Summary of functions of DHEA related to development and aging.
\r\n\t
",isbn:"978-1-80356-363-3",printIsbn:"978-1-80356-362-6",pdfIsbn:"978-1-80356-364-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"969d1c6315b04584c2f011e03dad69c2",bookSignature:"Dr. Mansoor Zoveidavianpoor",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11929.jpg",keywords:"Drilling Performance, Drilling Tools, Well Design, Drilling Procedure, Rotary Drilling, Directional Drilling, Measuring-While-Drilling, Smart Well Technology, Environment Protection, Geothermal Drilling, Sustainable Drilling Fluids, Carbon Sequestration",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 18th 2022",dateEndSecondStepPublish:"March 18th 2022",dateEndThirdStepPublish:"May 17th 2022",dateEndFourthStepPublish:"August 5th 2022",dateEndFifthStepPublish:"October 4th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Zoveidavianpoor has over 18 years of multidisciplinary oil and gas experience, built upon his technical, operational, and management roles in the industry and academia. He is a member of the Society of Petroleum Engineers (SPE), the Energy Institute, UK and is registered as a chartered petroleum engineer. He has published more than 50 publications on International peer-reviewed Journals and conferences, has contributed to 5 textbooks, and served in many scientific committees.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"92105",title:"Dr.",name:"Mansoor",middleName:null,surname:"Zoveidavianpoor",slug:"mansoor-zoveidavianpoor",fullName:"Mansoor Zoveidavianpoor",profilePictureURL:"https://mts.intechopen.com/storage/users/92105/images/system/92105.jpg",biography:"Dr. Mansoor Zoveidavianpoor has over 24 years of experience, built upon his technical, operational, and management roles in the industry and academia. Mansoor holds a BSc degree in Geology, MSc, and Ph.D. degrees both in Petroleum Engineering. He was involved in different disciplines such as project management, geology, flow assurance, piping construction, artificial intelligence, environmental engineering, drilling and production engineering, He has lectured several courses at the University Technology Malaysia (UTM), Petroleum University of Technology (PUT), and Islamic Azad University (IAU). He is a member of the Society of Petroleum Engineers (SPE) and registered as a Chartered Petroleum Engineer at Energy Institute, and EIA subject specialist at DOE Malaysia. He has published more than 50 publications on International peer-reviewed Journals and conferences, has contributed to 5 textbooks, and served in many scientific committees. Currently, he is working as an Associate Professor at UTM and involved in several consultancies in petroleum engineering and energy transition. Mansoor is actively involved in multidisciplinary studies and currently, his main focus is on Energy Transition.",institutionString:"PETRONAS",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"440212",firstName:"Elena",lastName:"Vracaric",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/440212/images/20007_n.jpg",email:"elena@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6561",title:"Current Topics in the Utilization of Clay in Industrial and Medical Applications",subtitle:null,isOpenForSubmission:!1,hash:"e80257a8be3236c4d1ae37c21b7d2671",slug:"current-topics-in-the-utilization-of-clay-in-industrial-and-medical-applications",bookSignature:"Mansoor Zoveidavianpoor",coverURL:"https://cdn.intechopen.com/books/images_new/6561.jpg",editedByType:"Edited by",editors:[{id:"92105",title:"Dr.",name:"Mansoor",surname:"Zoveidavianpoor",slug:"mansoor-zoveidavianpoor",fullName:"Mansoor Zoveidavianpoor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5811",title:"Recent Insights in Petroleum Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"33b7777178f4a179ba475e3e15405427",slug:"recent-insights-in-petroleum-science-and-engineering",bookSignature:"Mansoor Zoveidavianpoor",coverURL:"https://cdn.intechopen.com/books/images_new/5811.jpg",editedByType:"Edited by",editors:[{id:"92105",title:"Dr.",name:"Mansoor",surname:"Zoveidavianpoor",slug:"mansoor-zoveidavianpoor",fullName:"Mansoor Zoveidavianpoor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6829",title:"Petroleum Chemicals",subtitle:"Recent Insight",isOpenForSubmission:!1,hash:"058919afbb548d3448e70238b4637e84",slug:"petroleum-chemicals-recent-insight",bookSignature:"Mansoor Zoveidavianpoor",coverURL:"https://cdn.intechopen.com/books/images_new/6829.jpg",editedByType:"Edited by",editors:[{id:"92105",title:"Dr.",name:"Mansoor",surname:"Zoveidavianpoor",slug:"mansoor-zoveidavianpoor",fullName:"Mansoor Zoveidavianpoor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"58381",title:"Dehydroepiandrosterone (DHEA) and DHEA Sulfate: Roles in Brain Function and Disease",doi:"10.5772/intechopen.71141",slug:"dehydroepiandrosterone-dhea-and-dhea-sulfate-roles-in-brain-function-and-disease",body:'\nDehydroepiandrosterone (DHEA) is the principal carbon (C)-19 steroid produced by the adrenal gland in humans and mammals [1]. DHEA and its sulfated derivative DHEAS are multifunctional steroids with actions in a wide variety of physiological systems, with effects on the brain [2], immune systems [3], and somatic growth and development [4, 5]. Although DHEA and DHEAS were identified more than 50 years ago, there remains some uncertainty as to their physiological significance, full mechanisms of action [6, 7, 8, 9], and their roles in human disease.
\nIn humans, DHEA is a crucial precursor of sex steroid biosynthesis and exerts indirect endocrine and intracrine actions following conversion to androgens and estrogens. In addition, DHEA acts as a neurosteroid via its effects on neurotransmitter receptors in the brain. The potential health significance of DHEA in humans is highlighted by the observation that serum concentrations decrease steadily with age, approaching lowest concentrations around the time at which many diseases of aging, particularly neurocognitive decline, become apparent. The age-related decline in DHEA levels [10] has led to the suggestion that this is associated with a decrease in cognitive function as well as the increased rates of neuronal degeneration and dysfunction that occur during aging [11, 12]. Other studies have reported altered DHEA serum concentrations in patients with conditions such as schizophrenia [13], dementia [14], and Alzheimer’s disease (AD) [13, 15, 16, 17, 18]. Due to these associations, DHEAS has been widely publicized both in the lay press [19, 20] and in the scientific literature [21, 22] for their putative anti-aging and neuroprotective effects. This has sparked controversial speculation that DHEA treatment might be a remedy for neuropsychiatric and neurodegenerative disorders [7, 23, 24, 25, 26, 27] and, even more optimistically, that it is a hormone with the potential to increase the life span [28].
\nAs promising as these speculations may seem, there are many contradictions about the roles of DHEA in normal and degenerative brain function. This is especially evident when comparing preclinical and clinical data. For example, studies in animals show a myriad of neuroprotective and trophic effects of DHEAS in development and disease, while clinical studies show inconsistent, and sometimes highly conflicting, results. Clinical studies of neurodegenerative diseases have variously reported increased or decreased DHEAS concentrations in serum, cerebrospinal fluid, and brain tissue, leading to doubt as to the role of DHEA in the neuropathology of aging. It has been suggested that the incongruity in measured DHEAS concentrations may lie in the methodological differences used to sample DHEAS; however, it is possible that these changes are indicative of a more nuanced and multifaceted role. There is consistent evidence that DHEA is neuroprotective with respect to oxidative stress, neuroinflammation, and excitotoxicity, and thus it is possible that DHEA assists the defense of the brain and has a beneficial effect on cognition in healthy brains. Therefore, it is the aim of this review to briefly discuss the physiology of DHEA and its synthesis and secretion during development and aging and to discuss the relationship between alterations in DHEA concentrations and cognition. We further discuss the possible role of DHEAS in a variety of disease states, including AD, and acute illnesses such as schizophrenia, with focus on the fact that these conditions are characterized by imbalances in oxidative stress, neuroinflammation, and excitotoxicity.
\nIn humans, DHEA is one of the most abundant hormones synthesized and secreted by the adrenal cortex. This C19 steroid displays an episodic and diurnal rhythm of synthesis and release that parallels that of cortisol [29, 30]. The major synthetic pathways for DHEA and DHEAS are shown in Figure 1. The
The complete steroid pathway showing the formation of DHEA from pregnenolone and 17OH-pregnenolone, and its reversible sulfation, and disposition via androstenes to estradiol and 5α-dihydroxytestosterone. Steroid metabolites identified in serum and urines are shown in light gray boxes and dark gray boxes, respectively. From Greaves et al. [
DHEAS is the precursor of approximately 50% of androgens in adult men, 75% of active estrogens in premenopausal women, and almost 100% of active estrogens after menopause [36]. DHEA has a 3- to 10-fold predominance of androgenic over estrogenic activity [37], and although a small portion of the circulating pool of DHEA is of gonadal origin in men and women, the majority of DHEA, and virtually all DHEAS, is produced by the adrenal cortex [1]. However, DHEA is also synthesized in the brain, from cholesterol and other hormonal precursors, primarily by astrocytes and oligodendrocytes; indeed, much higher concentrations of DHEAS are found in the brain than in the serum, suggesting that the DHEAS is primarily synthesized
The specific receptors that bind DHEA as a ligand have been of great interest for over 20 years. The biological actions of DHEA and its metabolites are mediated through androgen receptors or estrogen receptors, which belong to the nuclear receptor steroid-receptor subfamily [39]. DHEA has been found to exert both agonistic and antagonistic effects on the androgen receptor, and it acts as an agonist at both the estrogen receptor-α and estrogen receptor-β sites, with a binding preference for estrogen receptor-β [40, 41]. In the brain, DHEA is thought to affect neuronal excitability by modulating the
In humans, the patterns of DHEA synthesis and secretion change markedly throughout life. In the last months of gestation, the fetal adrenal can synthesize and release considerable amounts of DHEA and DHEAS, which together with estrogen and progesterone produced by the placenta play pivotal roles in the maintenance and endocrine control of pregnancy [51]. Although the plasma concentrations of DHEAS remain high in the newborn, they decrease quickly as the fetal zone of the adrenal gland involutes after birth. From 1 to 6 years of age, the adrenal gland secretes very low concentrations of DHEAS and androstenedione [52]. However at approximately 7–8 years of age, the adrenal zona reticularis increases the production of DHEAS and androstenedione, all of which are C19 steroids that exert androgenic activity in several tissues by converting into potent androgens [36]. This pre-pubertal phenomenon is known as adrenarche, a biochemical, endocrine, and morphological event hypothesized to have evolved only in humans and higher primates. From an evolutionary point of view, adrenarche may be related to the highly coordinated events associated with human growth and organ maturation, particularly of the brain [53, 54, 55].
\nFollowing the onset of adrenarche, plasma concentrations of DHEAS differ between the sexes, with levels of DHEAS being about 2-fold higher in males than in females (Figure 2). This difference may reflect secretion of these androgens by the testes [10, 57], but it has also been proposed that the higher concentration of DHEAS in men may be attributable to steroid sulfatase, which degrades androgens. The gene for steroid sulfatase is located on the X chromosome, and in having only one copy of the gene, men may have less steroid sulfatase and consequently higher DHEAS concentrations [58].
\nConcentrations of serum DHEAS as a function of age in females and males. Values are high in cord blood and immediately after birth, fall in the first months of life as the fetal adrenal zone involutes, and remain low until the onset of adrenarche at about age 8 years in girls and age 9 years in boys. Peak DHEAS concentrations are usually higher in males than in females. In both sexes, the concentrations of DHEAS decline slowly during the adult years. From Miller [
Maximal plasma concentrations of DHEAS normally occur at 20–30 years of age (Figure 2), followed by a progressive decline in adrenal production in both males and females, until serum concentrations of DHEAS return to pre-adrenarche levels in persons over 80 years of age [59, 60]. The magnitude of this decline is such that serum levels of DHEAS in elderly adults are only around 10–20% of those in young adults [1, 61]. The diminution in adrenal androgens with aging is often termed ‘adrenopause.’ It has been suggested that adrenopause is associated with a generalized reduction in the 17,20 lyase activity of P450c17 in the zona reticularis of the adrenal gland [62]. Interestingly, it has been shown that the zona reticularis of older men is reduced in size when compared to the adrenals of young men [63], suggesting that at least part of the age-associated decrease in adrenal androgens might relate to a reduction in the number of DHEA-secreting cells in the zona reticularis itself. Although the underlying mechanisms regarding this change must be further elucidated, the temporal association between falling DHEA concentrations and the onset of age-related diseases has led many investigators to suggest that some age-related neurological disorders such as AD and dementia may be partly attributable to the decrease in systemic DHEA concentrations [11].
\nThe gradual decline in serum concentrations from the peak at 20–30 years of age has led to speculations that low DHEA concentrations could have a negative effect on cognitive function in later life. It has been hypothesized that rise in DHEA concentrations from 6 to 8 years until 20–30 years of age might be associated with the extended period of cortical maturation in humans [55]. While numerous animal studies have shown that DHEA can modulate cognitive performance, the outcomes of such studies in humans are less clear. For example, one study reported that DHEA supplementation improves cognitive performance in young men [64], whereas other studies detected no benefit in an older group who were predominantly male and were HIV-1 seropositive [65]. DHEA supplementation does not appear to improve cognition in the elderly [66].
\nA study evaluating the cognitive domains of working memory, executive function, and word processing speed in men and women aged between 60 and 88 years with low serum DHEAS concentrations found a positive association between serum DHEAS and working memory [67]. However, the relationship was sex-specific, with a trend toward a better executive function in men only. Other studies in males have shown that increased endogenous androgen concentrations (following cessation of chemical castration in males) resulted in improved performance on the Cambridge Cognitive Examination (part of the Cambridge Examination for Mental Disorders of the Elderly, a global measure of cognition and memory) and verbal recall tests [68]. A study in a population of older healthy women (aged 21–77 years) further indicated that women with high serum concentrations of DHEAS had increased performance on a variety of cognitive tests, including better verbal, visual, and spatial abilities; working memory; attention; concentration; and accuracy [69]. In older men and women in an Italian cohort, low DHEAS levels were significant predictors of accelerated decline in Mini-Mental State Examination score during the 3-year follow-up period [70]. Despite these associations, Mazat et al. [71] reported no significant role for serum DHEAS concentrations as a predictor of cognitive decline in an elderly population, while other studies conducted in frail elderly patients and nursing home residents found an inverse relationship between DHEAS levels and cognitive abilities [72, 73].
\nWhile the reasons for the conflicting data on DHEAS and cognition require further investigation, the changes in cognition are likely to be reflective of interactions with both the GABAergic and glutamatergic pathways, and possibly through the mediator brain-derived neurotrophic factor (BDNF). Neurosteroids have contrasting effects on GABAA receptors, which when activated result in chloride entry into the cell, hyperpolarization, and reduced membrane excitability [48]. Reduced metabolites of progesterone and deoxycorticosterone have an agonistic effect on GABAA receptors, resulting in chloride ion movement into the cell. In contrast, DHEAS is a GABAA antagonist and thus increases the likelihood of membrane depolarization [48, 74]. Animal studies have shown that acute exposure to DHEAS may facilitate basal synaptic transmission in the CA1 region of the hippocampus through the non-competitive potentiation of GABAA receptors [75, 76, 77]. In terms of learning and memory, studies have shown that acute administration of DHEAS facilitates primed-burst potentiation, but not the induction of long-term potentiation [78], whereas long-term potentiation is stimulated by the chronic administration of DHEAS [79].
\nIn addition to GABAA receptor modulation, neurosteroids have been found to interact in a structure-specific manner with glutamatergic NMDA receptors. DHEAS potentiates the neuronal response to NMDA in the rat hippocampus [80]. These steroids also act as non-selective sigma-1 receptor antagonists [81], thus suppressing the activity of NMDA receptors, which are central to the process of excitotoxicity [82]. In addition, DHEAS may reduce the cytoplasmic Ca2+-induced loss of mitochondrial membrane potential by preventing Ca2+ influx into the mitochondrial matrix [83]. The neuroprotective effect of DHEA against NMDA-induced excitotoxicity may also involve the calcium/nitric oxide signaling pathway, since DHEA has been shown to inhibit NMDA-induced nitric oxide synthase activity and the production of nitric oxide in primary cultures of hippocampal neurons [84].
\nThe potential of DHEAS to modulate the activity of NMDA receptors through a variety of mechanisms is likely to underpin their capacity to protect neurons from excitotoxicity when high levels of extracellular glutamate are present. Of note, glutamate excitotoxicity has been implicated in AD [85] (discussed further below), where a reduction in neurosteroid production may compromise the intrinsic defense mechanisms of the central nervous system (CNS). Another possible mechanism by which DHEAS could promote neurogenesis and neuronal survival in the CNS is through the mediation of the neurotrophin BDNF [86, 87].
\nBDNF is expressed in several areas of the CNS and is necessary for cell proliferation and differentiation [88, 89]. In addition, BDNF plays a vital role in neural plasticity, enhances long-term potentiation, and promotes learning and memory [90, 91]. As such, a mutation or deletion of the BDNF gene in mice results in learning deficits and long-term potentiation impairment [92, 93], as well as decreased learning and memory in behavioral paradigms [90]. In humans, low plasma BDNF is associated with impairments in memory and general cognitive function in aging women [94].
\nA recent study investigated the effect of DHEA on cognition and learning in a rat model of vascular dementia [86] and found that DHEA treatment significantly preserved working and reference memory, which was accompanied by a significant increase in the levels of acetylcholine, norepinephrine, and dopamine in the brain. Of note was a significant increase in the hippocampal expression of BDNF after DHEA treatment [86]. In a rodent model, Naert et al., [95] showed that DHEAS treatment can lead to biphasic increases in BDNF in the hippocampus and amygdala, but decreased BDNF concentrations in the hypothalamus. It is interesting to note that glucocorticoids are also involved in BDNF regulation [27, 96], where stress has been found to decrease the expression of BDNF, leading to neuronal atrophy and degeneration in the hippocampus and the cortex, a process that may be common to both development and aging [97, 98]. These findings are important, considering, that BDNF expression is also altered in acute psychiatric disorders such as major depression [99, 100] and schizophrenia [101], as well as in neurodegenerative diseases such as AD [102].
\nAD is a chronic neurodegenerative disorder characterized by progressive memory loss and cognitive deterioration. It is the most common form of dementia, affecting about 50 million people worldwide [103], with the majority of cases in the elderly population, which presents global health and economic challenges [104]. Currently, there are no disease-modifying therapies available to treat AD [105], and it represents a major unmet need in neurological research and patient management. The neuropathological hallmarks of AD include neurofibrillary tangles, which are formed when the neuronal cytoskeletal protein tau becomes hyperphosphorylated and precipitates, and also amyloid plaques, which are abnormal deposits of extracellular protein that accumulate after cleavage of the β-amyloid precursor protein [106]. Other degenerative changes include cerebral amyloid angiopathy, glial inflammatory responses, and synaptic loss. These processes ultimately lead to neuronal atrophy, white matter loss, and a reduction in the volumes of the entorhinal, temporal, and frontal cortices as well as the hippocampus [107], followed by devastating clinical sequelae and resultant morbidity and mortality [108].
\nSporadic AD is the predominant form of the disease, present in more than 95% of patients, and it usually occurs after 65 years of age [109]. The etiology of sporadic AD is multifactorial and may be associated with a number of risk factors including advancing age [110, 111], increased oxidative stress [112, 113], autoimmunity [114], and excess glucocorticoids [115, 116, 117]. Although serum DHEA levels decrease with age, the majority of studies have reported that serum DHEAS levels in AD patients are even lower than in age-matched healthy controls. For instance, Yanase et al. [18] found that patients with AD or cerebrovascular dementia had lower concentrations of serum DHEAS and a lower DHEAS/DHEA ratio when compared to controls. Several other clinical studies have reported lower serum concentrations of DHEAS in patients with AD [14, 118, 119, 120], a reduction paralleled by decreases in the brain and cerebral spinal fluid [121, 122]. For instance, Weill-Engerer and colleagues [108] reported that not only are brain levels of DHEAS significantly lower in AD, but also the lower levels are inversely correlated with the presence of phosphorylated tau and β-amyloid. A few studies have not detected differences in serum DHEAS concentrations between AD patients and controls [120, 123], and there is one report that serum DHEAS levels are increased in mild-moderate AD [124]. The reasons for these differences between studies have not yet been elucidated.
\nIn contrast to the majority of studies, Naylor and colleagues [125] reported that cerebral spinal fluid levels of DHEA are significantly elevated in AD, as are tissue levels in the temporal cortex, with the extent of elevation being correlated with disease severity, as assessed by the burden of β-amyloid plaques. Similarly, Brown and colleagues [126] reported increased DHEA concentrations in the brains and cerebral spinal fluid of patients with AD when compared with controls, even though mean serum concentrations of DHEA did not differ. Interestingly, in this study, DHEA concentrations were highest in the hippocampus of AD patients, a region that does not express P450c17. Brown and colleagues speculated that the higher concentrations of DHEA in the hippocampus may have been produced by an as-yet-unknown pathway that involved the oxidation of an unknown precursor. This speculation has been given support by the finding that the addition of redox-active ferrous iron to serum samples causes a significant increase in the amount of detectable DHEA [127]. It is also supported by the demonstration that oxidative stress associated with the presence of β-amyloid treatment induces DHEA synthesis in human and rodent cells
Another link to the pathogenesis and progression of AD comes from the anti-inflammatory properties of DHEA [132]. Hence, the local production of DHEA in the AD brain may function, at least in part, to reduce the level of inflammation that would otherwise be injurious to neurons if left unchecked. Serum levels of DHEAS have been shown to negatively correlate with serum interleukin-6 (IL-6), to inhibit IL-6 secretion from human mononuclear cells [133], and to inhibit cytokine-stimulated, NF-κB–mediated transcription, partly through an antioxidant property [134]. Interestingly, elevated levels of IL-6 are consistently detected in the brains of AD patients, but not in the brains of non-demented elderly persons [135]. Several studies have suggested that an increase of circulating IL-6 in AD patients indicates immune activation and may be related to the pathophysiology of AD [136, 137, 138].
\nPerhaps the most intriguing link between DHEA and AD comes from its association with systemic stress and glucocorticoid production, which has lead to the hypothesis that chronic stress is an important factor in AD pathogenesis [139]. Epidemiological evidence supports a role for stress in AD because elderly individuals prone to psychological distress are more likely to develop the disorder than age-matched, nonstressed individuals [117]. Cortisol is the most prominent stress-related glucocorticoid in human serum. Serum cortisol levels are elevated in patients with AD [140], as are the levels of urinary cortisol [141]. It is pertinent that the overactivation of GABAA receptors plays a central role in anxiety disorders and consequently these receptors are the principal targets of anxiolytic drugs for the treatment of affective disorders [142]. Since DHEAS antagonizes GABAA receptors, they are thought to act as endogenous anxiolytics, and hence a reduction in the availability of DHEAS in aging or AD could contribute to increased anxiety and stimulate the chronic production of cortisol.
\nAnimal experiments have shown that excess concentrations of glucocorticoids during prolonged periods of stress can have deleterious effects on the brain, especially in aged animals, and particularly affecting the hippocampus [143]. Glucocorticoids exert several actions on the brain, including the stimulation of glutamatergic neurotransmission via the stimulation of glucocorticoid receptors (GR), which if left unchecked can lead to excitotoxicity. Several studies have shown that DHEA can protect against the effects of glucocorticoid-mediated neurotoxicity [144, 145]. The neuroprotective effects of DHEA have been modeled
DHEA may also attenuate the neurotoxic effects of cortisol by reducing the regeneration of active glucocorticoids. The 7α-hydroxylated metabolite of DHEA (7α-hydroxy-DHEA) has antiglucocorticoid effects in target tissues by competition with 11-keto glucocorticoids for access to 11β-hydroxysteroid dehydrogenase-1 [149]. Enzyme kinetic data from yeast-expressed human 11β- hydroxysteroid dehydrogenase imply that 7α-hydroxysteroid substrates are preferred to cortisone by this enzyme [150]. Therefore, in tissues such as the brain, 7α-hydroxy-DHEA may act as an endogenous inhibitor of 11β- hydroxysteroid dehydrogenase, thereby reducing the regeneration of active glucocorticoids [151]. 7α-hydroxy-DHEA may have more potent bioactivity and stronger neuroprotective and antiglucocorticoid effects than DHEA itself [152]. Interestingly, some investigators have hypothesized that the degree of metabolism of DHEA to 7α-hydroxy-DHEA is related to the pathology of AD [122, 151, 153, 154]. This is evident in the study by Yau et al. [151], which found that gene expression for cytochrome P4507b (which converts DHEA into 7α-hydroxy-DHEA) was significantly decreased in hippocampal dentate neurons from patients with AD when compared to controls [151]. Another study found lower plasma 7α-hydroxy-DHEA concentrations in patients with AD when compared to controls [154].
\nTaken together, the preceding observations are generally supportive of the view that DHEAS levels in serum are reduced in AD when compared to those in healthy age-matched controls. Given that DHEAS reduces oxidative stress and neuroinflammation, protects against glutamate excitotoxicity, and minimizes the negative effects of cortisol on the brain, the reduced levels of serum DHEAS are likely to increase the vulnerability of the brain to these factors. While limited evidence suggests that the brain may compensate by increasing the local production of DHEAS, this may not be sufficient to slow the pathogenesis of the disease.
\nIn addition to neurodegenerative diseases, there is evidence that low levels of circulating DHEA with normal levels of glucocorticoids (cortisol) place the developing brain at risk for a range of acute neuropsychiatric disorders, including major depressive disorder, bipolar disorder, and anxiety [155, 156, 157, 158]. It is further hypothesized that abnormalities of the hypothalamic-pituitary-adrenal (HPA) axis play a central role in the pathogenesis and etiology of schizophrenia [159, 160, 161]. Low ratios of DHEA to cortisol have been noted in patients with schizophrenia and are positively associated with the severity of depression, state and trait anxiety, anger, and hostility [155]. DHEA augmentation in affected patients has been seen to attenuate the severity of some negative symptoms associated with this mental illness, including lack of volition and drive, and social withdrawal [16, 162].
\nPrevious studies have found evidence of abnormal dopaminergic activity [163] and deficits in GABAergic and glutamatergic activity [164] in the brain tissue of patients with schizophrenia. Neuroactive steroids such as DHEA modulate the activity of these neurotransmitter systems, both directly and indirectly, and therefore may contribute to the pathophysiology of the illness [82, 165, 166, 167, 168]. A number of studies [169] have reported elevated plasma levels of DHEA and DHEAS in severely psychotic male subjects [170, 171], medicated patients with chronic schizophrenia [172], and nonmedicated first-episode patients [170, 173] compared with controls. Elevated DHEA levels have been detected in the
As a result of the positive modulatory effects of DHEA on NMDA receptors [49], in addition to its capacity to enhance learning and memory in rodent models [174], it may be speculated that an elevation of DHEA levels reflects a compensatory process in the schizophrenic brain. It is possible that subjects with schizophrenia may be physiologically resistant to DHEA action in some manner (potentially resulting in the increased synthesis of this neurosteroid) or that there is dysregulation in a feedback system involving the HPA axis [175]. Specifically, DHEA increases following cortisol-releasing hormone [49] and adrenocorticotropic hormone [176] administration in humans, and persistent DHEA elevations may reflect a prolonged upregulation of this axis [177].
\nAs noted earlier, DHEA can protect neurons from glutamate excitotoxicity, β-amyloid toxicity, and oxidative stress [49, 131], and furthermore, oxidative stress can lead to increased DHEA formation [84, 178]. Oxidative stressors may therefore stimulate DHEA levels in schizophrenic patients [126], in an adaptive change to other precipitating disease factors.
\nHowever, other studies have found no difference in DHEA levels between schizophrenic and control subjects [49], and some studies have reported significantly reduced plasma DHEA concentrations [179, 180, 181], particularly in the morning [180, 182, 183], as well as abnormal DHEA diurnal rhythms [184] in schizophrenics compared with matched controls. Furthermore, DHEA augmentation has been found to be effective in the management of depressive and anxiety symptoms of patients with schizophrenia [185], suggesting that higher levels of circulating DHEA in schizophrenic populations may be associated with superior functioning [16]. The inconsistency between studies is understandable in view of the wide clinical polymorphism, variability of psychometric properties (distress and anxiety), drug treatment, and clinical responsiveness of schizophrenia patients to their antipsychotic treatment [169].
\nIt may be difficult to interpret the significance of elevated or decreased DHEA levels in the absence of concentrations of other HPA axis hormones. Dysregulation of the HPA axis described in schizophrenia [13] includes increased basal cortisol levels [186], cortisol nonsuppression on the dexamethasone suppression test [187], increased adrenocorticotropic hormone and cortisol response to the dexamethasone/cortisol releasing hormone challenge test [188], and increases in glucocorticoid receptor mRNA as observed
There is also evidence for oligodendrocyte and myelin dysfunction in neuropathologies such as schizophrenia and bipolar affective disorder, where alterations in the cortisol/DHEA ratio have been observed [16, 17, 155]. Some key oligodendrocyte and myelination genes (such as proteolipid protein 1 and myelin-associated glycoprotein), and transcription factors that regulate the expression of these genes, are downregulated in brains of schizophrenia and bipolar subjects [193]. Together, these studies indicate that common pathophysiological pathways may govern the disease phenotypes of schizophrenia, as well as other neurodegenerative diseases that specifically involve oligodendrocytes.
\nA significant body of preclinical research investigating the biological actions of DHEA have shown that this steroid, and its sulfated congener DHEAS, has a multifunctional role in a variety of physiological systems, including in the developing and aging brain. A summary of the actions of DHEA relevant to the discussion above is shown in Table 1. The present review has highlighted the involvement of DHEAS in glutamatergic and GABAergic neurotransmission, where this neurohormone acts as an important modulator of neuronal excitability. Consequently, perturbations in the level of DHEA can affect cognition and mood. DHEAS has also been shown to respond to stress and to modulate the effects of cortisol on the brain. Reductions in the availability of DHEAS can increase the likelihood of glutamate excitotoxicity as well as exacerbate the deleterious effects of cortisol. Evidence indicates that the brain is not dependent on serum levels of DHEA as it is able to synthesis DHEAS
DHEA | \nEffects/function | \n
---|---|
Agonistic and antagonistic effects on AR, agonist at ERα and ERβ [40, 41] | \n|
\n | Modulates the NMDA receptor [42, 43, 44] | \n
\n | Positive allosteric modulator of the GABA-A receptor [46, 47, 48, 49] | \n
\n | Nonselective sigma-1 receptor antagonist [81] | \n
\n | Selective antagonist of the GR [50] | \n
Maintenance and endocrine control of pregnancy [51] | \n|
\n | Associated with human growth and organ maturation, particularly of the brain, during adrenarche [53, 54, 55] | \n
\n | Promotes neurogenesis and neuronal survival in the CNS through the mediation of BDNF [86, 87] | \n
DHEAS may facilitate basal synaptic transmission in the CA1 region of the hippocampus [75, 76, 77] | \n|
\n | Acute DHEAS administration facilitates primed-burst potentiation [78] and chronic administration of DHEAS stimulates LTP [79] | \n
\n | DHEA treatment significantly preserves working and reference memories and increases acetylcholine, norepinephrine, and dopamine concentrations in the rat brain [86] | \n
Reduces the cytoplasmic Ca2+-induced loss of mitochondrial membrane potential by preventing Ca2+ influx into the mitochondrial matrix [83] | \n|
\n | Inhibits NMDA-induced nitric oxide synthase activity and the production of nitric oxide in primary cultures of hippocampal neurons [84] | \n
\n | Protect neurons from glutamate excitotoxicity, β-amyloid toxicity, and oxidative stress [49, 131] | \n
Inhibits IL-6 secretion from human mononuclear cells [133] | \n|
\n | Inhibits cytokine-stimulated, NF-κB–mediated transcription, partly through an antioxidant property [134] | \n
GR antagonist and can attenuate the translocation of stress-activated protein kinase-3 in rat hippocampal primary cultures [148] | \n|
\n | Suppresses the nuclear localization of the GR in response to glutamate toxicity and inhibition of GR translocation into the nucleus [131] | \n
\n | Downregulation of the expression of glucocorticoid receptors [147] | \n
\n | Reduces the regeneration of active glucocorticoids [149] | \n
Summary of functions of DHEA related to development and aging.
Abbreviations: AR, androgen receptor; BDNF, brain-derived neurotrophic factor; CNS, central nervous system; DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sulfate; ER, estrogen receptor; GABA-A, Gamma-aminobutyric acid receptor A; GR, glucocorticoid receptor; IL-6, interleukin 6; LTP, long-term potentiation; NMDA, N-methyl-D-aspartate.
The authors are grateful for support and many discussions from Dr. Udani Ratnayake, Dr. Stacey Ellery, Dr. Margie Castillo-Melendez, and Dr. Hayley Dickinson from The Ritchie Centre, Hudson Institute of Medical Research, and from Professor Jonathan Hirst, University of Newcastle, New South Wales, Australia. Tracey Quinn received support from an Australian Post-graduate Award (APA) postgraduate scholarship for some of the studies reported above. Tracey Quinn and David Walker are grateful for funding from National Health & Medical Research Council of Australia and Cerebral Palsy Alliance. We also acknowledge generous support from the Victorian Government Infrastructure Fund to the Hudson Institute of Medical Research.
\nHigh-capacity, cost effective and durable electrochemical energy storage technologies are necessary to satisfy the growing uptake of intermittent renewable sources and maintain stable electrical-grid systems [1]. In this regard, redox flow batteries (RFBs) are ideally suited and have attracted considerable attention. RFBs differ from conventional batteries in that redox-active molecules, termed charge carriers, are dissolved into electrolyte and are stored in reservoirs external to the electrochemical cell. The charge carrier-containing electrolyte is pumped through electrodes in the electrochemical cell to charge/discharge the battery. Upon charge, energy is stored as the positive electrolyte (also termed catholyte or posolyte) is oxidised and the negative electrolyte (also termed anolyte or negolyte) is simultaneously reduced. Upon discharge, energy is released as the redox reactions are reversed. The electrolytes are separated in the cell by a membrane or separator, which allows transfer of charge-balancing counterions but prevents crossover of charge carriers to the opposite half-cell, thus preventing self-discharge. Figure 1 shows a schematic of a generic RFB under discharge conditions.
Schematic of a generic RFB under discharge conditions. Electrolytes are stored in reservoirs and are pumped through the electrochemical cell to charge and discharge the battery. Upon discharge the charge carriers in the positive electrolyte are reduced while those in the negative electrolyte are oxidised. Polarity is reversed to allow the opposite redox reactions to occur upon charge. Reproduced from [
The distinctive design of RFBs allows decoupling of energy and power, and therefore facile scale-up to high capacities [3]. Capacity can be enhanced by simply increasing the volume of electrolyte in the reservoirs, without the need to modify the electrochemical cell, while power is determined by the cell design (e.g. electrode surface area etc). Furthermore, in contrast to conventional batteries such as the lithium-ion battery (LIB), RFBs avoid the intercalation and deintercalation of redox-active molecules between the electrolyte and solid electrode material. Instead, redox reactions occur via solution phase charge carriers at the electrode surface. This underpins the long operational lifetimes of RFBs (15–20 years), making them particularly suited to grid-scale energy storage.
Historically, RFBs have relied on charge carriers based on metals such as iron, chromium, zinc, or cerium, dissolved in aqueous electrolyte [4]. The earliest investigations were conducted by the National Aeronautics and Space Administration (NASA) in the 1970s. Their most notable development was the iron-chromium RFB which used Fe2+/Fe3+ and Cr2+/Cr3+ in the positive and negative electrolytes respectively [5]. Scale-up and commercialisation of the system were hindered by several technical challenges including the slow electron transfer kinetics of Cr2+/Cr3+ [4]. Today, the most commercially advanced RFB system is the symmetric, all-vanadium RFB developed by Skyllas-Kazacos and co-workers in the late 1980s [6, 7]. The charge carriers in the system are VO2+/VO2+ (V5+/V4+) in the positive electrolyte and V2+/V3+ in the negative electrolyte. Vanitec lists 33 companies commercialising all-vanadium RFBs [8] and several plants have been installed globally. The largest electrochemical energy storage plant in the world is forecast to be a 200 MW/800 MWh all-vanadium RFB and is under construction by Ronge Power of China [3].
Despite their advantages for grid-scale energy storage, commercial uptake of the all-vanadium RFB is dwarfed by that of LIBs due to several drawbacks. Firstly, the cost of the all-vanadium RFB was estimated at $500 kWh−1 in 2014 [9], which far exceeds the target of $100 kWh−1 set by the US Department of Energy [10], and the ever decreasing cost of LIBs estimated at $156 kWh−1 in 2020 [11]. Secondly, the energy density of the all-vanadium RFB is an order of magnitude lower than LIBs [2]. The limited solubility of vanadium sulphate in aqueous solution and the cell voltage of approximately 1.3 V (dictated by the difference in redox potential between the reaction at the positive and negative electrode), limits the energy density to 25–35 Wh L−1 [12]. While lower energy densities are generally more tolerable for stationary rather than portable applications, there is a demand to enhance RFB energy density to cut cost, reduce space requirements and access new markets.
Energy density is a measure of the energy output per unit volume of total electrolyte and is defined in Eq. (1);
where
As indicated in Eq. (1), an effective strategy to enhance the energy density of RFBs is to increase the value of
In the last two decades, research has shifted from metal-based charge carriers in aqueous solution to a new generation of charge carriers with tuneable physical and electrochemical properties to include inorganic, organic, and hybrid materials. In an effort to increase
Figure 2 shows the components of a typical laboratory-scale RFB used for assessing the performance of charge carriers. Electrolyte is circulated via tubing between the reservoirs and electrochemical cell (typically powered by a peristaltic pump). Within the electrochemical cell, electrolyte is flowed through high surface area electrodes where the redox reactions occur upon charge/discharge. The electrodes are typically composed of a carbon-based material such as graphite felt and are electrically connected to the current collectors and external circuit. The flow field (available in several configurations) ensures consistent flow of electrolyte to the porous electrode while minimising pressure drop across the cell.
Schematic of a typical laboratory-scale RFB used for assessing the performance of charge carriers. Battery components include the membrane/separator, electrodes, gaskets, flow frames, flow fields, current collectors, end plates, tubing*, pump*, and electrolyte reservoirs*. * not pictured in schematic.
The membrane/separtor divides the two half-cells and should be highly conductive, selective, and stable towards the electrolyte. High ionic conductivity is key to reduce ohmic resistance and thereby enable high power densities to be achieved. Membranes should allow transport of inert salts while preventing crossover of charge carriers, which can lead to capacity fade and reduced coulombic efficiency. Membranes/separators can be broadly classified as porous separators (separating based on size) and ion exchange membranes (separating based on charge). Identifying the most appropriate membrane/separator for novel RFB systems, where the chemistry is not fully understood, can be challenging. This is particularly true in the case of non-aqueous RFBs because very few commercially available membrane/separators have adequate performance in organic solvents [14]. Membranes present a barrier towards commercialisation for many next-generation RFBs since their inadequate performance reduces energy efficiency and they contribute up to 20% of the battery cost [15].
There is a growing interest in the development of organic charge carriers as alternatives to metal-centred species, due to their tuneable properties and natural abundance of their elemental building blocks (C, H, N and O). Organic charge carriers investigated to date include nitroxide radicals such as 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO), carbonyls such as fluorenone, benzophenone, phthalimides, quinones and anthraquinones, heterocyclic aromatics such as viologens, phenazines and phenothiazine, and cationic radicals such as dialkoxybenzenes and cyclopropenium, to name a few. Figure 3 showcases a ‘potential map’ of organic charge carriers developed for next-generation RFBs in recent years. We direct the interested reader to consult review articles for further reading on organic charge carriers [13, 16, 17, 18, 19].
Schematic showing the structure of organic charge carriers investigated for RFBs and the potential region in which they are redox-active. Orange bars indicate species that undergo one-electron redox reactions while those with blue bars are multi-electron charge carriers.
Several organic charge carriers such as viologens, quinones and phenazines, undergo two-electron redox reactions and have been investigated for RFBs. However, the π-conjugated cage structure of fullerene gives it uniquely rich electrochemical properties compared to other organic redox-active molecules. It can be reversibly reduced by up to six electrons at negative redox potentials, making it a desirable charge carrier for the negative electrolyte in RFBs. Without molecular modification, fullerene is nonpolar and unable to partake in hydrogen bonding, meaning its solubility in many solvents is poor [20]. Consequently, fullerene was first investigated as a charge carrier in RFBs as a bifunctional molecule where ferrocene groups (Fc) were covalently grafted to a C60 fullerene cage [21]. The functionalisation significantly enhanced the solubility of fullerene in ortho-dichlorobenzene (oDCB) from 0.037 M [22] to 0.12 M for the tetra-adduct of C60Fc. The ferrocene groups served as the redox centre for the positive electrolyte, while the multi-electron redox processes of fullerene were accessed in the negative electrolyte. To balance the redox processes of fullerene, multiple ferrocene moieties were grafted to C60 (x = 1–4, where x indicates the number of ferrocene groups). The redox processes of the positive and negative electrolyte were separated by approximately 1.3 V and 1.8 V for the first and second reduction of C60 respectively. Figure 4 shows the structure of the fullerene-ferrocene bifunctional charge carriers, termed C60Fc, and the redox reactions occurring in the positive and negative electrolytes upon charge in the RFB.
Schematic showing the redox reactions of C60Fc (bis-adduct) in a symmetric non-aqueous RFB. Upon charge, C60Fc in the positive electrolyte undergoes a two-electron oxidation centred at the two ferrocene moieties. Simultaneously, C60Fc in the negative electrolyte is reduced by two electrons at the fullerene core to a dianion. The reverse reactions occur upon discharge.
The performance of C60Fc charge carriers with x = 2–4 were investigated by galvanostatic cycling in coin cells. Charge carriers were assessed in symmetric and asymmetric configurations where indene-C60 bis-adduct was used as negative electrolyte. The coil cells were successfully cycled for 100 charge-discharge cycles but experienced considerable capacity fade which was attributed to three causes: (1) the low volume of electrolyte (~1 mL) in the coin cell assemblies meant that a significant proportion of capacity fade was attributed to electrolyte soaking into the absorbent glass fibre separator, (2) significant membrane crossover, which was alleviated by using the symmetric system rather than an analogous asymmetric system with indene-C60 bis-adduct negative electrolyte, (3) degradation of C60Fc charge carriers, which was not explored in detail. Considering the rich electrochemistry and plentiful opportunities for functionalisation of fullerene, there is great scope for development of new fullerene-based charge carriers in the future.
The concept of combining two redox-active components into one bifunctional molecule was first demonstrated by Schubert and co-workers, who tethered TEMPO and phenazine moieties to a single molecule [23]. Upon charge, TEMPO was oxidised to an oxoammonium cation in the positive electrolyte while phenazine was simultaneously reduced to a dianion in the negative electrolyte. As shown in Figure 5, the bifunctional charge carrier contains two TEMPO groups (red) per phenazine (blue) in order to balance its two-electron redox chemistry. Both redox groups were covalently bonded via a water-soluble triethylene glycol linker (black), yielding a single charge carrier with
Schematic showing the structure, redox reactions and cyclic voltammogram of a TEMPO-phenazine bifunctional charge carrier. Figure was adapted with permission form [
The advantage of symmetric systems in minimising capacity fade upon crossover can also be achieved by using a mixture of the positive and negative charge carriers in each half-cell. To justify the synthetic effort of bifunctional charge carriers, they must show advantageous properties compare to a mixture of the two individual redox-active molecules. In the two examples highlighted above, the bifunctional charge carriers have greater solubility than the individual redox-active groups and therefore a great theoretical energy density is achieved.
Transition metal coordination complexes are promising candidates for non-aqueous RFBs as they are often stable over multiple oxidation states and their properties are tuneable [24]. The first metal coordination complex to be investigated as charge carrier for non-aqueous RFBs was the ruthenium bipyridine (bpy) complex, [Ru(bpy)3]2+ [25]. Bpy ligands not only solubilise the metallic cation, they also provide additional redox activity to the molecule. In a symmetric system the Ru2+/Ru3+ transition was targeted in the positive electrolyte while the bpy-centred reduction was targeted in the negative electrolyte. The redox processes were separated by 2.6 V, allowing for a high
The chromium-centred bpy coordination complex, [Cr(bpy)3]3+ is of particular note due to its six one-electron reversible redox processes over a 2 V window (see Figure 6) [27]. The three most positive redox couples were attributed to the Cr3+/Cr2+, Cr2+/Cr1+ and Cr1+/Cr0 transitions, while the three most negative redox processes were ascribed to reduction of the three bpy ligands. The authors sought to enhance solubility in acetonitrile through ester-functionalisation of the bpy ligands. The complex functionalised with the most polar and flexible R group (2-(2-methoxyethoxy)ethyl) showed the most promising redox properties and solubility and was selected for battery testing. Galvanostatic cycling in a H-cell showed poor cycling stability when charged by three electrons but relatively stable performance when charged by two. The saturation concentration of both the neutral and 3+ complexes was tested and as anticipated the solubility was dramatically reduced in the neutral form. Despite the promising multi-electron redox properties of [Cr(bpy)3]3+, the poor solubility of the neutral complex (0.21 M in acetonitrile) and inadequate stability upon cycling, meant that the energy density of the system was limited to 10.2 Wh L−1.
Structure and cyclic voltammogram of functionalized [Cr(bpy)3]3+ coordination complex investigated for symmetric non-aqueous RFBs. Figure was adapted with permission form [
Polyoxometalates (POMs) are a class of discrete metal-oxide nano clusters composed of early transition metals (group 5 and 6) in their highest oxidation states. They can be represented by the general formula [XxMmOy]n− where X is a hetero atom (usually P, Si, Ge, As) and M is a transition metal (typically V5+, Mo6+ or W6+). Their vast structural diversity, excellent stability and rich electrochemistry has seen their investigation for many energy conversion and storage technologies [28].
The earliest work on POM-based charge carriers for RFBs was conducted by Anderson and co-workers, who used the tri-vanadium substituted silicotungstate Keggin, K6H[SiV3W9O40] (SiV3W9), in a symmetric aqueous system [29]. The POM undergoes a three-electron reduction centred at the vanadium metals and a further two, two-electron reduction processes centred at the tungsten metals. The vanadium-centred redox processes were separated from those of the tungsten by 0.8 V allowing for the application of SiV3W9 in a symmetric system. Prior to galvanostatic cycling, the charge carrier was reduced to [SiV3W9O40]13− by bulk electrolysis to generate the fully charged negative electrolyte. Galvanostatic cycling in a 5 cm2 RFB showed coulombic efficiency of >95% and modest capacity fade of <2% after 100 cycles (0.02% per cycle). Following 100 cycles, the electrolyte solution was recovered and used in a fresh cell with a new membrane. Full cell performance was restored suggesting that any capacity losses observed were not the result of POM degradation. Given the saturation concentration of SiV3W9 in water of 0.45 M, the three-electron redox reaction upon charge/discharge and
Lu and Xiang extended the library of POM-based charge carriers to include the cobalt-centred tungstic acid, H6[CoW12O40] (CoW12) [30]. Similarly to SiV3W9, the tungsten-centred redox processes of the POM were targeted in the negative electrolyte (two, two-electron reduction processes), while in this case, the one-electron oxidation of the central cobalt atom from 2+ to 3+ was targeted in the positive electrolyte. The separation of the cobalt- and tungsten-centred redox processes allowed for a larger
Stimming and colleagues sought to maximise the rich electrochemistry of POMs by designing a asymmetric RFB with different POM-based charge carriers in the positive and negative electrolyte [31]. They investigated an asymmetric aqueous RFB using [PV14O42]9− (PV14) and [SiW12O40]4− (SiW12) as charge carriers for the positive and negative electrolyte respectively. PV14 is reversibly reduced by seven electrons in a single process at a relatively positive redox potential of 0.60 V vs. standard hydrogen electrode (SHE). The cyclic voltammogram of SiW12 has two reversible one-electron reduction processes with redox potentials of 0.01 V and − 0.21 V vs. SHE. SiW12 can be reduced by a further two-electrons but only the first two one-electron redox couples are accessible without significant hydrogen evolution. Consequently, a flow cell was assembled with two equivalents of SiW12 (
A step change in energy density came from the work of Cronin and co-workers where Li6[P2W18O40] (P2W18) was reversibly reduced by 18 electrons in aqueous acidic conditions [33]. The authors found that the electrochemical properties of P2W18 was highly dependent on pH and concentration and that reversible reduction by 18 electrons was only achievable at concentrations >100 mM under acidic conditions. Paired with HBr/Br2 positive electrolyte, the asymmetric RFB demonstrated a
RFBs based on aqueous electrolyte, such as those highlighted above, are limited to a maximum
Barteau and colleagues were the first to report the application of POMs as charge carrier in non-aqueous RFBs [35]. They investigated the lithium salt of the Keggin phosphomolybdate, Li3[PMo12O40] (PMo12), in acetonitrile with lithium trifluoromethanesulfonate (LiTf) supporting electrolyte. PMo12 undergoes two, one-electron quasi-reversible reductions centred at −0.21 V and − 0.57 V vs. Ag/Ag+. For application in a symmetric system, the PMo12 electrolyte was first electrochemically reduced by one-electron to generate the discharged positive and negative electrolyte. Galvanostatic cycling was conducted with a one-electron redox reaction upon charge/discharge. As stated by the authors, this system does not exploit the full capabilities of POMs as multi-electron charge carriers nor the wide electrochemical stability window of non-aqueous solvents. Coulombic efficiency of 68% was achieved, which was substantially lower than that achieved for aqueous POM-based RFB. The low coulombic efficiency was attributed to crossover of the POM through the membrane, a common cause of inefficiency in non-aqueous RFBs. The saturation concentration of PMo12 in acetonitrile is relatively high at 0.8 M, but with only a one-electron redox reaction and
While PMo12 can be reversibly reduced by two electrons in acetonitrile, the authors report the advantage of dimethylformamide (DMF) solvent in enhancing the electrochemical properties of the charge carrier [36]. In DMF, PMo12 can be reduced by an additional two electrons, enhancing the number of electrons transferred in the charge/discharge redox reaction to two and increasing
The first example of significant molecular engineering of POMs to enhance solubility in non-aqueous solvent came from Matson and co-workers who investigated polyoxovanadate (POV) alkoxide clusters of the general formula V6O7(OR)12 (where R = CH3, C2H5) [37]. These materials display four one-electron redox couples over a potential range of 2 V, enabling their application in a symmetric system with two-electron transfer upon charge/discharge. Upon charge the POV undergoes a two-electron reduction at the negative electrode concurrently with a two-electron oxidation at the positive electrode. The research was extended to investigate alternative organic functionalisation of the POV surface. Introduction of a tridentate tris(hydroxymethyl)methane (TRIOL) ligand, increases solubility in acetonitrile to 0.6 M and retains the charge carriers cycling stability [38]. In a separate study, the solubility of POVs was increased by replacing several surface alkoxy groups with ethers, R = C2H4OCH3, C2H4OC2H5 [39]. Clusters with a mixture of alkoxide and ether groups showed an impressive solubility of 1.2 M in 0.1 M [TBA][PF6] in acetonitrile. While the increased solubility in organic solvent and multi-electron redox chemistry is promising for enhanced energy density, preliminary testing of the alkoxide-ether functionalised POVs in a laboratory-scale RFB showed steady capacity fade. Cyclic voltammetry of electrolytes following 30 cycles in a RFB indicated partial degradation of the POV clusters. For further reading on POV-based charge carriers for RFBs, we direct readers to a recent review article [40].
The concept of organofunctionalisation of POMs to enhance solubility in non-aqueous solvent was expanded in a recent publication, to include organic–inorganic hybrid POMs [41]. A phosphotungstate Keggin was hybridised with phenyl siloxane moieties to produce TBA3[PW11O39(SiC6H5)2O)] (PW11SiPh). Hybridisation enhanced solubility in acetonitrile by two orders of magnitude (0.6 M) compared to the parent POM (<1 mM). Similarly to POVs, PW11SiPh displays four one-electron redox couples over a potential range of 2 V. Prior to galvanostatic cycling the electrolyte was reduced by bulk electrolysis to attain the discharged positive and negative electrolyte for application in a symmetric system. Upon charge, PW11SiPh undergoes a two-electron reduction at the negative electrode concurrently with a two-electron oxidation at the positive electrode. The laboratory-scale RFB achieved high coulombic efficiency of >98% but capacity fade was observed. Similarly to Stimming and colleagues, the capacity fade was attributed to reoxidation of the reduced POM by trace oxygen in the electrolyte. Capacity fade was shown to be recoverable by bulk reduction of the electrolytes to the desired oxidation state. Organic-inorganic hybridisation is applicable to a broad range of POM geometries and elemental compositions, unlocking the possibility for the development of multi-electron charge carriers across a wide potential range (Figure 7).
Structure, cyclic voltammogram and RFB schematic of PW11SiPh, an organic-inorganic hybrid POM charge carrier. Figure was adapted with permission form [
Yan and colleagues explored the use of a sulphur-templated Wells-Dawson POM, TBA4[S2W18O62] (S2W18), as charge carrier in both symmetric and asymmetric non-aqueous RFBs [42]. In the asymmetric system benzophenone was chosen as the negative electrolyte. Benzophenone undergoes a reversible one-electron reduction with redox potential of −1.75 V vs. Ag+|Ag (see Figure 3), while S2W18 can be reversible reduced by one, one, then two electrons with redox potentials of 0.23, −0.15 and − 0.49 V vs. Ag+|Ag. In the asymmetric RFB, four equivalents of benzophenone were used to balance the four-electron redox process of S2W18. Although not stated by the authors, reduction of S2W18 to generate discharged positive electrolyte (or reduction of benzophenone to generate charged negative electrolyte) would have been necessary prior to galvanostatic cycling. The flow cell cycled successfully with
The use of multi-electron charge carriers is an effective approach to enhance the energy density of next-generation RFBs. Polyoxometalates stand out as a particularly promising class of materials due to their remarkably rich and reversible electrochemical properties. This is elegantly demonstrated by the 18-electron reversible reduction of P2W18, yielding an asymmetric RFB with practical energy density of 225 Wh L−1. Organofunctionalisation of polyoxometalates is a valuable strategy to enhance solubility in non-aqueous solvent and for the tuning of redox properties and chemical stability. Other multi-electron charge carriers, such as metal-coordination complexes and bifunctional molecules, are realised through targeted molecular design and synthesis. Their rich electrochemical properties allow for their application in symmetric RFBs, thereby reducing the risk of capacity fade by membrane crossover. The bifunctional charge carriers also benefit from higher solubility than the isolated redox-active molecules.
Increasing the number of electrons transferred per molecule is a valuable strategy to enhance the energy density of RFBs. However, this parameter should not be targeted in isolation and should be considered alongside solubility, redox potential targeting, stability, cost and sustainability. In addition, the development of charge carriers for next-generation RFBs requires consideration of the flow cell assembly used for testing. Charge carrier performance depends on components such as membrane and tubing, and on the testing conditions such as flow rate, current density, and voltage thresholds. The lack of standardisation in testing conditions make it challenging to compare the performance of charge carriers.
The research reviewed here focuses on the development of novel charge carriers to enhance RFB performance. Most testing is conducted at low concentrations and in laboratory-scale RFBs. As the research matures, testing at scales more representative of the commercial product and detailed techno-economic analysis of the charge carrier-containing electrolyte will be required. Assessment of the costs of charge carriers, sustainability, safety, and practicality of synthesis will become increasingly important in the development of commercially viable next-generation RFBs.
The authors gratefully acknowledge the Engineering and Physical Sciences Research Council (EPSRC) for funding through the Centre for Doctoral Training in Sustainable Chemistry (EP/L015633/1). We also thank the University of Nottingham Propulsion Futures Beacon of Excellence for support.
There are no conflicts to declare.
bpy | bipyridine |
DMF | dimethylformamide |
LIB | lithium-ion battery |
POM | polyoxometalate |
POV | polyoxovanadate |
RFB | redox flow battery |
TBA | tetrabutylammonium |
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6602},{group:"region",caption:"Middle and South America",value:2,count:5908},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12542},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132766},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"23,21,7"},books:[{type:"book",id:"11438",title:"Fake News in the Era of Pandemics",subtitle:null,isOpenForSubmission:!0,hash:"bc9e4cab86c76f35cd70b39086d9b69e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality",subtitle:null,isOpenForSubmission:!0,hash:"20307129f7fb39aa443d5449acb6a784",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11774",title:"International Law",subtitle:null,isOpenForSubmission:!0,hash:"9e629251ba38b83f6bf406dd93511c61",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11774.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11775",title:"Global Peace and Security",subtitle:null,isOpenForSubmission:!0,hash:"90d8b5fdb1297222c88ab85dd900297a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11775.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11770",title:"Feminism",subtitle:null,isOpenForSubmission:!0,hash:"008be465c708a6fde48c8468757a40af",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11770.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11771",title:"Photography",subtitle:null,isOpenForSubmission:!0,hash:"466454ffeb31a0953c5120379ffece18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11771.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12109",title:"Occupational Stress",subtitle:null,isOpenForSubmission:!0,hash:"2dc8ab0bc980393022adbacd9a23d219",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12109.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12127",title:"The Psychology of Sports",subtitle:null,isOpenForSubmission:!0,hash:"4bf52abfe589a320744c40ca5fe41a89",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12127.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:32},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:100},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:46},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[],latestBooks:[]},subject:{topic:{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:65,numberOfSeries:0,numberOfAuthorsAndEditors:1649,numberOfWosCitations:1070,numberOfCrossrefCitations:725,numberOfDimensionsCitations:1699,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"18",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10922",title:"Music in Health and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"6a079df045b086b404399c5ed4ac049a",slug:"music-in-health-and-diseases",bookSignature:"Amit Agrawal, Roshan Sutar and Anvesh Jallapally",coverURL:"https://cdn.intechopen.com/books/images_new/10922.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",middleName:null,surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10554",title:"Proprioception",subtitle:null,isOpenForSubmission:!1,hash:"e104e615fbd94caa987df3a8d8b3fb8b",slug:"proprioception",bookSignature:"José A. Vega and Juan Cobo",coverURL:"https://cdn.intechopen.com/books/images_new/10554.jpg",editedByType:"Edited by",editors:[{id:"59892",title:"Prof.",name:"José A.",middleName:null,surname:"Vega",slug:"jose-a.-vega",fullName:"José A. Vega"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9853",title:"Connectivity and Functional Specialization in the Brain",subtitle:null,isOpenForSubmission:!1,hash:"79f611488f3217579b5c84978f870863",slug:"connectivity-and-functional-specialization-in-the-brain",bookSignature:"Thomas Heinbockel and Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9853.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",biography:"Yongxia Zhou obtained a Ph.D. in Biomedical Imaging from the University of Southern California. Her research interest is radiology and neuroscience technology and application. She had been trained as an imaging scientist at several prestigious institutes including Columbia University, the University of Pennsylvania, and the National Institutes of Health (NIH). Her research focuses on multi-modal neuroimaging integration such as MRI/PET and EEG/MEG instrumentation to make the best use of multiple modalities for better interpretation of underlying disease mechanisms. She is the author and editor of more than twelve books for well-known publishers including IntechOpen and Nova Science. She has published more than 100 papers and abstracts in many reputed international journals and conferences and served as reviewer and editor for several academic associations.",institutionString:"University of Southern California",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10475",title:"Smart Biofeedback",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"8d2bd9997707c905959eaa41e55ba8f1",slug:"smart-biofeedback-perspectives-and-applications",bookSignature:"Edward Da-Yin Liao",coverURL:"https://cdn.intechopen.com/books/images_new/10475.jpg",editedByType:"Edited by",editors:[{id:"3875",title:"Dr.",name:"Edward Da-Yin",middleName:null,surname:"Liao",slug:"edward-da-yin-liao",fullName:"Edward Da-Yin Liao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8059",title:"Neurostimulation and Neuromodulation in Contemporary Therapeutic Practice",subtitle:null,isOpenForSubmission:!1,hash:"8cc2c649900edf37ff3374fdc96a1586",slug:"neurostimulation-and-neuromodulation-in-contemporary-therapeutic-practice",bookSignature:"Denis Larrivee and Seyed Mansoor Rayegani",coverURL:"https://cdn.intechopen.com/books/images_new/8059.jpg",editedByType:"Edited by",editors:[{id:"206412",title:"Prof.",name:"Denis",middleName:null,surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8751",title:"Somatosensory and Motor Research",subtitle:null,isOpenForSubmission:!1,hash:"86191c18f06e524e0f97a5534fdb2b4c",slug:"somatosensory-and-motor-research",bookSignature:"Toshiaki Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/8751.jpg",editedByType:"Edited by",editors:[{id:"70872",title:"Prof.",name:"Toshiaki",middleName:null,surname:"Suzuki",slug:"toshiaki-suzuki",fullName:"Toshiaki Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9347",title:"Neuroimaging",subtitle:"Neurobiology, Multimodal and Network Applications",isOpenForSubmission:!1,hash:"a3479e76c6ac538aac76409c9efb7e41",slug:"neuroimaging-neurobiology-multimodal-and-network-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9347.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8938",title:"Inhibitory Control Training",subtitle:"A Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bd82354f3bba4af5421337cd42052f86",slug:"inhibitory-control-training-a-multidisciplinary-approach",bookSignature:"Sara Palermo and Massimo Bartoli",coverURL:"https://cdn.intechopen.com/books/images_new/8938.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6998",title:"Synucleins",subtitle:"Biochemistry and Role in Diseases",isOpenForSubmission:!1,hash:"2b4b802fec508928ce8ab9deebd1375f",slug:"synucleins-biochemistry-and-role-in-diseases",bookSignature:"Andrei Surguchov",coverURL:"https://cdn.intechopen.com/books/images_new/6998.jpg",editedByType:"Edited by",editors:[{id:"266540",title:"Dr.",name:"Andrei",middleName:null,surname:"Surguchov",slug:"andrei-surguchov",fullName:"Andrei Surguchov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:65,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"46296",doi:"10.5772/57398",title:"Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity",slug:"physiological-role-of-amyloid-beta-in-neural-cells-the-cellular-trophic-activity",totalDownloads:5886,totalCrossrefCites:18,totalDimensionsCites:31,abstract:null,book:{id:"3846",slug:"neurochemistry",title:"Neurochemistry",fullTitle:"Neurochemistry"},signatures:"M. del C. Cárdenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz,\nB. Jiménez-Ramos, L. Gómez-Virgilio, G. Ramírez-Rodríguez, E. Vera-\nArroyo, R. Fiorentino-Pérez, U. García, J. Luna-Muñoz and M.A.\nMeraz-Ríos",authors:[{id:"42225",title:"Dr.",name:"Jose",middleName:null,surname:"Luna-Muñoz",slug:"jose-luna-munoz",fullName:"Jose Luna-Muñoz"},{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",slug:"marco-meraz-rios",fullName:"Marco Meraz-Ríos"},{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo",fullName:"Maria del Carmen Cardenas-Aguayo"},{id:"169857",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Silva-Lucero",slug:"maria-del-carmen-silva-lucero",fullName:"Maria del Carmen Silva-Lucero"},{id:"169858",title:"Dr.",name:"Maribel",middleName:null,surname:"Cortes-Ortiz",slug:"maribel-cortes-ortiz",fullName:"Maribel Cortes-Ortiz"},{id:"169859",title:"Dr.",name:"Berenice",middleName:null,surname:"Jimenez-Ramos",slug:"berenice-jimenez-ramos",fullName:"Berenice Jimenez-Ramos"},{id:"169860",title:"Dr.",name:"Laura",middleName:null,surname:"Gomez-Virgilio",slug:"laura-gomez-virgilio",fullName:"Laura Gomez-Virgilio"},{id:"169861",title:"Dr.",name:"Gerardo",middleName:null,surname:"Ramirez-Rodriguez",slug:"gerardo-ramirez-rodriguez",fullName:"Gerardo Ramirez-Rodriguez"},{id:"169862",title:"Dr.",name:"Eduardo",middleName:null,surname:"Vera-Arroyo",slug:"eduardo-vera-arroyo",fullName:"Eduardo Vera-Arroyo"},{id:"169863",title:"Dr.",name:"Rosana Sofia",middleName:null,surname:"Fiorentino-Perez",slug:"rosana-sofia-fiorentino-perez",fullName:"Rosana Sofia Fiorentino-Perez"},{id:"169864",title:"Dr.",name:"Ubaldo",middleName:null,surname:"Garcia",slug:"ubaldo-garcia",fullName:"Ubaldo Garcia"}]},{id:"58070",doi:"10.5772/intechopen.72427",title:"MRI Medical Image Denoising by Fundamental Filters",slug:"mri-medical-image-denoising-by-fundamental-filters",totalDownloads:2564,totalCrossrefCites:17,totalDimensionsCites:30,abstract:"Nowadays Medical imaging technique Magnetic Resonance Imaging (MRI) plays an important role in medical setting to form high standard images contained in the human brain. MRI is commonly used once treating brain, prostate cancers, ankle and foot. The Magnetic Resonance Imaging (MRI) images are usually liable to suffer from noises such as Gaussian noise, salt and pepper noise and speckle noise. So getting of brain image with accuracy is very extremely task. An accurate brain image is very necessary for further diagnosis process. During this chapter, a median filter algorithm will be modified. Gaussian noise and Salt and pepper noise will be added to MRI image. A proposed Median filter (MF), Adaptive Median filter (AMF) and Adaptive Wiener filter (AWF) will be implemented. The filters will be used to remove the additive noises present in the MRI images. The noise density will be added gradually to MRI image to compare performance of the filters evaluation. The performance of these filters will be compared exploitation the applied mathematics parameter Peak Signal-to-Noise Ratio (PSNR).",book:{id:"6144",slug:"high-resolution-neuroimaging-basic-physical-principles-and-clinical-applications",title:"High-Resolution Neuroimaging",fullTitle:"High-Resolution Neuroimaging - Basic Physical Principles and Clinical Applications"},signatures:"Hanafy M. Ali",authors:[{id:"213318",title:"Dr.",name:"Hanafy",middleName:"M.",surname:"Ali",slug:"hanafy-ali",fullName:"Hanafy Ali"}]},{id:"41589",doi:"10.5772/50323",title:"The Role of the Amygdala in Anxiety Disorders",slug:"the-role-of-the-amygdala-in-anxiety-disorders",totalDownloads:9671,totalCrossrefCites:4,totalDimensionsCites:28,abstract:null,book:{id:"2599",slug:"the-amygdala-a-discrete-multitasking-manager",title:"The Amygdala",fullTitle:"The Amygdala - A Discrete Multitasking Manager"},signatures:"Gina L. Forster, Andrew M. Novick, Jamie L. Scholl and Michael J. Watt",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"146553",title:"BSc.",name:"Andrew",middleName:null,surname:"Novick",slug:"andrew-novick",fullName:"Andrew Novick"},{id:"146554",title:"MSc.",name:"Jamie",middleName:null,surname:"Scholl",slug:"jamie-scholl",fullName:"Jamie Scholl"},{id:"146555",title:"Dr.",name:"Michael",middleName:null,surname:"Watt",slug:"michael-watt",fullName:"Michael Watt"}]},{id:"26258",doi:"10.5772/28300",title:"Excitotoxicity and Oxidative Stress in Acute Ischemic Stroke",slug:"excitotoxicity-and-oxidative-stress-in-acute-ischemic-stroke",totalDownloads:7157,totalCrossrefCites:6,totalDimensionsCites:25,abstract:null,book:{id:"931",slug:"acute-ischemic-stroke",title:"Acute Ischemic Stroke",fullTitle:"Acute Ischemic Stroke"},signatures:"Ramón Rama Bretón and Julio César García Rodríguez",authors:[{id:"73430",title:"Prof.",name:"Ramon",middleName:null,surname:"Rama",slug:"ramon-rama",fullName:"Ramon Rama"},{id:"124643",title:"Prof.",name:"Julio Cesar",middleName:null,surname:"García",slug:"julio-cesar-garcia",fullName:"Julio Cesar García"}]},{id:"62072",doi:"10.5772/intechopen.78695",title:"Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment",slug:"brain-computer-interface-and-motor-imagery-training-the-role-of-visual-feedback-and-embodiment",totalDownloads:1439,totalCrossrefCites:13,totalDimensionsCites:23,abstract:"Controlling a brain-computer interface (BCI) is a difficult task that requires extensive training. Particularly in the case of motor imagery BCIs, users may need several training sessions before they learn how to generate desired brain activity and reach an acceptable performance. A typical training protocol for such BCIs includes execution of a motor imagery task by the user, followed by presentation of an extending bar or a moving object on a computer screen. In this chapter, we discuss the importance of a visual feedback that resembles human actions, the effect of human factors such as confidence and motivation, and the role of embodiment in the learning process of a motor imagery task. Our results from a series of experiments in which users BCI-operated a humanlike android robot confirm that realistic visual feedback can induce a sense of embodiment, which promotes a significant learning of the motor imagery task in a short amount of time. We review the impact of humanlike visual feedback in optimized modulation of brain activity by the BCI users.",book:{id:"6610",slug:"evolving-bci-therapy-engaging-brain-state-dynamics",title:"Evolving BCI Therapy",fullTitle:"Evolving BCI Therapy - Engaging Brain State Dynamics"},signatures:"Maryam Alimardani, Shuichi Nishio and Hiroshi Ishiguro",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"},{id:"231131",title:"Dr.",name:"Maryam",middleName:null,surname:"Alimardani",slug:"maryam-alimardani",fullName:"Maryam Alimardani"},{id:"231134",title:"Dr.",name:"Shuichi",middleName:null,surname:"Nishio",slug:"shuichi-nishio",fullName:"Shuichi Nishio"}]}],mostDownloadedChaptersLast30Days:[{id:"29764",title:"Underlying Causes of Paresthesia",slug:"underlying-causes-of-paresthesia",totalDownloads:192666,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1069",slug:"paresthesia",title:"Paresthesia",fullTitle:"Paresthesia"},signatures:"Mahdi Sharif-Alhoseini, Vafa Rahimi-Movaghar and Alexander R. Vaccaro",authors:[{id:"91165",title:"Prof.",name:"Vafa",middleName:null,surname:"Rahimi-Movaghar",slug:"vafa-rahimi-movaghar",fullName:"Vafa Rahimi-Movaghar"}]},{id:"63258",title:"Anatomy and Function of the Hypothalamus",slug:"anatomy-and-function-of-the-hypothalamus",totalDownloads:4558,totalCrossrefCites:6,totalDimensionsCites:12,abstract:"The hypothalamus is a small but important area of the brain formed by various nucleus and nervous fibers. Through its neuronal connections, it is involved in many complex functions of the organism such as vegetative system control, homeostasis of the organism, thermoregulation, and also in adjusting the emotional behavior. The hypothalamus is involved in different daily activities like eating or drinking, in the control of the body’s temperature and energy maintenance, and in the process of memorizing. It also modulates the endocrine system through its connections with the pituitary gland. Precise anatomical description along with a correct characterization of the component structures is essential for understanding its functions.",book:{id:"6331",slug:"hypothalamus-in-health-and-diseases",title:"Hypothalamus in Health and Diseases",fullTitle:"Hypothalamus in Health and Diseases"},signatures:"Miana Gabriela Pop, Carmen Crivii and Iulian Opincariu",authors:null},{id:"57103",title:"GABA and Glutamate: Their Transmitter Role in the CNS and Pancreatic Islets",slug:"gaba-and-glutamate-their-transmitter-role-in-the-cns-and-pancreatic-islets",totalDownloads:3478,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"Glutamate and gamma-aminobutyric acid (GABA) are the major neurotransmitters in the mammalian brain. Inhibitory GABA and excitatory glutamate work together to control many processes, including the brain’s overall level of excitation. The contributions of GABA and glutamate in extra-neuronal signaling are by far less widely recognized. In this chapter, we first discuss the role of both neurotransmitters during development, emphasizing the importance of the shift from excitatory to inhibitory GABAergic neurotransmission. The second part summarizes the biosynthesis and role of GABA and glutamate in neurotransmission in the mature brain, and major neurological disorders associated with glutamate and GABA receptors and GABA release mechanisms. The final part focuses on extra-neuronal glutamatergic and GABAergic signaling in pancreatic islets of Langerhans, and possible associations with type 1 diabetes mellitus.",book:{id:"6237",slug:"gaba-and-glutamate-new-developments-in-neurotransmission-research",title:"GABA And Glutamate",fullTitle:"GABA And Glutamate - New Developments In Neurotransmission Research"},signatures:"Christiane S. Hampe, Hiroshi Mitoma and Mario Manto",authors:[{id:"210220",title:"Prof.",name:"Christiane",middleName:null,surname:"Hampe",slug:"christiane-hampe",fullName:"Christiane Hampe"},{id:"210485",title:"Prof.",name:"Mario",middleName:null,surname:"Manto",slug:"mario-manto",fullName:"Mario Manto"},{id:"210486",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Mitoma",slug:"hiroshi-mitoma",fullName:"Hiroshi Mitoma"}]},{id:"35802",title:"Cross-Cultural/Linguistic Differences in the Prevalence of Developmental Dyslexia and the Hypothesis of Granularity and Transparency",slug:"cross-cultural-linguistic-differences-in-the-prevalence-of-developmental-dyslexia-and-the-hypothesis",totalDownloads:3601,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"673",slug:"dyslexia-a-comprehensive-and-international-approach",title:"Dyslexia",fullTitle:"Dyslexia - A Comprehensive and International Approach"},signatures:"Taeko N. Wydell",authors:[{id:"87489",title:"Prof.",name:"Taeko",middleName:"N.",surname:"Wydell",slug:"taeko-wydell",fullName:"Taeko Wydell"}]},{id:"58597",title:"Testosterone and Erectile Function: A Review of Evidence from Basic Research",slug:"testosterone-and-erectile-function-a-review-of-evidence-from-basic-research",totalDownloads:1331,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Androgens are essential for male physical activity and normal erectile function. Hence, age-related testosterone deficiency, known as late-onset hypogonadism (LOH), is considered a risk factor for erectile dysfunction (ED). This chapter summarizes relevant basic research reports examining the effects of testosterone on erectile function. Testosterone affects several organs and is especially active on the erectile tissue. The mechanism of testosterone deficiency effects on erectile function and the results of testosterone replacement therapy (TRT) have been well studied. Testosterone affects nitric oxide (NO) production and phosphodiesterase type 5 (PDE-5) expression in the corpus cavernosum through molecular pathways, preserves smooth muscle contractility by regulating both contraction and relaxation, and maintains the structure of the corpus cavernosum. Interestingly, testosterone deficiency has relationship to neurological diseases, which leads to ED. Testosterone replacement therapy is widely used to treat patients with testosterone deficiency; however, this treatment might also induce some problems. Basic research suggests that PDE-5 inhibitors, L-citrulline, and/or resveratrol therapy might be effective therapeutic options for testosterone deficiency-induced ED. Future research should confirm these findings through more specific experiments using molecular tools and may shed more light on endocrine-related ED and its possible treatments.",book:{id:"5994",slug:"sex-hormones-in-neurodegenerative-processes-and-diseases",title:"Sex Hormones in Neurodegenerative Processes and Diseases",fullTitle:"Sex Hormones in Neurodegenerative Processes and Diseases"},signatures:"Tomoya Kataoka and Kazunori Kimura",authors:[{id:"219042",title:"Ph.D.",name:"Tomoya",middleName:null,surname:"Kataoka",slug:"tomoya-kataoka",fullName:"Tomoya Kataoka"},{id:"229066",title:"Prof.",name:"Kazunori",middleName:null,surname:"Kimura",slug:"kazunori-kimura",fullName:"Kazunori Kimura"}]}],onlineFirstChaptersFilter:{topicId:"18",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81646",title:"Cortical Plasticity under Ketamine: From Synapse to Map",slug:"cortical-plasticity-under-ketamine-from-synapse-to-map",totalDownloads:14,totalDimensionsCites:0,doi:"10.5772/intechopen.104787",abstract:"Sensory systems need to process signals in a highly dynamic way to efficiently respond to variations in the animal’s environment. For instance, several studies showed that the visual system is subject to neuroplasticity since the neurons’ firing changes according to stimulus properties. This dynamic information processing might be supported by a network reorganization. Since antidepressants influence neurotransmission, they can be used to explore synaptic plasticity sustaining cortical map reorganization. To this goal, we investigated in the primary visual cortex (V1 of mouse and cat), the impact of ketamine on neuroplasticity through changes in neuronal orientation selectivity and the functional connectivity between V1 cells, using cross correlation analyses. We found that ketamine affects cortical orientation selectivity and alters the functional connectivity within an assembly. These data clearly highlight the role of the antidepressant drugs in inducing or modeling short-term plasticity in V1 which suggests that cortical processing is optimized and adapted to the properties of the stimulus.",book:{id:"11374",title:"Sensory Nervous System - Computational Neuroimaging Investigations of Topographical Organization in Human Sensory Cortex",coverURL:"https://cdn.intechopen.com/books/images_new/11374.jpg"},signatures:"Ouelhazi Afef, Rudy Lussiez and Molotchnikoff Stephane"},{id:"81582",title:"The Role of Cognitive Reserve in Executive Functioning and Its Relationship to Cognitive Decline and Dementia",slug:"the-role-of-cognitive-reserve-in-executive-functioning-and-its-relationship-to-cognitive-decline-and",totalDownloads:22,totalDimensionsCites:0,doi:"10.5772/intechopen.104646",abstract:"In this chapter, we explore how cognitive reserve is implicated in coping with the negative consequences of brain pathology and age-related cognitive decline. Individual differences in cognitive performance are based on different brain mechanisms (neural reserve and neural compensation), and reflect, among others, the effect of education, occupational attainment, leisure activities, and social involvement. These cognitive reserve proxies have been extensively associated with efficient executive functioning. We discuss and focus particularly on the compensation mechanisms related to the frontal lobe and its protective role, in maintaining cognitive performance in old age or even mitigating the clinical expression of dementia.",book:{id:"11742",title:"Neurophysiology",coverURL:"https://cdn.intechopen.com/books/images_new/11742.jpg"},signatures:"Gabriela Álvares-Pereira, Carolina Maruta and Maria Vânia Silva-Nunes"},{id:"81488",title:"Aggression and Sexual Behavior: Overlapping or Distinct Roles of 5-HT1A and 5-HT1B Receptors",slug:"aggression-and-sexual-behavior-overlapping-or-distinct-roles-of-5-ht1a-and-5-ht1b-receptors",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.104872",abstract:"Distinct brain mechanisms for male aggressive and sexual behavior are present in mammalian species, including man. However, recent evidence suggests a strong connection and even overlap in the central nervous system (CNS) circuitry involved in aggressive and sexual behavior. The serotonergic system in the CNS is strongly involved in male aggressive and sexual behavior. In particular, 5-HT1A and 5-HT1B receptors seem to play a critical role in the modulation of these behaviors. The present chapter focuses on the effects of 5-HT1A- and 5-HT1B-receptor ligands in male rodent aggression and sexual behavior. Results indicate that 5-HT1B-heteroreceptors play a critical role in the modulation of male offensive behavior, although a definite role of 5-HT1A-auto- or heteroreceptors cannot be ruled out. 5-HT1A receptors are clearly involved in male sexual behavior, although it has to be yet unraveled whether 5-HT1A-auto- or heteroreceptors are important. Although several key nodes in the complex circuitry of aggression and sexual behavior are known, in particular in the medial hypothalamus, a clear link or connection to these critical structures and the serotonergic key receptors is yet to be determined. This information is urgently needed to detect and develop new selective anti-aggressive (serenic) and pro-sexual drugs for human applications.",book:{id:"10195",title:"Serotonin and the CNS - New Developments in Pharmacology and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg"},signatures:"Berend Olivier and Jocelien D.A. Olivier"},{id:"81093",title:"Prehospital and Emergency Room Airway Management in Traumatic Brain Injury",slug:"prehospital-and-emergency-room-airway-management-in-traumatic-brain-injury",totalDownloads:49,totalDimensionsCites:0,doi:"10.5772/intechopen.104173",abstract:"Airway management in trauma is critical and may impact patient outcomes. Particularly in traumatic brain injury (TBI), depressed level of consciousness may be associated with compromised protective airway reflexes or apnea, which can increase the risk of aspiration or result in hypoxemia and worsen the secondary brain damage. Therefore, patients with TBI and Glasgow Coma Scale (GCS) ≤ 8 have been traditionally managed by prehospital or emergency room (ER) endotracheal intubation. However, recent evidence challenged this practice and even suggested that routine intubation may be harmful. This chapter will address the indications and optimal method of securing the airway, prehospital and in the ER, in patients with traumatic brain injury.",book:{id:"11367",title:"Traumatic Brain Injury",coverURL:"https://cdn.intechopen.com/books/images_new/11367.jpg"},signatures:"Dominik A. Jakob, Jean-Cyrille Pitteloud and Demetrios Demetriades"},{id:"81011",title:"Amino Acids as Neurotransmitters. The Balance between Excitation and Inhibition as a Background for Future Clinical Applications",slug:"amino-acids-as-neurotransmitters-the-balance-between-excitation-and-inhibition-as-a-background-for-f",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.103760",abstract:"For more than 30 years, amino acids have been well-known (and essential) participants in neurotransmission. They act as both neuromediators and metabolites in nervous tissue. Glycine and glutamic acid (glutamate) are prominent examples. These amino acids are agonists of inhibitory and excitatory membrane receptors, respectively. Moreover, they play essential roles in metabolic pathways and energy transformation in neurons and astrocytes. Despite their obvious effects on the brain, their potential role in therapeutic methods remains uncertain in clinical practice. In the current chapter, a comparison of the crosstalk between these two systems, which are responsible for excitation and inhibition in neurons, is presented. The interactions are discussed at the metabolic, receptor, and transport levels. Reaction-diffusion and a convectional flow into the interstitial fluid create a balanced distribution of glycine and glutamate. Indeed, the neurons’ final physiological state is a result of a balance between the excitatory and inhibitory influences. However, changes to the glycine and/or glutamate pools under pathological conditions can alter the state of nervous tissue. Thus, new therapies for various diseases may be developed on the basis of amino acid medication.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Yaroslav R. Nartsissov"},{id:"80821",title:"Neuroimmunology and Neurological Manifestations of COVID-19",slug:"neuroimmunology-and-neurological-manifestations-of-covid-19",totalDownloads:41,totalDimensionsCites:0,doi:"10.5772/intechopen.103026",abstract:"Infection with SARS-CoV-2 is causing coronavirus disease in 2019 (COVID-19). Besides respiratory symptoms due to an attack on the broncho-alveolar system, COVID-19, among others, can be accompanied by neurological symptoms because of the affection of the nervous system. These can be caused by intrusion by SARS-CoV-2 of the central nervous system (CNS) and peripheral nervous system (PNS) and direct infection of local cells. In addition, neurological deterioration mediated by molecular mimicry to virus antigens or bystander activation in the context of immunological anti-virus defense can lead to tissue damage in the CNS and PNS. In addition, cytokine storm caused by SARS-CoV-2 infection in COVID-19 can lead to nervous system related symptoms. Endotheliitis of CNS vessels can lead to vessel occlusion and stroke. COVID-19 can also result in cerebral hemorrhage and sinus thrombosis possibly related to changes in clotting behavior. Vaccination is most important to prevent COVID-19 in the nervous system. There are symptomatic or/and curative therapeutic approaches to combat COVID-19 related nervous system damage that are partly still under study.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Robert Weissert"}],onlineFirstChaptersTotal:17},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"May 19th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:4,paginationItems:[{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{},publishedBooks:{},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"onlineFirst.detail",path:"/online-first/80824",hash:"",query:{},params:{id:"80824"},fullPath:"/online-first/80824",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()