertility can be restored by exogenous leptin [16]. This adipokine may therefore play a critical role in regulating both energy homeostasis and the reproductive system [17].
\nLeptin increments the secretion of gonadotropin hormones, by acting centrally at the hypothalamus [18]. In addition, because leptin has been shown to be influenced by steroid hormones and can stimulate LH release, leptin may act as a permissive factor in the development of puberty [19].
\nLeptin can also regulate ovary functions [20, 21, 22, 23]. Thus, leptin resistance and hyperleptinemia in obesity lead to altered follicle function, whereas in conditions in which nutritional status is suboptimal, leptin deficiency results in hypothalamic-pituitary gonadal axis dysfunction [24, 25].
\nIn addition, a significant role of leptin in embryo implantation was proposed. Leptin receptor (LEPR) is specifically expressed at the blastocyst stage [26], and it was also reported that leptin is present in conditioned media from human blastocysts, promoting embryo development, suggesting a function in the blastocyst-endometrial dialog [27].
\nThe implantation involves complex and synchronized molecular and cellular events between the implanting embryo and uterus, and these events are regulated by autocrine and paracrine factors [5]. Fetal growth depends on the ability of the placenta to supply nutrients adequate to meet fetal demand, which increases as gestation progresses. Villous cytotrophoblast is a progenitor cell population that produces daughter cells to support the expansion of the syncytium as placental surface area increases as well as the expansion of cytotrophoblast columns, which contain the cells destined to invade maternal decidua [28]. The placenta grows exponentially in the first and early second trimester, but growth has slowed down by term [29]. Therefore, placental growth, especially in early gestation, is a prerequisite of a high-capacity transport interface. In 1997, leptin was described as a new placental hormone in humans [14]. In fact, during pregnancy, circulating leptin levels are also increased due to leptin production by trophoblastic cells [30]. After delivery, leptin levels return to normal levels [31].
\nTo alter intracellular signaling and function, leptin must bind to the receptor (LEPR) [32]. There are six different isoforms of LEPR (a–f) that are produced by alternative RNA splicing [33]. The only isoform that has a transmembrane domain that is capable of activating signal transduction pathways is LEPRb, whereas the other five short LEPR isoforms have either a truncated or no transmembrane domain and are unable to activate signaling pathways [33]. Activation of LEPRb results in an upregulation of a number of signal transduction pathways, including the Janus kinase/signal transducers and activators of the transcription pathway (JAK/STAT), as well as the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways [34]. Research findings do indicate that there may be fetal-to-maternal leptin exchange across the placenta [35]. However, to date, it is not known which receptor is mediating this transportation.
\nLeptin has physiological effects on the placenta, including angiogenesis, growth, and immunomodulation [13]. Leptin is now considered an important regulator during the first stages of pregnancy, modulating proliferation, invasion, apoptosis, and protein synthesis, in placenta [36, 37, 38, 39, 40, 41].
\nThe control of cell proliferation is critical for a correct placental development, and it is finely regulated [42]. Altered rates of cytotrophoblast proliferation are associated with different pathologies; levels are enhanced with increased fetal growth (macrosomia) and diminished in fetal growth restriction [42]. Others factors in maternal circulation might coordinately stimulate proliferation, differentiation, and survival [43, 44] through the activation of multiple kinases [43, 44, 45] and phosphatases [45].
\nDuring placentation, cytotrophoblasts and syncytiotrophoblast keep a subset of cells in direct contact to the villous basement membranes. In the extravillous compartment, cell proliferation favors the invasion of the uterine stroma. Similarly, in the villous compartment, cells undergo syncytial fusion directed by specific transcription factors [46].
\nThe role of MAPK in regulating trophoblast turnover is well documented in both human and animal systems [43, 44, 47]. Moreover, it was shown that leptin induces proliferative activity in many human cell types [48, 49, 50], mainly via MAPK activation [51]. We have demonstrated that leptin promotes proliferation of trophoblast cells by this MAPK pathway [41, 52]. We have also found that leptin dose-dependently stimulates protein synthesis by the activation of translation machinery [36, 53].
\nIn this context, it is interesting to mention the role of Sam68, an RNA-binding protein originally identified as the substrate of Src during mitosis and a member of the signal transduction and activation of RNA metabolism (STAR) family [54, 55]. Leptin stimulates Tyr-phosphorylation of Sam68 in the trophoblast, mediating the dissociation from RNA, suggesting that leptin signaling could modulate RNA metabolism [48, 56]. Recent data indicate that microRNAs have a fundamental role in a variety of physiological and pathological processes. In this context, studies of microRNA expression have revealed that some microRNAs are abundantly expressed in the placenta [57]. However, the signature of miRNAs in the placenta has yet to be elucidated.
\nIn placental villi, cell turnover is tightly regulated, via apoptotic cascade [49]. In normal pregnancy, apoptosis is an essential feature of placental development, and it is well stablished that trophoblast apoptosis increases with placental growth and advancing gestation [50]. Leptin prevents early and late events of apoptosis via MAPK pathway [41, 52]. The role of leptin was also studied under different stress conditions like serum deprivation, hyperthermia, and acidic stress [39, 40]. Under serum deprivation, leptin increased the anti-apoptotic BCL-2 protein expression, while it downregulated the pro-apoptotic BAX and BID proteins expression as well as caspase-3 active form and cleaved PARP-1 fragment in Swan-71 cells and placental explants. In addition, it was demonstrated that p53 and its phosphorylation in Ser-46 are downregulated by leptin suggesting that leptin plays a pivotal role for apoptotic signaling by p53 [37]. Recent studies have demonstrated that MAPK and PI3K pathways are necessary for this anti-apoptotic leptin action, and it was also demonstrated that MDM-2 expression is regulated by leptin [38]. In placental explants cultured at high temperatures (40 and 42°C) and a pH acid (<7.3), the expression of Ser-46 p53, p53AIP1, p21, and caspase-3 is increased, and, these effects are significantly attenuated by leptin, indicating that leptin is a pro-survival placental cytokine [39, 40].
\nOne of the most important placental functions is to prevent embryo rejection by the maternal immune system to enable its correct development [51]. To ensure normal pregnancy, trophoblast differentiation requires potent immunomodulatory mechanisms to prevent rejection of syncytiotrophoblast and invasive trophoblast by alloreactive lymphocytes and natural killer (NK) cells present in maternal blood and decidua [58]. Inflammatory mediators such as IL-6, IL-1β, TNFα, and prostaglandins are produced and secreted by the human placenta, and these cytokines play an important role in a number of normal and abnormal inflammatory processes, including the initiation and progression of human labor [59, 60, 61]. There are several homologies between the expression and regulation of cytokines and inflammation-related genes in the placenta and in the white adipose tissue. In this regard, leptin effects include the promotion of inflammation and the modulation of adaptive and innate immunity [56, 62, 63]. Thus, placental leptin acts as an immune modulator, regulating the generation of matrix metalloproteinases, arachidonic acid products, nitric oxide production, and T cell cytokines [61]. Interestingly, leptin expression is also regulated by IL-6, IL-1α, IL-1β, and IFN-ϒ [31, 64, 65].
\nIt was reported that leptin stimulates IL-6 secretion in human trophoblast cells [66, 67]. In addition, TNFα release from human placenta is also stimulated by leptin, and it was demonstrated that NF-ҡB and PPAR-γ are important mediators of this effect [68]. Recently, we have found that leptin induces HLA-G expression in placenta. HLA-G has potent immunosuppressive effects promoting apoptosis of activated CD8+ T lymphocytes, the generation of tolerogenic antigen-presenting cells, and the prevention of NK cell-mediated cytotoxicity. These data place leptin as a placental cytokine which confers to trophoblast cells a tolerogenic phenotype to prevent immunological damage during the first steps of pregnancy [69].
\nPro-inflammatory leptin actions may also have significant implications in the pathogenesis of various disorders during pregnancy, such as GDM, which is characterized by increased leptin expression. In this sense, placental leptin may contribute to the incremented circulating levels of pro-inflammatory mediators that are evident in these pregnancy diseases, whereas successful pregnancy is associated with downregulation of intrauterine pro-inflammatory cytokines [9, 70, 71].
\nGestational diabetes mellitus, characterized by glucose intolerance diagnosed during pregnancy, is one of the most common complications in pregnancy and affects 3–8% of all pregnancies [72, 73]. The prevalence of GDM has increased in recent decades due to increased average age of pregnant females and increased risk of obesity [74]. However, GDM is associated with numerous complications including macrosomia, neonatal metabolic disorders, respiratory distress syndrome, and neonatal death as well as a predisposition for the development of metabolic syndromes and typ. 2 diabetes [75, 76].
\nThe placenta is thought to have a critical role in the pathogenesis of gestational diabetes mellitus, as GDM-associated complications resolve following delivery. Therefore, aberrant development and functions of the placenta, including placental overgrowth, have been implicated as important factors that contribute to GDM-associated complications [77, 78]. GDM is associated with insulin resistance, hyperinsulinemia, and hyperleptinemia, and these GDM-associated conditions disturb placental nutrient transport and fetal nutrient supply [79, 80].
\nIt has been found that leptin and LEPR expressions are increased in placenta from GDM [9, 70], and, in fact leptin was proposed as a first-trimester biochemical predictor of GDM [81, 82]. In addition it was suggested that hyperinsulinemia may regulate placental leptin production acting as a circulating signal to control fetal homeostasis [73, 83]. Furthermore, it is thought that maternal glucose regulates cord blood leptin levels, and this could explain why newborns exposed to GDM have an increased risk of obesity [84]. Comparison of the placental gene expression profile between normal and diabetic pregnancies indicates that increased leptin synthesis in GDM is correlated with higher production of pro-inflammatory cytokines such as IL-6 and TNFα, causing a chronic inflammatory environment that enhances leptin production [85].
\nOur group has reported that insulin induces leptin expression in trophoblastic cells by increasing leptin promoter activity [86]. It is known that leptin and insulin share several signaling pathways, such as JAK2/STAT-3, MAPK, and PI3K. Moreover, we could demonstrate that in GDM, the basal phosphorylation of STAT-3, MAPK 1/3, and Akt is increased in the placenta, with resistance to a further stimulation with leptin or insulin in vitro, suggesting synergistic interaction between insulin and leptin signaling and action in human placenta [9].
\nOn the other hand, GDM is associated with increased incidence of polyhydramnios, due to an increase in amniotic fluid volume, suggesting that aquaporins (AQP), such as AQP9 expression, could be altered in GDM [87, 88]. Besides, when maternal circulating glucose levels are controlled, they have normal amniotic fluid volume. AQP9 is also a transporter for glycerol and may also provide this substrate to the fetus. In this context, we have found that AQP9 mRNA and protein expressions are overexpressed in placentas from women with GDM. These data could suggest that during GDM the overexpression of AQP9, which correlates with higher leptin plasma levels, increments glycerol transport to the fetus which may help to cover the increase in energy needs that may occur during this gestational metabolic disorder [89].
\nNevertheless, even though any nutritional or lifestyle intervention aimed to reduce weight produce a decrease in leptin levels, both in gestational diabetes and in general population, no therapeutic intervention, using leptin as a pharmacological target, has so far been used in the management of gestational diabetes.
\nGene expression can be regulated by short (18–22-nucleotide) noncoding RNAs, microRNAs, derived from long primary transcripts (pre-microRNAs) through sequential processing by two enzymes, Drosha and Dicer, and then incorporated into the RNA silencing complex, where they target homologous mRNAs. In mice, loss or inactivation of Dicer leads to multiple developmental defects [90, 91], and it has been demonstrated that in human placenta, cytotrophoblast proliferation is increased following Dicer [92]; however, the individual microRNAs responsible for these effects are unknown. In silico network analysis identified microRNAs (miR-145 and let-7a) that influence the expression of components of nodal signaling pathways. The large network is bridged by nodal molecules, such as mitogen-activated protein kinase (MAPK1/2), and AKT, which are recognized components of pro-mitogenic signaling pathways [20]. In fact, the role of MAPK1/2 in regulating trophoblast turnover is well documented in both human and animal systems [43, 44, 47]. In this context, we have reported an increased activation of MAPK 1/2 in response to leptin in trophoblastic cells from the human placenta. Thus, it is tempting to speculate that altered microRNAs expression influences the leptin expression and contributes to the pathogenesis of the GDM. However, the signature of microRNAs in the leptin expression in the placenta both in normal pregnancy and GDM remains to be elucidated. Therefore, it will be interesting to determine, in future studies, the combined role of these microRNAs in the leptin expression in normal placenta and in placenta from pregnancy pathology associated with altered placental growth (e.g., GDM) in order to clarify the regulation of placental growth by leptin.
\nObesity is associated with significantly elevated plasma leptin concentrations due to an increase in white adipose tissue compared with healthy individuals [93]. As obesity rates are increasing rapidly in the Western world, so is increasing the number of obese women who become pregnant. Importantly, obese pregnant women have significantly elevated plasma leptin concentrations compared with nonobese pregnant women throughout pregnancy [94]. Even though no differences in placental leptin production has been shown, there is a downregulation of LEPRb expression in the placenta of obese mothers, which would cause placental leptin resistance (in addition to the central leptin resistance that occurs during normal pregnancy) that may be attempting to modulate fetal growth under high-energy conditions [95, 96]. Despite the complications associated with pregnancies in obese women, the offspring may be growth restricted, normal weight, or macrosomic. However, after birth, babies born from obese mothers are exposed to elevated leptin concentrations in the maternal milk [97], which suggests that the postnatal environment may increase infant growth and development, increasing the risk of developing a number of diseases in adulthood. Therefore, alterations in maternal-placental-fetal leptin exchange may modify the development of the fetus and contribute to the increased risk of developing disease in adulthood.
\nIn conclusion, it could be affirmed that leptin controls reproduction depending on the energy state of the body and sufficient leptin levels are a prerequisite for the maintenance of reproductive capacity. The present review was focused in placental leptin effects during gestation, when leptin levels are increased due to leptin production by trophoblastic cells. Thus, leptin has a wide range of biological functions on trophoblast cells and a role in successful establishment of pregnancy. In this sense, leptin promotes proliferation, protein synthesis, and survival of placental cells. These actions are very important since cell proliferation and apoptotic cascades are critical for the correct placental development and function. Moreover, an important role of leptin in the regulation of immune mechanisms at the maternal interface has been suggested.
\nObservational studies have demonstrated that states of leptin overabundance or resistance can be associated with GDM. Moreover, it is also established that obesity may lead to deregulation in leptin function that results in maternal disease and clinical studies demonstrate an impact of obesity with an increased risk of a number of diseases in adulthood, including metabolic disease. In this context, leptin deregulation has been implicated in the pathogenesis of GDM. It is well accepted that leptin and LEPR expressions are increased in placentas from GDM, which may be relevant to control fetal homeostasis. Moreover, a role for microRNAs in the regulation of placental growth has been suggested, and expression profiling in the studies has shown expression and gestational changes in microRNA levels that demand functional evaluation. Further investigation is needed to fully elucidate the association of leptin with GDM and to stablish leptin as a biomarker for this pathology or the development of microRNA-based approaches to therapeutic targeting for correcting the abnormal placental growth and cell turnover seen in GDM.
\nThe authors declare no conflict of interest.
\nDiarrhea is one of the most common symptoms in the gastroenterologist clinical practice. It is defined as an increase in the average number of bowel movements, stool output and/or weight, or a reduced stool consistency, and according to duration, can be acute if it lasts less than 7 days, persistent acute (>7 days and < 14 days), sub-acute (>14 days and < 28 days), or chronic (>4 weeks) [1, 2, 3, 4, 5, 6]. Most episodes of acute diarrhea occur as a result of infectious agents or dietary transgression. Acute persistent and subacute diarrhea may be caused by unidentified microorganisms or might be secondary to medications [1]. Chronic diarrhea is one of those conditions with the broadest differential diagnosis, that includes anatomical and/or physiologic abnormalities of the gastrointestinal (GI) tract, inflammatory or neoplastic conditions, malabsorptive disorders, drug side effects, dysbiosis, functional as well as post-infectious syndromes such as small intestine bowel overgrowth (SIBO), functional diarrhea or post-infectious irritable bowel syndrome (Pi-IBS) [2, 3, 4, 5, 6]. One of the most common, albeit rarely unconsidered causes, is drug-side effect [7, 8]. A large number of at least 700 drugs have been implicated as cause of chronic diarrhea through a number of different, and sometimes overlapped pathophysiologic mechanisms [9]. Although initial therapy is drug withdrawal, in several cases treatment directed at pathophysiologic mechanism is needed to revert damage and improve symptoms.
Enteral damage and consequent symptoms such as diarrhea, bloating, flatulence and pain may be mediated through different mechanisms falling into two main categories: (1) Functional damage: it can be caused by abnormalities in any of the mechanisms involving digestion (maldigestion) and/or absorption (malabsorption), GI motility disturbances, alterations in the water and electrolyte absorption and/or secretion mechanisms, and altered microbiota and/or microbiome (dysbiosis), and (2) Microscopic or overt mucosal damage: this can be caused by direct contact of the drug, ischemic-related damage, systemic inflammatory or autoimmune mechanisms, and may affect different portions of the small intestine, colon, or both (Figure 1, [9]). According to the involved mechanism, main symptoms may predominate diarrhea, malabsorptive complaints such as steatorrhea, weight loss and anemia, or abdominal pain, and in severe cases, occult or overt bleeding.
Pathophysiologic mechanisms of enteropathy according to drug type.
Small intestine is involved in both digestive and absorptive processes of all major nutrients, fatty acids and multiple ions, occurring across the entire intestinal wall at different levels. Normal functional anatomy includes a full bowel length, normal intestinal villi and absorptive capacity, conserved neuroendocrine regulatory systems, and a normal motility activity, particularly the major motor complex (MMC) [10]. Several drugs may interfere with one or multiple mechanisms associated with either digestion processes or mechanisms associated with intestinal absorption. Alpha-glucosidase inhibitors such as acarbose decrease carbohydrate digestion, lipase-inhibitors such as orlistat and cetilistat affect fat absorption, bile acid binding resins such as cholestyramine or colestipol affects not only bile acid absorption but also that of vitamin B12 and lipid-soluble vitamins, but as they are used in bile-acid diarrhea as main therapeutic indication, they can be associated with constipation instead of diarrhea. Different drugs may induce calcium precipitation, such as aluminum or tetracycline, with further changes in bowel habit. Structural damage leading to villous inflammation and/or atrophy is described in the mucosal damage section [11].
A number of drugs used to treat metabolic conditions such as diabetes mellitus and obesity have intrinsic malabsorptive mechanisms as their main mode of action, and may lead to diarrhea and other related symptoms due to those mechanisms.
Acarbose is a pseudo-tetrasaccharide that selectively inhibits alpha-glucosidase activity in the brush border membrane of the small intestine, an essential enzyme for digestion of starch, maltose and sucrose, delaying glucose absorption from carbohydrate food and thus improving glycemic control among patients with either glucose intolerance or diabetes mellitus [12]. Among common side effects, mainly intrinsic to its mode of action, include flatulence, bloating and diarrhea [13].
Orlistat is a reversible inhibitor of gastric and pancreatic lipoprotein lipases, resulting in inhibition of up to 30% of dietary fat absorption, decreasing fat mass, as well as levels of the regulatory hormone leptin as patients lose weight [14]. Most common adverse events, also intrinsic to its mechanism of action, are diarrhea, steatorrhea, flatulence, bloating and abdominal pain [15]. Recently a second lipase inhibitor, cetilistat, has shown similar efficacy with fewer side effects when compared to orlistat, however prevalence of diarrhea may be as high as 25% of users [16].
Metformin, a dimethyl-biguanide, is an oral glucose-lowering agent absorbed in the small intestine, that has several modes of action: it reduces hepatic glucose production by inhibition of hepatic gluconeogenesis, it increases insulin sensitization by increasing plasma glucagon-like-protein (GLP) type 1 concentrations, with a smaller effect on dipeptidyl-peptidase 4 (DPP-4), resulting in increased glucose uptake in the small intestine [17]. It may also induce alterations in enteral microbiome, particularly increased abundance of
As previously mentioned, small intestine is both an absorptive and secretory organ, and most of the water and electrolyte handling in the GI tract is regulated at this level by autonomic nerve system as well as by neuromuscular signal pathways [10]. A number of drugs may alter one or several of the mechanisms associated with normal GI motility and/or water and electrolyte secretion including laxatives, motilin analog antibiotics, enterokinetic drugs, secretagogues, colchicine, and prostaglandin analogs.
Several antibiotics, particularly the macrolides (e.g., azithromycin, clarithromycin, erythromycin), act as motilin analogues. Motilin is a hormone that induces MMC activity though four distinct phases: first one is a period of near quiescence, second is characterized by irregular small-amplitude waves, phase III induces high-amplitude propulsive contractions all along the small intestine, and during phase IV, motor activity declines to basal values [20]. Although macrolides have a predominant gastroduodenal site-of-action, they may also induce diarrhea by similar MMC-related mechanisms in the small bowel, and are fully reversible after stopping the drug [21].
Laxatives are drugs used to treat different types of constipation, and may cause diarrhea through a number of mechanisms according to pharmacologic type. Osmotic agents extract through osmosis fluid into the intestinal lumen to soften stools an accelerate colon transit time, examples are non-absorbable carbohydrates (e.g., lactulose), polyethylene glycol, as well as citrate, sodium or phosphate-based products. Stimulant agents induce high-amplitude propagated contractions (HAPC) and alter intestinal and colonic absorption as well as secretion mechanisms, examples include the anthraquinones senna and cascara sagrada, bisacodyl and sodium picosulfate. Newer enterokinetic drugs such as tegaserod and prucalopride are agonists of serotonin 5-HT4 receptors throughout the GI tract, they also induce increased MMC and HAPC activity and accelerate enteric transit time. Secretagogue agents such as linaclotide, plecanatide, lubiprostone and tenapanor increase intestinal secretion by one of three different mechanisms: activation of intestinal guanylate cyclase C receptors, increasing intraluminal fluid secretion (e.g., linaclotide, plecanatide), type 2 chloride channel activation in the apical membrane of epithelial cells resulting in increased fluid and chloride secretion (e.g., lubiprostone), and inhibition of gastrointestinal sodium-hydrogen exchanger-3 (e.g., tenapanor). All these drugs are used for treating chronic constipation, and IBS with predominant constipation, and diarrhea is the most common side effect. Colchicine is a cytotoxin used to treat acute attacks of gout, and is frequently associated with diarrhea as enhances intestinal water secretion. Misoprostol, a prostaglandin analogue used in the past for drug-associated peptic ulcer disease or in the obstetric practice, is associated frequently with diarrhea induced by an increased smooth-muscle GI activity [22].
Dysbiosis is a term used to describe any quantitative and/or qualitative imbalance, dysfunction or disturbance of the gut microbiota and microbiome as an indicator of disease or poor health status [23], and may be caused by a number of risk factors, including medications. Drugs and microbiota have a two-way relationship: drugs exert a significant impact on organs and tissues through their effect on gut microbiota, but in the other hand, microbiota metabolic capacity may affect stability, metabolite production, availability, absorption and thus, increase or decrease efficacy and/or toxicity of different medications [24, 25, 26]. A number of drugs have been described to alter the composition of the gut microbiota, including antibiotics, proton-pump inhibitors (PPI), nonsteroidal anti-inflammatory drugs (NSAID), opioids, metformin, statins, psychotropics, particularly atypical anti-psychotics, levothyroxine, anticoagulants, antiarrhythmics, and several oncologic medications including chemotherapeutic agents, and targeted therapy [18, 27, 28, 29, 30, 31, 32, 33]. A recent study evaluated more than 1000 marketed drugs and found that 24% of them induced significant microbiota composition [30].
Between 5 and 49% of antibiotic users develop diarrhea during or after treatment. Prevalence is highly variable and can be influenced by reporting country, age, and hospital setting. For instance, antibiotic-associated diarrhea (AAD) represent between 3.2–29% of all causes of diarrhea, with a mean prevalence of 9.6%, in the emergency department this figure raises to 18.6%, and in the intensive care units range from 13.9 to 21.5% [34, 35, 36]. Risk factors for AAD are: increasing age, therapy with more than 1 antibiotic, clindamycin use, long-term antibiotic use, and concomitant PPI use. In most cases, withdrawal of antibiotic may stop diarrhea. However, longer use may predispose to enteral and colonic damage, dysbiosis, and increases risk of developing infections by patobionts (microorganisms that usually interact with host in a symbiotic way, but have the potential of acting as pathogens under certain circumstances). Most common microorganisms associated with DAA are
Proton pump inhibitors (PPI) inhibit gastric acid secretion through irreversible blockage of the hydrogen-potassium pump in the parietal cell, and are used for a number of conditions associated with acid exposure such as gastroesophageal reflux disease, peptic-ulcer disease and associated bleeding, and certain types of dyspepsia, and are one of the most common used drugs worldwide [43]. Chronic associated hypochloridria may induce significant changes in microbiota composition throughout the whole gastrointestinal tract. At small intestine long-term PPI use is associated with increasing abundance of
A number of different drugs such as atypical anti-psychotics, antidepressants and other mood stabilizers, statins, antiarrhythmics, and anticoagulants are associated with changes in microbiome composition, but its role as a cause of diarrhea is unclear [30, 47, 48]. In several cases, in statins for instance, microbiome changes may be associated with improved outcomes, such as better lipid control [47], in others, as with psychotropics, resulting dysbiosis is associated with anti-commensal activity and drug metabolism alterations, resulting in minor GI symptomatology [30, 48]. Finally, NSAID and immunotherapy are drugs involved in enteropathy by different mechanisms, including dysbiosis, but as mucosal damage is their main pathophysiologic mechanism, are discussed below.
Drug-associated gastrointestinal damage may affect any part of the GI tract, and small intestine and colon enteropathy accounts for 20–40% of all GI side effects [10]. Mechanisms include direct cytotoxic damage on the intestinal mucosa resulting in several degrees of inflammation, including mucositis, erosions and/or ulcers, hemorrhagic enteritis, alterations in permeability, protein-loss associated enteropathy, and ischemic damage, either caused by long-standing vasoconstriction and/or thrombosis [11]. In some cases, as with chemotherapeutic agents, bone marrow damage and neutropenia may lead to intestinal bacterial translocation, secondary infections with pathogens such as
Non-steroidal anti-inflammatory drugs (NSAID) are prescribed for a variety of pain and inflammation-associated conditions such as rheumatologic and orthopedic disorders, migraine as well as post-surgical states, and exert their effects through cyclooxygenase (COX) inhibition with resultant decrease of prostaglandin synthesis. NSAID are associated both with upper and lower GI symptoms, as well as mucosal injury at any part of the GI tract, and symptoms vary widely from dyspepsia and heartburn to diarrhea, bloating and overt GI bleeding [7, 8, 11, 52, 53, 54, 55]. Despite gastroduodenal damage is the most common clinical presentation in most NSAID long-term users, up to 70% may develop different degrees of mucosal breaks, including erosions, ulcerations, mucosal hemorrhage or even stenosis in distal portions of the small intestine such as jejunum or ileum, as determined by studies using video capsule endoscopy [56, 57]. Pathophysiology of NSAID-induced enteropathy is a complex one, and includes different mechanisms such as COX inhibition and topical effect, interactions with bacteria and bile acids, as well as overexpression of pro-inflammatory cytokines. Inhibition of COX-1 is associated with decreased mucosal blood flow, mucus production, and intestinal motility, which are predominant, but not critical factors for damage. Topical effect, a COX-independent action requiring mucosal contact of the drug from the luminal side, is considered the triggering event in most cases [53, 54]. Once NSAID is absorbed into the cell, induces mitochondrial injury by producing vacuolation and swelling, and alters oxidative phosphorylation and electron transport, considered one of the earliest intracellular changes after NSAID administration. As a result, intestinal permeability is increased, allowing luminal factors to disrupt the intestinal barrier function [54]. A second mechanism is associated with interactions between microbiota, bile acids and further activation of innate immunity after being exposed to NSAID. Animal models have shown that germ-free rats treated with NSAID do not develop intestinal ulcers unless bacteria are introduced. NSAID induce an increase in Gram-negative bacterial abundance,
In addition to NSAID, several drugs may induce small intestine mucosal disease secondary to vasoconstriction and ischemia, including potassium supplements, oral contraceptive pills, and a number of cytotoxic drugs such as methotrexate and chemotherapeutic agents that are associated with different degrees of mucositis [11], and are discussed below.
Among patients receiving oncologic therapy, those treated with cytotoxic drugs, radiotherapy, targeted therapy, and immunotherapy, particularly with the so-called check-point inhibitors have increased risk of developing various degrees of enteropathy and diarrhea. Between 40 and 100% of cancer patients treated with chemotherapeutic agents develop gut toxicity at some point during their treatment, a term called “chemotherapy-induced intestinal mucositis” (CIM). Prevalence and severity depend on drug and dosing regimen, intensity, route of delivery, and patient predisposing conditions. CIM pathophysiology involves mainly mechanisms related to cell growth inhibition, immunological reactions, and dysbiosis [61]. Cytotoxic agents such as methotrexate, doxorubicin, 5-fluorouracil, capecitabin and irinotecan target enteral tissue by interrupting DNA synthesis by direct injury or by generation of reactive oxygen species, leading to release of active signaling factors (i.e., caspases, β-catenin, and NF-κβ), and eventually to mucosal damage and apoptosis, most of which wipe out the intestinal crypt stem cell pool [61, 62]. A five-stage model for CIM has been proposed, that includes: 1) initiation, 2) signal activation and primary damage response, 3) pathway amplification, 4) tissue inflammation (e.g., erosions, ulcerations, apoptosis), and 5) healing. Clinical picture varies widely, and ranges from short periods of diarrhea and abdominal pain, to severe degrees of enterocolitis. When bone marrow-targeted chemotherapeutic agents are also given, increased risk of neutropenic enterocolitis, abdominal sepsis, and even death may occur. Treatment options, beside adjusting dose or even withdrawal of the drug may include antibiotics and probiotics in order to restore normal gut microbiota and reduce pathogenic intestinal bacteria, octreotide to decrease peptide-associated intestinal secretions, antioxidants such as amifostine, a drug that detoxifies reactive metabolites and scavenges free radicals, steroid anti-inflammatory agents to reduce inflammatory response, and possibly incretins and anti-apoptotic agents, most of which are under investigation [11, 61, 62].
Radiation therapy plays an important role as sole curative therapy for 25% of all cancers, and as adjuvant with chemotherapy in many other cases. During radiotherapy of abdominal and/or pelvic tumors, either the small intestine, colon or both are included in the treatment field and may be prone to toxicity. Risk factors for gut damage include those related to therapy itself such as radiation dose, time-dose-fractionation parameters, volume, and concomitant chemotherapy, and patient-related factors such as advanced age, previous abdominal surgeries, as well as vascular and metabolic comorbidities. Radiation enteropathy is classified as early or delayed when occurs prior or after 3 months after treatment. Early symptoms are nausea and abdominal pain, while diarrhea occurs usually after 2 or 3 weeks of treatment onset, and may persist for longer periods of time. Mechanisms of damage are multifactorial and include increased production of reactive oxygen species, mitotic cell death, mucosal atrophy, endothelitis, microvascular sclerosis, as well as fibrosis of the entire bowel wall. As radiation affects predominantly rapidly proliferating intestinal cells, villus epithelium turnover is insufficient to keep normal absorptive mechanisms. Long-term side-effects may include nutrient malabsorption, anemia, stenosis, and in most severe cases, intestinal obstruction. Management is largely symptomatic, with anti-diarrheal agents. As one of the early mechanisms of damage is production of reactive oxygen species, free radical scavengers such as amifostine can be used for reduction of radiotherapy side effects, but it has a narrow therapeutic time window and potential life-threathening side effects. Several candidate mitigator drugs are under investigation [63].
The immune system has an important role in recognizing and eliminating some tumors. Activation of T cells require a signal between T-cell receptors and the major histocompatibility complex along with a stimulatory checkpoint expressed on T cells called CD-28, and the antigen-presenting cells [64]. Tumors may use immune-checkpoint pathways as a mechanism of immune resistance. Two well-known immune-checkpoint receptors are CTLA-4 (CD152), a negative regulator of T-cell-mediated anti-tumor response, and the programmed cell death protein 1 (PD-1 or CD279), expressed on the surface of activated T cells that interacts with programmed death ligand (PD-L1 and L2), leading to T-cell inactivation [64, 65]. The immune check-point inhibitors (ICI) are monoclonal antibodies that block these pathways, including inhibitors of PD-1, PD-L1, and CTLA-4. Immunomodulating therapy, or immunotherapy act to enhance anti-tumor immune responses by blocking negative regulators of immunity, and has revolutionized cancer therapy by improving survival outcomes and is now the standard treatment of different types of cancer, including several metastatic tumors. Currently approved ICI are the anti-PD-1 pembrolizumab and nivolumab, used for treating melanoma and metastatic non-small-cell lung cancer, the anti-CTLA-4 ipilimumab, a fully humanized monoclonal antibody approved for metastatic melanoma, as well as the anti-PDL-L1 atezolizumab and durvalumab, also for non-small cell lung cancer. Ipilimumab, for instance, competitively binds to CTLA-4, blocking tolerance to self-antigens, without blocking CD28 (a stimulatory checkpoint), increasing T-cell proliferation and activation leading to autoimmune damage to a number of organs, including the entire GI tract. In a similar way, anti-PD1/PDL-1 agents such as nivolumab and pembrolizumab increase T-cell response while reducing self-tolerance, and the result is similar to that seen with ipiliumumab [64, 65, 66, 67]. This kind of damage behaves similarly to that seen on inflammatory bowel diseases (IBD) such as Crohn’s disease and ulcerative colitis, as well as their clinical presentation, with various degrees of enteral and/or colonic damage ranging from erosions and ulcerations to obstruction, and wall necrosis, and presenting as chronic diarrhea, abdominal pain, GI bleeding and progressive anemia [68]. Histologic findings range from combined acute (e.g., neutrophils) and chronic (i.e., lymphocytes and plasma cells) inflammatory infiltrates, eosinophilia, atrophy, granulomatous reaction, crypt abscesses, and bullous pemphigoid, and in most severe cases an increased apoptotic activity within the crypt epithelium may be seen, affecting small intestine, colon or both [69, 70].Treatment is similar to that given for IBD and may include mesalazine, systemic corticosteroids, and in refractory cases, biologic therapy with infliximab [71, 72].
Another category of oncologic treatment is the called targeted therapy, which acts by identifying and attacking certain types of cancer cells, and by inhibiting oncogenes driving aberrant growth, and may include monoclonal antibodies and small molecule inhibitors. A number of targeted therapies are approved for different types of cancer. Many of them may be associated with different degrees of oral and GI mucositis, particularly cetuximab, erlotinib, gefitinib, lapatinib, sorafenib, and sunitinib, with odds ratio for diarrhea and enteritis ranging from 1.5 to 4.5 [73]. More recently, the HER-2-targeted monoclonal antibody trastuzumab, used for HER-2-overexpressing breast cancer, has been associated with a number of GI manifestations associated to toxicity, including diarrhea, abdominal pain, and ulcerative enterocolitis similar to that seen with ICI. Mechanism underlying GI toxicity remains under investigation, but it seems to be associated with HER-2 receptors in gut epithelial cells [74]. Treatment is empiric, following the same principles as for ICI.
A number of drugs are associated with an increased risk of microscopic enteritis and/or colitis, in some cases eosinophilic enteritis, or even may resemble microscopic enteral damage of other diseases, such as celiac disease. Microscopic enteritis encompasses a group of disorders characterized by microscopic mucosal and/or mucosal inflammatory infiltrates by a number of different inflammatory cells, including lymphocytes (i.e., lymphocytic enteritis/colitis), eosinophils (e.g., eosinophilic enteritis/colitis), and lymphocytes along with collagen deposits (i.e., collagenous sprue/collagenous colitis), in absence of significant macroscopic mucosal damage, leading to watery diarrhea [50, 75, 76, 77]. In the small bowel, microscopic enteritis may also be associated with mucosal atrophy in some cases, and the clinical picture may be that of malabsorptive diarrhea, with foul-smelling feces, steatorrhea, and anemia [76]. In most cases an autoimmune predisposition has been proposed, but when disease develops during or shortly after a specific drug use, causality for drug-induced disease can be proposed according to a World Health Organization system based on temporal sequence, prior information of the drug, dose–response relationship, exclusion of other etiologies, and re-challenge [78]. Pathophysiology mechanisms are not clear, and may involve activation of the immune system in response to exposure to luminal antigenic factors, including drug-itself, metabolites, bile-acids, or may be associated with changes in microbiota linked to long-term drug use, such as in PPI.
A number of drugs have been linked to microscopic colitis, including aspirin, NSAID, PPI, SSRI, particularly sertraline, clozapine, ticlopidine, flavonoids and acarbose [51]. A recent case–control study found a significant increased risk for microscopic colitis with current use of NSAID, PPI, and SSRI with adjusted odd ratios of 1.86, 3.37 and 2.03 respectively. Current PPI use was associated also with increased risk of both lymphocytic (OR 2.06) and collagenous colitis (OR 5.3), whereas current NSAID use was associated with increased risk of collagenous colitis (OR 2.32), and current SSRI use increased risk of lymphocytic colitis (OR 2.28). Long-term PPI and/or NSAID use had the highest odds ratio (4.6 and 4.8 respectively) for developing microscopic colitis [79]. As previously mentioned, NSAID may affect any part of the GI tract, by a number of different pathophysiologic mechanisms. In the small intestine NSAID-associated damage ranges from microscopic enteritis to severe mucosal affection with erosions and/or ulcers. Histologic manifestations of NSAID may resemble those of celiac disease, with villous blunting and intraepithelial lymphocytosis, and can be found in any part of the small intestine [80].
Eosinophilic enteritis and colitis are included in the group of eosinophilic gastrointestinal disorders, and are characterized by a high eosinophilic infiltrate in the gut wall, without evidence of other causes. Pathophysiology involves a combination of genetic predisposition, dysbiosis, and a triggering factor, usually an allergen, that may include drugs, followed by recruitment and activation of eosinophils to sites of inflammation regulated by pro-inflammatory cytokines [81]. Drugs such as clozapine, naproxen, carbamazepine, and rifampicin have been associated with increased eosinophilic infiltrate in the distal ileum and colon [77]. More recently the anti-CTLA-4 check-point inhibitor ipilimumab and the anti-PD1 nivolumab have been link to eosinophilic enteritis [70]. Other immunosuppressant drugs such as mycophenolate mofetil, a drug used to prevent acute allograft rejection may affect both small bowel and colon, causing an eosinophilic-associated damage, with features similar to those of acute graft-versus-host disease [82].
Angiotensin II receptor inhibitors (AT-II RI) are one of the most common drugs for treating high blood pressure, with a generally safe side-effect profile. In 2012 a case series of 22 patients developing chronic diarrhea and weight loss while taking olmesartan was published. None had positive celiac serology, and a combination of villous atrophy and variable degrees of inflammation including collagen deposits was observed in small intestine biopsies, with clinical and histologic recovery after discontinuation of the drug [83]. More recently, other AT-II RI have been also associated with different degrees of enteropathy. A systematic review included 248 cases, most of which were associated with olmesartan (94%), however telmisartan, irbesartan, valsartan, losartan and eprosartan also were reported to be associated with various degrees of enteropathy. Interestingly, despite negative serology in most cases, 71% had a positive HLA-DQ2 or DQ-8, haplotypes associated with celiac disease [84].
Drugs are a common cause of chronic diarrhea and enteropathy by a number of mechanisms including intrinsic mode of action, malabsorption, dysbiosis, increased GI motility, alterations in water and electrolyte absorption and secretion mechanisms, autoimmune macroscopic or microscopic damage, and cytotoxic effect. Site of damage may include either part of the small intestine, colon, or both, and can be manifested by malabsorptive, inflammatory or watery diarrhea. In most cases diarrhea subsides after drug withdrawal, but in some cases a number of inflammatory conditions requiring other forms of therapy may be needed.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}},{id:"6495",title:"Dr.",name:"Daniel",middleName:null,surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6495/images/1947_n.jpg",biography:"Daniel Eberli MD. Ph.D. is a scientific physician working in the translational field of urologic tissue engineering. He has a medical degree from the Medical School in Zurich, Switzerland, and a Ph.D. in Molecular Medicine from Wake Forest University, Winston Salem, NC. He currently has a faculty position at the Department of Urology at the University Hospital Zurich, where he devotes half of his time to patient care. He is a lecturer at the Medical School of Zurich and the Swiss Federal Institute of Technology. Together with his research team, he is working on novel biomaterials for bladder reconstruction, improving autonomic innervation, cellular treatment of incontinence and tracking of stem cells.",institutionString:null,institution:{name:"University Hospital of Zurich",country:{name:"Switzerland"}}},{id:"122240",title:"Prof.",name:"Frede",middleName:null,surname:"Blaabjerg",slug:"frede-blaabjerg",fullName:"Frede Blaabjerg",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Aalborg University",country:{name:"Denmark"}}},{id:"50823",title:"Prof.",name:"Hamid Reza",middleName:null,surname:"Karimi",slug:"hamid-reza-karimi",fullName:"Hamid Reza Karimi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Milan",country:{name:"Italy"}}},{id:"22128",title:"Dr.",name:"Harald",middleName:null,surname:"Haas",slug:"harald-haas",fullName:"Harald Haas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Edinburgh",country:{name:"United Kingdom"}}},{id:"80399",title:"Dr.",name:"Huosheng",middleName:null,surname:"Hu",slug:"huosheng-hu",fullName:"Huosheng Hu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Essex",country:{name:"United Kingdom"}}},{id:"135796",title:"Prof.",name:"Jim",middleName:null,surname:"Van Os",slug:"jim-van-os",fullName:"Jim Van Os",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Utrecht University",country:{name:"Netherlands"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17575}],offset:12,limit:12,total:17575},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"5"},books:[{type:"book",id:"11020",title:"Dietary Supplements - Challenges and Future Research",subtitle:null,isOpenForSubmission:!0,hash:"2283ae2d0816c17ad46cbedbe4ce5e78",slug:null,bookSignature:"Dr. Venketeshwer Rao and Dr. Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/11020.jpg",editedByType:null,editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11475",title:"Food Security Challenges and Approaches",subtitle:null,isOpenForSubmission:!0,hash:"090302a30e461cee643ec49675c811ec",slug:null,bookSignature:"Dr. Muhammad Haseeb Ahmad, Dr. Muhammad Imran and Dr. Muhammad Kamran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",editedByType:null,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11605",title:"Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"378d957561b27c86b750a9c7841a5d18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11605.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11606",title:"Asteraceae - Characterization, Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"910ecf8411098a42bb250c87a978f1b9",slug:null,bookSignature:"Dr. Mohamed A. El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/11606.jpg",editedByType:null,editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11607",title:"Aquatic Plants - Biology and Environmental Impacts",subtitle:null,isOpenForSubmission:!0,hash:"9103c1501af58e2c24202646f15f0940",slug:null,bookSignature:"Dr. Abd El-Fatah Abomohra, Dr. Mei Li and Dr. Adel W. Almutairi",coverURL:"https://cdn.intechopen.com/books/images_new/11607.jpg",editedByType:null,editors:[{id:"186114",title:"Dr.",name:"Abdelfatah",surname:"Abomohra",slug:"abdelfatah-abomohra",fullName:"Abdelfatah Abomohra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11612",title:"Landraces - Its Productive Conservation",subtitle:null,isOpenForSubmission:!0,hash:"9c3ea2c2248cc3c8a2888e525c732c26",slug:null,bookSignature:"Emeritus Prof. Arnoldo González-Reyna and Dr. Prashant Kaushik",coverURL:"https://cdn.intechopen.com/books/images_new/11612.jpg",editedByType:null,editors:[{id:"470479",title:"Emeritus Prof.",name:"Arnoldo",surname:"González-Reyna",slug:"arnoldo-gonzalez-reyna",fullName:"Arnoldo González-Reyna"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11613",title:"New Insight on Terpenes and Terpenoids",subtitle:null,isOpenForSubmission:!0,hash:"f4acd3890d8f1ef49f4b006b56d48c3b",slug:null,bookSignature:"Dr. Muhammad Shahzad Aslam",coverURL:"https://cdn.intechopen.com/books/images_new/11613.jpg",editedByType:null,editors:[{id:"220324",title:"Dr.",name:"Muhammad Shahzad",surname:"Aslam",slug:"muhammad-shahzad-aslam",fullName:"Muhammad Shahzad Aslam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11614",title:"Flavonoid Metabolism - Recent Advances and Applications in Crop Breeding",subtitle:null,isOpenForSubmission:!0,hash:"a09c0aef04a5e8af53f1bec55e6ed2a3",slug:null,bookSignature:"Dr. Hafiz Muhammad Khalid Abbas and Dr. Aqeel Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/11614.jpg",editedByType:null,editors:[{id:"446864",title:"Dr.",name:"Hafiz Muhammad Khalid",surname:"Abbas",slug:"hafiz-muhammad-khalid-abbas",fullName:"Hafiz Muhammad Khalid Abbas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11615",title:"Humus and Humic Substances - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"a9b75be6b30278fca930c4dd560a8b2b",slug:null,bookSignature:"Prof. Abdelhadi Makan",coverURL:"https://cdn.intechopen.com/books/images_new/11615.jpg",editedByType:null,editors:[{id:"247727",title:"Prof.",name:"Abdelhadi",surname:"Makan",slug:"abdelhadi-makan",fullName:"Abdelhadi Makan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11617",title:"Plant Invasions and Global Change - Prediction, Interaction and Evaluation",subtitle:null,isOpenForSubmission:!0,hash:"90828f3756aae575bdda131afdc672af",slug:null,bookSignature:"Dr. Ling Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/11617.jpg",editedByType:null,editors:[{id:"219350",title:"Dr.",name:"Ling",surname:"Zhang",slug:"ling-zhang",fullName:"Ling Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11618",title:"Seagrass - Biology and Use",subtitle:null,isOpenForSubmission:!0,hash:"174d974e744ab42717bb8da4add5b6b0",slug:null,bookSignature:"Dr. Irem Deniz",coverURL:"https://cdn.intechopen.com/books/images_new/11618.jpg",editedByType:null,editors:[{id:"204855",title:"Dr.",name:"Irem",surname:"Deniz",slug:"irem-deniz",fullName:"Irem Deniz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:25},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:12},{group:"topic",caption:"Materials Science",value:14,count:30},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:79},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1204",title:"Vitaminology",slug:"pharmacology-toxicology-and-pharmaceutical-science-pharmacology-vitaminology",parent:{id:"219",title:"Pharmacology",slug:"pharmacology-toxicology-and-pharmaceutical-science-pharmacology"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:59,numberOfWosCitations:18,numberOfCrossrefCitations:15,numberOfDimensionsCitations:35,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1204",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6222",title:"A Critical Evaluation of Vitamin D",subtitle:"Clinical Overview",isOpenForSubmission:!1,hash:"8d98de6741a343ee917a6727f09d2ab3",slug:"a-critical-evaluation-of-vitamin-d-clinical-overview",bookSignature:"Sivakumar Gowder",coverURL:"https://cdn.intechopen.com/books/images_new/6222.jpg",editedByType:"Edited by",editors:[{id:"118572",title:"Dr.",name:"Sivakumar Joghi",middleName:null,surname:"Thatha Gowder",slug:"sivakumar-joghi-thatha-gowder",fullName:"Sivakumar Joghi Thatha Gowder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5269",title:"A Critical Evaluation of Vitamin D",subtitle:"Basic Overview",isOpenForSubmission:!1,hash:"9e0a1073183dd1859da3abac7344d03c",slug:"a-critical-evaluation-of-vitamin-d-basic-overview",bookSignature:"Sivakumar Gowder",coverURL:"https://cdn.intechopen.com/books/images_new/5269.jpg",editedByType:"Edited by",editors:[{id:"118572",title:"Dr.",name:"Sivakumar Joghi",middleName:null,surname:"Thatha Gowder",slug:"sivakumar-joghi-thatha-gowder",fullName:"Sivakumar Joghi Thatha Gowder"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"52067",doi:"10.5772/64516",title:"Nanoparticles for Delivery of Vitamin D: Challenges and Opportunities",slug:"nanoparticles-for-delivery-of-vitamin-d-challenges-and-opportunities",totalDownloads:2543,totalCrossrefCites:4,totalDimensionsCites:10,abstract:"In addition to the traditional role of calcium homeostasis and bone mineralization, calcitriol, the active metabolite of vitamin D, also displays other metabolic activities as antiproliferative, pro-differentiating, anti-inflammatory, immunomodulatory, and antineoplastic effects. Thus, the awareness that vitamin D insufficiency/deficiency may be associated with various diseases has grown. Also nowadays, vitamin D is recognized as a potential therapeutic agent in anticancer therapy. However, its administration presents some drawbacks such as high toxicity and low bioavailability. Thus, the use of nanotechnology may overcome these problems associated with vitamin D administration, allowing to decrease its toxicity in healthy tissues and increasing its bioavailability. In this chapter, an overview on vitamin D and its metabolic activity is presented, as well as a review of nanosystems for the encapsulation of vitamin D for different applications, such as food and pharmaceutical industries.",book:{id:"6222",slug:"a-critical-evaluation-of-vitamin-d-clinical-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Clinical Overview"},signatures:"Maria J. Ramalho, Manuel A.N. Coelho and Maria C. Pereira",authors:[{id:"82791",title:"Dr.",name:"Maria Carmo",middleName:null,surname:"Pereira",slug:"maria-carmo-pereira",fullName:"Maria Carmo Pereira"},{id:"183035",title:"Dr.",name:"Manuel Álvaro Neto",middleName:null,surname:"Coelho",slug:"manuel-alvaro-neto-coelho",fullName:"Manuel Álvaro Neto Coelho"},{id:"183036",title:"MSc.",name:"Maria João",middleName:null,surname:"Ramalho",slug:"maria-joao-ramalho",fullName:"Maria João Ramalho"}]},{id:"52525",doi:"10.5772/64506",title:"Vitamin D in Oxidative Stress and Diseases",slug:"vitamin-d-in-oxidative-stress-and-diseases",totalDownloads:2175,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"The data described in this chapter consider some new information about the benefits of vitamin D3 comparing the results obtained by the authors on the effects of vitamin D3 during oxidative stress with other works available in the literature. In particular, vitamin D3 can induce a concentration-dependent increase in endothelial NO production through eNOS activation consequential to the phosphorylation of p38, AKT, and ERK. Additional information obtained by the author is about the ability of vitamin D3 to prevent the endothelial cell death through modulation of interplay between apoptosis and autophagy. This effect is obtained by inhibiting superoxide anion generation, maintaining mitochondria function and cell viability, activating survival kinases (ERK and Akt), and inducing NO production. The results also describe that vitamin D3 causes human endothelial cell proliferation and migration in a 3-D matrix through NO-dependent mechanisms. These findings support the role of vitamin D3 in the human angiogenic process, suggesting new applications for vitamin D3 in tissue repair and wound healing. Finally, that the authors have demonstrated the ability of vitamin D3 to counteract negative effects of oxidative stress in brain cells. These data suggest the potential therapeutic use of vitamin D to treat or prevent degenerative brain diseases.",book:{id:"5269",slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Francesca Uberti, Vera Morsanuto and Claudio Molinari",authors:[{id:"181353",title:"Dr.",name:"Francesca",middleName:null,surname:"Uberti",slug:"francesca-uberti",fullName:"Francesca Uberti"},{id:"185861",title:"Dr.",name:"Vera",middleName:null,surname:"Morsanuto",slug:"vera-morsanuto",fullName:"Vera Morsanuto"},{id:"185862",title:"Prof.",name:"Claudio",middleName:null,surname:"Molinari",slug:"claudio-molinari",fullName:"Claudio Molinari"}]},{id:"51750",doi:"10.5772/64503",title:"Clinical and Biochemical Features of Patients with CYP24A1 Mutations",slug:"clinical-and-biochemical-features-of-patients-with-cyp24a1-mutations",totalDownloads:1522,totalCrossrefCites:4,totalDimensionsCites:4,abstract:"The CYP24A1 gene encodes 1,25-hydroxyvitamin-D3-24-hydroxylase, a key enzyme responsible for the catabolism of active vitamin D (1,25-dihydroxyvitamin D3). Loss-of-function mutations in CYP24A1 lead to increased levels of active vitamin D metabolites. Clinically, two distinct phenotypes have been recognised from this: infants with CYP24A1 mutations present with infantile idiopathic hypercalcaemia, often precipitated by prophylactic vitamin D supplementation. A separate phenotype of nephrolithiasis, hypercalciuria and nephrocalcinosis often presents in adulthood. CYP24A1 mutations should be suspected when a classical biochemical profile of high active vitamin D metabolites, high or normal serum calcium, high urine calcium and low parathyroid hormone is detected. Successful treatment with fluconazole, a P450 enzyme inhibitor, has been shown to be effective in individuals with CYP24A1 mutations. Although CYP24A1 mutations are rare, early recognition can prompt definitive diagnosis and ensure treatment is commenced.",book:{id:"5269",slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Fay Joanne Hill and John A. Sayer",authors:[{id:"181499",title:"Prof.",name:"John",middleName:"Andrew",surname:"Sayer",slug:"john-sayer",fullName:"John Sayer"}]},{id:"52311",doi:"10.5772/65103",title:"Vitamin D and Physical Activity",slug:"vitamin-d-and-physical-activity",totalDownloads:2190,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Vitamin D is synthesized in the skin following exposure to ultraviolet radiation, producing cholecalciferol, while only a small percentage of the circulating vitamin D is of exogenous origin deriving from food. Following two sequential hydroxylations, in the liver and in the kidneys, vitamin D is fully activated. Although its role in bone physiology and calcium homeostasis is well documented, there is emerging evidence that vitamin D exerts a plethora of additional effects on most tissues regulating the musculoskeletal, cardiovascular, and immune systems as well as energy homeostasis. Its deficiency/insufficiency poses a major public health problem observed in all age groups and regardless of latitude and insolation. In muscles, vitamin D deficiency is associated with a decline in neuromuscular function including muscular strength, walking speed, balance, jumping and sprinting performance, and aerobic capacity, although the evidence is still weak regarding its effects in the young and the athletes. Supplementation counteracts the negative effects of vitamin D deficiency on performance although in individuals with adequate levels of vitamin D, additional supplementation does not appear to enhance further physical capabilities. The aim of this chapter is to review our current understanding of diverse effects of vitamin D in physical performance in athletic and nonathletic populations.",book:{id:"5269",slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Nikolaos E. Koundourakis and Andrew N. Margioris",authors:[{id:"181819",title:"Dr.",name:"Nikolaos",middleName:"E",surname:"Koundourakis",slug:"nikolaos-koundourakis",fullName:"Nikolaos Koundourakis"}]},{id:"52555",doi:"10.5772/64518",title:"Synthesis of Low Abundant Vitamin D Metabolites and Assaying Their Distribution in Human Serum by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) as a New Tool for Diagnosis and Risk Prediction of Vitamin DRelated Diseases",slug:"synthesis-of-low-abundant-vitamin-d-metabolites-and-assaying-their-distribution-in-human-serum-by-li",totalDownloads:1882,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"This chapter provides an overview of versatile and efficient chemical syntheses of vitamin D derivatives by application of either linear or convergent synthesis approaches. Synthesis of the most relevant naturally occurring vitamin D metabolites and their deuterated counterparts to use as calibration and reference standards in LC-MS/MS assays is also shown. The chapter then summarizes the most important mass spectrometric approaches to quantify important vitamin D metabolites in human biofluids. In addition, new developments are described that are aimed at the pathobiological interpretation of the measured vitamin D metabolite distributions in various human diseases.",book:{id:"5269",slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Lars Kattner and Dietrich A. Volmer",authors:[{id:"181793",title:"Dr.",name:"Lars",middleName:null,surname:"Kattner",slug:"lars-kattner",fullName:"Lars Kattner"},{id:"186108",title:"Prof.",name:"Dietrich A.",middleName:null,surname:"Volmer",slug:"dietrich-a.-volmer",fullName:"Dietrich A. Volmer"}]}],mostDownloadedChaptersLast30Days:[{id:"54240",title:"Vitamin D and Human Reproduction",slug:"vitamin-d-and-human-reproduction",totalDownloads:2152,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"Vitamin D is one of the steroid hormones. The precursor of vitamin D, 7-dehydrocholesterol, which is an intermediary for cholesterol pathway, is available in the skin. Ultraviolet B (UVB) radiation makes the transformation of 7-dehydrocholesterol to provitamin D3, which automatically isomerizes to cholecalciferol (vitamin D3). Vitamin D3 is secreted into blood circulation and carried by the vitamin D–binding protein (VDBP). Around 80–90% of vitamin D is from sunlight-derived production in the skin. A little amount of vitamin D is also extracted from foods and/or additional supplementation. Vitamin D has been well known for its function in maintaining calcium and phosphorus homeostasis and promoting bone mineralization. Accumulating evidence from animal and human studies suggests that vitamin D also modulates reproductive processes in women and men and is involved in many functions of the reproductive system. Vitamin D receptor (VDR) and vitamin D–metabolizing enzymes are found in reproductive tissues of women and men. This chapter presents an up-to-date review for describing the function of vitamin D in female reproduction throughout reproductive ages from menarche to menopause, during pregnancy and lactation, and some disorders affecting women and also the role of vitamin D applied to male fertility.",book:{id:"5269",slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Fahimeh Ramezani Tehrani and Samira Behboudi-Gandevani",authors:[{id:"171267",title:"Prof.",name:"Fahimeh",middleName:null,surname:"Ramezani Tehrani",slug:"fahimeh-ramezani-tehrani",fullName:"Fahimeh Ramezani Tehrani"}]},{id:"52311",title:"Vitamin D and Physical Activity",slug:"vitamin-d-and-physical-activity",totalDownloads:2190,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Vitamin D is synthesized in the skin following exposure to ultraviolet radiation, producing cholecalciferol, while only a small percentage of the circulating vitamin D is of exogenous origin deriving from food. Following two sequential hydroxylations, in the liver and in the kidneys, vitamin D is fully activated. Although its role in bone physiology and calcium homeostasis is well documented, there is emerging evidence that vitamin D exerts a plethora of additional effects on most tissues regulating the musculoskeletal, cardiovascular, and immune systems as well as energy homeostasis. Its deficiency/insufficiency poses a major public health problem observed in all age groups and regardless of latitude and insolation. In muscles, vitamin D deficiency is associated with a decline in neuromuscular function including muscular strength, walking speed, balance, jumping and sprinting performance, and aerobic capacity, although the evidence is still weak regarding its effects in the young and the athletes. Supplementation counteracts the negative effects of vitamin D deficiency on performance although in individuals with adequate levels of vitamin D, additional supplementation does not appear to enhance further physical capabilities. The aim of this chapter is to review our current understanding of diverse effects of vitamin D in physical performance in athletic and nonathletic populations.",book:{id:"5269",slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Nikolaos E. Koundourakis and Andrew N. Margioris",authors:[{id:"181819",title:"Dr.",name:"Nikolaos",middleName:"E",surname:"Koundourakis",slug:"nikolaos-koundourakis",fullName:"Nikolaos Koundourakis"}]},{id:"52525",title:"Vitamin D in Oxidative Stress and Diseases",slug:"vitamin-d-in-oxidative-stress-and-diseases",totalDownloads:2175,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"The data described in this chapter consider some new information about the benefits of vitamin D3 comparing the results obtained by the authors on the effects of vitamin D3 during oxidative stress with other works available in the literature. In particular, vitamin D3 can induce a concentration-dependent increase in endothelial NO production through eNOS activation consequential to the phosphorylation of p38, AKT, and ERK. Additional information obtained by the author is about the ability of vitamin D3 to prevent the endothelial cell death through modulation of interplay between apoptosis and autophagy. This effect is obtained by inhibiting superoxide anion generation, maintaining mitochondria function and cell viability, activating survival kinases (ERK and Akt), and inducing NO production. The results also describe that vitamin D3 causes human endothelial cell proliferation and migration in a 3-D matrix through NO-dependent mechanisms. These findings support the role of vitamin D3 in the human angiogenic process, suggesting new applications for vitamin D3 in tissue repair and wound healing. Finally, that the authors have demonstrated the ability of vitamin D3 to counteract negative effects of oxidative stress in brain cells. These data suggest the potential therapeutic use of vitamin D to treat or prevent degenerative brain diseases.",book:{id:"5269",slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Francesca Uberti, Vera Morsanuto and Claudio Molinari",authors:[{id:"181353",title:"Dr.",name:"Francesca",middleName:null,surname:"Uberti",slug:"francesca-uberti",fullName:"Francesca Uberti"},{id:"185861",title:"Dr.",name:"Vera",middleName:null,surname:"Morsanuto",slug:"vera-morsanuto",fullName:"Vera Morsanuto"},{id:"185862",title:"Prof.",name:"Claudio",middleName:null,surname:"Molinari",slug:"claudio-molinari",fullName:"Claudio Molinari"}]},{id:"52248",title:"Immunomodulatory Effect of Vitamin D in Children with Allergic Diseases",slug:"immunomodulatory-effect-of-vitamin-d-in-children-with-allergic-diseases",totalDownloads:1530,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The discovery that many cells express vitamin D receptors and the recognition of widespread vitamin D insufficiency has stimulated interest in the potential role of vitamin D in nonskeleton conditions. There is an increasing evidence to support the role of vitamin D pathway in the regulation of the function of both innate and adoptive immune systems. Vitamin D regulates immune function by inhibiting the differentiation and maturation of human dendritic cells, enhancing interleukin (IL)-10 and tumor growth factor-β (TGF-β) secretion and inhibiting T-cell functions. Vitamin D has the ability to suppress inflammatory cytokines, such as tumor necrosis factor (TNF), interleukin-1 (IL-1), interferon gamma (IFN-γ), and interleukin-2 (IL-2), while it increases the generation of anti-inflammatory cytokines IL-4 and IL-10. In B cells, vitamin D3 has also been shown to suppress immunoglobulin E (IgE) antibody class switch partly through the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB).",book:{id:"5269",slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Iwona Stelmach, Joanna Jerzyńska and Daniela Podlecka",authors:[{id:"178132",title:"Prof.",name:"Iwona",middleName:null,surname:"Stelmach",slug:"iwona-stelmach",fullName:"Iwona Stelmach"},{id:"185489",title:"Dr.",name:"Joanna",middleName:null,surname:"Jerzyńska",slug:"joanna-jerzynska",fullName:"Joanna Jerzyńska"},{id:"185490",title:"Dr.",name:"Daniela",middleName:null,surname:"Podlecka",slug:"daniela-podlecka",fullName:"Daniela Podlecka"}]},{id:"52040",title:"Vitamin D and Female Reproduction",slug:"vitamin-d-and-female-reproduction",totalDownloads:1991,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Vitamin D deficiency has an impact on the reproduction of more than 40% of reproductive age women globally. Fibroids are more common among African-American females owing to their decreased milk consumption and reduced absorption of ultraviolet rays, supporting the relation between vitamin D deficiency and fibroid development. Vitamin D has an inhibitory effect on leiomyoma cells by suppression of proliferation cell nuclear antigen (PCNA), BCL-2, BCL-w, CDK1, and catechol-O-methyltransferase (COMT) protein levels. A growing evidence support the relationship between vitamin D deficiency and endometriosis through overexpression of vitamin D recseptor (VDR) and α-hydroxylase enzyme, however, it is still unclear if the endometriosis patients could benefit from vitamin D supplementation. Effect of vitamin D supplementation on the metabolic outcomes of polycystic ovary (PCO) has been studied and reveled that it is negatively correlated with fasting glucose, fasting insulin, triglycerides, C-reactive protein, free androgen index, and Dehydroepiandrosterone (DHEAS) and positively associated with quantitative insulin sensitivity check index (QUICKI), high density lipoprotein cholesterol (HDL-C), and sexual hormone binding globulin (SHBG), whereas its impact on the ovarian function is still unclear. Vitamin D deficiency may worse the obstetrical outcomes, including preeclampsia, gestational diabetes, low birth weight, increased cesarean section rate, neonatal asthma, seizures, and preterm labor. The relationship between serum levels of 25-hydroxy-vitamin D (25(OH) D) and pregnancy rates in ART is still debatable, with the need to conduct more clinical trials toward it. The in vitro antiproliferative and prodifferentiative effect of vitamin D might find a role in control of hyperplastic overactive bladder. Several studies support that vitamin D deficiency constitutes a risk factor for development of many types of cancer such as breast, ovarian, and colorectal.",book:{id:"5269",slug:"a-critical-evaluation-of-vitamin-d-basic-overview",title:"A Critical Evaluation of Vitamin D",fullTitle:"A Critical Evaluation of Vitamin D - Basic Overview"},signatures:"Heba Elhusseini, Daria Lizneva, Larisa Gavrilova-Jordan, Noura\nEziba, Mohamed Abdelaziz, Soumia Brakta, Sunil Halder and\nAyman Al-Hendy",authors:[{id:"181842",title:"Prof.",name:"Ayman",middleName:null,surname:"Al-Hendy",slug:"ayman-al-hendy",fullName:"Ayman Al-Hendy"},{id:"185772",title:"Dr.",name:"Heba",middleName:null,surname:"Elhusseini",slug:"heba-elhusseini",fullName:"Heba Elhusseini"},{id:"185773",title:"Dr.",name:"Daria",middleName:null,surname:"Lizneva",slug:"daria-lizneva",fullName:"Daria Lizneva"},{id:"185774",title:"Dr.",name:"Larisa",middleName:null,surname:"Gavrilova-Jordan",slug:"larisa-gavrilova-jordan",fullName:"Larisa Gavrilova-Jordan"},{id:"185775",title:"Dr.",name:"Noura",middleName:null,surname:"Eziba",slug:"noura-eziba",fullName:"Noura Eziba"},{id:"185776",title:"Dr.",name:"Mohamed",middleName:null,surname:"Abdelaziz",slug:"mohamed-abdelaziz",fullName:"Mohamed Abdelaziz"},{id:"185777",title:"Dr.",name:"Soumia",middleName:null,surname:"Brakta",slug:"soumia-brakta",fullName:"Soumia Brakta"},{id:"185778",title:"Prof.",name:"Sunil",middleName:null,surname:"Halder",slug:"sunil-halder",fullName:"Sunil Halder"}]}],onlineFirstChaptersFilter:{topicId:"1204",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:289,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 27th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:52,paginationItems:[{id:"80761",title:"Extractions Methods and Biological Applications of Essential Oils",doi:"10.5772/intechopen.102955",signatures:"Sonu Kumar Mahawer, Himani, Sushila Arya, Ravendra Kumar and Om Prakash",slug:"extractions-methods-and-biological-applications-of-essential-oils",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81545",title:"Physiochemical Properties of Essential Oils and Applications",doi:"10.5772/intechopen.104112",signatures:"Sunil Kumar Yadav",slug:"physiochemical-properties-of-essential-oils-and-applications",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:4,paginationItems:[{id:"11445",title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",hash:"d980826615baa6e33456e2a79064c5e8",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 29th 2022",isOpenForSubmission:!0,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 14th 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:51,paginationItems:[{id:"81545",title:"Physiochemical Properties of Essential Oils and Applications",doi:"10.5772/intechopen.104112",signatures:"Sunil Kumar Yadav",slug:"physiochemical-properties-of-essential-oils-and-applications",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:10,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:20,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"15",type:"subseries",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11411,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},onlineFirstChapters:{paginationCount:21,paginationItems:[{id:"80761",title:"Extractions Methods and Biological Applications of Essential Oils",doi:"10.5772/intechopen.102955",signatures:"Sonu Kumar Mahawer, Himani, Sushila Arya, Ravendra Kumar and Om Prakash",slug:"extractions-methods-and-biological-applications-of-essential-oils",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81545",title:"Physiochemical Properties of Essential Oils and Applications",doi:"10.5772/intechopen.104112",signatures:"Sunil Kumar Yadav",slug:"physiochemical-properties-of-essential-oils-and-applications",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:50,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80959",title:"Biological Application of Essential Oils and Essential Oils Components in Terms of Antioxidant Activity and Inhibition of Cholinesterase Enzymes",doi:"10.5772/intechopen.102874",signatures:"Mejra Bektašević and Olivera Politeo",slug:"biological-application-of-essential-oils-and-essential-oils-components-in-terms-of-antioxidant-activ",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80859",title:"Antioxidant Effect and Medicinal Properties of Allspice Essential Oil",doi:"10.5772/intechopen.103001",signatures:"Yasvet Yareni Andrade Avila, Julián Cruz-Olivares and César Pérez-Alonso",slug:"antioxidant-effect-and-medicinal-properties-of-allspice-essential-oil",totalDownloads:34,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80777",title:"Starch: A Veritable Natural Polymer for Economic Revolution",doi:"10.5772/intechopen.102941",signatures:"Obi P. Adigwe, Henry O. Egharevba and Martins O. Emeje",slug:"starch-a-veritable-natural-polymer-for-economic-revolution",totalDownloads:44,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80673",title:"Teucrium ramosissimum Derived-Natural Products and Its Potent Effect in Alleviating the Pathological Kidney Damage in LPS-Induced Mice",doi:"10.5772/intechopen.102788",signatures:"Fatma Guesmi and Ahmed Landoulsi",slug:"teucrium-ramosissimum-derived-natural-products-and-its-potent-effect-in-alleviating-the-pathological",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80600",title:"Essential Oil as Green Preservative Obtained by Ecofriendly Extraction Techniques",doi:"10.5772/intechopen.103035",signatures:"Nashwa Fathy Sayed Morsy",slug:"essential-oil-as-green-preservative-obtained-by-ecofriendly-extraction-techniques",totalDownloads:61,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Nashwa",surname:"Morsy"}],book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79875",title:"Comparative Study of the Physiochemical Composition and Techno-Functional Properties of Two Extracted Acorn Starches",doi:"10.5772/intechopen.101562",signatures:"Youkabed Zarroug, Mouna Boulares, Dorra Sfayhi and Bechir Slimi",slug:"comparative-study-of-the-physiochemical-composition-and-techno-functional-properties-of-two-extracte",totalDownloads:51,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80395",title:"History, Evolution and Future of Starch Industry in Nigeria",doi:"10.5772/intechopen.102712",signatures:"Obi Peter Adigwe, Judith Eloyi John and Martins Ochubiojo Emeje",slug:"history-evolution-and-future-of-starch-industry-in-nigeria",totalDownloads:53,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80168",title:"Benzimidazole: Pharmacological Profile",doi:"10.5772/intechopen.102091",signatures:"Mahender Thatikayala, Anil Kumar Garige and Hemalatha Gadegoni",slug:"benzimidazole-pharmacological-profile",totalDownloads:75,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80122",title:"Pharmaceutical and Therapeutic Potentials of Essential Oils",doi:"10.5772/intechopen.102037",signatures:"Ishrat Nazir and Sajad Ahmad Gangoo",slug:"pharmaceutical-and-therapeutic-potentials-of-essential-oils",totalDownloads:129,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80130",title:"Exploring the Versatility of Benzimidazole Scaffolds as Medicinal Agents: A Brief Update",doi:"10.5772/intechopen.101942",signatures:"Gopakumar Kavya and Akhil Sivan",slug:"exploring-the-versatility-of-benzimidazole-scaffolds-as-medicinal-agents-a-brief-update",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80018",title:"Potato Starch as Affected by Varieties, Storage Treatments and Conditions of Tubers",doi:"10.5772/intechopen.101831",signatures:"Saleem Siddiqui, Naseer Ahmed and Neeraj Phogat",slug:"potato-starch-as-affected-by-varieties-storage-treatments-and-conditions-of-tubers",totalDownloads:92,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80023",title:"Binary Interactions and Starch Bioavailability: Critical in Limiting Glycemic Response",doi:"10.5772/intechopen.101833",signatures:"Veda Krishnan, Monika Awana, Debarati Mondal, Piyush Verma, Archana Singh and Shelly Praveen",slug:"binary-interactions-and-starch-bioavailability-critical-in-limiting-glycemic-response",totalDownloads:78,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79964",title:"The Anticancer Profile of Benzimidazolium Salts and their Metal Complexes",doi:"10.5772/intechopen.101729",signatures:"Imran Ahmad Khan, Noor ul Amin Mohsin, Sana Aslam and Matloob Ahmad",slug:"the-anticancer-profile-of-benzimidazolium-salts-and-their-metal-complexes",totalDownloads:92,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 26th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:289,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"onlineFirst.detail",path:"/online-first/80978",hash:"",query:{},params:{id:"80978"},fullPath:"/online-first/80978",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()