The number and relative content (% of total essential oil) of the fatty acids in some species of freshwater macrophytes and macroalgae from different water bodies.
\r\n\tAs the subject of adhesives is in constant development, this book's purpose is to get together information about adhesives science and technology, recent advances, and applications that use adhesive technology. Also, to make these contents available to engineering students, engineers, researchers, and the people interested in this topic. The book is expected to present works that aim to contribute to the development of new technologies and the use of non-traditional materials in engineering.
",isbn:"978-1-83880-670-5",printIsbn:"978-1-83880-669-9",pdfIsbn:"978-1-83880-671-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"c58b7d4c17e2a202af1dc4b906b7becb",bookSignature:"Prof. António Bastos Pereira and Dr. Alexandre Luiz Pereira",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11819.jpg",keywords:"The Technology of the Adhesives, Recent Advances, New Perspectives, Structural Adhesives Bonding, Durability of Structural Adhesives, New Applications, Repair of Composites, Bonding of Composites, Experimental Mechanics Tests, Thermal Analysis, Finite Element Method, Numerical Analysis.",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 15th 2022",dateEndSecondStepPublish:"May 13th 2022",dateEndThirdStepPublish:"July 12th 2022",dateEndFourthStepPublish:"September 30th 2022",dateEndFifthStepPublish:"November 29th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"12 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. António Pereira is a professor and researcher, who graduated from the University of Porto, and gained experience as an engineer working at Renault, with an h-index of 23, and more than 1500 citations for 70 papers published in SCI journals.",coeditorOneBiosketch:"An active researcher in Solid Mechanics, Dr. Alexandre Luiz Pereira holds a degree in Mathematics from the State University of Rio de Janeiro, and a degree in Mechanical Engineering from the Fluminense Federal University in Brazil.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira",profilePictureURL:"https://mts.intechopen.com/storage/users/211131/images/system/211131.png",biography:"Founding shareholder and Director of Martifer Group (ca. 3500 employees) (1990-1999) - was responsible for the planning and production of about 500 steel structures and industrial equipment with a total amount exceeding 100 million euros.\nAssistant Professor at the Department of Mechanical Engineering, University of Aveiro, since 2000. Board Member and Member of the Executive Committee at the Department of Mechanical Engineering, University of Aveiro (2011 – 2015), currently Director of TEMA - Centre for Mechanical Technology and Automation.\nHis main research area has been mechanics of composite materials, with particular emphasis on delamination fracture mechanics. He has published 44 papers in SCI journals and has delivered 30 presentations at international conferences. His h-index at scopus is 16 with more than 770 citations.",institutionString:"University of Aveiro",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}}],coeditorOne:{id:"452095",title:"Dr.",name:"Alexandre Luiz",middleName:null,surname:"Pereira",slug:"alexandre-luiz-pereira",fullName:"Alexandre Luiz Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003LeECuQAN/Profile_Picture_1642158596909",biography:"Alexandre Luiz Pereira is Ph.D. in Mechanical Engineering and Materials Technology. During the period of the Ph.D., he did a Postgraduate Internship at the Department of Mechanical Engineering at the University of Aveiro/Portugal (UA). Since 2014 he has been a professor and researcher at the Federal Center of Technological Education in Rio de Janeiro (CEFET/RJ). He is currently the coordinator of the Mechanical Engineering course at the CEFET/RJ Campus Angra dos Reis. His main research areas focus on the study of materials technology, from structural and hybrid composites, hyperelastic materials, and adhesives joints.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"14",title:"Materials Science",slug:"materials-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444312",firstName:"Sara",lastName:"Tikel",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/444312/images/20015_n.jpg",email:"sara.t@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editedByType:"Edited by",editors:[{id:"211131",title:"Prof.",name:"António",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6320",title:"Advances in Glass Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6d0a32a0cf9806bccd04101a8b6e1b95",slug:"advances-in-glass-science-and-technology",bookSignature:"Vincenzo M. Sglavo",coverURL:"https://cdn.intechopen.com/books/images_new/6320.jpg",editedByType:"Edited by",editors:[{id:"17426",title:"Prof.",name:"Vincenzo Maria",surname:"Sglavo",slug:"vincenzo-maria-sglavo",fullName:"Vincenzo Maria Sglavo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6517",title:"Emerging Solar Energy Materials",subtitle:null,isOpenForSubmission:!1,hash:"186936bb201bb186fb04b095aa39d9b8",slug:"emerging-solar-energy-materials",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/6517.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6188",title:"Solidification",subtitle:null,isOpenForSubmission:!1,hash:"0405c42586170a1def7a4b011c5f2b60",slug:"solidification",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/6188.jpg",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9393",title:"Engineering Steels and High Entropy-Alloys",subtitle:null,isOpenForSubmission:!1,hash:"d33466a3272f97353a6bf6d76d7512a5",slug:"engineering-steels-and-high-entropy-alloys",bookSignature:"Ashutosh Sharma, Zoia Duriagina, Sanjeev Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/9393.jpg",editedByType:"Edited by",editors:[{id:"145236",title:"Dr.",name:"Ashutosh",surname:"Sharma",slug:"ashutosh-sharma",fullName:"Ashutosh Sharma"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6802",title:"Graphene Oxide",subtitle:"Applications and Opportunities",isOpenForSubmission:!1,hash:"075b313e11be74c55a1f66be5dd56b40",slug:"graphene-oxide-applications-and-opportunities",bookSignature:"Ganesh Kamble",coverURL:"https://cdn.intechopen.com/books/images_new/6802.jpg",editedByType:"Edited by",editors:[{id:"236420",title:"Dr.",name:"Ganesh",surname:"Kamble",slug:"ganesh-kamble",fullName:"Ganesh Kamble"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6656",title:"Phase Change Materials and Their Applications",subtitle:null,isOpenForSubmission:!1,hash:"9b257f8386280bdde4633d36124787f2",slug:"phase-change-materials-and-their-applications",bookSignature:"Mohsen Mhadhbi",coverURL:"https://cdn.intechopen.com/books/images_new/6656.jpg",editedByType:"Edited by",editors:[{id:"228366",title:"Dr.",name:"Mohsen",surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6805",title:"Electrical and Electronic Properties of Materials",subtitle:null,isOpenForSubmission:!1,hash:"f6b6930e7ae9d0704f68b5c180526309",slug:"electrical-and-electronic-properties-of-materials",bookSignature:"Md. Kawsar Alam",coverURL:"https://cdn.intechopen.com/books/images_new/6805.jpg",editedByType:"Edited by",editors:[{id:"199691",title:"Dr.",name:"Md. Kawsar",surname:"Alam",slug:"md.-kawsar-alam",fullName:"Md. Kawsar Alam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8417",title:"Recent Advances in Boron-Containing Materials",subtitle:null,isOpenForSubmission:!1,hash:"3737be3f785ef9d8b318571ab474f407",slug:"recent-advances-in-boron-containing-materials",bookSignature:"Metin Aydin",coverURL:"https://cdn.intechopen.com/books/images_new/8417.jpg",editedByType:"Edited by",editors:[{id:"27070",title:"Prof.",name:"Metin",surname:"Aydin",slug:"metin-aydin",fullName:"Metin Aydin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8812",title:"Contemporary Topics about Phosphorus in Biology and Materials",subtitle:null,isOpenForSubmission:!1,hash:"86c427901f631db034a54b22dd765d6a",slug:"contemporary-topics-about-phosphorus-in-biology-and-materials",bookSignature:"David G. Churchill, Maja Dutour Sikirić, Božana Čolović and Helga Füredi Milhofer",coverURL:"https://cdn.intechopen.com/books/images_new/8812.jpg",editedByType:"Edited by",editors:[{id:"219335",title:"Dr.",name:"David",surname:"Churchill",slug:"david-churchill",fullName:"David Churchill"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"74844",title:"The Use of Allelochemicals of Aquatic Macrophytes to Suppress the Development of Cyanobacterial “Blooms”",doi:"10.5772/intechopen.95609",slug:"the-use-of-allelochemicals-of-aquatic-macrophytes-to-suppress-the-development-of-cyanobacterial-bloo",body:'Harmful algal “blooms”, or HABs, is a hazardous natural phenomenon that often occurs under the influence of anthropogenic factors, for example, during the anthropogenic eutrophication of water bodies. An increase in the frequency and duration of cyanobacterial “blooms” carries many serious threats, including local and global degradation of water resources and the impact of cyanotoxins [1, 2, 3]. This problem is especially relevant and acute for millions of small reservoirs widely used for various types of water consumption: fisheries and aquaculture, water supply for various industries, including agricultural, drinking, and domestic water supply, recreational purposes, including sporting events. HABs occur when algae or cyanobacteria (most often they are) develop beyond measure and produce harmful effects on other hydrobionts, fish, aquatic and terrestrial animals, and birds as well as people [4, 5]. HABs disrupt the esthetics of water bodies and render the water unsuitable for various kinds of water uses. Economic damage due to HABs can be millions of dollars [6, 7].
Widespread HABs is a phenomenon to which special attention should be drawn since such “blooms” pose a number of serious threats, including local and global degradation of water resources and exposure to cyanotoxins [8, 9, 10, 11, 12, 13, 14].
Cyanobacterial “blooms” of water bodies are officially recognized as a global problem of modern ecology. Seasonal intense cyanobacterial “blooms” of reservoirs bring additional undesirable properties to natural and drinking water, such as a specific smell, taste, and the presence of toxins (microcystins). In some regions, the importance of this problem has been increasing recently [15]. The Working Group on the Evaluation of Carcinogenic Risks to Humans listed cyanotoxins as a carcinogenic substance harmful to humans [16].
The introduction of biotechnological methods into the practice of water body management that have maximum efficiency is one of the tasks of modern science. These include, first of all, the so-called convergent nature-like technologies, i.e. technologies that are based on any natural mechanisms causing this or that effect. These are precisely technologies that may be intended to ensure the sustainable development of modern countries [17, 18, 19].
Such technologies, aimed at managing the development of plankton communities in general and phytoplankton communities, in particular, may be based on such a phenomenon as allelopathy. This natural phenomenon can be very useful for effectively preventing and stopping the development of cyanobacterial “blooms” in water bodies [20, 21, 22]. Many existing methods of combating cyanobacteria [23] do not effectively solve the problem of “blooms” of water bodies without damage to other components of the ecosystem [3]. Usually, they are associated with serious adventitious effects on aquatic organisms and ecological systems [24].
At the same time, the application of the method of metabolic allelopathic control of HABs in water bodies during eutrophication is an effective and innovative solution to this problem. This approach preserves and restores water quality in water bodies, makes them suitable for multifunctional use, and natural allelochemicals (metabolites of macrophytes and their synthetic analogs) can be an effective alternative to existing algicides [20, 22, 25].
In reservoirs where macrophytes are developed (as a rule, at least 30% of the projective cover of the water area), water “bloom” is almost never observed. These circumstances are the causal basis for the development of nature-like technologies for the prevention and suppression of HABs with the help of new generation algicides based on allelochemical substances characteristic of aquatic macrophytes.
It has become apparent that metabolites-allelochemicals may be functioning in the processes of chemical suppressing of planktonic cyanobacteria in the aquatic ecosystems. However, data from field experiments are few concerning the effect of aquatic macrophyte allelochemicals on cyanobacteria, which is necessary for the development of nature-like technologies for preventing and suppressing cyanobacterial “blooms”, and therefore they are the objects of “hottest” areas of research. Utilization of allelochemicals from aquatic macrophytes or using their synthetic analogs to inhibit cyanobacterial overgrowth is an environment-friendly technology for suppressing HABs.
Some reviews are focusing on the practice of the application of allelochemicals in agriculture [26, 27], but the field of using nature-like allelopathic technology to manage aquatic ecosystems is still poorly developed.
In the present study, we aimed to provide the information on the suppressing of cyanobacteria by macrophytes allelochemicals and the possibility to develop an algaecide of the new generation as a convergent nature-like technology for preventing and stopping the development of HABs in water bodies based on such a phenomenon as allelopathy.
Allelopathy as a natural phenomenon had been repeatedly recorded for a very long time in the 3rd century BC in ancient Chinese literature [28]. The term “allelopathy” was coined comparatively recently, in 1937 by Austrian plant physiologist Hans Molisch [29], who can be named as the father of allelopathy [30]. In general, we can consider allelopathy as an area of science, which investigates inhibitory or stimulatory biochemical interactions between the two plant/plant or plant/microorganism species.
The recent history of the study of low molecular weight organic compounds, which are small molecules (less than 900 amu) and constitute the low molecular weight metabolic profiles of organisms, should apparently begin with the discovery of the inhibitory effect of volatile plant excreta on microorganisms by Tokin Boris Petrovitch during the experimental work of 1928–1930 [31]. The research resulted in a number of publications, in one of which (“Bactericides of plant origin (phytoncides)”) [32], the term “phytoncides” appeared. In the future, the doctrine of phytoncides was developed, which was reflected in the publication of several monographs. The history of research on phytoncides of aquatic and coastal plants began in the 40s of the XX century with the works of Gurevich Faiva Abramovich (1918–1992) [33], a student of B.P. Tokin. These studies ended in 1973 with the defense of a doctoral dissertation “Phytoncides of aquatic and coastal plants, their role in biocenoses” [34]. In particular, it was F.A. Gurevich who showed that the phytoncidal activity of aquatic plants is closely related to the macrophyte species and peculiarities of its development. He also showed that phytoncides are a very significant factor in the distribution of hydrobionts in a water body, including invertebrates.
At present, we can say that the macrophyte and algal allelopathy is paid much less attention than allelopathy in terrestrial ecosystems. Macrophytes and cyanobacteria are known to have an antagonistic relationship in different natural and experimental aquatic ecosystems [25, 35, 36].
It is a recognized fact that phytoplankton is poorly developed in macrophytic lakes. Even if we take into account the opinion that this is due to such factors as winning competition for nutrients and shading, then in the overwhelming number of cases, the main factor providing suppression of phytoplankton development is undoubtedly allelopathic suppression [37]. Apparently, the competition for nutrients cannot be recognized as a decisive factor in the outcome of the struggle between macrophytes and cyanobacteria, including considering that most aquatic macrophytes are rooted, and they usually obtain the main part of the necessary nutrients from the bottom sediments, which is characterized by high nutrient concentrations [38].
It is well known the phenomenon when shallow-water lakes can change their trophic status and the type of lake ecosystem, being either a pure water body with well-developed aquatic vegetation or a water body with low transparency, high turbidity, and intensive phytoplankton (mainly cyanobacteria) development. In other words, they can shift from one state to another [36, 39, 40, 41, 42, 43]. As this takes place, the mutual inhibitory allelopathic activities of macrophytes and phytoplankton may lead to the dominance of either macrophytes or phytoplankton [44].
We observed a similar effect in a floodplain lake with a changing trophic state in the Volga-Akhtuba interfluve, when cyanobacteria and macrophytes dominated in the same water body in different years [36]. Some evidence exists [45, 46, 47, 48] that allelopathy is a factor affecting the development of phytoplankton (including cyanobacteria) in shallow lakes at the projective cover of macrophytes from 20 to 100%.
The importance of allelopathy as a powerful regulatory mechanism initiates a lot of studies devoted to the study of the inhibitory (sometimes stimulating) allelopathic effect of macrophytes on cyanobacteria and algae in aquatic ecosystems [49, 50, 51, 52, 53, 54, 55, 56, 57, 58]. More than 60 species (67) of macrophytes are known to exhibit allelopathic activity against cyanobacteria. They are presented in Table 1.
Species of macrophytes | Ecological form | Study scale | Cyanobacteria inhibited Study Scale | Source |
---|---|---|---|---|
EM | L | Сyanobacteriaas a whole | [59, 60] | |
EM | L | [51, 57, 61, 62, 63] | ||
FM | L | [64] | ||
SM | L | [65, 66] | ||
EM | L | [67] | ||
SM | L, F | [58, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78]; Our data | ||
SM | L | [37, 79, 80, 81] | ||
SM | L | [82] | ||
SM | L | [81, 83] | ||
SM | L | [79] | ||
SM | L* | [71] | ||
SM | L | [68, 72, 79, 84] | ||
SM | L, F | Сyanobacteria as a whole | [83, 85] | |
SM | L | [79] | ||
SM | L, F | [79, 83, 86, 87] | ||
EM | L | [67] | ||
FM | L | [88, 89, 90, 91] | ||
SM | L | Сyanobacteria as a whole | [66] | |
SM | L | [92, 93] | ||
SM | L, F | [35, 68, 78, 94, 95] | ||
SM | L | [56, 58, 96] | ||
SM | L | [66] | ||
SM | [66] | |||
SM | L | [97] | ||
SM | L | [98] | ||
SM | L | [99] | ||
SM | L, F | [54, 65, 71, 78, 83, 100, 101, 102, 103, 104] | ||
SM | L | Сyanobacteria as a whole | [105, 106] | |
SM | L | [74, 94] | ||
EM | L | [107] | ||
FM | L, F | [108, 109] | ||
SM | L, F | [68, 79, 83] | ||
FM | L, F | Сyanobacteria as a whole | [110]; Our data | |
FM | F | Сyanobacteria as a whole | Our data | |
EM | Сyanobacteria as a whole | [111] | ||
EM | L | [108, 112] | ||
FM | L | [113, 114, 115] | ||
SM | L, F | [82, 116, 117] | ||
SM | L | [58] | ||
SM | L | [66] | ||
SM | L, F | [58, 71], Our data | ||
SM | L | [58, 118, 119] | ||
SM | L, F | [118, 119, 120] | ||
SM | L, F | [78], Our data | ||
SM | L | [76, 118, 121] | ||
SM/FM | L | [107] | ||
SM | L | [122, 123] | ||
FM | L, F | [49, 68, 71] | ||
EM | L | [57, 124, 125, 126] | ||
SM | L | [58, 66, 75, 127] |
The number and relative content (% of total essential oil) of the fatty acids in some species of freshwater macrophytes and macroalgae from different water bodies.
According to the principle of allelopathic action, it is possible to prevent or mitigate the massive development of Сyanobacteria (blue-green algae), which leads to the HABs in water bodies. The implementation of this research direction promises huge benefits since it will solve the problem of the “blooms” of water bodies without negative consequences for other components of the ecosystem [20, 22, 25].
As follows from Table 1, data from laboratory studies, in general, prevail in the observation and proof of the effect of macrophyte allelopathy on cyanobacteria. These studies are based on laboratory-scale experiments using the co-cultures systems, adding plant extracts, or leachate collection. This state of affairs is associated with a more complex organization and interpretation of field studies. In this regard, data from field experiments and observations, for example with mesocosms, are of particular value. Numerous studies (including those included in Table 1) strongly suggest that allelopathy might thus be relevant in natural waters and suppress cyanobacteria and algae.
There are observations on the differentiation of the inhibitory effect of macrophytes on various species of cyanobacteria and algae. For example, it was concluded that the extracts, exudates, and live material of macroalgae
The available data allow us to speak about the selective inhibition of various species of cyanobacteria by allelochemicals of various species of macrophytes. As a result, the allelopathic effect of macrophyte association on cyanobacteria (and all phytoplankton) seems to be stronger than the effect of one macrophyte species. This is evidenced by the fact that, as has been shown, the allelopathic effect of excretions of the association of macroalgae (
Lombardo et al. [129] suggested that lake trophic state and extent of submerged vegetation coverage maybe the most important factors during formation in situ macrophyte–phytoplankton patterns at a large scale of natural water bodies. In this case, with a larger projective cover, a greater allelopathic effect will be achieved [45, 46, 47, 48].
Not all macrophytes have the same allelopathic effect on cyanobacteria. Macrophytes that have the greatest suppressive effect on cyanobacteria (taking into account, among other things, information from Table 1) are such species and groups as
In the study [131], it was concluded that of all the 15 tested aquatic macrophytes,
Similar results were obtained with the macrophytes
For the sake of completeness, it should be noted that some terrestrial plant materials (for example, barley straw) exhibit a strong allelopathic effect on cyanobacteria under certain conditions [134, 135, 136], which is no coincidence, since terrestrial plants also contain numerous allelochemicals [28]. It was shown in [137] that salcolin (two enantiomers that differ in their anti-cyanobacterial abilities) is the key allelochemical in barley straw’s which exhibits an inhibitory effect on cyanobacteria and could be used as an agent in the control of cyanobacterial HABs. A review of typical terrestrial allelopathic plants with algistatic or algicidal effects is presented in [24].
Low-molecular-weight anti-cyanobacterial allelochemicals produced by aquatic macrophytes are very diverse. They belong to different classes of chemical compounds and are functionally diverse. Allelochemicals from the following groups of chemical compounds are the most important [22, 30, 55]: aldehydes, ketones, ethers, terpenes and terpenoids, phytoecdysteroids, fatty acids, sulfur-containing compounds, nitrogen-containing compounds, alcohols, lactones, polyacetylenes, quinines, phenolics, cinnamic acid and its derivatives, coumarins, flavonoids, tannins. These groups include hundreds of allelochemicals inhibiting cyanobacteria and algae [24], which should be discussed in detail in a special review.
These allelochemicals can be extracted from the plant biomass, but also their synthetic counterparts can be produced and used. This will reduce the consumption of natural plant resources. The effectiveness of synthetic allelochemicals can be similar to their natural counterparts. Thus, synthetic allelochemicals are a hopeful alternative to the use of natural metabolites-allelochemicals against HAB-forming cyanobacteria [20, 21].
Realizing that it is impossible to consider all groups of allelochemicals, here we will focus on considering only fatty acids and phenolic compounds as the most promising (in our opinion) for biotechnological use in the fight against HABs.
Studies of potential biological activities of major low molecular weight organic compounds of aquatic macrophytes using the QSAR method [138, 139] have shown that fatty acids and gallic acid are characterized by various types of bioactivity with the highest probability of manifestation (Pa > 0.9) that can induce cyanobacteria growth suppression. Further studies based on the results obtained suggest clarifying experimental studies of the reaction of various species of cyanobacteria to the effects of selected allelochemicals.
As it was received in laboratory experiments conducted with fatty acids for their effect on the cyanobacteria
The highest SI values for Synechocystis aquatilis were obtained when the culture of cyanobacteria was exposed to gallic acid (SI = 30) and a mixture of heptanoic, octanoic, tetradecanoic, and gallic acids (SI = 35.3).
In works [141, 142] problems have been raised concerning effective algal inhibitors and control HABs. To address these issues, the authors suggested using unsaturated fatty acid (linoleic acid) in conjunction with alginate – chitosan microcapsule technology. They demonstrated that the linoleic acid microsphere had good encapsulation efficiency and release property. Besides, linoleic acid sustained-released microspheres could inhibit
Studies on the use of microgranules saturated with an allelochemical or a combination of allelochemicals (for example, a combination of fatty acids and phenolic compounds) to suppress cyanobacteria look very promising. The inhibitory agent, gradually releasing from the microgranules, prolongs its allelopathic effect on cyanobacteria. A sustained-release time of allelochemicals can range from 40 to 120 days [142, 143, 144]. A review of the studies carried out in this direction is presented in [128]. Results obtained in different investigations open up new promising areas for scientific research and practical use of allelochemicals of aquatic macrophytes.
According to results received in [112], nonanoic acid can inhibit the growth of cyanobacteria
In earlier works [113, 125], it was also found, that three fatty acids (α − linolenic, linoleic, and an unidentified C8∶2) inhibited cyanobacteria (particularly T 625
The essential oil of some allelopathic plants (
Recently, Wang et al. [95] reported the inhibitory effects of some fatty acids on
We showed [140] that such plants as
Our studies of the metabolome of
Dependence of the concentration of cyanobacteria (BGA, cells/ml) on the concentration of fatty acids (Cca, μg/g.dr.w.) in
The study by Gao et al. [145] demonstrates that nonanoic acid may be involved in synergistic interactions with other allelochemicals, demonstrating a stronger allelopathic effect against Microcystis aeruginosa.
Similar results were obtained for octadecanoic acid [146], which may participate in synergistic, antagonistic, and additive allelopathic interactions. These findings led to the conclusion that joint effects of different allelochemicals depend on various factors such as the chemicals used, their respective proportions, the total concentration of the mixture, and the receptor species [146].
In addition to fatty acids, among allelochemicals, special attention should be paid to phenolic compounds.
As early as in 1981 [100], the results were published, which demonstrated that phenolic compounds extracted from
Additionally, a study [78] has revealed that the major allelochemicals identified in tested macrophyte ethyl acetate extract of
In a study [54] during the investigation of contributions of five allelochemicals, (+) catechin, eugeniin, and ellagic, gallic, and pyrogallic acid, in the allelopathic effects of
It is beyond question that there is a huge amount of scientific material regarding the allelopathic properties of fatty acids and gallic acid ([52, 54, 56, 67, 88, 103, 112, 113, 118, 119, 124, 125, 126, 146, 148, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166], etc.). This circumstance gives every reason to use them to create a new generation of algicides based on allelochemical substances of aquatic macrophytes. The use of this information, as well as the results of our researches [36, 138, 140], formed a prerequisite for the development of a new generation algicide based on allelochemicals of aquatic macrophytes against cyanobacteria. It is precisely fatty acids (heptanoic, octanoic, tetradecanoic acids) and gallic acid that were included in its composition [167].
Evidence of suppression of the development of phytoplankton, including planktonic cyanobacteria, in real natural conditions by traditional observations, even in the most obvious cases [36], is nevertheless indirect and often contradictory [48, 168]. Taking this into account, the way of assessing the effect of allelochemicals on cyanobacteria in experiments with mesocosms in natural conditions is more promising and makes it possible to obtain results corresponding to natural aquatic ecosystems.
A good example is a field study by Hilt et al. [169] in which the authors found an allelopathic effect of the macrophyte
In another mesocosm study [171], similar results were obtained, demonstrating that another species of the genus Myriophyllum (
After the development of an algicide containing fatty acids (heptanoic, octanoic, tetradecanoic acids) and gallic acid, the rationale for the use of which is presented in detail in [140], we conducted the first experiments with this algicide with natural phytoplankton communities under conditions mesocosms.
In the field experiments, mesocosms with a volume of 700 liters were used. The experiments were carried out on two ponds on the territory of St. Petersburg (Russia): at Pulkovo Pond (pond 1; coordinates 59.835899, 30.328642) and Aviator’s Pond (Pond 2; coordinates 59.868343, 30.300443). The depth of the ponds at the location of the experiments was about 3 m. The mesocosms were filled with water from the pond, then algicide was added to them in an amount so that its concentration in the water of the mesocosms was 1 mg/l.
In Pulkovo Pond, the experiment was carried out from June 25 to July 5, 2019. In the Aviatorov Pond, the experiment was carried out from July 2 to July 16, 2019. The temperature and light conditions in the mesocosms corresponded to those in the water of the pond outside the mesocosms. The change in water temperature in the surface layer of the studied ponds is shown in Figure 2.
Change in water temperature (o C) in the surface layer of the investigated ponds.
The results of the algicide impact on the phytoplankton of pond 1 are shown in Figures 3–6.
Changes in the abundance and biomass of total phytoplankton in pond 1 and the mesocosm under the influence of algicide with a concentration of 1 mg/l.
Change in the optical density of the water mass in pond 1 and the mesocosm when exposed to algicide with a concentration of 1 mg/l.
The contrast in the state of water mass in pond 1 and mesocosm 4 (a) and 11 (B) days after exposure to algicide.
Changes in the abundance and biomass of cyanobacteria in pond 1 and the mesocosm upon exposure to algicide at a concentration of 1 mg/l.
As can be seen from Figure 3, in the water of pond 1, both the abundance and the biomass of all phytoplankton increased during the experiment. At the same time, this was not observed in the mesocosm. In the first three days, a decrease in phytoplankton biomass without a change in its abundance occurred. Subsequently, the abundance and biomass of phytoplankton in the mesocosm remained approximately at the same level as they grew in the pond. By the end of the experiment (on the 11th day), the phytoplankton biomass in the pond exceeded that in the mesocosm by about 5 times, and the abundance - by almost 12 times. The greatest differences were observed on the 8th day of the experiment; the difference in biomass and abundance was 7 and 20 times, respectively. Thus, the action of an algicide based on fatty acids and gallic acid inhibited the growth of phytoplankton.
The data of phytoplankton analysis are confirmed by the data on the measurement of optical density in the pond and the mesocosm (Figure 4). By the end of the experiment, an increase in optical density in the pond and a significant decrease in optical density in the mesocosm were observed (Figure 4). By the end of the experiment, the difference was about 2.3 times. This was also noticeable visually: the water in the mesocosm was more transparent than the water in the pond surrounding the mesocosm (Figure 5).
It is interesting to trace how the quantitative indicators of cyanobacteria in the pond and the mesocosm changed.
Thus, the action of an algicide based on fatty acids and gallic acid prevented the growth of the number of cyanobacteria and changed their species structure.
In pond 2, the beginning of the experiment coincided with an intense cyanobacterial “bloom” (Figure 7), while their biomass was more than 55 mg/l. At the same time, in the surface layer of the pond, the maximum water temperature (20.5°C) for the entire duration of the experiment was noted (Figure 2). The cyanobacteria
Cyanobacterial HAB in pond 2 and water-filled mesocosm on July 2, 2019.
By the fourth day of the experiment, the water temperature in the pond dropped to about 18°C. This led to a decrease in the number and biomass of cyanobacteria, apparently, mainly due to their sinking into the lower layers of the reservoir. However, an even greater decrease in the development of cyanobacteria was observed in the mesocosm, in which cyanobacteria could not sink so deeply (Figure 8). This is also confirmed by data on the optical density of water in the pond and in the mesocosm, where a more significant decrease was noted (Figure 9). Subsequently, the optical density slightly decreased to approximately the same level in the pond and mesocosm and almost did not change in the pond and mesocosm. At the same time, the control of the development of cyanobacteria from pond 2 in the laboratory, where there was no decrease in temperature, showed their significant growth in the control. With that, under the influence of allelochemicals, significant suppression of plankton growth was observed, recorded by optical density (Figure 10).
Changes in the abundance and biomass of total phytoplankton in pond 2 and the mesocosm under the influence of algicide with a concentration of 1 mg/l.
Change in the optical density of the water mass in pond 2 and the mesocosm when exposed to algicide with a concentration of 1 mg/l.
Change in the optical density of the water mass in pond 2 and the mesocosm when exposed to algicide with a concentration of 1 mg/l during exposure in the laboratory.
By the 8th day of the experiment, a further decrease in the optical density of plankton under the influence of algicide was noted in the laboratory. At the same time, a decrease in optical density and the control was observed, obviously, due to the inability of natural plankton to laboratory conditions (the experiment was carried out in 0.5-liter jars).
By July 8, the species of cyanobacteria
In the last phase of the experiment (from July 12), representatives of Cryptophyta -
Changes in the abundance and biomass of cyanobacteria (a) and Cryptophyta (B) in pond 2 and the mesocosm under the influence of algicide at a concentration of 1 mg/l.
It is noteworthy that by the end of the experiment in the mesocosm, the total phytoplankton biomass returned to almost the same high values as at the beginning of the experiment. However, if at the beginning of the experiment cyanobacteria prevailed (about 99% of the total biomass of phytoplankton), then by the end of the experiment cryptophyte algae accounted for more than 98% of the biomass of phytoplankton.
Thus, the main results of the experiments carried out on the effect of an algicide of four allelochemical components (heptanoic, octanoic, tetradecanoic, and gallic acids) on the phytoplankton of natural water bodies can be considered the following results, indicating that allelochemical substances of aquatic macrophytes: 1) are able to effectively reduce phytoplankton development and suppress even intense HABs; 2) may lead to the replacement of dangerous cyanobacteria in phytoplankton with safe algae, whose production can be used in the food chains of aquatic organisms.
In this way, available data show that the use of allelochemicals from aquatic macrophytes to inhibit cyanobacterial overgrowth is an environment-friendly and perspective technology for suppressing HABs. Allelochemicals can be considered as natural algaecides and become the basis of a nature-like convergent technology to mitigate the development of plankton cyanobacteria and prevent HABs in water bodies.
One can quite agree with the conclusion of work [24] that allelopathy is a promising strategy to control HABs as the effectiveness of allelochemicals on inhibiting microalgae cells has been discovered, investigated, and confirmed in many works and for many years [175]. However, there are several problems that must be investigated in order to understand what determines the strength of the manifestation of the allelopathic effect. One of these problems is undoubtedly the action of various environmental factors.
Another problem is the resistance of allelochemicals in the aquatic environment and their chemical or biochemical (under the influence of bacteria) changes [26, 74, 168, 176]. In this regard, very promising are works in which systems are being developed that allow dosing and prolonging the release of allelochemicals into the aquatic environment [141, 142, 143].
The development and research of allelopathy and its application for suppressing the HABs are striving toward a future for sustainable, rational, and effective using the water resources worldwide. The algicides of the new generation developed based on the phenomenon of allelopathy can definitely reduce the amount of synthetic algicides and herbicides used.
While allelochemicals have shown growth inhibition of planktonic cyanobacteria, there is still insufficient knowledge of the impact on various species of cyanobacteria (especially their action in real aquatic ecosystems), the influence of various factors on the action of allelochemicals, and the molecular mechanisms of their action. These gaps may limit their use as conventional biotechnology for the mitigation and prevention of HABs in aquatic ecosystems.
All the laboratory studies can propose only the potential for allelopathy of macrophytes metabolites toward cyanobacteria, its real use as biotechnology for the management of planktonic communities and HABs will be possible only after convincing field studies using mesocosms and entire ecosystems.
In addition, if we are to understand more about the mechanisms of allelochemicals actions that cyanobacterial cells respond to, more cognizance needs to be taken of the molecular peculiarities of interactions between allelochemicals and cyanobacterial cells.
The work was performed within the framework of the state task of the Russian Academy of Sciences on topic 0154-2019-0002. The authors thank Dr. Alexandr Rusanov and Mr. Denis Bardinskij as well as Ms. Elena Fisak for their kind help in the field experiments.
The authors declare that there is no conflict of interest.
The novel coronavirus disease (COVID-19) has become the fifth pandemic reported since 1918 Spanish flu pandemic. COVID-19 first reported in December 2019, Wuhan, China and is caused by a virus called severe acute respiratory syndrome (SARS-CoV-2) It is an enveloped and spherical virus containing a positive-sense single-stranded RNA genome and belongs to the subfamily Coronavirinae. Like many other respiratory viruses, coronavirus is transmitted through droplets projected out during breath, cough or sneeze. The symptoms of respiratory tract infections vary from mild cold to severe acute respiratory distress [1]. It crept in silently and subsequently spread at a rapid pace progressing into a pandemic.
The Coronavirus Disease was unprecedented in recent history with a high rate of morbidity, mortality, loss of income and sustained social isolation for billions of people. Now it has been affecting the world at an alarming rate, unfolding a tsunami of changes and leaving it in shambles, at the same time triggering a global collaboration to disease containment. Being a novel disease, COVID-19 has presented itself as a mystery infection to the health and research field. SARS-CoV-2 has a tendency for genetic evolution resulting in quick mutation and multiple variants that may have different features compared to its ancestral strains. The coronavirus has created frequent challenges ranging from virus isolation, detection, prevention, vaccine development to clinical and mental health issues. Besides, the tremendous research and insights about nature of virus, the studies regarding short term and long-term consequences on mental and psychological health of the community need to be focused.
To restrict the rate of both infections and death of fellow-citizens from COVID-19 and meanwhile also to prepare ourselves for the pandemic of such a magnitude, inter-individual physical contacts were restricted in the form of social lockdown. Under this situation, minimal and only emergency movement of general public was allowed. The central objective was to forbid people from two different families or nearby inhabitants to come in close contact with each other and thus break the cycle of infection [2]. Following this there was a significant reduction in the growth rate and increase in doubling time of cases [3]. But this swift change in people’s daily life in the form of loss of freedom and dissociation from family members led to dramatic consequences. Confinement of physical space, lack of mobility, fear of contraction, loss of income, hopelessness and growing ambiguity along with uncertainty and unpredictability over the disease were some of the observed collective experiences affecting the wellbeing during lockdown [4]. COVID-19 led to roughly 5–20% contraction of global economy which could result in an increased poverty rate for the first time since 1990 with Asia, Africa and Latin America enduring the hardest blow [5]. Factories and industries were shut down forcing thousands of informal workers to return back to their native villages in absence of any form of conveyance. A survey conducted by International Labor Organization in April 2020 estimated roughly 2.5 crores job loss in 2020 alone worldwide due to the pandemic, predicting a deep economic crisis in coming days. The situation of Crises often reveals the structural inequalities present in the social and political dimensions (such as the unequal distribution of resources or the uneven delivery of healthcare). United States unemployment rates rose and the country neared a recession and as the pandemic progressed it created a situation of socioeconomic crisis which was reflected across the borders. Unemployment rate in urban India rose to 20.9% during the April–June quarter of 2020 pushing over 40 crores informal workers jobless [6]. Roughly 80 million children of under 1 year missed their routine vaccination while an estimated 38% increase in maternal mortality was registered due to health system disruption resulting from COVID [5]. This sudden human tragedy required heavy adjustment and was difficult to adapt quickly as we humans are gregarious in nature and always need social connect in our lives especially during a crisis [4]. This was the largest psychological experiment ever conducted as 1/3rd of the world’s population was living under some kind of lockdown, dealing with an intense stressor called “loneliness” [7].
According to the World Health Organization (W.H.O)., mental health is a “state of wellbeing in which an individual realizes his or her own abilities, can cope with normal stressors of life, work positively and fruitfully and is able to make a contribution to his or her community” [8]. Keyes identified 3 components of mental health: emotional, psychological and social well-being and its definition is said to be influenced by the culture that defines it [9].
Psychological distress, a common mental health disorder is defined as a state of emotional suffering typically characterized by symptoms of depression and anxiety [10]. An important point to remember here is that, mental health can change over time, and depends heavily over the prevailing conditions. More so, when the demand exceeds the resource of coping abilities, it is heavily impacted. People became vulnerable to psychological impact of COVID-19 infection due to both the pandemic and its cascading consequences worldwide including lockdown and economic recession. It negatively affected people’s mental health and created new barriers for ones already suffering from mental illness. A broad body of work links social isolation and loneliness to both poor mental and physical health. Loneliness and frustration seemed to originate from inhibition of daily activities, interruption of social necessities and inability to indulge in social networking, leading to psychological distress and progressing to unhealthy ways of coping in form of overeating and substance abuse [11]. This abrupt situation exposed that individuals were largely emotionally unprepared to the detrimental effects of biological disasters and everyone was feeling frail and helpless. It had a remarkable and variable psychological impact in various countries, depending on the phase of the pandemic. Also, certain features were distinct to psychological presentations of the catastrophe. First, the overlapping of psychological issues was very frequent i.e. anxious people may also have depression and smoke or drink alcohol to reduce the problem. Second, normal individuals presented with psychological problems were overwhelmed by an exceptional stressor. And thirdly, a huge number of people presenting with pandemic associated psychological disturbances got better naturally over time or with brief psychological support. As a consequence, these presentations did not necessarily lead to an overtly psychiatric diagnosis. A report published by W.H.O. following a survey conducted on 130 countries provides the first global data screening the devastating impact of COVID-19 in form of compromised access to mental health services, reduced compliance and poor supervision of patients leading to disruption of mental health services in nearly 93% of countries worldwide, while the demand kept on increasing, underscoring the urgent need for surge in funding [12]. Unfortunately, in a frantic search for biological cure and vaccines against the virus, these issues were all the more neglected, contributing to an increased public health burden. Forced into physical separateness we were united by a common trauma, a common fear as all of us were terrified for our own safety and that of our loved ones.
Previous researches reveal profound and wide range of impact on mental health of individuals, communities and countries, during past outbreak of infectious diseases primarily on disease survivors (Ebola, SARS) [13]. Studies report adverse psychological symptoms in the form of mood alteration, insomnia, anger and emotional exhaustion. The psychological trauma of bereavement during Middle East Respiratory Syndrome (MERS) outbreak showed that surviving individuals were stigmatized, marginalized and socially isolated even after successful treatment [11]. Literature published during Severe Acute Respiratory Syndrome (SARS) outbreak a decade ago suggested 50% of health care workers (HCW) were at an increased risk of acute distress syndrome (ADS) during these periods [14]. Moreover, long term behavioral changes in the form of vigilant hand washing and avoidance of crowds many months even after quarantine have been reported, depicting that pandemic and isolation has a definite long-term impact on the mental health of humans [15].
The emotional and psychological effects of COVID-19 outbreak ranged from biological factors like the neurotropic effects of SARS-CoV-2 (causative agent of COVID-19) and involvement of limbic system along with its psychological factors of fear, discomfort, uncertainty, anger, addiction, socioeconomic issues of isolation, xenophobia, stigma, domestic-violence, loss of livelihoods and constraint of open spaces. Global studies have established COVID-19 to be increasingly associated with neuropsychiatric manifestations such as delirium, anxiety, depressive disorders, insomnia and incidences of increased self-harm. Meanwhile, COVID-19 itself can progress to neurological and mental complications like delirium, stroke, cerebrovascular accidents, seizures and agitation that can have added psychiatric associations. Further on, those with pre-existing psychiatric conditions might be at increased risk of COVID infection due to lack of supervision and inadequate compliance to many precautionary measures [16]. The emotional outcome of subjects who were quarantined compared to those who were not, shows presence of acute stress disorder, anxiety, irritability, insomnia, boredom, poor concentration and performance, post-traumatic stress disorder (PTSD) and nervousness. Other psychological reactions reported during mass quarantine were generalized fear, collective hysteria and pervasive community anxiety. These symptoms are typically associated with disease outbreaks and escalation of new cases, together with inadequate anxiety provoking information provided by the media [15]. Reports of people emptying supermarkets and panic buying was indicative of their escalated levels of anxiety [4]. Anxiety may be related to sensorial deprivation and pervasive loneliness initially in the form of insomnia and later progressing to depression and PTSD. Moreover, other health measures get compromised in presence of abnormally elevated anxiety. The butterfly effect of increased anxiety and depression could also lead to a global increase in chronic illnesses including heart-disease-related deaths as people diagnosed with depression are up to five-times more likely to die within six months of having had a heart attack than those without depression [17]. Factors associated with a greater psychological vulnerability seem to be more important than factors associated with the risk of infection in predicting mental health consequences of the pandemic. Furthermore, symptoms of the infection, such as fever, myalgia, hypoxia and cough, as well as adverse effects of treatment, such as insomnia caused by corticosteroids, led to feelings of fear of contracting COVID-19 causing worsening of anxiety and mental distress. As mental and physical health are equally important and closely connected, a sound state of mental health plays a crucial role in people’s ability to maintain good physical health. Table 1 shows the various research conducted globally to study the impact of COVID -19 on mental health.
Sl. No. | Study | Sample characteristics | Research tool | Outcome |
---|---|---|---|---|
1. | Varshney et al. [18] | Cross- sectional study of 1106 participants across India | IES(R) | One-third participants had psychological impact (mostly mild) which was higher in younger age group and female participants |
2. | Khanna et al. [19] | 2355 Ophthalmologists | Mean patient health questionnaire score | One-third participants had depressive symptoms (mostly mild). Predictor of depression being young age, gender, marital status and profession |
3. | Chandu et al. [20] | 307 participants | COVID-19 related Anxiety scale | Higher anxiety in lower educational qualification group |
4. | Narsimhan et al. [21] | Hospital based study with 96 alcoholic middle-aged males | Changepoint analysis | 95% participants reported alcohol withdrawal symptoms due to sudden cessation of alcohol during lockdown. |
5. | Roy et al. [22] | Cross- sectional study with 662 participants in Indian Population | Online Semi-Structured Questionnaire | 80% participants were preoccupied with thoughts of COVID-19. 72% reported overuse of gloves and sanitizer, 37.8% had paranoia about acquiring the infection, 36.4% had distress related to social media and 12.5% had sleep disturbances |
6. | Grover et al. [23] | Cross sectional study with 1685 participants | PHQ-9, GAD-7 Warwick Edinburgh mental well- being scale | 74.1% had moderate stress, 40.5% had either depression or anxiety, 38.2% had anxiety and 10.5% had depression |
7. | Chakarborty and Chatterjee [24] | Regional survey of 507 participants from West Bengal, India | Self-designed questionnaire | 71.8% and 24.7% showed increased worries and depressive symptoms during pandemic. 69.6% were worried about the financial loss, 30.8% perceived higher health anxiety and feared it to continue post lockdown |
8. | Chatterjee et al. [25] | Cross sectional study of 152 doctors | DASS-21 | 34.9%, 39.5% and 32.9% were depressed, anxious and stressed respectively. Stigma and discrimination against frontline workers were important factors contributing to stress. |
9. | Mohindra et al. [26] | 3083 HCWs across north India | Interview | 23.9% of HCWs reported anxiety disorder and 20% depression which was higher in females, aged and unmarried participants |
10. | Wang et al. [27] | 1210 participants across China | IES(R) and DASS-21 scales | 53.8% participants had a psychological impact (moderate or severe); 16.5%, 28.8% and 8.1% reported moderate to severe depression, anxiety and stress |
11. | Rehman et al. [28] | 403 participants | Family affluence scale, Response accuracy scale and DASS | Students and HCWs had higher depression, anxiety and stress, which was negatively correlated with family affluence. |
12 | Gao et al. [29] | Cross sectional study of 4827 participants China | GAD-7, WHO-5 | 22.6% had anxiety while 48.3% suffered from depression |
13 | Gonzalez Sanguino et al. [30] | Cross sectional study of 3480 participants across Spain | GAD-2, PCL-C-2, PHQ-2 | 21.6% had Anxiety, 18.7% had Depression while 15.8% had PTSD symptoms |
14 | Mazza et al. [31] | Cross-sectional study of 2766 participants conducted in Italy | DASS-21 | 18.7% suffered from anxiety, 32.7% Depression and 27.2% had stress |
15 | Sonderskov et al. [32] | Cross-sectional study of 2458 participants conducted in Denmark | WHO-5 | 25.4% suffered from Depression |
Various studies conducted across globe depicting adverse impacts of COVID-19 on mental health.
Zhao et al. highlighted that even close contacts of people with COVID-19 experienced distress and prolonged mental health consequences including severe depression and chronic fatigue in the post-COVID period in a study comprising 1169 close contacts. The study revealed that old age, heavy financial loss and perception of poor health were significantly associated with depression in them while the cause of fatigue reported was frequent use of mass media [33]. Among the varied corollaries of the pandemic, one among them was diametrically opposite incidences of both alcohol abuse as well as alcohol withdrawal symptoms in different circumstances due to sudden lockdown. The migrant labourers who represent 4.7% of the global labour workforce along with refugees, having limited access to healthcare, living in overcrowded environments, working in marginalized sectors and lacking workplace and social protection were the worst sufferers of pandemic and economic shutdown [16]. Researches depict that people working on site, within lower income bracket, job loss and households with children under the age of 18 yrs. were more likely to report negative mental health outcome in form of anxiety, stress or depression [34]. Lack of authentic information, dissatisfaction with fulfillment of basic needs, poor sleep quality, ambiguity about SARS-CoV-2 and a relatively lower confidence in health care fraternity could be the stipulated reason for ongoing extreme stress.
Even though the SARS-CoV-2 was considered a public health calamity, certain sections of the society were at clearly defined risk and the morbidity as well as mortality correlated well with age, sex, profession and socio-economic conditions. This exposed the existing socio-economic, gender, ethnic and health inequities present in the social determinants of health community and exacerbated it some extent [35].
In March 2020, schools across India were shut down to curb the transmission of infection. But now, children have been at home for longer periods of time than ever before in recent memory. Closure of schools led to disruption of their daily routine along with lack of extracurricular and outdoor activities. This sudden unexpected change caused altered eating and sleep habits, anguish, irritation and lack of peer time fostering monotony and diverse neuropsychiatric symptoms in them. Commonly reported psychological problems among them were inattention, clinginess, boredom, irritability, restlessness, nervousness, distraction and stress about the pandemic with the risk greatly increasing in those already suffering from some form of mental disorder. The domino effect of school closure on children is shown in Figure 1.
Depicting the domino effect of school closure on children.
The social disruption which happened due to job loss, progressed to financial insecurity and threatened loss of loved ones impacting the quality of family relationship between parents and children causing a significant risk of adjustment to more than 370 million children in India, given their dependence on positive family processes for a host of developmental outcomes [30]. As COVID deaths among adults occurred within weeks, the families had little or no time to prepare for mental trauma and agony that a child underwent in a case of death of a parent or caregiver. An estimated 1.5 million children globally, experienced orphanhood either due to sudden death of their parents or death of their custodian grandparents or kin due to COVID-19. Such children usually face poverty, physical, emotional and sexual violence apart from depression, family separation and institutionalization in upcoming days [36]. Although home is the safest place for a child, physical, sexual and psychological abuse saw a significant rise in numbers and severity during the pandemic leading to heightened child abuse related hospitalizations. Child abuse leads to immediate emotional and psychological problems and an adverse childhood experience linked to possible mental illness, substance abuse and suicidal ideation later in life.
Young adults (<35 yrs.) experienced pandemic related consequences in form of closure of universities, uncertainty about future, financial crisis and space crunch that contributed to poor mental health. The stigmatizing psychological pressure of performance during the timespan when universities were shut led to aggravated feeling of guilt, shame, regret, sadness, self-pity, anger, internalized emotions, overwhelmed feelings, negative self-talk, unrealistic expectations and perceived sense of failure among the ones who could not perform due to various reasons [11]. Some of the reviewed studies have highlighted increased correlation of social media exposure with psychological issues like hampered social communication, sleep deprivation and increased gaming behavior, that was inversely related to physical activity in students and finally impairing their overall health [16]. Researches from prior economic downturns show that job loss is associated with increased depression, anxiety, distress and low self-esteem leading to higher rates of substance abuse and “deaths of despair”. A study done on 1543 respondents to assess the prevalence of distress found 21–35 years old more prone to distress as compared to other age groups, maybe due to heavy pressure of managing finances along with reduced resilience and coping mechanisms [4, 33].
Older adults were susceptible both to the virus and to its psychological impact as they have unique physical, psychosocial and environmental vulnerabilities owing to frailty [37]. Latest reports from Nature Medicine quoted those below 30 and above 59 years were 0.6 and 5.1 times more likely to die after developing symptoms respectively. According to the Centre for Disease Control and Prevention (CDC), people having chronic illness such as chronic lung diseases, asthma, serious heart conditions and diabetes are at an increased risk of COVID-19. Moreover, mental health disorders are a common comorbidity among older adults, which may get exacerbated by their fear and trepidation of being vulnerable to severe illness from COVID-19 [34]. This form of stress is associated with reduction in immunity compounding the already weakened physiological defense systems in an elderly. Recently, a study found that 18% individuals who received a COVID-19 diagnosis were later diagnosed with a mental health disorder such as anxiety or mood disorder and both was found to have a higher prevalence in the older age group as compared to middle aged and youngsters [38]. Neglected older people can even serve as vulnerable ‘hidden pockets’ of viral load that can contribute to increased infection spread due to under-reporting of the psychiatric symptoms in them. This leads to under-detection of symptoms, faulty treatment and increased prevalence of them being asymptomatic carriers. Higher viral load and virulence among geriatrics increases the fatality rate from 3.6% in 60–69 yrs. suddenly to 18% in more than 80 years [37]. Loneliness, especially when chronic and associated with lack of physical activity is a potent risk factor for depression and cognitive disorders. In 2018, an estimated 27% adults aged 65 and above were reportedly living alone [34]. In face of older elderlies not being well-versed with technology, their inability to conduct virtual meetings led to increase distancing during the pandemic. Finally, the social stigma of ageism magnified by COVID-19 outbreak led to marginalization, segregation, abuse, increased institutionalization and suicidal ideation among senior citizens. Banerjee et al. has shown increased depressive disorders, PTSD and adjustment reactions in geriatrics due to the pandemic [38]. On the other hand, poor perception of one’s own health could lead to health-related anxiety which may further result in depression, headache, insomnia, and even suicidal tendency in the aged [33].
Females reported elevated distress due to closure of schools and day care with increased household chores along with their regular professional work during times of crisis and quarantine. Apart from this, women also faced the brunt of domestic violence, which was reportedly at an all-time high since last 10 yrs. in India during COVID lockdown [30]. Generally, both prior to and during the pandemic, women have reported higher rates of anxiety and depression compared to men. Further, it was observed that the recovery rate of unemployment post-national lockdown in India was lower in case of females as compared to males and the gaps seems to have widened [6].
It appears that disaster management workforce was itself not immune to the psychological consequences of the pandemic. While others were under strict vigil of lockdown and quarantine, the local hospitals continued to receive suddenly thousands of critically ill COVID-19 patients and were forced to implement their emergency protocols [15]. With overwhelming hospitals and a rapidly increasing demand along with supply shortage, frontline HCW were put to immense stress. Previous studies on the infectious outbreaks of SARS, MERS and Ebola have revealed the severity of emotional distress among medical practitioners and law enforcing agents who faced PTSD, depression, anxiety, exhaustion and burnout at the onset, during and even after the outbreak of such epidemics [11]. A study conducted on 1563 health professionals found roughly half of them to suffer from depression, whereas 44.7% and 36.1% from anxiety and sleep disturbances. Higher depression, anxiety and acute overall psychological burden was reported particularly in those directly diagnosing and treating COVID cases [34]. Spoorthy et al. suggested that 68.7%–85.5% of medical staff comprises of females and were likely to be affected in the COVID-19 pandemic by elevated degrees of anxiety, distress and depression [39]. Psychological symptoms were frankly correlated with increased duty hours, lack of shift rotations, societal stigma, inadequate medical protective equipment, increased witness to death and dying, increased risk of exposure and self-blame, as well as the guilt and fear of spreading the infection to the family members [39, 40]. They suffered the worst sleep quality and sleep time. The discrimination, isolation, negative emotions of patients and lack of contact with own families for long led to frustration and hopelessness. Some studies have even depicted burnout of young nurses and found them to be more anxious and depressed when compared to doctors, which could be accounted due to low nurse to patient density (Figure 2) [39].
The text in the inner circle depicts the probable causes of mental health disorders while that in the boxes depict how those circumstances were created and got aggravated due to COVID-19.
Although government regulations were necessary to maintain social balance and guarantee the safety of individuals, a strategy to deal with psychosocial issues related to the crisis and its consequences in the community was relatively lacking [15].
History has shown that mental health impact of pandemics outlasts the physical impact, suggesting that today’s elevated mental health need may continue well beyond the coronavirus outbreak itself and we may be heading towards an outbreak of a second pandemic, that of mental health crisis. As people faced the onslaught of pandemic related stressors, they wished and wanted to lean over, on each other for connection and coping strategies to ease the weight of public health crisis on their mental health, which was sadly cut down due to lockdown and isolation. Dissatisfaction with levels of social interaction led to negative affect which was further associated with a slowing of passage of time. The slower the passage of time, the higher was the negative emotions experienced escalating the feelings of helplessness and anxiety. A report highlights that the number of adults with anxiety or depression in U.S. increased four-hundred percent in the sixteen months following COVID-related lockdowns [11].
As rightly said by Dr. Tedros Adhanom, DG of W.H.O. “Good mental health is absolutely fundamental to overall health and wellbeing” [12]. During this public health emergency when the external environment is not in our control, it is imperative to focus on building and strengthening our mental immunity. People with strong psychological resilience and a healthy life appear to be less affected by COVID-19. This statement underpins that fear of pandemic disrupts people’s psychology and the psychology of those who had an underlying illness before the pandemic or had family or friends who were infected or had died. Therefore, psychological resilience and being healthy are important individual characteristics that can be developed in facing the fear of COVID-19 and the psychological problems caused by this fear [41]. Other lessons learnt are that safety policies, accurate information dissemination about pandemic prevention and pandemic prevention impacts should be emphasized. There was a negative influence of attitudinal construct and mythical behavior on disease prevention practices especially in South-Asian countries [42]. Peer support, risk averse behavior and internet based cognitive behavior are some pragmatic implications for stress management at macro and micro level during an epidemiological level. Apart from these, individuals and communities could deliberately cultivate resilience, healthy coping strategies, mindfulness and well-being. These all are processes and they can be acquired with practice and learned dynamically. Recent researches have depicted those healthy coping strategies have helped individuals to stay positive, view lockdown as a golden opportunity to ruminate on their individual and social identity and to march ahead to enhance their skills [43]. Cultivating a sense of community belongingness may also help and prepare people to face the mental health issues that they may endure in the upcoming days. Throughout the pandemic, leading public health organizations — including the CDC, Substance Abuse and Mental Health Services Administration (SAMHSA), the World Health Organization, and the United Nations — have released general considerations and resources addressing the mental health and well-being of both general populations and specifically high-risk groups during the pandemic [34]. In India, along with the National Institute of Mental Health and Neurosciences (NIMHANS), the Indian Psychiatric Society also brought out a rulebook for effective mental health management titled “Mental Health Challenges during COVID-19 pandemic: Guidance for psychiatrists. It covers telepsychiatry, psychopharmacology, and brain stimulation practices during COVID-19, also catering to special populations like children and adolescents, older adults, perinatal groups and rehabilitation settings and can be referred.
In general, mental health and related issues are not recognized in public and with global pandemic these silent and insidious issues can be either misdiagnosed or go unnoticed completely. Thus, the role of mental health professional can be vital in this regard especially in educating, training, encouraging mental health-promoting behaviors, maintaining cross-specialty integration, facilitating problems solving approaches, empowering patients and allied professionals, and finally enabling self-care strategies for resilience [16]. Despite the common mental health problems and disorders among patients and HCW during the pandemic, most health professionals working in isolation units and hospitals did not receive any training in providing mental health care [13]. In this regard, mental health services, facilities and specialized psychiatric treatment teams including psychologists, psychiatrists and psychiatric nurses should be established to address psychological health concerns in the general public and we need to validate and value their immense selfless contribution. W.H.O. has previously highlighted the chronic underfunding of mental health prior to the pandemic, but the pandemic has suddenly increased its requirement, especially in the South Asian countries which suffer from an inadequate psychiatrist-patient ratio. Based on this, the Primary Care first and Collaborative Care model which has been suggested by Türközer and Öngür, teletherapy: Telemedicine and teletherapy should be established to provide psychological help which can be a boon during restrictive conditions of an infectious disease outbreak like COVID-19, but at the same time, limited accessibility and poor Internet connectivity in various areas are the existing challenges. Standardization of treatment, online surveys and local management of stable patients to reduce risk of infections can also be of help during this crisis [16]. It is suggested that public health machinery should conduct mental health audits during epidemiological emergencies which are critical for effective management of community mental health. Bouncing forwards for a new normal, we need to:
Identify people at risk during clinical visit or teleconsultation, especially younger age, females and those having a preexisting mental health condition for which COVID-19 data disaggregated by characteristics such as age, gender, sex and race are needed to help tackle the health inequalities.
Screen for psychiatric and psychosocial effects of social distancing of vulnerable population.
Ask direct questions about wellbeing and safety at home.
Specialized psychiatric treatments and appropriate mental health services for patients with comorbid mental disorders.
Tremendous interconnectedness including cross country collaboration and research [4, 13, 16].
Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) hints at more severe and frequent pandemics in coming times. SARS, MERS, H1N1 to name a few along with COVID-19 testify to its damage [44]. With more than 2/3rd of the recently emerging diseases and almost all known pandemics being zoonotic diseases, following are some of the probable reasons of spill over of diseases from other organisms to humans, which needs to be addressed on a priority basis:
The risk further increases with climate change, intensive farming and international travels enabling disease to spread across the world at an alarming rate. The estimated present cost of prevention of pandemics for 10 years is estimated to be only 2% of the cost incurred during the COVID-19 pandemic. A few stringent steps can go a long way in detection and managing them. Working on these lines, December 27th is proclaimed as the international day of Epidemic Preparedness – a day to embark on the importance of prevention of, preparedness for and partnership against epidemics like COVID-19. To prevent and be prepared for future pandemics, we need to invest in 4 core spheres i.e., surveillance, early detection and control, manufacturing and coordinated research and development.
And for such a rigorous pandemic preparedness, we need to have a sound financial footing and a collective investment globally, to support the key gaps in infrastructure. The emergence of SARS-CoV-2 showed the limits of current approach and the overall long reaction time of international reporting systems. The need of the hour is to improve global coordination and leadership while action is needed at local, national and regional levels. Establishing a trusted dialog between scientists, politicians and public could also be helpful if we want to act fast. The participation of community health workers who play a crucial role in covering the last mile in delivery of services also cannot go unacknowledged. International agencies like FAO, WHO need to endorse these decisions on a slow roll out plan when the prevalence of cases is low and show the advantages of long-term investment in proper system [46].
The infamous COVID-19, apart from being highly contagious, had severe physical, social and psychological manifestations in the form of isolation, quarantine and lockdown which hampered our social support system on a large scale. COVID-19 looks to be a lingering stressor and is bound to induce acute panic, anxiety, obsessive behavior, paranoia, depression and PTSD in long term even if the cases subside. The notable psychological consequences looming out of this disaster need to be addressed. Altered mental status and behavioral changes have been mentioned to be acute effects of the virus, and a putative link between those affected with COVID-19 and long-term psychiatric comorbidities might merit further research. So, all efforts should be directed towards minimizing the negative effects of this traumatic pandemic event on mankind including its mental health implications. Lessons learnt from this pandemic can help shape interventions and legislations in the near future. Therefore, either we identify the probable rising impact on mental health and work upon it or we will pay the price in the form of worsened quality of life in the post pandemic aftermath when we will need all the able bodies to help the world economy recover.
IntechOpen Compacts provide a mid-length publishing format which bridges the gap between journal articles, book chapters and monographs, and cover content across all scientific disciplines. Compacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues or broader topics on the research subject.
",metaTitle:"IntechOpen Compacts",metaDescription:"IntechOpen Compacts present a mid-length publishing format which bridges the gap between journal articles, book chapters, and monographs and covers content across all scientific disciplines.",metaKeywords:null,canonicalURL:"/page/compacts",contentRaw:'[{"type":"htmlEditorComponent","content":"Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\\n\\nCOMPACTS-SHORT FORM MONOGRAPH
\\n\\nCOST
\\n\\n4,000 GBP Compacts Monograph - Short Form
\\n\\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview and description of the steps involved in the publishing process here.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\n\nCOMPACTS-SHORT FORM MONOGRAPH
\n\nCOST
\n\n4,000 GBP Compacts Monograph - Short Form
\n\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview and description of the steps involved in the publishing process here.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"72123 FILLER ads"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4380},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"208",title:"Material Science",slug:"nanotechnology-and-nanomaterials-material-science",parent:{id:"17",title:"Nanotechnology and Nanomaterials",slug:"nanotechnology-and-nanomaterials"},numberOfBooks:99,numberOfSeries:0,numberOfAuthorsAndEditors:2716,numberOfWosCitations:4236,numberOfCrossrefCitations:1964,numberOfDimensionsCitations:4612,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"208",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editedByType:"Edited by",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editedByType:"Edited by",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization and Applications",subtitle:null,isOpenForSubmission:!1,hash:"3478d05926950f475f4ad2825d340963",slug:"crystallization-and-applications",bookSignature:"Youssef Ben Smida and Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:"Edited by",editors:[{id:"311698",title:"Dr.",name:"Youssef",middleName:null,surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10644",title:"Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization",subtitle:null,isOpenForSubmission:!1,hash:"30a4c22b98d8dd2b18e5c33dade4b94b",slug:"recent-developments-in-atomic-force-microscopy-and-raman-spectroscopy-for-materials-characterization",bookSignature:"Chandra Shakher Pathak and Samir Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10644.jpg",editedByType:"Edited by",editors:[{id:"318029",title:"Dr.",name:"Chandra Shakher",middleName:null,surname:"Pathak",slug:"chandra-shakher-pathak",fullName:"Chandra Shakher Pathak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10386",title:"Ionic Liquids",subtitle:"Thermophysical Properties and Applications",isOpenForSubmission:!1,hash:"e995617af1c5e63353ae91bbdac4c894",slug:"ionic-liquids-thermophysical-properties-and-applications",bookSignature:"S. M. Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/10386.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10281",title:"Nanopores",subtitle:null,isOpenForSubmission:!1,hash:"73c465d2d70f8deca04b05d7ecae26c4",slug:"nanopores",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10281.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",middleName:null,surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9913",title:"Carbon Nanotubes",subtitle:"Redefining the World of Electronics",isOpenForSubmission:!1,hash:"43a22b8570e841b7a26d70159b2f755d",slug:"carbon-nanotubes-redefining-the-world-of-electronics",bookSignature:"Prasanta Kumar Ghosh, Kunal Datta and Arti Dinkarrao Rushi",coverURL:"https://cdn.intechopen.com/books/images_new/9913.jpg",editedByType:"Edited by",editors:[{id:"294687",title:"Dr.",name:"Prasanta",middleName:"Kumar",surname:"Ghosh",slug:"prasanta-ghosh",fullName:"Prasanta Ghosh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10479",title:"21st Century Advanced Carbon Materials for Engineering Applications",subtitle:"A Comprehensive Handbook",isOpenForSubmission:!1,hash:"712d04d43dbe1dca7dec9fcc08bc8852",slug:"21st-century-advanced-carbon-materials-for-engineering-applications-a-comprehensive-handbook",bookSignature:"Mujtaba Ikram and Asghari Maqsood",coverURL:"https://cdn.intechopen.com/books/images_new/10479.jpg",editedByType:"Edited by",editors:[{id:"286820",title:"Dr.",name:"Mujtaba",middleName:null,surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10411",title:"Materials at the Nanoscale",subtitle:null,isOpenForSubmission:!1,hash:"be29908600b7067c583ac21da1544a2d",slug:"materials-at-the-nanoscale",bookSignature:"Awadesh Kumar Mallik",coverURL:"https://cdn.intechopen.com/books/images_new/10411.jpg",editedByType:"Edited by",editors:[{id:"178218",title:"Dr.",name:"Awadesh",middleName:null,surname:"Mallik",slug:"awadesh-mallik",fullName:"Awadesh Mallik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10465",title:"Silver Micro-Nanoparticles",subtitle:"Properties, Synthesis, Characterization, and Applications",isOpenForSubmission:!1,hash:"dcc19a2b44c91940e16d82fd5eb8fffa",slug:"silver-micro-nanoparticles-properties-synthesis-characterization-and-applications",bookSignature:"Samir Kumar, Prabhat Kumar and Chandra Shakher Pathak",coverURL:"https://cdn.intechopen.com/books/images_new/10465.jpg",editedByType:"Edited by",editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10469",title:"Nanofibers",subtitle:"Synthesis, Properties and Applications",isOpenForSubmission:!1,hash:"28dc655dde01b94399cab954663f8bff",slug:"nanofibers-synthesis-properties-and-applications",bookSignature:"Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10469.jpg",editedByType:"Edited by",editors:[{id:"176093",title:"Dr.",name:"Brajesh",middleName:null,surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10505",title:"Colloids",subtitle:"Types, Preparation and Applications",isOpenForSubmission:!1,hash:"55025219ea1a8b915ec8aa4b9f497a8d",slug:"colloids-types-preparation-and-applications",bookSignature:"Mohamed Nageeb Rashed",coverURL:"https://cdn.intechopen.com/books/images_new/10505.jpg",editedByType:"Edited by",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:99,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"50566",doi:"10.5772/63234",title:"Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst",slug:"influences-of-doping-on-photocatalytic-properties-of-tio2-photocatalyst",totalDownloads:5395,totalCrossrefCites:23,totalDimensionsCites:75,abstract:"As a kind of highly effective, low‐cost, and stable photocatalysts, TiO2 has received substantial public and scientific attention. However, it can only be activated under ultraviolet light irradiation due to its wide bandgap, high recombination, and weak separation efficiency of carriers. Doping is an effective method to extend the light absorption to the visible light region. In this chapter, we will address the importance of doping, different doping modes, preparation method, and photocatalytic mechanism in TiO2 photocatalysts. Thereafter, we will concentrate on Ti3+ self‐doping, nonmetal doping, metal doping, and codoping. Examples of progress can be given for each one of these four doping modes. The influencing factors of preparation method and doping modes on photocatalytic performance (spectrum response, carrier transport, interfacial electron transfer reaction, surface active sites, etc.) are summed up. The main objective is to study the photocatalytic processes, to elucidate the mechanistic models for a better understanding the photocatalytic reactions, and to find a method of enhancing photocatalytic activities.",book:{id:"5139",slug:"semiconductor-photocatalysis-materials-mechanisms-and-applications",title:"Semiconductor Photocatalysis",fullTitle:"Semiconductor Photocatalysis - Materials, Mechanisms and Applications"},signatures:"Fei Huang, Aihua Yan and Hui Zhao",authors:[{id:"178389",title:"Dr.",name:"Fei",middleName:null,surname:"Huang",slug:"fei-huang",fullName:"Fei Huang"},{id:"185126",title:"Dr.",name:"Aihua",middleName:null,surname:"Yan",slug:"aihua-yan",fullName:"Aihua Yan"},{id:"185127",title:"Ms.",name:"Hui",middleName:null,surname:"Zhao",slug:"hui-zhao",fullName:"Hui Zhao"}]},{id:"17184",doi:"10.5772/17039",title:"Polymer Nanocomposites: From Synthesis to Applications",slug:"polymer-nanocomposites-from-synthesis-to-applications",totalDownloads:17294,totalCrossrefCites:31,totalDimensionsCites:68,abstract:null,book:{id:"1045",slug:"nanocomposites-and-polymers-with-analytical-methods",title:"Nanocomposites and Polymers with Analytical Methods",fullTitle:"Nanocomposites and Polymers with Analytical Methods"},signatures:"S. Anandhan and S. Bandyopadhyay",authors:[{id:"27050",title:"Prof.",name:"Sri",middleName:null,surname:"Bandyopadhyay",slug:"sri-bandyopadhyay",fullName:"Sri Bandyopadhyay"},{id:"44992",title:"Prof.",name:"Anandhan",middleName:null,surname:"Srinivasan",slug:"anandhan-srinivasan",fullName:"Anandhan Srinivasan"}]},{id:"9725",doi:"10.5772/8508",title:"Biosynthesis and Application of Silver and Gold Nanoparticles",slug:"biosynthesis-and-application-of-silver-and-gold-nanoparticles",totalDownloads:27930,totalCrossrefCites:23,totalDimensionsCites:58,abstract:null,book:{id:"3621",slug:"silver-nanoparticles",title:"Silver Nanoparticles",fullTitle:"Silver Nanoparticles"},signatures:"Zygmunt Sadowski",authors:null},{id:"17194",doi:"10.5772/21694",title:"Properties of Nanofillers in Polymer",slug:"properties-of-nanofillers-in-polymer",totalDownloads:20390,totalCrossrefCites:9,totalDimensionsCites:56,abstract:null,book:{id:"1045",slug:"nanocomposites-and-polymers-with-analytical-methods",title:"Nanocomposites and Polymers with Analytical Methods",fullTitle:"Nanocomposites and Polymers with Analytical Methods"},signatures:"Damien M. Marquis, Éric Guillaume and Carine Chivas-Joly",authors:[{id:"44307",title:"Dr",name:"Damien",middleName:"Michel",surname:"Marquis",slug:"damien-marquis",fullName:"Damien Marquis"},{id:"44317",title:"Prof.",name:"Carine",middleName:null,surname:"Chivas-Joly",slug:"carine-chivas-joly",fullName:"Carine Chivas-Joly"}]},{id:"52860",doi:"10.5772/65937",title:"Cerium Oxide Nanostructures and their Applications",slug:"cerium-oxide-nanostructures-and-their-applications",totalDownloads:5377,totalCrossrefCites:24,totalDimensionsCites:58,abstract:"Due to excellent physical and chemical properties, cerium oxide (ceria, CeO2) has attracted much attention in recent years. This chapter aimed at providing some basic and fundamental properties of ceria, the importance of oxygen vacancies in this material, nano‐size effects and various synthesis strategies to form diverse structural morphologies. Finally, some key applications of ceria‐based nanostructures are reviewed. We conclude this chapter by expressing personal perspective on the probable challenges and developments of the controllable synthesis of CeO2 nanomaterials for various applications.",book:{id:"5510",slug:"functionalized-nanomaterials",title:"Functionalized Nanomaterials",fullTitle:"Functionalized Nanomaterials"},signatures:"Adnan Younis, Dewei Chu and Sean Li",authors:[{id:"191574",title:"Dr.",name:"Adnan",middleName:null,surname:"Younis",slug:"adnan-younis",fullName:"Adnan Younis"}]}],mostDownloadedChaptersLast30Days:[{id:"71103",title:"Preparation of Nanoparticles",slug:"preparation-of-nanoparticles",totalDownloads:3140,totalCrossrefCites:11,totalDimensionsCites:25,abstract:"Innovative developments of science and engineering have progressed very fast toward the synthesis of nanomaterials to achieve unique properties that are not the same as the properties of the bulk materials. The particle reveals interesting properties at the dimension below 100 nm, mostly from two physical effects. The two physical effects are the quantization of electronic states apparent leading to very sensitive size-dependent effects such as optical and magnetic properties and the high surface-to-volume ratio modifies the thermal, mechanical, and chemical properties of materials. The nanoparticles’ unique physical and chemical properties render them most appropriate for a number of specialist applications.",book:{id:"9109",slug:"engineered-nanomaterials-health-and-safety",title:"Engineered Nanomaterials",fullTitle:"Engineered Nanomaterials - Health and Safety"},signatures:"Takalani Cele",authors:[{id:"305934",title:"Dr.",name:"Takalani",middleName:null,surname:"Cele",slug:"takalani-cele",fullName:"Takalani Cele"}]},{id:"72636",title:"Nanocomposite Materials",slug:"nanocomposite-materials",totalDownloads:2139,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Nanocomposites are the heterogeneous/hybrid materials that are produced by the mixtures of polymers with inorganic solids (clays to oxides) at the nanometric scale. Their structures are found to be more complicated than that of microcomposites. They are highly influenced by the structure, composition, interfacial interactions, and components of individual property. Most popularly, nanocomposites are prepared by the process within in situ growth and polymerization of biopolymer and inorganic matrix. With the rapid estimated demand of these striking potentially advanced materials, make them very much useful in various industries ranging from small scale to large to very large manufacturing units. With a great deal to mankind with environmental friendly, these offer advanced technologies in addition to the enhanced business opportunities to several industrial sectors like automobile, construction, electronics and electrical, food packaging, and technology transfer.",book:{id:"10072",slug:"nanotechnology-and-the-environment",title:"Nanotechnology and the Environment",fullTitle:"Nanotechnology and the Environment"},signatures:"Mousumi Sen",authors:[{id:"310218",title:"Dr.",name:"Mousumi",middleName:null,surname:"Sen",slug:"mousumi-sen",fullName:"Mousumi Sen"}]},{id:"38951",title:"Carbon Nanotube Transparent Electrode",slug:"carbon-nanotube-transparent-electrode",totalDownloads:3985,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"3077",slug:"syntheses-and-applications-of-carbon-nanotubes-and-their-composites",title:"Syntheses and Applications of Carbon Nanotubes and Their Composites",fullTitle:"Syntheses and Applications of Carbon Nanotubes and Their Composites"},signatures:"Jing Sun and Ranran Wang",authors:[{id:"153508",title:"Prof.",name:"Jing",middleName:null,surname:"Sun",slug:"jing-sun",fullName:"Jing Sun"},{id:"153596",title:"Ms.",name:"Ranran",middleName:null,surname:"Wang",slug:"ranran-wang",fullName:"Ranran Wang"}]},{id:"49413",title:"Electrodeposition of Nanostructure Materials",slug:"electrodeposition-of-nanostructure-materials",totalDownloads:3732,totalCrossrefCites:1,totalDimensionsCites:7,abstract:"We are conducting a multi-disciplinary research work that involves development of nanostructured thin films of semiconductors for different applications. Nanotechnology is widely considered to constitute the basis of the next technological revolution, following on from the first Industrial Revolution, which began around 1750 with the introduction of the steam engine and steelmaking. Nanotechnology is defined as the design, characterization, production, and application of materials, devices and systems by controlling shape and size of the nanoscale. The nanoscale itself is at present considered to cover the range from 1 to 100 nm. All samples prepared in thin film forms and the characterization revealed their nanostructure. The major exploitation of thin films has been in microelectronics, there are numerous and growing applications in communications, optical electronics, coatings of all kinds, and in energy generation. A great many sophisticated analytical instruments and techniques, largely developed to characterize thin films, have already become indispensable in virtually every scientific endeavor irrespective of discipline. Among all these techniques, electrodeposition is the most suitable technique for nanostructured thin films from aqueous solution served as samples under investigation. The electrodeposition of metallic layers from aqueous solution is based on the discharge of metal ions present in the electrolyte at a cathodic surface (the substrate or component.) The metal ions accept an electron from the electrically conducting material at the solid- electrolyte interface and then deposit as metal atoms onto the surface. The electrons necessary for this to occur are either supplied from an externally applied potential source or are surrendered by a reducing agent present in solution (electroless reduction). The metal ions themselves derive either from metal salts added to solution, or by the anodic dissolution of the so-called sacrificial anodes, made of the same metal that is to be deposited at the cathode.",book:{id:"4718",slug:"electroplating-of-nanostructures",title:"Electroplating of Nanostructures",fullTitle:"Electroplating of Nanostructures"},signatures:"Souad A. M. Al-Bat’hi",authors:[{id:"174793",title:"Dr.",name:"Mohamad",middleName:null,surname:"Souad",slug:"mohamad-souad",fullName:"Mohamad Souad"}]},{id:"71346",title:"Application of Nanomaterials in Environmental Improvement",slug:"application-of-nanomaterials-in-environmental-improvement",totalDownloads:1691,totalCrossrefCites:0,totalDimensionsCites:13,abstract:"In recent years, researchers used many scientific studies to improve modern technologies in the field of reducing the phenomenon of pollution resulting from them. In this chapter, methods to prepare nanomaterials are described, and the main properties such as mechanical, electrical, and optical properties and their relations are determined. The investigation of nanomaterials needed high technologies that depend on a range of nanomaterials from 1 to 100 nm; these are scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffractions (XRD). The applications of nanomaterials in environmental improvement are different from one another depending on the type of devices used, for example, solar cells for producing clean energy, nanotechnologies in coatings for building exterior surfaces, and sonochemical decolorization of dyes by the effect of nanocomposite.",book:{id:"10072",slug:"nanotechnology-and-the-environment",title:"Nanotechnology and the Environment",fullTitle:"Nanotechnology and the Environment"},signatures:"Ali Salman Ali",authors:[{id:"313275",title:"Associate Prof.",name:"Ali",middleName:null,surname:"Salman",slug:"ali-salman",fullName:"Ali Salman"}]}],onlineFirstChaptersFilter:{topicId:"208",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81438",title:"Research Progress of Ionic Thermoelectric Materials for Energy Harvesting",slug:"research-progress-of-ionic-thermoelectric-materials-for-energy-harvesting",totalDownloads:25,totalDimensionsCites:0,doi:"10.5772/intechopen.101771",abstract:"Thermoelectric material is a kind of functional material that can mutually convert heat energy and electric energy. It can convert low-grade heat energy (less than 130°C) into electric energy. Compared with traditional electronic thermoelectric materials, ionic thermoelectric materials have higher performance. The Seebeck coefficient can generate 2–3 orders of magnitude higher ionic thermoelectric potential than electronic thermoelectric materials, so it has good application prospects in small thermoelectric generators and solar power generation. According to the thermoelectric conversion mechanism, ionic thermoelectric materials can be divided into ionic thermoelectric materials based on the Soret effect and thermocouple effect. They are widely used in pyrogen batteries and ionic thermoelectric capacitors. The latest two types of ionic thermoelectric materials are in this article. The research progress is explained, and the problems and challenges of ionic thermoelectric materials and the future development direction are also put forward.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Jianwei Zhang, Ying Xiao, Bowei Lei, Gengyuan Liang and Wenshu Zhao"},{id:"77670",title:"Thermoelectric Elements with Negative Temperature Factor of Resistance",slug:"thermoelectric-elements-with-negative-temperature-factor-of-resistance",totalDownloads:72,totalDimensionsCites:0,doi:"10.5772/intechopen.98860",abstract:"The method of manufacturing of ceramic materials on the basis of ferrites of nickel and cobalt by synthesis and sintering in controllable regenerative atmosphere is presented. As the generator of regenerative atmosphere the method of conversion of carbonic gas is offered. Calculation of regenerative atmosphere for simultaneous sintering of ceramic ferrites of nickel and cobalt is carried out. It is offered, methods of the dilated nonequilibrium thermodynamics to view process of distribution of a charge and heat along a thermoelement branch. The model of a thermoelement taking into account various relaxation times of a charge and warmth is constructed.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Yuri Bokhan"},{id:"79236",title:"Processing Techniques with Heating Conditions for Multiferroic Systems of BiFeO3, BaTiO3, PbTiO3, CaTiO3 Thin Films",slug:"processing-techniques-with-heating-conditions-for-multiferroic-systems-of-bifeo3-batio3-pbtio3-catio",totalDownloads:96,totalDimensionsCites:0,doi:"10.5772/intechopen.101122",abstract:"In this chapter, we have report a list of synthesis methods (including both synthesis steps & heating conditions) used for thin film fabrication of perovskite ABO3 (BiFeO3, BaTiO3, PbTiO3 and CaTiO3) based multiferroics (in both single-phase and composite materials). The processing of high quality multiferroic thin film have some features like epitaxial strain, physical phenomenon at atomic-level, interfacial coupling parameters to enhance device performance. Since these multiferroic thin films have ME properties such as electrical (dielectric, magnetoelectric coefficient & MC) and magnetic (ferromagnetic, magnetic susceptibility etc.) are heat sensitive, i.e. ME response at low as well as higher temperature might to enhance the device performance respect with long range ordering. The magnetoelectric coupling between ferromagnetism and ferroelectricity in multiferroic becomes suitable in the application of spintronics, memory and logic devices, and microelectronic memory or piezoelectric devices. In comparison with bulk multiferroic, the fabrication of multiferroic thin film with different structural geometries on substrate has reducible clamping effect. A brief procedure for multiferroic thin film fabrication in terms of their thermal conditions (temperature for film processing and annealing for crystallization) are described. Each synthesis methods have its own characteristic phenomenon in terms of film thickness, defects formation, crack free film, density, chip size, easier steps and availability etc. been described. A brief study towards phase structure and ME coupling for each multiferroic system of BiFeO3, BaTiO3, PbTiO3 and CaTiO3 is shown.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Kuldeep Chand Verma and Manpreet Singh"},{id:"78034",title:"Quantum Physical Interpretation of Thermoelectric Properties of Ruthenate Pyrochlores",slug:"quantum-physical-interpretation-of-thermoelectric-properties-of-ruthenate-pyrochlores",totalDownloads:78,totalDimensionsCites:0,doi:"10.5772/intechopen.99260",abstract:"Lead- and lead-yttrium ruthenate pyrochlores were synthesized and investigated for Seebeck coefficients, electrical- and thermal conductivity. Compounds A2B2O6.5+z with 0 ≤ z < 0.5 were defect pyrochlores and p-type conductors. The thermoelectric data were analyzed using quantum physical models to identify scattering mechanisms underlying electrical (σ) and thermal conductivity (κ) and to understand the temperature dependence of the Seebeck effect (S). In the metal-like lead ruthenates with different Pb:Ru ratios, σ (T) and the electronic thermal conductivity κe (T) were governed by ‘electron impurity scattering’, the lattice thermal conductivity κL (T) by the 3-phonon resistive process (Umklapp scattering). In the lead-yttrium ruthenate solid solutions (Pb(2-x)YxRu2O(6.5±z)), a metal–insulator transition occurred at 0.2 moles of yttrium. On the metallic side (<0.2 moles Y) ‘electron impurity scattering’ prevailed. On the semiconductor/insulator side between x = 0.2 and x = 1.0 several mechanisms were equally likely. At x > 1.5 the Mott Variable Range Hopping mechanism was active. S (T) was discussed for Pb-Y-Ru pyrochlores in terms of the effect of minority carrier excitation at lower- and a broadening of the Fermi distribution at higher temperatures. The figures of merit of all of these pyrochlores were still small (≤7.3 × 10−3).",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Sepideh Akhbarifar"},{id:"77635",title:"Optimization of Thermoelectric Properties Based on Rashba Spin Splitting",slug:"optimization-of-thermoelectric-properties-based-on-rashba-spin-splitting",totalDownloads:125,totalDimensionsCites:0,doi:"10.5772/intechopen.98788",abstract:"In recent years, the application of thermoelectricity has become more and more widespread. Thermoelectric materials provide a simple and environmentally friendly solution for the direct conversion of heat to electricity. The development of higher performance thermoelectric materials and their performance optimization have become more important. Generally, to improve the ZT value, electrical conductivity, Seebeck coefficient and thermal conductivity must be globally optimized as a whole object. However, due to the strong coupling among ZT parameters in many cases, it is very challenging to break the bottleneck of ZT optimization currently. Beyond the traditional optimization methods (such as inducing defects, varying temperature), the Rashba effect is expected to effectively increase the S2σ and decrease the κ, thus enhancing thermoelectric performance, which provides a new strategy to develop new-generation thermoelectric materials. Although the Rashba effect has great potential in enhancing thermoelectric performance, the underlying mechanism of Rashba-type thermoelectric materials needs further research. In addition, how to introduce Rashba spin splitting into current thermoelectric materials is also of great significance to the optimization of thermoelectricity.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Zhenzhen Qin"},{id:"75364",title:"Challenges in Improving Performance of Oxide Thermoelectrics Using Defect Engineering",slug:"challenges-in-improving-performance-of-oxide-thermoelectrics-using-defect-engineering",totalDownloads:215,totalDimensionsCites:0,doi:"10.5772/intechopen.96278",abstract:"Oxide thermoelectric materials are considered promising for high-temperature thermoelectric applications in terms of low cost, temperature stability, reversible reaction, and so on. Oxide materials have been intensively studied to suppress the defects and electronic charge carriers for many electronic device applications, but the studies with a high concentration of defects are limited. It desires to improve thermoelectric performance by enhancing its charge transport and lowering its lattice thermal conductivity. For this purpose, here, we modified the stoichiometry of cation and anion vacancies in two different systems to regulate the carrier concentration and explored their thermoelectric properties. Both cation and anion vacancies act as a donor of charge carriers and act as phonon scattering centers, decoupling the electrical conductivity and thermal conductivity.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Jamil Ur Rahman, Gul Rahman and Soonil Lee"}],onlineFirstChaptersTotal:6},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{},subseries:{},overviewPageOFChapters:[],overviewPagePublishedBooks:[],openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{},onlineFirstChapters:{},publishedBooks:{},testimonialsList:[]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"onlineFirst.detail",path:"/online-first/80690",hash:"",query:{},params:{id:"80690"},fullPath:"/online-first/80690",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()