Various microwave-assisted pretreatment of CPH.
\r\n\tTo viable rural development has a vital role for rural communities. In the design of policies to be successful that affect them rural people have to decide and implement. According to this, it is a critical point to involve the poor and disadvantaged, along with related stakeholders, agricultural and rural development. Hence, for the sustainable development by international initiatives and all other institutions were searched and to be present the agricultural and related research results. To help support the effort, various governmental and non-governmental agencies established fundings for sustainable rural development research and fostered the development of human well-being goals in rural areas via national and international initiatives. In this context, most efforts resulted in successful cases. This book will intend to provide the reader with a comprehensive overview of the theory, approaches, strategies, and cases, and key elements and challenges of sustainable development, and Bioeconomy, Green and Circular economy for sustainability, and UN SDGs-Agenda 2030 and EU Green Deal.
\r\n\r\n\tI believe that this work will be fundamental in the field of SDG, and it will be a guiding, idea-generating key for researchers, practitioners, rural community, and policy decision-makers, and I hope that together we will establish sustainable rural life and development around the world.
\r\n\t
Dye Sensitized Solar Cells (DSSCs) have drawn the attention of renewable energy scientists, since the proof of concept done by O’Regan and Grätzel in 1991 [1]. In that concept, it was shown that an adsorbed photosensitizer on a low-cost low bandgap semiconductor can generate electricity with a reasonable efficiency from the incident sun light. Such a process was a breakthrough at the time, despite the low efficiency of the utilized sensitizer, as only highly crystalline semiconductor, such as Si, was believed to be the only way to capture the sunlight and convert it into electricity. In a typical Si solar cell, the light is absorbed by the crystalline Si atoms and the energetic charges are generated within the bandgap of the semiconductor, which later can be extracted by the external circuit [2]. However, in the DSSC, the light is absorbed by the photosensitizer “adsorbed dye” and then transfers its energetic charge to the low-cost semiconductor that is responsible for transferring the charge to the external circuit. The first utilized photosensitizer was based on metal complex, a Ru-complex, thus, many metal-based complexes were tested later on the best performances in DSSCs [3]. The main excited state charge dynamics for metal-based complexes for DSSCs are based on a MLCT (metal to ligand charge transfer process) state, in which the incident light moves an electron from the metal core to the surrounding ligands in the complex, then the charge hops from the ligand to the CB (conduction band of the semiconductor) via a triplet state. Thus, heavy metal ions with low oxidation potentials were utilized such as Ru atoms [4]. Later on, plenty of attempts have been done to replace these costly metal photosensitizers by the metal-free photosensitizers, organic dyes, to further reduce the cost of the working cell [5].
Several synthetic strategies have been implemented for optimizing the metal-free, pure organic photosensitizers for working conditions in DSSCs [6]. One of the successful approaches for building organic photosensitizers is based on
Schematic representation for the successful design of organic photosensitizers for utilization in DSSCs based on D-L-A strategy, readapted from reference [
Different than Ru-complexes, the organic dyes in DSSCs inject the energetic electrons from the singlet states as the triplet state population has mostly a very low quantum yield [12]. As the spin state for both the excited and the ground state of the organic dyes is the same, various deactivation mechanisms can occur for the adsorbed dyes on semiconductor surfaces. These deactivation processes include large scale motions such as isomerization [13], twisting [14], and local chemical interactions such as interactions with electrolyte components surface species [15, 16, 17].
Figure 2 summarizes the main processes for exciting an adsorbed dye on low-band gap semiconductor such as TiO2. There processes are such as follow:
Schematic representation for electron dynamics in DSSCs. Each process has its number that is mentioned in the main text. Red numbers are for deactivating processes and blue numbers are for favorable processes, readapted from reference [
All these processes contribute both positively and negatively to the overall performance of the DSSC. These processes are marked in different colors in Figure 2, depending on their role. However, due to the sake of this chapter, I will mainly be focusing on the exited state dynamics of organic dyes that improve or reduce the total performance of the DSSC. However, before presenting these dynamics, I will illustrate in the following section the main optical tools utilized for investigating these processes in DSSCs.
Several optical spectroscopic tools have been utilized to follow the charge dynamics for organic dyes in DSSCs. These common tools include TCSPC (Time-correlated single photon counting), fs-TA (Femtosecond transient absorption), and fs-TE (Femtosecond transient Emission).
TCSPC helps to measure the emission decay of a molecule in a fast and an accurate way, due to the high repetition rate of the laser (ps or fs lasers). The accuracy of the measurements depends on the arrival of randomly emitted photons to the detector at different time channels. To initiate the measurements, a reference signal from the laser source is registered at the electronics, and the arrival time of the laser signal is measured by a constant function discriminator (CFD). Then, a linear increase in the voltage starts when the signal passes through time to amplitude converter (TAC). In the meanwhile, an electrical signal is registered from the emitted photon at the CFD, and another signal is sent to the TAC to stop the voltage increase. The time difference between the start and stop corresponds to the time delay after examining signal by the rest of the electronics. Repeating these measurements many times gives the histogram plot at the end. Figure 3 presents the components of TCSPC [8, 12, 13].
Schematic representation for a typical TCSPC setup, readapted from reference [
As many ongoing processes of DSSCs are relatively fast ones, one needs a technique with high time-resolution to follow such processes in DSSCs. One of the most utilized techniques to follow such processes is the fs-TA setup [18, 19, 20, 21, 22, 23, 24, 25]. Simply, in fs-TA, one needs a laser source of short pulses in the range of 100 fs per pulse, and by overlapping two laser pulses at the measuring sample (one to start the reaction ‘pump’, and another to probe it), the resulted spectrum at the detector provide exceptional information about both the ground state and the excited state of the reaction, Figure 4 shows a simple scheme for utilizing fs-TA setup. The pump pulse is usually in the visible range to promote a charge transfer, and the probe pulse can be usually in the visible or in the infrared range [14, 26, 27]. The main advantages of fs-TA are the ability to detect dark states that are not observed by other time-resolved emission techniques such as charge transfer, energy transfer, intersystem crossing, and charge recombination [28, 29, 30].
Illustration for the generation of TA signal by fs-laser pulses.
Time-resolved transient emission techniques are more versatile to follow the charge dynamics in general for the charge dynamics for dyes in DSSCs. To be able following the emission spectral information along with the emission lifetimes of the studied dyes, one commonly uses time-resolved emission streak camera, Figure 5 shows the basic components for measuring emission using streak camera. The main advantage of using streak camera is the ease of utilizing it in comparison with other techniques such as fs-TA. Using emission streak camera, one needs only one laser source to excite the sample, then the emitted photons are collected and directed inside the streak camera, in which the photons can be spatially and temporally separated, resulting of a 2D-image that contain information about the time and energy of the emitted photons [12, 13].
Typical design for a streak camera. Readapted from reference [
Electron injection process is the transfer of a charge such as an electron from the excited dye to the CB of the semiconductor after light absorption, and it is considered the first beneficial process for high performance in DSSCs. The electron injection rate depends on the coupling strength between the adsorbed dye and the semiconductor, which includes the energy alignments of both the excited state of the dye and the fermi level of the semiconductor. For a long time, the electron injection time scale was trusted to be only in the range of 100 fs, however, this is not the case for all organic dyes as shown later by showing slower electron injections lifetimes [26, 27, 31]. The detection of slow electron injection in the picosecond time scale was mainly achieved by utilizing the IR (infrared) probe light in the fs-TA instead of the visible probe light [27, 29, 32, 33]. The advantage of using the IR versus the visible probe was mainly attributed the sole sensitivity of the IR to the vibrations of the electrons in the CB of the semiconductor, while the visible probe interacts with several species at the semiconductor surface such as the oxidized dye and the redox couple [8, 33, 34]. Famous organic indoline dyes were measured on TiO2 mesoporous surfaces using fs-TA in the IR region centered at 5000 nm, and multi-exponential injection rates were detected including fast lifetimes of 100 fs and slow ones in the range of tens of ps [27, 33]. Figure 6 shows the captured data for various indoline dyes, in which the D131 dye shows a fast injection lifetime of 100 fs, while other dyes (D102, D149, and D205) show additional slow injection lifetimes that can reach to 30 ps as in the case of D149 dye. These slow injection rates are connected to large scale motions on mesoporous surfaces as shown later on, such as isomerization. The presence of slow injection rates is thought to be beneficial to the overall efficiency of the DSSC, due to the expected minimized charge recombination afterwards [26, 31].
Time resolved transient absorption for the electron injection process of indoline dyes adsorbed on TiO2. (A) Comparison between various dyes indicated in the legend. (B) Comparison between D205 on TiO2 versus impeding the dye in PMMA, readapted from reference [
Aggregation
Aggregation is a common problem for adsorption of organic dyes on mesoporous surfaces, in which the dyes are stacking in various ways very close to each other due to the high concentration utilized during the adsorption process, resulting of side deactivation pathways that hindered the charge transfer processes in DSSCs [13, 35, 36]. Reducing the dye aggregations can happen by utilizing co-adsorbent agents such as CDCA (cheno-deoxycholic acid) [37], or by impeding organic dyes in the MOF-ZIF8 structures, which increases the dye’s emission lifetime by putting the dyes at far distances from each other [38]. Figure 7 presents the appearance of fast emission lifetime components for the D149 dye upon the presence of aggregation. However, upon using low concenrtation of the D149 dye, the short lifetimes disappears due to the absence of aggregation. In DSSCs, the presence of aggregation reduces the amount of charges transferred to the CB of the semiconductor, and thus, reduces the overall efficiency of the cell.
Isomerization
Time-resolved emission for D149 organic dye inside PMMA matrix showing the effect of concentration and the aggregation formation on the appearance of fast emission lifetime components (to the left), readapted from reference [
The local movement of adsorbed organic dyes was overlooked for a long time due to the expected well-packed order of adsorbed dyes, and many argued that isomerization is not a competing process with the electron injection as the latter is very fast. However, as electron injection process can be slow as well, the isomerization and the change of local arrangements of molecules on surfaces can reduce the DSSC efficiency due to uncontrolled deactivation processes [13, 39, 40]. Figure 8 shows the absorption spectra changes of L0Br organic dye labeled by heavy bromine atom on the mesoporous ZrO2 surfaces under photo-irradiation [40]. The changes in absorption spectra along the NMR measurements revealed the formation of
Twisting
Two organic dyes, L0, and L0Br were utilized to investigate the isomerization process on ZrO2 surfaces under 400 nm photo-irradiation, readapted from reference [
Isomerization of organic dyes in DSSCs is not always spectroscopically detectable especially when the resulted isomers such as
The time-resolved emission data for the parent molecule of D149 in solution and in PMMA matrix (left). fs-TA data for the parent molecule in toluene (right), readapted from reference [
Although the previous large scale motions of organic dyes apparently compete with the electron injection process, the TICT process of some studied organic dyes seems to help boosting the DSSC efficiency through an indirect pathway [31, 41]. Upon comparing organic dyes with the twisting ability on mesoporous semiconductors surfaces with the corresponding ones that do not show such a process, both the electron dynamics and the DSSC efficiency have been correlated [26, 31]. An organic dye named L1 dye shows the TICT process in solution as depicted in Figure 10. This dye shows a high performance in DSSCs of ca. 5.5% [26]. While the modified dye L1Fc that do not show any TICT state, instead shows a LCT (local charge transfer state), its efficiency in DSSCs was lower L1 of ca. 1.1% [26, 31].
Chemical structures of L1 and L1Fc dyes along with their absorption and emission data in acetonitrile, readapted from reference [
Using fs-TA in the infrared region to investigate the electron dynamics in the CB of TiO2 revealed that the presence of TICT state allows for slower electron injection from the L1 dye to the TiO2, and due the structural rearrangements of the L1 dye on the mesoporous surfaces, the back electron recombination is hindered allowing for high performance in DSSCs. However, for the L1Fc case along with the L1/PMMA case, the TICT state is blocked and thus the electron injection was faster from the LCT state, but the electron recombination was order of magnitudes faster than in the L1 dye case, resulting of poor efficiency in DSSCs. Figure 11 shows the time resolved data for electron injection for the discussed three cases. Thus, although the presence of TICT process can consume some energy to populate the TICT state, the benefit of reducing the charge recombination process is much larger on the DSSC efficiency.
Chemical Interactions with the Redox Couple
(A) False 2D plot for the electron injection of the L1 dye to the CB of TiO2 in the infrared. (B) Normalized kinetic traces for L1, L1Fc, and L1/PMMA on TiO2, readapted from reference [
Traditionally, the utilized electrolyte in DSSCs is solely assumed to regenerate the adsorbed oxidized dye on the mesoporous surface after the electron injection. This regeneration process is typically in the pico- to nano- second time scale [42, 43, 44]. However, just recently, it has been shown that the utilized electrolyte can form ground state interactions with the adsorbed dye on the surface that both affect the electron injection and recombination processes [15]. These effects will have detrimental effects on the performance of organic dyes in DSSCs. The formation of ground state complexes have been confirmed by using steady state absorption and emission measurements. Figure 12 shows the kinetic traces for the electron dynamics of adsorbed organic dye D149 on TiO2 in contact with different components of the traditional iodide electrolyte used in various DSSC sets [45]. For the case of D149/TiO2, slower electron injection and recombination processes have been observed. However, upon adding I3−, I−, or I2, the electron injection process was much faster of ca. 100 fs, and more importantly the electron recombination was increased dramatically, due to the adsorbed complexes species on the surface [15]. Thus, the chemical interactions between the chemical substances should be considered upon optimizing the DSSC efficiency.
Effect of chemical interactions between the D149 organic dye and the redox couple electrolyte (Iodide, iodine, tri-iodide) on the electron dynamics of D149 dye on mesoporous TiO2, the rise of the signal is due to electron injection, while the signal decay is due to the electron recombination, readapted from reference [
Although the DSSC shows promising results with respect to low-cost and moderate efficiency in comparison with inorganic semiconductor solar cells, the ongoing processes in DSSC are quite complex and lots of studies are required to increase the output efficiency. In this chapter, we highlighted the fact that organic dyes have many excited state processes that have been overlooked in the past. Most of these processes showed detrimental effects on the overall performance of the DSSC. However, other exited state processes, such as the formation of TICT state, illustrated that high efficiency can also be attained through the excited state dynamics of the adsorbed dye. Understanding the dye’s excited state processes will allow for fine tuning of such processes, via the chemical synthesis of organic dyes, correlating with the output efficiency of the DSSC.
On leave from Chemistry Department, Assiut University
Cocoa (
Cocoa pod husks (CPH) are the non-edible part of the cocoa pod with a percentage composition of 67–76% of the total cocoa pod wet weight. This translates to every kilogram of dry cocoa bean produced generating 10 kg of wet cocoa pod husks [2]. For instance, it has been estimated that the annual world crop of 1 million tons of cocoa produces about 10 million tons of pod husks as by-product, and constitutes about 67% of the fresh pod weight. After removal of the cocoa beans, treated and exported abroad, CPH is usually discarded on the farm, which often is left to decompose as an organic fertilizer. However, CPH left on the soil surface also act as a source of inoculum for plant diseases such as black pod rot (BPR) due to the development of
Generation of cocoa bean and cocoa pod husks by various countries.
The development of cutting-edge technologies that can efficiently transform these hitherto waste materials generated from cocoa into useful chemicals that could potentially improve the global value chain of cacao production, is crucial and highly sort after and concomitantly reduce the negative environmental impact. Many researchers have developed interests in this area of study because of the vast availability of CPH which poses a major waste management challenge confronting cocoa-producing nations. In light of this, there have been multiple reports on the valorization of CPH into value-added products in an attempt to contribute to our drive for a sustainable society and a circular economy. Nonetheless, CPH have been hugely underexploited even though there have been numerous published literatures on this subject matter. In fact, research interest in CPH valorization dates back 1905 with a single publication. The publications increased significantly from 2003 and has continued to grow ever since. Averagely, for the past decade there has been about 18 publications per year on CPH (Figure 2).
Publications produced annually related to CPH transformations.
Majority of these publications related to CPH were journal articles, hugely representing over 50% of the global works related to CPH transformations to various value-added products. However, a number of patents have also been filed (representing about 15% of the global publications related to CPH transformations), signifying the importance of the works and results discovered in relation to CPH as a bio-resource raw material. Figure 3 below shows the work density by type of publication CPH.
Publication work density on cocoa pod husks (reproduced and modified with permission from: Ref. [
The renewed and increased interest in CPH can be attributed to the enormous quantities generated on the farm, the environmental challenge that rotten CPH poses as well as the concomitant spread of black pod diseases that has accounted for the huge losses recorded by cocoa farmers [1, 2, 3]. Besides CPH has been found to be a valuable bio-resource due to the myriad of value-added products such as activated carbon, soap, animal feed, soil manure and fertilizer, biofuels, paper, biofuels, and nutraceuticals that it can be transformed into. It has also been found to be a repository of base chemicals of high value such as aldehydes, ketones, theobromine, phenols, potash, and pectin [4, 5, 6, 7, 8, 9]. CPH applications in several areas including radial electrochemical agrochemical bio-regulators, thermal energy technology, soil fertilization, manure and fertilizer production, food and animal chemistry, plastic treatment and waste treatment, and disposal are still being explored. Whilst soil fertilization, plant nutrition, and food and feed chemistry aspects of CPH application have been extensively exploited, plastic manufacturing, and processing is still underexplored and deserve special attention [3]. Compositionally, CPH comprises of mesocarp, sclerotic part, and epicarp (Figure 4).
Fresh cocoa pod fruit (a) and dried cocoa pod husk (b and c).
Primarily, CPH consists of fibrous materials that includes ~19–26% cellulose, 9–13% hemicellulose, 14–28% lignin, and 6–13% pectin. The mesocarp contains mainly (~50%) cellulose, while the epicarp is enriched with lignin and the endocarp on the other hand rich in pectic substances [9]. The hemicellulose fraction of CPH has been reported to consist of arabinan, arabinoxylan, and xylan, which have been deduced from the high amount of isolable arabinose and xylose [10], along with other hemicelluloses fractions such as xyloglucans, galactomannans, and glucomannans [11]. CPH is also a good source of phenolic acids, with quantities ranging from 4.6 to 6.9 g GAE/100 g.
Numerous technologies and transformation routes have been explored for the valorization of CPH into valuable products. Among these transformation routes are biochemical, physical, physicochemical, and thermochemical processes. Unconventional valorization routes such as supercritical carbon dioxide extraction, microwave, and ultrasound technologies have also been investigated and are still under exploration.
The main objective of this chapter is to shed light on some of the scientific efforts tailored at valorizing CPH either by conventional or unconventional approaches into valuable platform chemicals and products, as well as the challenges and future perspectives on the efficient use of CPH as a potential agro-waste resource and its economic viabilities.
To date, conventional valorization routes for transforming CPH to specialty chemicals occur either
Biochemical transformation of renewable raw materials involves the use microorganisms as catalyst to transform biomass into valuable products. It is often regarded as a cheaper approach for converting biomass to chemical, energy, and fuels. However, due to the recalcitrant nature of lignin component in biomass, the use of microbes to transform crude biomass into valuable products is often challenging and difficult. In this context, it is imperative to pretreat the biomass raw material in order to render cellulose and hemicellulose susceptible to microbial action. The pretreatment processes may be physical, thermochemical, biological, or physicochemical. The nature of pretreatment approach dictates the types of the intermediate chemical that would be obtained for further conversion to final product. The main biochemical routes that have been investigated using CPH as raw material are fermentation and anaerobic digestion.
Anaerobic digestion (AD) is a sequence of processes by which microorganisms break down biodegradable material in the absence of oxygen. AD basically occurs in three steps: decomposition or hydrolysis of biomass, followed by conversion of treated biomass to organic acids, and finally conversion of acids into methane gas. The main product of AD is biogas which contains methane, carbon dioxide, and some traces of hydrogen sulfide which is one of the main sources of renewable energy. The process also produces an aqueous mixture consisting of microorganisms involved in the degradation. Large volumes of CPH generated and its composition makes it a viable candidate for AD biogas production.
In 2018, Acosta and co-workers [12] investigated the production of methane and biogas yields from CPH and compared it to other agricultural residues, to evaluate the quality of the biomass raw material as a new feedstock for biogas production. The authors concluded that 50% of organic matter from CPH was transformed to biogas with 60% yield of methane. Dry AD was the preferred process choice for the authors because it gave the highest yields of methane and also, the operating conditions were stable [12].
In another interesting work, Antwi et al. [13] investigated the potential of valorizing CPH
Several reports on the valorization of CPH or cocoa related residue to biogas
Fermentation is the conversion of sugars contained in biomass hydrosylate to specialty chemicals using microbes. The type of microbe used dictates the fermentation pathway as well as the end products. The conversion of CPH to bioethanol, bio-butatnol, and propanoic acid by fermentation reported in literature has been highlighted below.
Shet et al. [17] hydrolyzed CPH with HCl to release reducing sugars under optimized conditions (8.36% W/V of CPH, 3.6 N HCl, and 7.36 hours) using response surface methodology (RSM). The hydrosylate was neutralized using 5 N NaOH followed by fermentation to produce bioethanol. The inoculum was
Hernández-Mendoza et al., 2021 on the other hand performed alkaline hydrolysis on CPH and examined the effect of NaOH concentration, residence time, and temperature using a central composite design (CDD). The solid fraction was examined with X-ray diffraction (XRD) and scanning electron microscopy (SEM) in order to investigate morphological changes. It was further subjected to enzymatic hydrolysis which optimized the enzyme and solid loadings to convert cellulose to reducing sugars. The yeast
Propionic acid production from CPH was reported for the first time by Sarmiento-Vásquez et al. [20]. In their work, alkaline and enzymatic treatment is conducted with 2.3% W/V NaOH and 2.4% V/V Cellic® CTec2, respectively to convert CPH to fermentable sugars such as glucose to a maximum yield of 275 mg glucose/g CPH. Subsequently 7.5 g/L CPH hydrosylate is fermented with
Sandesh et al. [21] successfully produced acetone, bio-butanol, and ethanol from inductive assisted H2SO4 hydrolyzed CPH using
These results are a demonstration of the potential of CPH as a cheap feedstock for the production of biochemicals
Thermochemical biomass conversion approach involves all processes in which heat is used to transform biomass in the solid form to other states in the presence or absence of oxygen. Processes that fall under this category are direct combustion, gasification, pyrolysis, hydrothermal liquefaction, and torrefaction. This section examines how thermochemical conversion processes have been applied in CPH valorization.
In direct combustion, biomass is burnt in ovens, kilns, fluidized bed combustors, furnaces with excess oxygen or air to obtain gases and ash. The combustion chambers are usually operated at temperature above 900°C. Gases and ash are the key products. The ash has been found to contain 40% potash which consists of 43% potassium carbonate and 27% potassium hydroxide. This is the process soap-makers in most West African countries harness potash from CPH to produce soft soap known locally as
In pyrolysis biomass is thermally decomposed in an inert atmosphere at elevated temperatures. The biomass is usually converted to volatile products with solid residue called char where the proportion of each fraction depends on the conditions of pyrolysis that the biomass was subjected to. The volatile fractions are usually condensed to obtain the liquid (bio-oil) and non-condensable gaseous fractions. Operating parameters such as reaction temperature, pressure, catalysts, hot vapor residence time, solid’s residence time, etc., affect the overall process performance. The conditions of pyrolysis fall into three categories namely slow pyrolysis, fast pyrolysis, and flash pyrolysis. In slow pyrolysis, the temperature of the biomass is raised to about 500°C at low heating rates with long residence times. The solid char is the main product and it is the main route of producing charcoal which can used as fuel, activated carbon, soil conditioners, and feedstock for producing chemicals. On the other hand, in fast and flash pyrolysis, the liquid fraction or bio-oil is the preferred product. In fast pyrolysis, temperatures of about 500°C and short vapor residence time of about 2 seconds are typical to generate bio-oil from biomass. Flash pyrolysis is similar to fast pyrolysis except that the residence time is shorter in the former [27].
Pyrolysis is the most widely exploited biomass to liquid (BTL) conversion route in that the crude bio-oil can be directly used in boilers and turbines to generate electricity and heat as well as feedstock for synthesizing fuels, base, and fine chemicals [28]. By this technology, bio-oils that of high value and substitute for fuels from non-renewable sources can be produced [29]. Tsai and co-worker [30] demonstrated that slow pyrolysis of CPH produces bio-chars of more than 60% carbon content and a calorific value greater than 25 MJ/kg, dry basis at temperatures between 190 and 370°C for 30–120 minutes. They concluded that though this type of biochar exhibited lignite-like feature, it is not suitable for use as fuel in boilers due to the high potassium content. Several researchers have applied this process to CPH and have generated similar products [31, 32, 33].
CPH was pyrolyzed under fast pyrolysis conditions at temperatures 550–600°C by [29] for 2–4 minutes to yield 58 wt.% bio-oil, 30 wt.% biochar, and 12 wt.% non-condensable gases. Analysis of the bio-oil shows it contained a complex mixture of carboxylic acids and ketones with 9,12-octadecadienoic acid being the most abundant.
In another work by Mansur et al., the authors [2] reported the possibility of upgrading pyrolysis oil obtained from CPH
Prior to pyrolysis, it is imperative to pretreat the biomass by sun drying, oven drying to avoid moisture saturation, and mechanical comminution to increase the surface area for effective pyrolysis.
Gasification is a thermochemical biomass conversion process which occurs at elevated temperatures above 700°C in a limited amount of oxygen. Usually 70–80% is transformed to synthesis gas (CO and H2) and the remainder is biochar. It is possible to obtain some amount of bio-oil if the condition is favorable. To maximize the yields of synthesis gas and improve on the overall efficiency of the process, supercritical water, and catalyst is used [27]. The synthesis gas can be transformed to fuels and myriad of chemicals via Fischer-Tropsch synthesis [34]. CPH has been converted to gaseous products of varying composition by gasification. For instance, Gunasekaran et al. [35] investigated the numerical and experimental potential of CPH gasification in an open-core gasifier. According to their results, the composition of CO, H2, and CH4 in the producer gas was found to be 20–24%, 12.0–16.5%, and 2.0–3.2%, respectively for the conditions that were tested. The conversion efficiency and cold gas efficiency were determined to be 82 and 38%, respectively. Further, the predicted performance parameters and temperature distribution were found to be at par. Thus, CPH was found to be a promising raw material for an open-core gasifiers.
The application of recycle system on a CPH gasification in a fixed-bed downdraft reactor was carried out by Pranolo and co-workers [36]. The aim was to produce low tar fuel gas from CPH using recycle stream consisting of CO, H2, CO2, and CH4. They successfully reduced the tar content in the product gases up to 62% at temperatures ranging from 750 to 780°C. Therefore, the gas may be used as a substitute fuel for electricity generation.
The valorization of CPH by physiochemical approach has mainly been by solid phase extraction or leaching in which solutes are removed from a solid by a liquid solvent [37]. Such processes have been applied in the extraction of phytochemicals and pectin from CPH. Phytochemicals are natural functional foods that possess a rich reservoir of bioactive components and nutraceuticals. Nutraceuticals was coined by Dr. Stephen De Felice and is a derivation from words “nutrition” and “pharmaceuticals.” Phytochemicals are mainly foods or parts of foods that provide medical or health benefits including the prevention and treatment of diseases. There has been rapid increase in the consumption of plant-derived bioactive. Plants produce these chemicals to protect themselves but recent studies have shown that these chemicals can protect humans, animals, and other plants against diseases compound [38].
Rachmawaty et al., 2018 studied the extraction of bioactive components from CPH and the in vitro antifungal activity assay against the pathogenic fungus
The acetone extract recorded the highest phenolic content and also a higher anti-fungal activity than the ethanol extract. Agar diffusion method was employed for antifungal testing and it showed that the extract was able to inhibit the fungal growth therefore leading to the conclusion that the CPH extract has great potential as a natural fungicide.
Pectin, a family of complex, acid-rich polysaccharides found in plant cell wall have been recovered from CPH by this approach. They have been extensively applied as gelling and stabilizer in cosmetics, food, and pharmaceuticals. They have the ability to reduce serum cholesterol, glucose, cancer incidence, and improved immune response in humans [39].
Pectin recovery from CPH was studied by Valladares-Diestra et al. [40] using citric acid hydrothermal treatment of CPH with concomitant production of xylooligosaccarides via enzymatic hydrolysis of the solid fraction after extraction. An optimum condition of 120°C, 10 minutes, and 2% W/V was employed for the recovering pectin. An amount of 19.3% of the biomass was recovered as pectin. They concluded that the prospects of implementing this novel method for the extraction of valuable chemicals such as pectin is very high.
Vriesmann et al. [39] optimized the variables affecting the nitic acid extraction of pectins from CPH using RSM. The optimum extraction condition was determined as pH 1.5, a temperature of 100°C, and time of 30 minutes. By these conditions a yield and uronic acid (UA) content (representing pectin content) of about 9.5 and 80%, respectively were predicted. However, experimental results gave a yield of 9.0 ± 0.4% and UA content of 66%. The predicted and experimental yield values were in close agreement, on the contrary, experimental UA content value was 17.5% lower than the predicted. This disparity was attributed to the low quality of the model for used the prediction. They further characterized the pectin a homogalacturonan highly esterified and acetylated one with some rhamnogalacturonan insertions.
Recently, Vriesmann and de Oliveira Petkowicz [41] compared the use of nitric acid and boiling water for the extraction of pectin. The pectins obtained from both extraction process was similar and identified as low methoxyl type. Rheological analysis suggests that both formed gels at low pH in spite of their high acetyl content therefore, the pectin can be used in acidic products.
Recently, processes that are considered green have been utilized to extract bioactive chemical from biomass feedstocks. These processes are gaining popularity due to their inherent benefits such lower temperature, less activation time, and higher carbon yield. Microwave, ultrasound as well as super and subcritical fluid extraction have been applied to obtain valuable chemical from CPH and is discussed in this section.
Microwave has been utilized in recent times to extract biochemicals instead of conventional processes as uniform heating, time, and solvent savings [42, 43, 44] are the main advantages of this process. Additionally, it has been found to improve the accessibility and reactivity of cellulose when used to pretreat lignocellulosic biomass. Moreover, subsequent enzyme action is heightened [43]. This is the most widely applied unconventional process for CPH valorization.
In the work of Mashuni et al., 2020, microwave was used to assist the extraction of phenols from CPH using 85% V/V ethanol as solvent. The microwave heating power was varied from 100 to 300 W whilst the extraction time spanned 5–30 minutes. Using the Folin-Ciocalteu method with gallic acid as a standard, the total phenol content of CPH was determined. The highest amount of phenol content was found to be 853.67 mg/L after 20 minutes of extraction at 200 W of microwave power. Upon characterizing the extract with GC-MS, it was revealed that the phenols present are butylhydroxytoluene; 6,6′-methylenebis(2-(tert-butyl)-4-methyl-phenol); 3-methoxy-2-((
Novel research was conducted by Nguyen and co-workers [42] where they extracted saponin from CPH
Pretreatment method | Objective | Observation | Reference |
---|---|---|---|
Microwave assisted H2SO4 hydrolysis (15.65 g of CPH, 6% V/V acid, and 8 minutes of irradiation) | Release fermentable sugars for onward fermentation to bioethanol. | Hydrosylate (9.10 g/L max) containing glucose, galactose, cellobiose, xylulose, and arabinose. | [48] |
Microwave assisted NaOH hydrolysis (3% NaOH, 100 W, 2.5 minutes, and 5 g CPH) | Delignification of CPH. | Increase in cellulose content especially when the microwave irradiation period was prolonged. | [49] |
Microwave (300 W, 25 minutes) | Increase porosity in lignin covering cellulose and hemicellulose to facilitate enzymatic action. | The sugar yield CPH was low, the yield of ethanol was considered high (61 ml/kg). | [50] |
Various microwave-assisted pretreatment of CPH.
This process was implemented in the work of Hennessey-Ramos and colleagues, 2021 to extract pectin from CPH. RSM was used to determine the optimum operating conditions that is 6.0% feedstock concentration, 40 μL/g enzyme, and 18.54 hours on stream. Experiments involving three processes for extracting pectin namely acid, ultrasound-assisted and enzymatic extraction were conducted and compared. The results are summarized in Table 2.
Parameter/process | Citric acid | Ultrasound-assisted citric acid extraction | Enzymatic extraction |
---|---|---|---|
Yield, g pectin/100 g CPHP | 8.08 | 8.28 | 10.20 |
GA content, g GA/100 g pectin | 60.97 | 42.77 | 52.06 |
GA yield, g GA/100 g CPHP | — | — | 5.31 |
Comparative analysis of chemical, ultrasound assisted, and enzymatic pectin processes.
CPHP, cocoa pod husk powder; GA, galacturonic acid.
From the results enzymatic extraction of pectin gave the best results for pectin yield followed by ultrasound-assisted citric acid extraction. The low GA content was attributed to duration (45 minutes) and temperature (60°C) of the process. They asserted that industrial operations above 60°C for ultrasonic assisted citric acid pectin extraction with the aim of increasing GA content would not be feasible owing to the inherent advantage of low temperature operation for such technologies. In the extraction of microcrystalline cellulose from CPH, it was pretreated with alkali followed by ultrasonication. Ultrasound applied after alkaline pretreatment of the feedstock brought about cavitation action that helped to effectively remove fibril aggregates from the microcrystalline cellulose. A sonication time of 60 seconds and two cycles of the ultrasonication process considerably reduced the particle size of the microcrystalline cellulose to 280 nm [51].
Long extraction periods, low yield and quality of extracts, and loss of volatile compound are among many limitations of traditional extraction processes that has warranted the development of novel and green processes that overcome these limitations. Super critical and subcritical fluid extraction are among such processes that are considered efficient and time-economic [43, 52, 53, 54]. In a recent study on the extraction of phenols from CPH using supercritical CO2, Valadez-Carmona et al. [7] employed a Box-Behnken design to maximize the process variables that is temperature, pressure, and co-solvent. The optimum conditions obtained were 60°C, 299 bar, and 13.7% ethanol. By this approach, the extraction time was lowered even though the yield was low (0.56%), the quality of the extracts was improved whilst the loss of volatile compound was minimized. The highest total phenolic compounds (TPC) were found to be 12.97 mg GAE/g extract whereas the total antioxidant capacity was 0.213 mmol TE/g extract. These findings demonstrates that supercritical CO2 extraction is a promising technique that can be exploited for the isolation of natural antioxidants from CPH for use in food, cosmetic, or pharmaceutical products. Another interesting work was published by Muñoz-Almagro and co-workers [55] where they compared conventional and subcritical water extraction of pectin from CPH. The latter process is a technique in which water provides H+ and OH− ions at high pressure and temperature for dissolving both polar and non-polar compounds. At high temperatures the hydrogen bonding in water is weakened thereby decreasing the dielectric constant value and water polarity which consequently lowers the energy required for dissociation of water molecules in solute-matrix interactions and extraction efficiency is increased [55]. In the subcritical water extraction process, a pectin yield of 10.9% as opposed to 8% obtained using conventional extraction with citric acid as solvent. Characterization of the pectin showed that high molecular weight pectin (750 kDa) was preferentially extracted during the subcritical operation. These green techniques have been shown to possess high selectivity towards targeted compounds and potential for CPH valorization.
Although several transformation techniques have been investigated for the conversion of CPH to valuable products, there is still a need to develop efficient and sustainable approaches for a holistic CPH biomass valorization process. In this context, the development of cutting-edge technologies that can efficiently transform these hitherto waste materials generated from cacao into useful chemicals that could potentially improve the global value chain of cacao production, is crucial and highly sort after. Although of interest, the uncontrolled co-production of char and gaseous products limits the overall yield of bio-chemicals so-obtained, and thus the overall efficiency of this approach. Being able to fractionate these lignocellulosic biomass waste into valuable chemicals in a selective fashion is highly desirable from economic and environmental considerations, but it remains a very important scientific challenging task due to scientific bottlenecks such as: (i) recalcitrance of lignocellulosic biomass to hydrolysis, often requiring high activation temperatures which are not compatible with the stability of sugars, the main components of lignocellulosic biomass waste, and (ii) high dilution ratio to prevent recombination reactions (for instance caramelization of monomeric sugars) leading to the unwanted formation of tar-like materials. In order to overcome such scientific hurdles, researchers should consider the coupling of mechano-catalytic technology to first release sugars contained in CPH, which can be achieved without the need of any solvent, translating into efficient and environmentally friendly synthesis approach, and a pyrolysis process to valorize lignin, the co-product of the CPH fractionation after the mechano-catalytic step.
Using pectin production as a valuable product case-study from CPH, an economic analysis using Aspen Process Economic Evaluator was modeled, and allowed the estimation of investment and return of the stimulated process with the possibility to obtain a considerable profitability with a 20 years operation plant life and a pectin production capacity of 108,127.4 Ib./year, annual interest rate of 20%, a salvage value (fraction of initial investment) of 20% and depreciation method straight line and an income tax of 40%. An Internal Rate of Return (IRR) of 33% was obtained over a capital cost of $5,509,000 (USD), operational cost of $2,135,300 (USD), 17 years durations of startup, and a 4 years payback period. These values indicated a positive suggestion that the implementation of pectin production process from cocoa pod husks as an investment project owing to its better long-term benefits compared to those generated by investing in banks [56]. An important aspect of the economic viability of CPH valorization that is often ignored is the cost of the raw material which is often considered waste and of low value. According to the findings of a study conducted in Indonesia on the need for economic and sustainability assessment of the valorization of CPH, farmers demand higher levels of compensation to collect or process the raw material than expected. Only a small section of farmers were willing to carry out collection and processing for 117GBP/t CPH. This could offer some explanation for the low patronage of CPH valorization innovations in that country [57].
CPH has been demonstrated to be an excellent source of phenolics, pectin, and lignocellulosic contents that can be used for the production of platform chemicals relevant in the agrochemical, pharmaceutical, and food industries. However, although cocoa remains a prime economic cash crop in developing countries like Ghana, Ivory Coast, Indonesia, etc., the efficient transformation of cocoa pod husks into valuable products in such countries other than leaving them on farm sites to rots are scarce. Therefore, it is paramount for such developing countries to develop end-user applications for CPH that will be beneficial for industries, consumers, researchers, and also serve as extra income for farmers. It is of no doubt that the development of processes that are easy to implement, less expensive, sustainable and environmentally friendly, to convert CPH into high high-value added products, such as biofuels could significantly prevent the excessive consumption and reliant on fuel/diesel and the production of greenhouse gas. Increased valorization techniques for CPH will concomitantly increase the overall sustainability of the cocoa agribusiness and open up new avenues for sustainable incomes for cocoa farmers.
The authors would like to thank the French National Centre for Scientific Research (CNRS) through its Support Action for Collaboration with sub-Saharan Africa Grant for supporting this work. The kind contribution and efforts of Jedidian A. Adjei (KNUST Ghana) are duly acknowledged.
",metaTitle:"Open Access Statement",metaDescription:"Book chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0)",metaKeywords:null,canonicalURL:"/page/open-access-statement/",contentRaw:'[{"type":"htmlEditorComponent","content":"
License
\\n\\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) and journal articles are distributed under a Creative Commons 4.0 International Licence.
\\n\\n\\n\\nFormats
\\n\\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\\n\\nPeer Review Policies
\\n\\nAll scientific Works are subject to Peer Review prior to publishing.
\\n\\n\\n\\nCosts
\\n\\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\\n\\n\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'License
\n\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) and journal articles are distributed under a Creative Commons 4.0 International Licence.
\n\n\n\nFormats
\n\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\n\nPeer Review Policies
\n\nAll scientific Works are subject to Peer Review prior to publishing.
\n\n\n\nCosts
\n\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\n\n\n\nDigital Archiving Policy
\n\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{id:"965887@"},profiles:[],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"6"},books:[{type:"book",id:"11643",title:"Genetic Diversity - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"0b1e679fcacdec2448603a66df71ccc7",slug:null,bookSignature:"Prof. Mahmut Çalışkan and Dr. Sevcan Aydin",coverURL:"https://cdn.intechopen.com/books/images_new/11643.jpg",editedByType:null,editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11644",title:"Structural and Molecular Aspects of DNA Repair",subtitle:null,isOpenForSubmission:!0,hash:"83dfefc2400d2d037281f1e25bbc544b",slug:null,bookSignature:"Prof. Subrata Kumar Dey",coverURL:"https://cdn.intechopen.com/books/images_new/11644.jpg",editedByType:null,editors:[{id:"31178",title:"Prof.",name:"Subrata",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11645",title:"Neural Tube Defects",subtitle:null,isOpenForSubmission:!0,hash:"08d6ba70d97767769a97cfeeb52dac78",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11645.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11669",title:"Fatty Acids - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"9117bd12dc904ced43404e3383b6591a",slug:null,bookSignature:"Assistant Prof. Erik Froyen",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",editedByType:null,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"69f009be08998711eecfb200adc7deca",slug:null,bookSignature:"Dr. Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",editedByType:null,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11673",title:"Stem Cell Research",subtitle:null,isOpenForSubmission:!0,hash:"13092df328080c762dd9157be18ca38c",slug:null,bookSignature:"Ph.D. Diana Kitala",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",editedByType:null,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11674",title:"Updates on Endoplasmic Reticulum",subtitle:null,isOpenForSubmission:!0,hash:"5d7d49bd80f53dad3761f78de4a862c6",slug:null,bookSignature:"Dr. Gaia Favero",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",editedByType:null,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11676",title:"Recent Advances in Homeostasis",subtitle:null,isOpenForSubmission:!0,hash:"63eb775115bf2d6d88530b234a1cc4c2",slug:null,bookSignature:"Dr. Gaffar Sarwar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",editedByType:null,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11804",title:"CRISPR Technology",subtitle:null,isOpenForSubmission:!0,hash:"4051570f538bd3315e051267180abe37",slug:null,bookSignature:"Dr. Yuan-Chuan Chen",coverURL:"https://cdn.intechopen.com/books/images_new/11804.jpg",editedByType:null,editors:[{id:"185559",title:"Dr.",name:"Yuan-Chuan",surname:"Chen",slug:"yuan-chuan-chen",fullName:"Yuan-Chuan Chen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11805",title:"Genome-Wide Association Studies - Trends and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"006916e730c66d3b84d3ec036f769e00",slug:null,bookSignature:"Prof. Rafael Trindade Trindade Maia, Dr. Magnólia De Araújo Campos and Dr. Marco Antônio Alves Schetino",coverURL:"https://cdn.intechopen.com/books/images_new/11805.jpg",editedByType:null,editors:[{id:"212393",title:"Prof.",name:"Rafael",surname:"Trindade Maia",slug:"rafael-trindade-maia",fullName:"Rafael Trindade Maia"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12174",title:"Genetic Polymorphisms",subtitle:null,isOpenForSubmission:!0,hash:"5922df051a2033c98d2edfb31dd84f8c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12174.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:23},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"959",title:"Solid-State Physics",slug:"semiconductor-solid-state-physics",parent:{id:"159",title:"Semiconductor",slug:"semiconductor"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:73,numberOfWosCitations:38,numberOfCrossrefCitations:21,numberOfDimensionsCitations:52,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"959",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6815",title:"Advanced Material and Device Applications with Germanium",subtitle:null,isOpenForSubmission:!1,hash:"cbf335cca2531b56745bac330be2a47c",slug:"advanced-material-and-device-applications-with-germanium",bookSignature:"Sanghyun Lee",coverURL:"https://cdn.intechopen.com/books/images_new/6815.jpg",editedByType:"Edited by",editors:[{id:"195331",title:"Prof.",name:"Sanghyun",middleName:null,surname:"Lee",slug:"sanghyun-lee",fullName:"Sanghyun Lee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6524",title:"Heterojunctions and Nanostructures",subtitle:null,isOpenForSubmission:!1,hash:"fefc5b353d60c5125f1783fc4208194b",slug:"heterojunctions-and-nanostructures",bookSignature:"Vasilios N. Stavrou",coverURL:"https://cdn.intechopen.com/books/images_new/6524.jpg",editedByType:"Edited by",editors:[{id:"99725",title:"Dr.",name:"Vasilios N.",middleName:null,surname:"Stavrou",slug:"vasilios-n.-stavrou",fullName:"Vasilios N. Stavrou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6100",title:"Nonmagnetic and Magnetic Quantum Dots",subtitle:null,isOpenForSubmission:!1,hash:"78673eed1e24eaecb8331eb0efcae2de",slug:"nonmagnetic-and-magnetic-quantum-dots",bookSignature:"Vasilios N. Stavrou",coverURL:"https://cdn.intechopen.com/books/images_new/6100.jpg",editedByType:"Edited by",editors:[{id:"99725",title:"Dr.",name:"Vasilios N.",middleName:null,surname:"Stavrou",slug:"vasilios-n.-stavrou",fullName:"Vasilios N. Stavrou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5699",title:"Thin Film Processes",subtitle:"Artifacts on Surface Phenomena and Technological Facets",isOpenForSubmission:!1,hash:"164177fc1e3eca542ebad5fd34a79d1e",slug:"thin-film-processes-artifacts-on-surface-phenomena-and-technological-facets",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/5699.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"61702",doi:"10.5772/intechopen.77997",title:"Germanium: Current and Novel Recovery Processes",slug:"germanium-current-and-novel-recovery-processes",totalDownloads:1540,totalCrossrefCites:6,totalDimensionsCites:10,abstract:"Germanium (Ge) is considered a critical element due to its many industrial applications; Ge is a metalloid used in solar cells, fiber optics, metallurgy, chemotherapy, and polymerization catalysis. The main sources of Ge are sulfides ores of Zn, Pb, and Cu, coal deposits, as well as by-products and residues from the processing of these ores and coals (e.g., smelting flue dust and coal fly ashes). Indeed, over 30% of global Ge consumed come from recycling processes. The recovery of Ge from sulfide ores is mostly based on hydrometallurgical processes followed by a number of mass transfer techniques to concentrate Ge (e.g., solvent extraction). However, environmental-friendly extraction methods of Ge from coal fly ashes and copper smelting flue dust have recently been proposed in order to reduce environmental impacts. In addition, novel processes based on absorption of Ge with ribbon grass have become an interesting option not only to produce Ge but also to boost soil decontamination and biogas production. This chapter presents a general description of Ge occurrence, associations, and chemistry as well as a review of the current and novel recovery processes of Ge. The main sources of Ge and its main industrial applications are also discussed.",book:{id:"6815",slug:"advanced-material-and-device-applications-with-germanium",title:"Advanced Material and Device Applications with Germanium",fullTitle:"Advanced Material and Device Applications with Germanium"},signatures:"Aixa González Ruiz, Patricia Córdoba Sola and Natalia Moreno\nPalmerola",authors:[{id:"242086",title:"Dr.",name:"Aixa",middleName:null,surname:"Gonzalez",slug:"aixa-gonzalez",fullName:"Aixa Gonzalez"},{id:"242282",title:"Dr.",name:"Natalia",middleName:null,surname:"Moreno",slug:"natalia-moreno",fullName:"Natalia Moreno"},{id:"253351",title:"Dr.",name:"Patricia",middleName:null,surname:"Cordoba Sola",slug:"patricia-cordoba-sola",fullName:"Patricia Cordoba Sola"}]},{id:"53949",doi:"10.5772/67215",title:"Layer-by-Layer Thin Films and Coatings Containing Metal Nanoparticles in Catalysis",slug:"layer-by-layer-thin-films-and-coatings-containing-metal-nanoparticles-in-catalysis",totalDownloads:2130,totalCrossrefCites:2,totalDimensionsCites:6,abstract:"The layer-by-layer (LbL) technique is one of the most promising ways of fabricating multilayer thin films and coatings with precisely controlled composition, thickness, and architecture on a nanometer scale. This chapter considers the multilayer thin films and coatings containing metal nanoparticles. The main attention was paid to LbL films containing metal nanoparticles assembled by convenient methods based on the different intermolecular interactions, such as hydrogen bonding, charge transfer interaction, molecular recognition, coordination interactions, as driving force for the multilayer buildup. Much attention has paid to the LbL films containing metal nanocomposites for multifunctional catalytic applications, in particular, photocatalysis, thermal catalysis, and electrocatalysis. The preparation protocol of LbL-assembled multilayer thin films containing metal nanoparticles (such as Au, Ag, Pd, Pt), metal oxides (Fe3O4), and sulfides (CdS) that are supported on the various surfaces of nanotubes of TiO2, Al2O3 membranes, graphene nanosheets, graphene oxide and further applications as catalysts with respect to photocatalytic, electrocatalytic performances is discussed. The systematization and analysis of literature data on synthesis, characterization, and application of multilayer thin films and coatings containing metal nanoparticles on the diverse supports may open new directions and perspectives in this unique and exciting subject.",book:{id:"5699",slug:"thin-film-processes-artifacts-on-surface-phenomena-and-technological-facets",title:"Thin Film Processes",fullTitle:"Thin Film Processes - Artifacts on Surface Phenomena and Technological Facets"},signatures:"Sarkyt Kudaibergenov, Gulnur Tatykhanova, Nurlan Bakranov and\nRosa Tursunova",authors:[{id:"193462",title:"Prof.",name:"Sarkyt",middleName:null,surname:"Kudaibergenov",slug:"sarkyt-kudaibergenov",fullName:"Sarkyt Kudaibergenov"}]},{id:"56882",doi:"10.5772/intechopen.70669",title:"Mn-Doped ZnSe Quantum Dots as Fluorimetric Mercury Sensor",slug:"mn-doped-znse-quantum-dots-as-fluorimetric-mercury-sensor",totalDownloads:1205,totalCrossrefCites:3,totalDimensionsCites:5,abstract:"Quantum dots (QDs), because of their exciting optical properties, have been explored as alternative fluorescent sensors to conventional organic fluorophores which are routinely employed for the detection of various analytes via fluorometry. QD probes can detect toxic metal ions, anions, organic molecules with good selectivity and sensitivity. This chapter investigates the synthesis of Mn-doped ZnSe QDs using nucleation-doping strategy. The as-synthesized QDs were characterized by various analytical tools such as ultraviolet-visible (UV-vis) absorption, photoluminescence (PL) spectroscopy, X-ray diffractometry (XRD) and transmission electron microscopy (TEM). It was found that Mn doping of QDs significantly increases the PL intensity. The PL of the resulting QDs was examined in the presence of different metal ions to check its selective response. Among the various metal ions, Hg2+ exhibits a drastic quenching of the QD’s emission intensity. A Stern-Volmer plot of [Hg2+] sensing using the as-synthesized QDs showed linearity in the range of 0–30 × 10−6 ML−1 with the regression coefficient R2 = 0.99. The detection limit was found to be 6.63 × 10−7 ML−1. Thus, the present Mn-doped ZnSe QDs represent a simple, non-toxic fluorescent probe for the qualitative and quantitative detection of mercury ions in aqueous samples.",book:{id:"6100",slug:"nonmagnetic-and-magnetic-quantum-dots",title:"Nonmagnetic and Magnetic Quantum Dots",fullTitle:"Nonmagnetic and Magnetic Quantum Dots"},signatures:"Sundararajan Parani, Ncediwe Tsolekile, Bambesiwe M.M. May,\nKannaiyan Pandian and Oluwatobi S. Oluwafemi",authors:[{id:"99092",title:"Prof.",name:"Samuel Oluwatobi",middleName:null,surname:"Oluwafemi",slug:"samuel-oluwatobi-oluwafemi",fullName:"Samuel Oluwatobi Oluwafemi"},{id:"188914",title:"Dr.",name:"K",middleName:null,surname:"Pandian",slug:"k-pandian",fullName:"K Pandian"},{id:"208652",title:"Dr.",name:"Sundararajan",middleName:null,surname:"Parani",slug:"sundararajan-parani",fullName:"Sundararajan Parani"},{id:"208653",title:"Dr.",name:"Ncediwe",middleName:null,surname:"Tsolekile",slug:"ncediwe-tsolekile",fullName:"Ncediwe Tsolekile"},{id:"208654",title:"Ms.",name:"Bambesiwe",middleName:null,surname:"May",slug:"bambesiwe-may",fullName:"Bambesiwe May"}]},{id:"53983",doi:"10.5772/67315",title:"Efficient Optimization of the Optoelectronic Performance in Chemically Deposited Thin Films",slug:"efficient-optimization-of-the-optoelectronic-performance-in-chemically-deposited-thin-films",totalDownloads:1254,totalCrossrefCites:0,totalDimensionsCites:3,abstract:"Chemical deposition methodology is a well-understood and highly documented category of deposition techniques. In recent years, chemical bath deposition (CBD) and chemical vapor deposition (CVD) have garnered considerable attention as an effective alternative to other deposition methods. The applicability of CVD and CBD for industrial-sized operations is perhaps the most attractive aspect, in that thin-film deposition costs inversely scale with the processing batch size without loss of desirable optoelectronic properties in the materials. A downside of the method is that the optoelectronic characteristics of these films are highly susceptible to spurious deposition growth mechanisms. For example, increasing the temperature of the chemical deposition bath can shift the deposition mechanisms from ion-by-ion (two dimensional) precipitation to bulk solution cluster-by-cluster (three dimensional) formation which then deposit. This drastically changes the structural, optical, and electrical characteristics of CBD-deposited thin films. A similar phenomenon is observed in CVD deposited materials. Thus, it is of great interest to study the coupling between the deposition parameters and subsequent effects on film performance. Such studies have been conducted to elucidate the correlation between growth mechanisms and film performance. Here, we present a review of the current literature demonstrating that simple changes can be made in processing conditions to optimize the characteristics of these films for optoelectronic applications.",book:{id:"5699",slug:"thin-film-processes-artifacts-on-surface-phenomena-and-technological-facets",title:"Thin Film Processes",fullTitle:"Thin Film Processes - Artifacts on Surface Phenomena and Technological Facets"},signatures:"Andre Slonopas, Nibir K. Dhar, Herbert Ryan, Jerome P. Ferrance,\nPamela Norris and Ashok K. Sood",authors:[{id:"192507",title:"Dr.",name:"Andre",middleName:null,surname:"Slonopas",slug:"andre-slonopas",fullName:"Andre Slonopas"}]},{id:"56979",doi:"10.5772/intechopen.70785",title:"Quantum Dots-Based Nano-Coatings for Inhibition of Microbial Biofilms: A Mini Review",slug:"quantum-dots-based-nano-coatings-for-inhibition-of-microbial-biofilms-a-mini-review",totalDownloads:1143,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Infection of implants by microbial biofilm is chiefly caused by Staphylococci, Pseudomonas and Candida species. The growth of microbes by forming biofilms offers them protection from antibiotics, drugs and host defense mechanisms. The eradication of biofilms from implants and medical devices is difficult because of the protection by the biofilm forming pathogenic microbes. Hence, researches are focused on development of antibiofilm materials, which are basically constituted of antimicrobial substances or antimicrobial coatings. Nanomaterial-based coatings offer a promising solution in this regard. Quantum dots (QDs) are the group of semiconductor nanoparticles with high photoluminescent properties compared to conventional organic fluorophores. Thus, drug-conjugated QDs can be a promising alternative for biofilm treatment, and these can serve as excellent alternatives for the mitigation of recalcitrant biomaterial-associated infections caused by resistant strains. Furthermore, their use as antibiofilm coating would avoid the dispersion of antimicrobial agents in the surrounding cells and tissues, thereby minimizing the risks of developing microbial resistivity.",book:{id:"6100",slug:"nonmagnetic-and-magnetic-quantum-dots",title:"Nonmagnetic and Magnetic Quantum Dots",fullTitle:"Nonmagnetic and Magnetic Quantum Dots"},signatures:"Eepsita Priyadarshini, Kamla Rawat and Himadri Bihari Bohidar",authors:[{id:"216222",title:"Dr.",name:"Kamla",middleName:null,surname:"Rawat",slug:"kamla-rawat",fullName:"Kamla Rawat"},{id:"216228",title:"Ms.",name:"Eepsita",middleName:null,surname:"Priyadarshini",slug:"eepsita-priyadarshini",fullName:"Eepsita Priyadarshini"},{id:"216229",title:"Prof.",name:"H. B.",middleName:null,surname:"Bohidar",slug:"h.-b.-bohidar",fullName:"H. B. Bohidar"}]}],mostDownloadedChaptersLast30Days:[{id:"59569",title:"Enhancement of Photosynthetic Productivity by Quantum Dots Application",slug:"enhancement-of-photosynthetic-productivity-by-quantum-dots-application",totalDownloads:1381,totalCrossrefCites:0,totalDimensionsCites:3,abstract:"The challenge of climate change promotes use of carbon neutral fuels. Biofuels are made via fixing carbon dioxide via photosynthesis which is inefficient. Light trapping pigments use restricted light wavelengths. A study using the microalga Botryococcus braunii (which produces bio-oil), the bacterium Rhodobacter sphaeroides (which produces hydrogen), and the cyanobacterium Arthrospira platensis (for bulk biomass) showed that photosynthetic productivity was increased by up to 2.5-fold by upconverting unused wavelengths of sunlight via using quantum dots. For large scale commercial energy processes, a 100-fold cost reduction was calculated as the break-even point for adoption of classical QD technology into large scale photobioreactors (PBRs). As a potential alternative, zinc sulfide nanoparticles (NPs) were made using waste H2S derived from another process that precipitates metals from mine wastewaters. Biogenic ZnS NPs behaved identically to ZnS quantum dots with absorbance and emission maxima of 290 nm (UVB, which is mostly absorbed by the atmosphere) and 410 nm, respectively; the optimal wavelength for chlorophyll a is 430 nm. By using a low concentration of citrate (10 mM) during ZnS synthesis, the excitation wavelength was redshifted to 315 nm (into the UVA, 85% of which reaches the earth’s surface) with an emission peak of 425 nm, i.e., appropriate for photosynthesis. The potential for use in large scale photobioreactors is discussed in the light of current PBR designs, with respect to the need for durable UV-transmitting materials in appropriate QD delivery systems.",book:{id:"6100",slug:"nonmagnetic-and-magnetic-quantum-dots",title:"Nonmagnetic and Magnetic Quantum Dots",fullTitle:"Nonmagnetic and Magnetic Quantum Dots"},signatures:"Angela Janet Murray, John Love, Mark D. Redwood, Rafael L.\nOrozco, Richard K. Tennant, Frankie Woodhall, Alex Goodridge and\nLynne Elaine Macaskie",authors:[{id:"68809",title:"Ms.",name:"Angela",middleName:null,surname:"Murray",slug:"angela-murray",fullName:"Angela Murray"},{id:"228059",title:"Prof.",name:"Lynne",middleName:null,surname:"Macaskie",slug:"lynne-macaskie",fullName:"Lynne Macaskie"},{id:"240796",title:"Prof.",name:"John",middleName:null,surname:"Love",slug:"john-love",fullName:"John Love"},{id:"240797",title:"Dr.",name:"Mark",middleName:null,surname:"Redwood",slug:"mark-redwood",fullName:"Mark Redwood"},{id:"240798",title:"Dr.",name:"Rafael",middleName:null,surname:"Orozco",slug:"rafael-orozco",fullName:"Rafael Orozco"},{id:"240799",title:"Dr.",name:"Richard",middleName:null,surname:"Tennant",slug:"richard-tennant",fullName:"Richard Tennant"},{id:"240800",title:"Mr.",name:"Frankie",middleName:null,surname:"Woodhall",slug:"frankie-woodhall",fullName:"Frankie Woodhall"},{id:"240801",title:"Mr.",name:"Alex",middleName:null,surname:"Goodridge",slug:"alex-goodridge",fullName:"Alex Goodridge"}]},{id:"54361",title:"Introductory Chapter: The Prominence of Thin Film Science in Technological Scale",slug:"introductory-chapter-the-prominence-of-thin-film-science-in-technological-scale",totalDownloads:2644,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"5699",slug:"thin-film-processes-artifacts-on-surface-phenomena-and-technological-facets",title:"Thin Film Processes",fullTitle:"Thin Film Processes - Artifacts on Surface Phenomena and Technological Facets"},signatures:"Jagannathan Thirumalai",authors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}]},{id:"56933",title:"Quantum Dots and Fluorescent and Magnetic Nanocomposites: Recent Investigations and Applications in Biology and Medicine",slug:"quantum-dots-and-fluorescent-and-magnetic-nanocomposites-recent-investigations-and-applications-in-b",totalDownloads:1023,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"This chapter presents a comprehensive and updated review on the ongoing research area of nanostructures with a focus on quantum dots (QDs), fluorescent and magnetic nanocomposites, and their applications in biological and medical field. The study includes the essential characteristics of QDs and fluorescent and magnetic nanocomposites, their structure, properties, and methods that are utilized for their characterization. Some interesting qualities of CdSe/ZnS QDs with reference to the research of the microorganism are emphasized. The bioimaging applications of QDs and fluorescent and magnetic nanocomposites and their role as nanoprobes and as contrast enhancing agents are discussed. So, in this work, an overview is exhibited including the case of the most commonly studied QD-based hybrid NPs, which are called MQDs, such as a dual “two-in-one” fluorescent-magnetic nanocomposite materials, that blend both fluorescent and magnetic properties in a unique concept and show the feasibility for clinical diagnostics, drug delivery, and therapy.",book:{id:"6100",slug:"nonmagnetic-and-magnetic-quantum-dots",title:"Nonmagnetic and Magnetic Quantum Dots",fullTitle:"Nonmagnetic and Magnetic Quantum Dots"},signatures:"Anca Armăşelu",authors:[{id:"189080",title:"Dr.",name:"Anca",middleName:null,surname:"Armăşelu",slug:"anca-armaselu",fullName:"Anca Armăşelu"}]},{id:"63503",title:"Introductory Chapter: Advanced Material and Device Applications with Germanium",slug:"introductory-chapter-advanced-material-and-device-applications-with-germanium",totalDownloads:842,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"6815",slug:"advanced-material-and-device-applications-with-germanium",title:"Advanced Material and Device Applications with Germanium",fullTitle:"Advanced Material and Device Applications with Germanium"},signatures:"Sanghyun Lee",authors:[{id:"195331",title:"Prof.",name:"Sanghyun",middleName:null,surname:"Lee",slug:"sanghyun-lee",fullName:"Sanghyun Lee"}]},{id:"53585",title:"Modified Spin Coating Method for Coating and Fabricating Ferroelectric Thin Films as Sensors and Solar Cells",slug:"modified-spin-coating-method-for-coating-and-fabricating-ferroelectric-thin-films-as-sensors-and-sol",totalDownloads:1715,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Spin coating process with a modified spin coater is performed well, especially the second generation of modified spin coater, which has a maximum value of 18,000 rpm, is able for manufacturing/coating photonic crystal‐based ferroelectric thin films that require a high angular velocity (rpm). Ferroelectric thin films that use both 3000 and 6000 rpm have given good results in energy gap, electrical conductivity, etc. In addition, the modified spin coater has also produced several applications such as sensors in the device of blood sugar level noninvasively, sensors in the automatic drying system, sensors in the robotic system, and photovoltaic cells in the system of solar cells/panels which are being developed at present. These applications used ferroelectric material such as barium strontium titanate (BST), lithium niobate (LiNbO3), cuprous oxide (CuO), and lithium tantalate (LiTaO3).",book:{id:"5699",slug:"thin-film-processes-artifacts-on-surface-phenomena-and-technological-facets",title:"Thin Film Processes",fullTitle:"Thin Film Processes - Artifacts on Surface Phenomena and Technological Facets"},signatures:"Irzaman, Heriyanto Syafutra, Ridwan Siskandar, Aminullah and\nHusin Alatas",authors:[{id:"193016",title:"Dr.",name:"Husein",middleName:null,surname:"Irzaman",slug:"husein-irzaman",fullName:"Husein Irzaman"}]}],onlineFirstChaptersFilter:{topicId:"959",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:0,paginationItems:[]},overviewPageOFChapters:{paginationCount:0,paginationItems:[]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 8th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:39,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Bioinformatics and Medical Informatics",value:7,count:13,group:"subseries"}],publishedBooks:{paginationCount:0,paginationItems:[]},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"86",type:"subseries",title:"Business and Management",keywords:"Demographic shifts, Innovation, Technology, Next-gen leaders, Worldwide environmental issues and clean technology, Uncertainty and political risks, Radical adjacency, Emergence of new business ecosystem type, Emergence of different leader and leader values types, Universal connector, Elastic enterprise, Business platform, Supply chain complexity",scope:"