\r\n\tThere are a variety of approaches to reversing biodiversity loss, ranging from economic, to ecological and ethical. The utilitarian approach to conservation, bolstered by the concept of ecosystem services, can be utilized to improve the conservation case by supplementing the burgeoning biodiversity rhetoric. To address this issue, a pluralistic approach to biodiversity is required for conservation and sustainability.
",isbn:"978-1-80356-339-8",printIsbn:"978-1-80356-338-1",pdfIsbn:"978-1-80356-340-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"ab014f8ed1669757335225786833e9a9",bookSignature:"Dr. Gopal Shukla, Dr. Jahangeer Bhat and Dr. Sumit Chakravarty",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11460.jpg",keywords:"Ecosystem Services, Intrinsic Value, Global Trends in Biodiversity Loss, Convention on Biological Diversity, Utilitarian Value, Biodiversity Conservation, Perception, In Situ and Ex Situ Conservation, Nature Conservation, Sustainable Development Goals, Drivers of Degradation, Prioritizing Biodiversity",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 17th 2022",dateEndSecondStepPublish:"April 22nd 2022",dateEndThirdStepPublish:"June 21st 2022",dateEndFourthStepPublish:"September 9th 2022",dateEndFifthStepPublish:"November 8th 2022",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Gopal Shukla, prior to becoming an assistant professor, has worked under NAIP (National Agricultural Innovation Project), NICRA ( National Innovations on Climate Resilient Agriculture), and SERB (Science and Engineering Research Board) projects. The focus of his research and development work is forest conservation. He has authored 75 research papers, 10 book chapters and has edited 5 books.",coeditorOneBiosketch:"Dr. Jahangeer is a Guest Associate Editor in Frontiers in the Environmental Science journal and is the first researcher to report the first time growing of Acacia dealbata Link. (Silver Wattle), an invasive species in the high altitudes of the Himalayas. He has 11 years of research and 8 years of teaching experience with a publication record of more than 60, including research articles, review papers, conference papers, and books of national and international repute.",coeditorTwoBiosketch:"Dr. Chakravarty, Ph. D., has a wide experience in forestry training, research, and development. He is currently working as a Professor in Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, India. He has conducted research on several aspects of forestry, agroforestry, medicinal plants, and climate change. He has trained many students in these fields. The focus of his research and development work is on forest ecology and conservation.",coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"101105",title:"Dr.",name:"Gopal",middleName:null,surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla",profilePictureURL:"https://mts.intechopen.com/storage/users/101105/images/system/101105.jpg",biography:"Dr. Gopal Shukla, Ph.D., is currently an assistant professor of Forestry in Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, India. He holds an MSc and Ph.D. in Forestry from Uttar Banga Krishi Viswavidyalaya. Before joining the university, he worked under NAIP (National Agricultural Innovation Project), NICRA ( National Innovations on Climate Resilient Agriculture), and SERB (Science and Engineering Research Board) projects. The focus of his research and development work is forest ecology and conservation.",institutionString:"North Bengal Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"North Bengal Agricultural University",institutionURL:null,country:{name:"India"}}}],coeditorOne:{id:"329967",title:"Dr.",name:"Jahangeer",middleName:null,surname:"Bhat",slug:"jahangeer-bhat",fullName:"Jahangeer Bhat",profilePictureURL:"https://mts.intechopen.com/storage/users/329967/images/system/329967.png",biography:"Jahangeer A. Bhat, Ph.D., is a former head of the Department of Forestry, College of Agriculture, Fisheries and Forestry, Fiji National University, Republic of Fiji Islands. Dr. Jahangeer has worked as a counsellor, mentor, and coordinator for forestry academic programmes. He has been instrumental in developing HE and TVET streams of forestry and allied programmes and worked closely in accreditation with the Fiji Higher Education Commission and forestry stakeholders. Before joining Fiji National University, he worked for HNB Garhwal University, Srinagar, India, and has 11 years of research and 8 years of teaching experience with a publication record of more than 60, including research articles, review papers, conference papers, and books of national and international repute. Dr. Jahangeer reviews research articles for several scientific journals and has handled research projects in his capacity as Principal Investigator and Co-Principal Investigator. His major interests lie in emerging issues in forestry including conservation of biodiversity, traditional knowledge of plants, and sustainable management of forest resources. His focus of research is vegetation ecology, ethnobotany, and evaluation of ecosystem services, forest plant biodiversity, climate change, and socio-cultural issues in forestry. Dr. Jahangeer is currently working at the College of Horticulture and Forestry, Rani Lakshmi Bai Central Agricultural University, Jhansi, India.",institutionString:"Central Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Central Agricultural University",institutionURL:null,country:{name:"India"}}},coeditorTwo:{id:"94999",title:"Dr.",name:"Sumit",middleName:null,surname:"Chakravarty",slug:"sumit-chakravarty",fullName:"Sumit Chakravarty",profilePictureURL:"https://mts.intechopen.com/storage/users/94999/images/system/94999.jpg",biography:"Dr. Sumit Chakravarty, Ph.D., has wide experience in forestry training, research, and development. He is currently a professor at Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, India. He holds an MSc in Forestry and a Ph.D. in Agronomy from Punjab Agricultural University, Ludhiana. He has conducted research on several aspects of forestry, agroforestry, medicinal plants, and climate change. He has trained many students in these fields. The focus of his research and development work is on forest ecology and conservation.",institutionString:"North Bengal Agricultural University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"North Bengal Agricultural University",institutionURL:null,country:{name:"India"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429339",firstName:"Jelena",lastName:"Vrdoljak",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429339/images/20012_n.jpg",email:"jelena.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5539",title:"Forest Ecology and Conservation",subtitle:null,isOpenForSubmission:!1,hash:"6bd160f6d1da73fc253dfe6c4df7c095",slug:"forest-ecology-and-conservation",bookSignature:"Sumit Chakravarty and Gopal Shukla",coverURL:"https://cdn.intechopen.com/books/images_new/5539.jpg",editedByType:"Edited by",editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6264",title:"Forest Biomass and Carbon",subtitle:null,isOpenForSubmission:!1,hash:"964f96c9209ff2a3eaf3c5c6a54d81c3",slug:"forest-biomass-and-carbon",bookSignature:"Gopal Shukla and Sumit Chakravarty",coverURL:"https://cdn.intechopen.com/books/images_new/6264.jpg",editedByType:"Edited by",editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9841",title:"Agroforestry",subtitle:"Small Landholder’s Tool for Climate Change Resiliency and Mitigation",isOpenForSubmission:!1,hash:"ec5444e2a12dcd63ab9e7246d93a63ab",slug:"agroforestry-small-landholder-s-tool-for-climate-change-resiliency-and-mitigation",bookSignature:"Gopal Shukla, Sumit Chakravarty, Pankaj Panwar and Jahangeer A. Bhat",coverURL:"https://cdn.intechopen.com/books/images_new/9841.jpg",editedByType:"Edited by",editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"50221",title:"New and Improved Tissue Engineering Techniques: Production of Exogenous Material-Free Stroma by the Self-Assembly Technique",doi:"10.5772/62588",slug:"new-and-improved-tissue-engineering-techniques-production-of-exogenous-material-free-stroma-by-the-s",body:'\nAdvanced glycation end-products | \n|
Arginine | \n|
Adipose tissue-derived stem cells | \n|
Endothelial cells | \n|
Extracellular matrix | \n|
Hyaluronic acid | \n|
Human microvascular endothelial cell | \n|
Human umbilical vein endothelial cell | \n|
L–arginine | \n|
Lysyl oxidase enzymes | \n|
Lysyl oxidase homologues | \n|
Lysophosphatidic acid | \n|
Matrix metalloproteinases | \n|
Mesenchymal stem/stromal cells | \n|
Neuron glial-2 | \n|
Poly-lactic-co-glycolic acid | \n|
Adipose stromal vascular fraction | \n|
Transforming growth factor-beta | \n|
Tissue inhibitors of metalloproteinases | \n|
Vascular endothelial growth factor | \n|
Two-dimensional | \n|
Three-dimensional | \n
The extracellular matrix (ECM) is present within all tissues and organs. It constitutes the noncellular microenvironment around the cells that plays an important role in modulating their behavior and functions [1]. This elaborated milieu is very dynamic and extremely adaptable [2–4]. ECM is composed of several components that include proteoglycans, as well as collagen proteins and noncollagenous glycoproteins. Each component has several subcategories of molecules that influence the ECM physical and biochemical properties [5].
\nThe homeostasis of epithelial tissues depends on a dynamic interaction of the stroma components, such as fibroblasts, adipocytes, and nonactivated immune players [6]. In fact, fibroblasts were reported to secrete and organize type I and type III collagens, elastin, fibronectin, tenascin, and a repertoire of proteoglycans (hyaluronic acid (HA) and decorin), that maintains interstitial ECM integrity [7]. The ECM is constantly remodeled to allow the healthy tissue to resist to a wide range of tensile pressures [8, 9]. This remodeling occurs through the synthesis of elastin, which originates secreted tropoelastin, the precursor of elastin, that assembles into fibers and becomes cross-linked on lysine residues by members of the lysyl oxidase (LOX) enzymes and lysyl oxidase homologues (LOXL) molecules [10]. LOX and LOXL catalyze the first step in the formation of collagens and elastins, a very conserved process that plays an important role in cell growth, chemotaxis, or sprouting of new blood vessels [11, 12]. On the one hand, coordinated secretion of matrix metalloproteinases (MMPs) by fibroblasts mediates ECM remodeling [13]. On the other hand, the mesh networks are counterbalanced by tissue inhibitors of metalloproteinases (TIMPs) [14] or by other enzymes such as LOX molecules and transglutaminases that stiffen the ECM [10].
\nAdult mesenchymal stem/stromal cells (MSCs) are found in all postnatal organs and tissues, and they play important functions in tissue injury repair and general homeostasis [15]. These cells are one of the principal adult stem cells and the most promising tool for regenerative medicine because of their sustained proliferative capacity and their multipotent differentiation potential [15–17].
\nFibroblasts are nonterminally differentiated mesenchymal cells derived from the embryonic mesoderm [18]. They are found in the connective tissue, a tissue that supports the whole body. Fibroblasts are spread in the ECM containing fibrous proteins and gel-like substances. In fact, fibroblasts produce the ECM proteins, such as fibrous collagen and elastin, as well as adhesive proteins such as laminin and fibronectin. Fibroblasts are also the major source of glycosaminoglycans (hyaluronan and glycoproteins) [19]. Interconnecting meshworks of extracellular protein fibers and connector proteins provide the architectural tissue structure. Moreover, this milieu forms the connections needed for cellular migration of fibroblasts, immune cells, and endothelial cells (ECs) during angiogenesis [19].
\nMost tissues are composed of a simple or multiple layers of epithelial cells that exhibit an apical–basal polarization. The basal part is in contact with the basement membrane, whereas the apical side is oriented toward the fluid-filled lumen [20]. Fibroblasts form a basement membrane, composed of a layer of basal lamina and a layer of reticular lamina. This basement membrane serves essentially as a structural scaffold that maintains the dynamics of a three-dimensional (3D) engineered tissue. It is also critical for tissue regeneration in wound healing and acts as a cell barrier. The basement membrane acts as a cell barrier by segregating epithelial cells from endothelial cells (ECs), thus preventing tumor invasion or metastasis.
\nMyofibroblasts, or activated fibroblasts, are contractile, resistant to apoptosis and have an upregulated rate of matrix deposition. They also express different cytokine and chemokine receptors that enable fiber regulation and wound contraction at injury sites [21–24]. In this sense, activated fibroblasts not only favor wound healing, but can also cause injuries when their activation is uncontrolled, producing a pathological fibrotic response [25, 26]. The precursor of myofibroblast is not precisely known, but many cells can differentiate into myofibroblasts through different signaling pathways or gene regulation. Some of these precursors include epithelial cells, ECs, pericytes, multipotent monocytes, and fibroblasts.
\nFat is an abundant and accessible source of stem cells. Adipose tissue–derived stem cells (ASCs) include preadipocytes, and a subpopulation of stromal cells able to differentiate into multilineages, including neuronal cells, chondrocytes, and osteoblasts [27, 28]. Moreover, these MSCs are able to secrete cytokines and growth factors promoting regenerative processes because they can influence cell recruitment, proliferation rates, or inhibit apoptosis [29, 30]. ASCs extracted from liposuctions can be expanded in culture and used as building blocks for tissue engineering. Both connective and adipose tissues were engineered in vitro using ASCs [31–33]. Both allogeneic and xenogeneic ASCs can be transplanted in patients regardless of their immunocompatibility and without the need of immunosuppression therapy, making them an unlimited source for regenerative medicine applications [34].
\nAs medical treatments and expanded lifespan expectancies in both males and females have improved, the number of individuals waiting for organ transplants or blood vessel bypasses is constantly increasing but the availability of organs does not often match the demand. To circumvent this shortage in organ and tissue supplies, many efforts in cell culture methods were deployed to engineer tissues that could be used as an alternative therapeutical option.
\nThe self-assembly technique is based on the ability of MSCs to secrete and organize their own ECM to produce sheets. This tissue engineering method allows the production of autologous living tissues, free of exogenous biomaterials [35–37]. The self-assembly technique has exploited the inherent characteristics of MSCs to produce ECM. For instance, it was well documented that ascorbic acid, a vitamin C derivate, promotes collagen protein synthesis and deposition of sulfated glycosaminoglycans in human skin substitutes [38]. Once fibroblasts supplemented with ascorbic acid are cultured for 21–35 days, they form sheets of matrix where stromal cells are embedded within [35]. These sheets can be peeled from the culture dish and superimposed. The superimposed layers are maintained for an additional week for further cell-matrix reorganization and layer fusion (Figure 1A). Holes can be made in the multilayer dermal equivalent and hair follicles can be added to mimic the presence of native skin component. An additional culture time is required before seeding keratinocytes. Thereafter, the skin equivalent is maintained for 21 days at an air–liquid interface to induce the cornification of the epidermis [36, 39].
\nOne of the great breakthroughs in medicine was achieved by engineering human skin substitutes for grafting purposes. Self-assembled skin substitutes were generated by extracting the patient’s own cells, thus avoiding immunological incompatibility problems upon grafting. These skin substitutes were characterized and showed a fully differentiated epidermis, structural and morphological resemblance to native human skin. Moreover, these in vitro engineered tissues were able to deliver cytokines, chemokines, and growth factors at the grafted site, improving the wound closure [36, 40–43]. Because of all these characteristics, self-assembled human skin is clinically used for wound healing and burn treatments [44, 45]. Self-assembled skin substitutes possess a near-to-native architecture and maintain their cell growth potential and matrix deposition. Therefore, these equivalents are free of exogenous material, cytotoxicity, and have clinically reduced morbidity in burnt patients (reviewed in Refs. [46, 47].
\nOver the years, self-assembled skin substitutes were also produced from extracted cells of patients having psoriasis [48]. The reconstructed tissues from psoriatic donors represent an ideal model to study one of the most common human skin diseases. In fact, this model outlines the excessive growth and aberrant differentiation of keratinocytes. It offers a reliable in vitro mean to measure the efficacy of appropriate treatments, perform tests directly on human primary cells, and avoid animal use [48–52]. Furthermore, self-assembled skin substitutes were used to extensively characterize cellular and molecular players involved in the pathogenesis of hypertrophic scars and scleroderma [53–55]. More recently, a skin substitute derived from patients diagnosed with amyotrophic lateral sclerosis (ALS) was similarly generated. As one of the early perturbations in ALS patients is skin alterations that often precede the neurological symptoms, this human skin model is designed to better identify disease-specific biomarkers and early diagnostic tools to monitor disease progression [56].
\nThe self-assembly technique was customized to engineer human blood vessel that displayed excellent physiological and mechanical properties without the need for any exogenous scaffold [35, 57]. Blood vessels are constituted of a functional endothelium seeded onto an internal membrane of human skin fibroblasts. In order to mimic the shape of a blood vessel, a smooth muscle cell (SMC) sheet is first rolled, followed by the fibroblast sheet around a cylindrical support, and cultured until fusion (Figure 2A). Analyses of these in vitro engineered vessels confirmed the presence of numerous ECM proteins (collagen types I, III, IV, laminin, fibronectin, and chondroitin sulfates) and a functional endothelium [35, 58, 59].
\n\nProgress in developing self-assembled valves was reported over the years [60, 61]. Valve leaflets made of self-assembled tissue sheets can organize into a characteristic three-layer structure featuring appropriate dynamic fluidics [60]. This tissue remains to be grafted into living recipients in order to assess in vivo survival and behavior of the transplanted valve. Nevertheless, this stentless bioprosthetic offers a great alternative to artificial valves for cardiovascular surgeries [60, 61].
\nCorneal tissue engineering was developed in an attempt to cure corneal opacity by replacing the damaged area with a clear substitute. Proulx
Adipose cell sheets can be generated in vitro using the self-assembly technique supplemented with ascorbic acid and adipogenic differentiation factors. These sheets share many adipocyte features [64]. ASCs have the ability to respond to media composition and motion allowing them to be an optimal cell type for tissue engineering. Using the self-assembly technique, fully autologous vascular tissues were also engineered from ASCs in vitro, with an organized structure and matrix components [65]. Other studies showed that ASCs could be used to bioengineer near-to-native skin [31] and bladder mucosa equivalents [66] in vitro.
\nIn vitro reconstruction of a bladder substitute using the self-assembly technique was first documented by Magnan
The self-assembly technique has great therapeutic potential because it uses autologous cells that produce their own ECM, thus reducing allogeneic graft rejection. Although the self-assembly approach is suitable for clinical applications, the time required for tissue reconstruction and the costs are important drawbacks hindering its wider use. Hence, many strategies to reduce tissue reconstruction time and the cost associated with cell culture were investigated. Efforts to stimulate collagen deposition and matrix reorganization are detailed in this section.
\nMechanical stimuli induce major biological modifications in the organization of the cells cytoskeleton and their ECM composition [71, 72]. For instance, the mechanical stimulation of blood flow induces the realignment of collagen fibers and strengthening of the tissue [73, 74]. At the molecular level, these changes are triggered by the activation of mechanoreceptors such as the ones containing the Arginyl-Glycyl-Aspartic acid attachment site that bind to integrins [75]. This mechanical stimulation often results in activation of extracellular signal–regulated kinase, ERK, and the c-Jun N-terminal kinase, JNK, signaling pathways that will induce cellular responses in order to adapt to new environments [75]. In some studies G-proteins seem to be also involved in the molecular signaling [76]. In response to mechanical stimuli, cells can also secrete growth factors such as transforming growth factor-beta (TGF-β) [77] that will exert paracrine or autocrine functions. Furthermore, cells can secrete and/or activate latent MMPs and other proteases [78, 79], which affect the balance between synthesis of ECM elements and their degradation. Accordingly, fibrosis was observed in mechanically overstimulated settings emphasizing that increased collagen deposition rates need to be controlled in order to remain reversible [80].
\nThe quality of engineered vascular tissues can be improved in a bioreactor by applying the appropriate laminar/cyclic flow. Other modification to the self-assembled blood vessel generation, such as co-seeding fibroblasts and SMCs, each at their respective half of the same sheet, before rolling around a cylindrical support [81] (Figure 2B) was reported. The fully autologous vascular substitutes possess high-grade mechanical strength to sustain engraftment and are readily available when needed without any immunosuppressive treatments [81–83].
\nTissue functions can be improved using microstructured surfaces that control the interactions between cells and the ECM. With the use of a specific surface topography on an elastomeric material, it was observed that the first cell layer followed the same patterns and orientation as the material. Subsequently, this orientation influenced the second cell layer to follow a physiologically similar alignment mimicking the structure of the native tissue. Furthermore, secreted ECM followed cell orientation in every layer, resulting in very well-structured self-assembled sheets for cornea, vascular, and dermis. A micropatterned surface on which cells are seeded have the capacity to generate multiple layers, in which cells and the ECM spontaneously organize in patterns consistent with the original tissue [84].
\nIn order to reduce culture time required for tissue production, human ASCs were used to replace dermal fibroblasts in some self-assembled tissues. Self-assembled stromas generated with dermal fibroblast or ASCs can be subjected to static or dynamic conditions [85], as they can be mechanically stimulated on a 3D shaker platform. Dynamic culture conditions increased (1.5- to 2-fold) the thickness of tissues derived from ASCs compared to static conditions. Moreover, culture time could be reduced in dynamic conditions. Yet, mechanical properties of these tissues were not measured.
\nAlthough ascorbic acid is an essential element that contributes to collagen deposition, an increase in its concentration does not lead to enhanced collagen deposition. Ascorbic acid is an enzymatic cofactor of prolyl- and lysyl-hydroxylase [86], and its action reaches a plateau when these enzymes achieve their peak of activity. Independently of its role as a cofactor, ascorbic acid is responsible for a certain level of collagen secretion in fibroblast cultures, until it reaches its biological limits [87], albeit it can be toxic for fibroblasts if present in high dose [23].
\nChemical inhibitors of MMP could also increase ECM production by restricting the extent of protease activity. Among them, galardin was used to produce self-assembled tissues and it significantly increased the thickness of treated tissues [54]. Currently, the cost associated with the use of galardin is too expensive to be a promising solution.
\n\nl-arginine (L-Arg) is converted in ornithine followed by glutamine semialdehyde and finally proline, an important amino acid that is metabolized during collagen synthesis. L-Arg supplementation to culture media was evaluated, when the stroma was produced using the self-assembly method. Although an increase in collagen synthesis and secretion (20% more collagen type-I) was observed, collagen deposition remained unchanged when compared to controls [88]. A plausible explanation would be that enzymes involved in collagen maturation were not sufficient to process the surplus of this amino acid in vitro.
\nBiological stimulation of ECM deposition in the field of tissue engineering is a challenge. This complexity is due to pleiotropic roles of multiple bioactive agents and their subtle effects, which could appear after a long period of time, for instance after tissue implantation. In contrary to monolayer culture studies in which experiments rarely exceed days, tissue engineering methods can be carried out for months, especially if it involves in vivo implantation. Many proteins, peptides, and lipids can be used to stimulate collagen synthesis and deposition. Most of them are involved in fibrosis and need to be carefully handled to avoid production of pathological-like tissue.
\nBeta-glucans constitute a family of carbohydrates that stimulates fibroblasts to produce collagen [89, 90]. For instance, laminaran, a glucan from
Tissue engineering often relies on glucose-rich media because glucose is the primary source of energy that allows MSCs to produce ECM compounds. Advanced glycation end-products (AGE) result from glucose metabolism and are found in elderly tissues or in diabetic patient tissues [94]. Unfortunately, the glucose concentration used during the production of most self-assembled tissues is too high. Consequently, it was reported that AGE are involved in the process of skin aging, which has an impact on mechanical and biological parameters [95]. New approaches to circumvent this issue are currently being developed and should generate promising alternatives.
\nIn addition to mediating glucose entry in cells, insulin also plays an active role in collagen synthesis and deposition [96]. Insulin has a long history of safety use for human therapies and microencapsulated insulin-secreting cells in hydrogels can improve collagen fiber density in diabetic mouse models [97]. Poly-lactic-co-glycolic acid (PLGA) alginate structure that releases insulin in rats was also found to increase collagen deposition and maturation [98]. In a clinical setting, wound healing is problematic for diabetic patients because their insulin metabolism is altered. Also, their tissues are less irrigated because of microvascular network changes caused by the loss of ECs. When capillary networks are altered, the surrounding tissues undergo hypoxia. In such an environment, fibroblasts change to a fibrotic phenotype. Fibrosis is induced by factors that are released by damaged ECs [99], as well as by other unknown mechanisms [96, 100]. Insulin and hypoxia exert a synergic effect on self-assembled tissues. They increase collagen deposition as demonstrated by tests on human and animal cell cultures [101] (unpublished data). Nevertheless, long-term effect of hypoxia exposure (more than 2 weeks) induced acidification of the cell culture medium and a thinning of the engineered tissues [102]. Hence, cyclic hypoxia seems a better alternative than constitutive hypoxia because it produces thicker tissues in vitro.
\nAdenosine and other derivatives have been used to enhance the rate of wound healing [103]. Their receptors were also found to be involved in fibrosis. Activation of A2B-adenosine receptors resulted in an increase of collagen synthesis and a decrease in MMP-9 activity [104, 105]. This molecule was successfully tested to produce rabbit tissues by the self-assembly approach [101]. Effects of adenosine on human cultures remain to be evaluated.
\nLysophosphatidic acid (LPA) is a bioactive lipid found in blood. LPA binds to its receptors at the surface of many cells and activates pathways leading to proliferation, migration, and secretion of cytokines. LPA expression is upregulated in disease conditions such as in fibrosis and cancer or cancer [106, 107]. As LPA is naturally present in human blood, it was used in vitro and approved by regulatory agencies. LPA-cultured fibroblasts showed increased collagen type-I and fibronectin deposition in a dose-dependent manner that could be completely reversible. No adverse effects were noted: alpha-smooth muscle actin was not overexpressed and cell proliferation rates remained normal [108]. Thicker stroma and enhanced collagen deposition kinetics suggested that the production time could be reduced by 25% when LPA was added to the cell culture medium.
\nClassical self-assembly technique involves sheet stacking in order to generate a tissue with sufficient mechanical strength. The superimposition of sheets Influences cell distribution. Although fusion of all sheets occurs following sheet stacking, a pattern at the site of each sheet fusion remains visible. Epithelial cell seeding has been noted to reduce sheet demarcations after sheet stacking. Nevertheless, different layers are visible in the 3D self-assembled tissue, Which does not correspond to native stroma architecture and weakens tissue mechanical strength [31, 66, 85, 88]. To outwit this issue, a newly reseeding self-assembly protocol was elaborated and allowed a more uniform distribution of cells throughout the tissue without delineation marks [88].
\nAscorbic acid triggers collagen deposition that reaches a plateau level after 2 weeks of fibroblast culture [88]. This time period also correlates with the thickness reached by self-assembled tissue [85]. When fibroblasts reach confluence, the cells begin to secrete and deposit collagen to form the ECM, a step that lasts 2 weeks before collagen synthesis rate decreases. These observations led to the generation of engineered tissues by reseeding of cells instead of sheet stacking (Figure 1C). The new reseeding approach is based on the fact that a second layer of fibroblasts seeded onto the first sheet will concomitantly induce a transitory peak of MMP activity and a boost of collagen secretion. The fibroblasts in the first sheet play a role in this remodeling, and after an additional 2 weeks of culture, the reseeding process results in the generation of a stroma with the same thickness as the one obtained by classical stacking of three sheets produced without reseeding. This dense stroma supported the development and maturation of the epithelium [88]. The reseeding technique offers a remarkable alternative to the classical self-assembly protocol because it is faster and it reduces costs associated with extensive culture medium consumption as well as material [88] (Figure 3).
\nOver the years, it has been shown that the origin of mesenchymal cells has a direct impact on the quality of bioengineered tissues. Carrier
Modifications to the original protocol have generated near-to-native self-assembled bladder and urethral human tissues. Many improvements include mechanical stimulation [68], the use of autologous human stromal cells, urothelial cells, urine[110, 111], and a new proposed reseeding technique of stromal cells [88]. In particular, the absence of an air/liquid interface and the presence of urine allowed the new bladder mucosa model [110] to be continuously cultured in submerged conditions. Consequently, these modifications generated a bladder model that preserved the best urothelial cell properties and uroplakin distribution [110, 111].
\nBlood vessel formation can occur through two distinct mechanisms: angiogenesis and vasculogenesis. Vasculogenesis involves the recruitment of progenitors of ECs from the bone marrow, which leads to the formation of a vascular plexus
ECs are in a stable quiescent state, however, they can become activated upon angiogenic stimuli in engineered tissues [115]. For instance, in response to conditions, such as tissue ischemia or chronic hypoxia, new collateral vessels can grow. Endothelium proliferation is stimulated by growth factors such as vascular endothelial growth factor (VEGF) that induce sprouting of new blood vessels. Additionally, proangiogenic signals increase MMP activity that prompts ECs to break apart their basement membrane allowing sprouting [116].
\nECs are a promising angiogenic cell source for therapeutic vasculogenesis because they have the potential to proliferate and rearrange themselves into functional capillary-like networks. Human umbilical vein endothelial cells (HUVEC) are an important source of ECs widely used in vasculogenesis [117]. Advantages of this cell type use are the noninvasive cell source, the profusion of medical wastes, and the impressive source of ECs in umbilical cords and placental tissues. Although the therapeutic use of HUVECs is limited because of their allogeneic nature, they remain a valuable EC source for basic and applied research needs [117].
\nTo overcome this issue, the potential of ASCs for their differentiation into ECs was explored. Isolated adipose stromal vascular fraction (SVF) from white human adipose tissue is rich in adult stem cell populations, including EC progenitors. Freshly harvested SVF containing mixed white adipose stromal cells and white adipose ECs was cultured in 3D collagen hydrogels. Within the first week, the culture showed a formation of capillary network with continuous lumen [118], and after 3 weeks it gave rise to a functional 3D vascularized skin substitute that responded well to implantation in mice. This experiment demonstrates the synergy of vascular and stromal cells in blood network formation de novo. Hence, white ASCs Demonstrate promising results with minimal cell handling. Finally, human microvascular endothelial cells (HMVEC), which originate from small superficial capillaries, also represent a promising avenue for tissue endothelialization. These cells have been incorporated in in vitro models using the self-assembly method and formed vascular networks with lumen [115]. HMVECs are an easily accessible source because they can be derived from a skin biopsy or any other tissue. The use of HMVECs could be particularly suitable for therapeutic application because it is best adapted for organ specific reconstructs.
\nThe co-culture of dermal fibroblasts and keratinocytes with HUVEC on a chitosan/collagen sponge showed the establishment of a capillary-like network similar to the microvasculature found in vivo [119]. Prevascularization of tissues prior to implantation has yield impressive improvements in regenerative medicine. In 2005, human endothelialized reconstructed skin models revealed an important reduction in the delay of functional vascularization after implantation in mice. Early signs of vascularization were observed in the endothelialized human skin grafts within 4 days following tissue implantation, as opposed to 14 days in the nonendothelialized reconstructed skin. Mouse blood vessels were only detected after 14 days in both models demonstrating that neovascularization is a latter process. The uniform distribution of ECs across the reconstruct ensures adequate perfusion of the entire graft. The colocalization of human and host mouse ECs inside a human capillary within the graft suggests the formation of chimeric microvessels and confirms inosculation between both microvascular networks [114] (later confirmed in Gibot
The progress of endothelialized tissue–engineered dermal substitutes lead to the introduction of a new in vitro model of capillary-like network formation in self-assembled skin substitutes without the use of an exogenous scaffold. In this approach, stromal sheets, formed by culturing dermal fibroblast during 4 weeks, were seeded with ECs. To generate the 3D skin, two endothelialized stromal sheets were stacked and allowed to fuse [121] (Figure 1B). Although a capillary network was observed, the fact that ECs were seeded in a single plane orientation, on top of the stromal sheets, resulted in a vascularized skin model with mainly a 2D vascular network rather than a 3D network. In order to provide the reconstructed skin with the optimal 3D capillary network, ECs were co-seeded with fibroblasts (Figure 1D). Incorporation of ECs in the reconstructed model using the reseeding technique produced a capillary-like network with increased tissue elasticity and mechanical strength [88]. Moreover, because fibroblasts were seeded at high density, ECM was readily generated and allowed the dermal stroma to be rapidly embedded with ECs [88].This vascularized stroma had pericyte-like cells that expressed the neuron-glial 2 (NG2) marker, which characterizes the surrounding of capillary-like structures.
\nThe self-assembly approach is used to generate several tissues for fundamental and clinical research applications. Over the years, adjustments to the stroma elaboration protocols and especially the ECM generation were proposed to improve the quality of the bioengineered substitutes. As one of the main objectives is to reduce the production time and costs, mechanical, biological, and chemical modifications were also introduced. Organ-specific ECM was associated with a better epithelial differentiation and an overall tissue architecture that closely mimics native tissues. To improve clinical applications, endothelialized tissues were generated and grafted with better survival and functions compared to nonvascularized substitutes.
\nObesity worldwide has increased over time and is now considered an epidemic with significant health implications. Worldwide obesity has nearly tripled since 1975. In 2015–2016, the prevalence of obesity was 39.8% in adults and 18.5% in youth [1]. Body mass index (BMI) is a widely used method for estimating body fat mass. The World Health Organization defines class I obesity as BMI 30 to <35, class II obesity as BMI 35 to <40, and class III obesity as >40. The prevalence of clinically severe obesity (BMI > 40) is increasing at a much faster rate among adults in the United States than is the prevalence of moderate obesity [2]. In addition to the overall rising rates of severe obesity, the mean waist circumference (WC) has increased continuously among adults over the last 15 years. Abdominal fat deposition is a key component of obesity and some studies have shown that WC may be a better predictor for the risk of myocardial infarction, metabolic syndrome, and all-cause mortality than BMI [3].
From a surgical perspective, facilities need to consider the availability of specialized equipment for morbidly obese patients. Many facilities may lack the appropriate equipment for patient transfer, operating room tables that can accommodate the patient’s weight, and specialized laparoscopic surgical equipment for minimally invasive surgery. Particular challenges of minimally invasive surgery for morbidly obese patients can be seen with central adiposity, which creates a thicker abdominal wall, larger visceral volume, and enlarged mesentaries, which can impact intraperitoneal visualization more difficult [4]. Central adiposity can also create technical challenges for entry into the abdominal cavity, difficulty with maneuvering laparoscopic instruments through a thick abdominal wall, and physiological stress of Trendelenburg position and pneumoperitoneum [5].
With respect to gynecologic minimally invasive surgery, obesity was previously considered a relative contra-indication. The first feasibility study of gynecologic laparoscopic surgery for obese patients was performed in 1976 [6]. With advances in minimally invasive technologies and increased operator experience, there has been growing evidence supporting minimally invasive surgery for obese patients. There is a large amount of data from gynecologic oncology indicating laparoscopic or robotic surgery resulted in shorter hospital stay, less postoperative pain, earlier return to normal activity, decreased postoperative complications, and fewer wound infections [7]. However, there are some studies indicating a higher conversion rate to laparotomy, which was dependent on BMI, noting that women who were morbidly obese had a 57% conversion rate to open laparotomy [8].
There is conflicting data regarding comparisons between robotic vs. conventional laparoscopic surgical outcomes. When looking at bariatric surgery studies, there is some evidence that robotic surgery results in shorter operative times with increased BMI [9]. However, other studies indicate that there are longer operative times [10]. One reason that surgeons may favor the use of robotic surgery is reduced surgeon fatigue, the utility of articulated wristed robotic instruments which allow for more fluid movements and less torque on the abdominal wall [11]. Further prospective studies are required to define the best and most cost-effective minimally invasive surgical method in obese women. Ultimately, every effort should be made to offer the least invasive procedure regardless of BMI, to maximize clinical benefits and quality of life [12].
According to the National Institutes of Health, a BMI >40 increases the risk for diabetes mellitus, cardiovascular disease, and reduced life expectancy [13]. Understanding the differences in anatomy and physiology of morbidly obese patients is critical for surgical planning.
Myocardial infarction, cardiac failure, and sudden cardiac death risk increase in obese individuals. This may be due to increased body mass leading to hemodynamic and cardiovascular changes resulting in increased cardiac output, larger stroke volume, decreased vascular resistance, and increased cardiac workload [14]. In autopsy studies comparing obese and non-obese patients it has been found that obese patients can have 20–55% larger cardiac diameters, hypertrophied ventricles, and increased cardiac weight. These changes in cardiac physiology can result in hypertension and ultimately lead to cardiac failure [15]. Studies have found that ventricular hypertrophy and cardiac failure caused by obesity results in a higher risk of mortality [16]. The eccentric and concentric ventricular hypertrophy associated with obesity can lead to prolonged Q-T intervals or tachyarrhythmia. Additionally, unexplained cardiac arrhythmias are more common in obese patients [11]. The creation of pneumoperitoneum required to perform minimally invasive procedures can cause further cardiac depression. Abdominal insufflation causes an increase in afterload while the subsequent impeding of a venous return causes a decrease in preload. This contributes to an overall reduction in cardiac output [17]. Cardiac depression during laparoscopic procedures is often transient as the patient’s body compensates for the change in physiology. In one study of morbidly obese patients undergoing laparoscopic gastric bypass, cardiac output levels returned to baseline at 2.5 hours after abdominal insufflation [17].
Due to fat deposits in the mediastinum and abdominal cavities, the mechanical properties of the lungs and chest wall are altered in obese patients resulting in reduced compliance of the lungs, chest wall, and entire respiratory system. These changes likely contribute to increased symptoms of wheezing, dyspnea, and orthopnea [18]. Obesity causes reduced chest wall and pulmonary compliance and therefore reduction in gas exchange and increased bronchial resistance and ventilation-perfusion. Increased abdominal pressure and pleural pressures in obesity alter the breathing pattern resulting in a reduction of both expiratory reserve volume (ERV) and the functional residual capacity (FRC). Severely obese patients have a decreased FRC up to 33% [11, 18].
The expiratory reserve volume is also compromised by 35–60%, secondary to cephalad displacement of the diaphragm by the obese abdomen [19]. Sleep-disordered breathing, including obstructive sleep apnea (OSA) and obesity-related respiratory failure (ORRF) is common in obese patients. Studies demonstrated that half of all patients with a BMI >40 kg/m2 demonstrate OSA [20]. Untreated OSA can result in hypoxemia during sleep as well as pulmonary hypertension, both of which increase risk of cardiac arrythmias. In addition, OSA has been associated with postoperative respiratory complications pneumonia, postoperative hypoxemia, and unplanned reintubation [11].
There are additional intrinsic qualities of an obese body habitus that can impair respiratory function. More soft tissue of the upper airway combined with increased tongue size can cause significant upper airway resistance [16]. An increase in breast mass and additional adiposity can cause difficulty with direct laryngoscopy [16]. Finally, a waist-to-hip ratio has been found to poorly impact gas exchange with larger waist-to-hip ratios correlating to worsening arterial blood gas values [11, 16, 21].
Performing a minimally invasive hysterectomy requires the patient to undergo general anesthesia, the creation of pneumoperitoneum, and supine positioning, all of which further impact respiratory physiology in obese patients. The administration of general anesthesia can reduce a patient’s FRC by an additional 20%, while pneumoperitoneum increases inspiratory resistance requiring higher minute ventilation [11, 15]. In one study evaluating respiratory mechanics in laparoscopy, it was found that obese, anesthetized patients in the supine position required 15% higher minute ventilation to maintain normocarbia prior to abdominal insufflation. The authors also reported that these patients had 30% lower static compliance and 68% higher inspiratory resistance after insufflation of the abdomen with CO2 to a pressure of 20 mmHg [15, 22]. While the increase in inspiratory restitance caused by obesity requires higher minute ventilation, oxygenation does not seem to be affected by abdominal insufflation or Trendelenburg positioning. Therefore, patients who are able to tolerate general anesthesia in the supine position are likely also able to tolerate abdominal insufflation and changes in position including Trendelenburg [15, 22].
Gastric and esophageal function may also be impaired in obese patients, which can lead to intra-operative challenges. Gastroesophageal reflux disease (GERD) and hiatal hernias are found more commonly in obese patients and can often be asymptomatic [11]. This is caused by increased intra-abdominal pressure which can be two to three times higher in morbidly obese patients compared with non-obese patients [11]. Studies have found that obese patients tend to have higher gastric volumes, lower gastric pH, and delayed emptying which can increase their risk of intra-operative and post-operative gastric acid aspiration [11, 15]. For this reason, a prophylactic H2 blocker (ranitidine) and a pro-kinetic (metoclopramide) are often recommended prior to a surgical procedure [16].
Obesity is an independent risk factor for venous thromboembolism (VTE). Current data regarding the risk of VTE in gynecologic surgery shows the incidence of VTE in gyn surgery ranges from 0 to 2%. Evidence for these studies is from retrospective studies in non-obese patients who underwent simple laparoscopic procedures [11]. Gynecologic laparoscopic procedures with a duration of >30 min are considered moderate to high risk for VTE. Increasing laparscopic surgical complexity increases rates of VTE after completion of surgery according to the American College of Chest Physicians (ACCP) [23]. For these procedures, the standard treatment for VTE prophylaxis is mechanical prophylaxis with sequential compression devices. For obese patients it is critical these devices are appropriately fitted. Alternatively, pharmacologic prophylaxis with either subcutaneous low molecular weight heparin or unfractionated heparin can be administered. For bariatric surgery patients who have a BMI >55, immobility, history of active or recent VTE, hypercoagulable disorders, or severe OSA there are recommendations for placement of an inferior vena cava (IVC) filter for patients prior to bariatric surgery [24]. There are no current clear guidelines for patients undergoing gynecologic laparoscopic surgery and decisions should be made on an individual basis. The ACCP recommends dual prophylaxis with sequential compression devices and pharmacologic prophylaxis during admission and prolonged pharmacologic prophylaxis for 2–4 weeks after discharge for patients with gynecologic cancer with additional risk factors such as age >60 or history of VTE [23]. Recommendations for patients who are morbidly obese undergoing gynecologic laparoscopy may include combination mechanical and pharmacological prophylaxis during surgery and hospitalization. Taking into consideration patient comorbidities and mobility status, extended prophylaxis after discharge may also be considered [11].
It is imperative that morbidly obese patients who are seen for surgical consultation should have a comprehensive history and physical exam in addition to laboratory and diagnostic testing as their obesity can increase their medical complexity. During a physical exam, there should be documentation of the patient’s body habitus, assessment of the uterine size, uterine mobility, and vaginal caliber. Proper evaluation of the patient’s panniculus and body type is crucial for determining intravenous access, trocar placement, and positioning during laparoscopy [4]. Special attention must be paid to the distribution of the patient’s weight (i.e. increased waist circumference vs. increased hip circumference). Patients with large adipose tissue centered on their waist are likely to be more technically challenging than patients whose adipose is centered on the hips [15]. In patients with large panniculus, trocar placement may be hindered not only by increased thickness but also by a lack of mobility. If the panniculus is soft and mobile, it can be repositioned easily using traction with weights or tape.
In general, preoperative testing should be tailored to the patient’s risk factors. Basic laboratory assessment can include a complete blood count, blood glucose concentration, basic metabolic panel, and blood type and screening. Given the high predisposition for cardiovascular, pulmonary, and endocrine abnormalities in morbidly obese patients, evaluation by subspecialists for additional diagnostic testing should be performed. Informed consent should take into account both the increased medical and surgical complexity of the case and inform the patient of increased risk of infection, increased risk of VTE, and potential increased risk for conversion to laparotomy [11]. As pulmonary and cardiovascular changes are prominent in morbidly obese patients, there are numerous risks associated with general anesthesia including airway complications and oxygenation issues with induction of anesthesia, intubation, and extubation [4]. Increased communication with anesthesia and pre-operative evaluation with anesthesia may be beneficial for these patients. When considering antibiotic prophylaxis, the current standard for routine prophylaxis prior to hysterectomy is 2 g of cefazolin for patients under 120 kg and 3 g for patients over 120 kg [25]. With regards to mechanical bowel prep (MBP), the theoretical advantage is to reduce intestinal volume and mass to improve intraoperative manipulation and visualization. A meta-analysis of elective colorectal surgery has revealed no statistical advantage of MBP [4].
In order to complete laparoscopic surgery safely and efficiently for morbidly obese patients, proper preparation in the operating room is essential. Proper setup of the operating room will allow for mobility of the surgical team, quick access to instruments, increase patient safety, and the ability for the surgeon to successfully complete the procedure.
The first consideration needs to be placed on basic operating room equipment such as the operating room table and mechanisms for patient transfer. Patients are usually brought to the operating room in a stretcher. Lateral transfer devices that utilize hover technology (Hovermatt) can enable the team to move the patient to the operating room table and back to the transport stretcher in a secure and comfortable manner [26]. Operating room tables must have the capacity to support morbidly obese patients. Many standard tables have weight limits of 227 kg (500 lb). A bariatric bed is wider than traditional beds and can accommodate a weight of up to 1000 lb. If there is no availability of a bariatric bed, two standard operating room tables can be used together. Extra padding, blankets, sheets, or lifting devices may be needed to appropriately position an obese patient. Blood pressure cuffs and sequential compression devices will need to be of appropriate size to provide accurate readings.
An additional consideration should be placed on specialized laparoscopic instruments. Laparoscopes come in various sizes with a standard length of 32 cm and diameters ranging from 2 to 10 mm. There are various angled scopes available. In bariatric surgery, some surgeons endorse using a 45-degree angled scope or an extra-long laparoscope (45 cm) to aid with viewing flexibility in extremely obese patients [27]. Laparoscopic assist trays may include extra-long laparoscopic instruments (41–45 cm), which may aid with the ability to complete the procedure successfully. Instruments such as long trocars, trocars with a non-latex balloon at the distal end for retention of the trocar tip in the abdominal cavity, or a long Veress needle (150 mm) may be used. Uterine manipulators should be considered for safe completion of hysterectomy. Although redundant perineal tissue or a large uterus may limit the full mobility of the uterus, the integrated cervical cup will allow for cephalad traction and proper identification of surgical landmarks for colpotomy creation and increase the distance of the uterine arteries from the ureters [4].
Obese patients are at greater risk for pressure sores and nerve injuries when compared to non-obese patients. Duration of compression and compressive force applied influence the risk of nerve injuries. Prolonged compression for 6–8 hours can cause permanent nerve injuries [11, 28, 29]. For laparoscopic surgical procedures in gynecology, patients are placed in a dorsal lithotomy position with their arms tucked at their sides in a “military” position. It is recommended to initially position the buttocks slightly lower than the edge of the bed as the body will shift cephalad with the weight of the panniculus once in Trendelenburg position.
Several considerations should be taken when tucking the arms. It is important to ensure that all intravenous access and cardiopulmonary monitors are functioning appropriately. Adequate padding should be placed at the hands and elbows to minimze ulnar or branchial plexus injuries [29]. If the arms are hanging too far off the side of the bed, bed extenders or arm sleds can be used. If the patient slides cephalad with shoulder blocks in place or if the arms are extended. Two potential scenarios that can increase the risk of brachial plexus injury are if the patient slides cephalad with shoulder blocks in place or if the surgeon leans on the patient’s extended arms [30]. The legs should be positioned in stirrups in a low lithotomy position with generous padding applied around the hips and knees. The most common stirrups available in the United States are the YellowFin, the YelloFin Elite, and the Ultrafin. The Ultrafin is capable of accommodating calves that are 13 inches wide and have a weight capacity of 800 lb. Appropriate selection of stirrups can potentially aid in decreasing nerve injury. Obese patients have an increased risk for brachial plexus injury given downward shifting in Trendelenburg [11]. There are multiple options to help reduce this cephalad shifting including gel padding, egg-crate foam, surgical bag, and a padded straps. Once the patient has been positioned a “tilt-test” can be performed where the patient is placed into Trendelenburg position for approximately 2–5 minutes in order to assess the stability of the patient’s positioning and assess the impact on the respiratory and cardiac status. Some adjustments that can be made to help insufflation pressures would be to decrease the degree of Trendelenburg or reduce the insuflation pressure.
Management of the patient’s panniculus in a caudad position during laparoscopic surgery can aid in improving the patient’s ventilation and therefore potentially decreasing the conversation to laparotomy. One technique involves the use of a foley catheter that is passed through the patient’s abdominal wall. The foley balloon is insuflated and the catheter is pulled up and clamped to a retractor attached to the foot of the bed [31]. A second technique involves using towel clips on the lower edge of the panniculus with 1-liter saline bags attached and hanging between the legs. Lastly, adhesive dressing can be used to secure the panniculus to the patient’s thighs.
Morbid obesity can increase the difficulty of initial abdominal access in laparoscopic surgery due to the increased thickness of the abdominal wall and lack of reliable landmarks. Traditionally, the umbilicus is a common landmark used for abdominal entry as it may represent the thinnest part of the abdominal wall. However, in obese patients, the umbilicus is often located at or cephalad to the aortic bifurcation. In obese women, the mean umbilical location was found to be on average 2.9 cm caudal to the aortic bifurcation in comparison to nonobese women in which the umbilicus was 0.4 cm caudual to the bifurcation [32]. Given this migration of the umbilicus, if it is used for entry into the abdomen, it may compromise adequate triangulation with the surgical pathology [11]. There are multiple techniques for abdominal entry including the Veress needle, use of an optical trocar, or an open technique. In obese patients, there is a higher likelihood for the Veress technique to result in a higher rate of false entry and preperitoneal insufflation [11]. If there is no substantial panniculus and the umbilical approach is chosen, a 90-degree entry can be used and the use of a long Veress needle (150 mm) may help decrease pre-peritoneal insufflation. If an optical trocar is used, it may be beneficial to use a long trocar to aid in correct placement. Supraumbilical and left upper quadrant are two alternative abdominal entry sites. If the left upper quadrant is used, a nasogastric or orogastric drainage tube should be placed to decompress the stomach. This site is contraindicated in patients who have a history of gastric bypass, splenectomy, and splenomegaly.
Obesity is an important factor to consider when determining an appropriate surgical approach to hysterectomy. A systematic review published in 2015 by Blikkendaal et al., found that laparoscopic hysterectomy and vaginal hysterectomy are associated with significantly fewer postoperative complications and shorter lengths of hospital stay [31]. While vaginal hysterectomy is generally the preferred surgical approach and is associated with improved outcomes, it seems to be less favorable in obese patients due to large uterine size, early-stage endometrial cancer, or lack of vaginal access and exposure secondary to the patient’s body habitus [31]. In patients who are not good candidates for vaginal surgery, conventional laparoscopic hysterectomy and robotic hysterectomy are alternative approaches that are shown to be safe and feasible in this patient population [31, 32].
The benefits of minimally invasive surgery are well studied. Compared to laparotomy, laparoscopic hysterectomy results in fewer postoperative complications, decreased blood loss, less time in the hospital, and faster recovery [31, 33]. One study showed that obese patients who underwent laparoscopic hysterectomy compared with laparotomy had fewer incidences of postoperative ileus (0% vs. 13.3%), less postoperative fevers (5.5% vs. 31.1%), and a decrease in wound infections (9% vs. 22%) [15]. Additionally, obese women undergoing laparoscopic hysterectomies, bilateral salpingo-oophorectomy, and lymph node dissection for stage I endometrial carcinoma were found to have shorter hospital stays (2.5 vs. 5.6 days), less pain (32.2 vs. 124.1 mg of pain medication), and earlier return to normal activity [15].
Despite the clear benefits of minimally invasive techniques, research evaluating surgeons’ surgical preference shows that the rate of abdominal hysterectomy increases as BMI increases [31]. In fact, in the past obesity was considered a relative contraindication to laparoscopic surgery. This is due to associated difficulties with Verees needle placement, accumulation of fat in the omentum obstructing the operative field and manipulation of laparoscopic instruments [15]. However, more recent studies have shown that minimally invasive approaches including robotics and conventional laparoscopic techniques can be successful in obese patients with proper planning and appropriate laparoscopic surgical experience.
Robotic surgery may help overcome some of the inherent challenges of minimally invasive surgery in obese patients. Robotic surgery offers greater flexibility, articulation, and control of the instruments with reduced hand tremors. Improved ergonomics and the 3D-HD view allow for surgeons to more easily operate within the confined space of an obese abdomen and reduce surgeon fatigue [33]. This is especially relevant in obese patients with endometrial cancer when lymphadenectomy is required [34]. The advantages of robotic surgery may help facilitate the completion of hysterectomy using a minimally invasive approach, however, the cost is significant. Each robotic console has a direct cost of $2.6 million USD and about $2000 per surgical case [34].
While most studies comparing robotic surgery to laparoscopic surgery have not been able to show an improvement in safety or efficacy compared with conventional laparoscopy, there is evidence that robotic surgery may provide clinical benefits in specific populations like the morbidly obese [34, 35, 36]. In fact, there is evidence of cost neutralization with robotic procedures when the rate of conversion to laparotomy is decreased [34]. A recent systematic review and meta-analysis comparing laparoscopic and robotic hysterectomy in endometrial cancer patients with obesity found similar perioperative complication rates but a decrease in conversion to laparotomy in robotic procedures performed on patients with BMI > 40 kg/m2 (7.0% vs. 3.8%) [34]. Additionally, the qualitative reasons for conversion were different in robotic hysterectomy and conventional laparoscopic hysterectomy. Conversion to laparotomy from conventional laparoscopy was more often due to obesity-related anesthetic concerns (30% vs. 6%) while conversion from robotic assisted laparoscopy was attributed more frequently to increased uterine size [34].
After properly positioning the patient and obtaining adequate pneumoperitoneum, the surgeon must determine adequate and safe port site placement. This step can be more challenging in obese patient as traditional landmarks may be altered. The surgeon should choose trocars that are adequate in length. Although extra-long trocars, up to 150 mm, are available and may be useful in patients with very thick anterior abdominal walls, they are often not necessary [29, 37]. In order to safely place accessory trocars, some authors recommend increasing the insufflation pressure to 25 mmHg to increase the distance for trocar placement in order to avoid vascular and visceral complications [37]. Once the initial trocar is placed and pneumoperitoneum is achieved, ancillary trocars can be placed under direct visualization after localization with a spinal needle [37]. In general, most authors recommend more cephalad and lateral placement of ancillary port in obese women. This is due to the difficult visualization of the inferior epigastric vessels and the extent of the panniculus [11, 29, 38]. When placing ancillary trocars, they should be angled toward the operative field to prevent slippage and torquing of the instruments [15]. Surgeons should have a low threshold for adding additional ports that may improve ergonomics, triangulation, or retraction [29, 38].
Surgical exposure can be challenging in obese patients. This is due to increased visceral adiposity, a fatty rectosigmoid colon, or limited Trendelenburg positioning due to difficulty with ventilation [29, 32]. Mobilizing the cecum and sigmoid reflection from their lateral peritoneal attachments can help facilitate moving the large bowel out of the pelvis [29]. Additionally, the rectosigmoid colon can be retracted by using a puppet stitch to pull the epiploic appendices to the anterior abdominal wall [11]. Another option is using a pre-tied endoscopic loop that can be brought through the anterior abdominal wall using a fascial closure device or bringing the suture through a trocar to be tied off [29, 38].
Effective uterine manipulation is especially important to perform laparoscopic and robotic hysterectomies safely in obese patients. This is because the amount of Trendelenburg may be limited and exposure to the pelvis may be challenging [37]. There are many uterine manipulation devices available including the Zinnati Uterine Manipulator injector (ZUMI) (Cooper Surgical, Trumball, CT), the VCare (ConMed Endosurgery, Utica, NY), and the Reusable Uterine Manipulator Injector (RUMI) Arch (Cooper Surgical, Trumball, CT). It is recommended that surgeons choose a device that will be applicable to the majority of their cases so that the entire surgical team can become familiar with its use, allowing for reliable uterine manipulation [37].
As with non-obese patients, closure of the fascia is recommended in incisions greater than 10 mm to prevent port site evisceration. Exposure to the fascia can be more challenging in obese patients. Facial closure devices like the reusable Carter-Thomason CloseSure System XL device (Cooper Surgical, Trumball, CT) allow for the closure to be performed under direct visualization. If the device is not long enough, the disposable Endoclose device (Covidien, Norwalk, CT) can be used [37].
Many studies have compared vaginal vs. laparoscopic vaginal cuff closure with more recent data showing a reduction in vaginal cuff dehiscence with laparoscopic closure (1% vs. 2.7%) [24]. A study by Uccella et al. further demonstrated a reduction in vaginal bleeding (2.7% vs. 4.9%), vaginal cuff hematoma (0.9% vs. 2.3%), need for vaginal re-suturing (0.9% vs. 2.3%) and postoperative infection (0.9% vs. 2.3%) [39]. In obese patients with limited vaginal access due to weight distribution or a large panniculus, laparoscopic closure may also be more accessible.
Some research suggests that obesity may be a protective factor against vaginal cuff dehiscence and evisceration. One study found that after laparoscopic hysterectomy, obese women were 86% less likely to experience vaginal cuff dehiscence than non-obese women [40, 41]. Although intercourse is a significant risk factor for cuff dehiscence, it is hypothesized that positioning during intercourse may be different for obese women, resulting in the application of less physical force at the apex of the vagina [40, 41]. The authors further also postulate that an increase in adipose tissue leads to less energy being delivered to the vaginal tissue during the creation of colpotomy, which can improve healing by causing less tissue desiccation.
Studies have shown that the incidence of postoperative complications increases as BMI increases. However, when surgeries are performed in a minimally invasive fashion, complication rates for obese patients are similar to non-obese patients [29].
Patients with known or presumed cardiovascular disease, OSA, or high perioperative risk should be monitored closely in the postoperative period. Patients who have OSA should be observed overnight because of the increased risk of pulmonary complications [11, 29]. A multi-modal approach to analgesia is recommended to limit narcotic analgesic which can worsen atelectasis and hypoxia. This may include acetaminophen, nonsteroidal anti-inflammatory agents, cyclooxygenase-2 inhibitors, gabapentin, or pregabalin as well as local or regional anesthesia [29, 42]. Early ambulation and the use of incentive spirometry can help inflate dependent lung regions and decrease impairment of lung function induced by anesthesia. As discussed above in the thromboembolism section of this chapter, morbidly obese patients are at increased risk for VTE and may benefit from from extended VTE prophylaxis for 10–35 days following surgery [11, 23].
Minimally invasive laparoscopic hysterectomy is feasible for morbidly obese patients. Additional considerations regarding cardiopulmonary physiological changes seen in morbid obesity should be stressed as these have implications for preoperative surgical risk assessment and the patient’s ability to tolerate surgical positioning and pneumoperitoneum.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{mdrv:"www.intechopen.com"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6597},{group:"region",caption:"Middle and South America",value:2,count:5902},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12537},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17560}],offset:12,limit:12,total:132762},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"25"},books:[{type:"book",id:"12085",title:"Techniques in Animal Breeding",subtitle:null,isOpenForSubmission:!0,hash:"64404e5103ac7b2d953efa6de19775f1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12085.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12086",title:"Cattle Diseases",subtitle:null,isOpenForSubmission:!0,hash:"e2e8c3574dc8508689de774c3965b25d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:46},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:14},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:107},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:2},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[],latestBooks:[]},subject:{topic:{id:"409",title:"Bacteriology",slug:"biochemistry-genetics-and-molecular-biology-microbiology-bacteriology",parent:{id:"59",title:"Microbiology",slug:"biochemistry-genetics-and-molecular-biology-microbiology"},numberOfBooks:18,numberOfSeries:0,numberOfAuthorsAndEditors:433,numberOfWosCitations:840,numberOfCrossrefCitations:527,numberOfDimensionsCitations:1249,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"409",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10331",title:"Salmonella spp",subtitle:"A Global Challenge",isOpenForSubmission:!1,hash:"131535f5d2ebf6c7cfd85fd229bbfd0e",slug:"salmonella-spp-a-global-challenge",bookSignature:"Alexandre Lamas, Patricia Regal and Carlos Manuel Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10331.jpg",editedByType:"Edited by",editors:[{id:"194841",title:"Dr.",name:"Alexandre",middleName:null,surname:"Lamas",slug:"alexandre-lamas",fullName:"Alexandre Lamas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8133",title:"Pathogenic Bacteria",subtitle:null,isOpenForSubmission:!1,hash:"b26e69f94525a38ead8ac88e3c68631a",slug:"pathogenic-bacteria",bookSignature:"Sahra Kırmusaoğlu and Sonia Bhonchal Bhardwaj",coverURL:"https://cdn.intechopen.com/books/images_new/8133.jpg",editedByType:"Edited by",editors:[{id:"179460",title:"Associate Prof.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8032",title:"Staphylococcus and Streptococcus",subtitle:null,isOpenForSubmission:!1,hash:"b9ddbf132ac8ea9d2a7613836e5a27ca",slug:"staphylococcus-and-streptococcus",bookSignature:"Sahra Kırmusaoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/8032.jpg",editedByType:"Edited by",editors:[{id:"179460",title:"Associate Prof.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8038",title:"Pseudomonas Aeruginosa",subtitle:"An Armory Within",isOpenForSubmission:!1,hash:"308d6be5ffbb4b2caa0a7c4146a7737d",slug:"pseudomonas-aeruginosa-an-armory-within",bookSignature:"Dinesh Sriramulu",coverURL:"https://cdn.intechopen.com/books/images_new/8038.jpg",editedByType:"Edited by",editors:[{id:"91317",title:"Dr.",name:"Dinesh",middleName:null,surname:"Sriramulu",slug:"dinesh-sriramulu",fullName:"Dinesh Sriramulu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6965",title:"Helicobacter Pylori",subtitle:"New Approaches of an Old Human Microorganism",isOpenForSubmission:!1,hash:"acf3954c4d9d440038f3074fb81d7411",slug:"helicobacter-pylori-new-approaches-of-an-old-human-microorganism",bookSignature:"Bruna Maria Roesler",coverURL:"https://cdn.intechopen.com/books/images_new/6965.jpg",editedByType:"Edited by",editors:[{id:"54995",title:"Dr.",name:"Bruna Maria",middleName:null,surname:"Roesler",slug:"bruna-maria-roesler",fullName:"Bruna Maria Roesler"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6970",title:"The Universe of Escherichia coli",subtitle:null,isOpenForSubmission:!1,hash:"92027ca0bca1f8ae2971739a4ae6af84",slug:"the-universe-of-escherichia-coli",bookSignature:"Marjanca Starčič Erjavec",coverURL:"https://cdn.intechopen.com/books/images_new/6970.jpg",editedByType:"Edited by",editors:[{id:"58980",title:"Dr.",name:"Marjanca",middleName:null,surname:"Starčič Erjavec",slug:"marjanca-starcic-erjavec",fullName:"Marjanca Starčič Erjavec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6580",title:"Staphylococcus Aureus",subtitle:null,isOpenForSubmission:!1,hash:"2e820aab20964b63f185451d9a7b73f8",slug:"-i-staphylococcus-aureus-i-",bookSignature:"Hassan Hemeg, Hani Ozbak and Farhat Afrin",coverURL:"https://cdn.intechopen.com/books/images_new/6580.jpg",editedByType:"Edited by",editors:[{id:"187330",title:"Dr.",name:"Hassan",middleName:null,surname:"Hemeg",slug:"hassan-hemeg",fullName:"Hassan Hemeg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6685",title:"Basic Biology and Applications of Actinobacteria",subtitle:null,isOpenForSubmission:!1,hash:"301e66d4a6b29d4326c39ff2922ec420",slug:"basic-biology-and-applications-of-actinobacteria",bookSignature:"Shymaa Enany",coverURL:"https://cdn.intechopen.com/books/images_new/6685.jpg",editedByType:"Edited by",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6764",title:"Cyanobacteria",subtitle:null,isOpenForSubmission:!1,hash:"87c7d8f86f7c1185aa4dd47c6492951a",slug:"cyanobacteria",bookSignature:"Archana Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/6764.jpg",editedByType:"Edited by",editors:[{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6354",title:"Salmonella",subtitle:"A Re-emerging Pathogen",isOpenForSubmission:!1,hash:"e18481d5470f967439dde815fcd52b57",slug:"salmonella-a-re-emerging-pathogen",bookSignature:"Maria Teresa Mascellino",coverURL:"https://cdn.intechopen.com/books/images_new/6354.jpg",editedByType:"Edited by",editors:[{id:"156556",title:"Prof.",name:"Maria Teresa",middleName:null,surname:"Mascellino",slug:"maria-teresa-mascellino",fullName:"Maria Teresa Mascellino"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6425",title:"Probiotics",subtitle:"Current Knowledge and Future Prospects",isOpenForSubmission:!1,hash:"129bd046ff0fb4db6584e5afeebe98fa",slug:"probiotics-current-knowledge-and-future-prospects",bookSignature:"Shymaa Enany",coverURL:"https://cdn.intechopen.com/books/images_new/6425.jpg",editedByType:"Edited by",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:18,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"49873",doi:"10.5772/62329",title:"An Introduction to Actinobacteria",slug:"an-introduction-to-actinobacteria",totalDownloads:7961,totalCrossrefCites:27,totalDimensionsCites:96,abstract:"Actinobacteria, which share the characteristics of both bacteria and fungi, are widely distributed in both terrestrial and aquatic ecosystems, mainly in soil, where they play an essential role in recycling refractory biomaterials by decomposing complex mixtures of polymers in dead plants and animals and fungal materials. They are considered as the biotechnologically valuable bacteria that are exploited for its secondary metabolite production. Approximately, 10,000 bioactive metabolites are produced by Actinobacteria, which is 45% of all bioactive microbial metabolites discovered. Especially Streptomyces species produce industrially important microorganisms as they are a rich source of several useful bioactive natural products with potential applications. Though it has various applications, some Actinobacteria have its own negative effect against plants, animals, and humans. On this context, this chapter summarizes the general characteristics of Actinobacteria, its habitat, systematic classification, various biotechnological applications, and negative impact on plants and animals.",book:{id:"5056",slug:"actinobacteria-basics-and-biotechnological-applications",title:"Actinobacteria",fullTitle:"Actinobacteria - Basics and Biotechnological Applications"},signatures:"Ranjani Anandan, Dhanasekaran Dharumadurai and Gopinath\nPonnusamy Manogaran",authors:[{id:"48914",title:"Dr.",name:"Dharumadurai",middleName:null,surname:"Dhanasekaran",slug:"dharumadurai-dhanasekaran",fullName:"Dharumadurai Dhanasekaran"}]},{id:"42319",doi:"10.5772/50364",title:"Lactic Acid Bacteria in Hydrogen-Producing Consortia: On Purpose or by Coincidence?",slug:"lactic-acid-bacteria-in-hydrogen-producing-consortia-on-purpose-or-by-coincidence-",totalDownloads:3755,totalCrossrefCites:28,totalDimensionsCites:84,abstract:null,book:{id:"2796",slug:"lactic-acid-bacteria-r-d-for-food-health-and-livestock-purposes",title:"Lactic Acid Bacteria",fullTitle:"Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes"},signatures:"Anna Sikora, Mieczysław Błaszczyk, Marcin Jurkowski and Urszula Zielenkiewicz",authors:[{id:"143688",title:"Dr.",name:"Urszula",middleName:null,surname:"Zielenkiewicz",slug:"urszula-zielenkiewicz",fullName:"Urszula Zielenkiewicz"},{id:"146985",title:"Dr.",name:"Anna",middleName:null,surname:"Sikora",slug:"anna-sikora",fullName:"Anna Sikora"},{id:"162424",title:"Prof.",name:"Mieczysław",middleName:null,surname:"Błaszczyk",slug:"mieczyslaw-blaszczyk",fullName:"Mieczysław Błaszczyk"},{id:"162425",title:"Mr.",name:"Marcin",middleName:null,surname:"Jurkowski",slug:"marcin-jurkowski",fullName:"Marcin Jurkowski"}]},{id:"42328",doi:"10.5772/47766",title:"Lactic Acid Bacteria as Source of Functional Ingredients",slug:"lactic-acid-bacteria-as-source-of-functional-ingredients",totalDownloads:7567,totalCrossrefCites:21,totalDimensionsCites:50,abstract:null,book:{id:"2796",slug:"lactic-acid-bacteria-r-d-for-food-health-and-livestock-purposes",title:"Lactic Acid Bacteria",fullTitle:"Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes"},signatures:"Panagiota Florou-Paneri, Efterpi Christaki and Eleftherios Bonos",authors:[{id:"140984",title:"Prof.",name:"Panagiota",middleName:null,surname:"Florou-Paneri",slug:"panagiota-florou-paneri",fullName:"Panagiota Florou-Paneri"},{id:"142773",title:"Dr.",name:"Efterpi",middleName:null,surname:"Christaki",slug:"efterpi-christaki",fullName:"Efterpi Christaki"},{id:"142774",title:"Dr.",name:"Eleftherios",middleName:null,surname:"Bonos",slug:"eleftherios-bonos",fullName:"Eleftherios Bonos"}]},{id:"42337",doi:"10.5772/50839",title:"Exopolysaccharides of Lactic Acid Bacteria for Food and Colon Health Applications",slug:"exopolysaccharides-of-lactic-acid-bacteria-for-food-and-colon-health-applications",totalDownloads:6356,totalCrossrefCites:18,totalDimensionsCites:46,abstract:null,book:{id:"2796",slug:"lactic-acid-bacteria-r-d-for-food-health-and-livestock-purposes",title:"Lactic Acid Bacteria",fullTitle:"Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes"},signatures:"Tsuda Harutoshi",authors:[{id:"141928",title:"Dr.",name:"Harutoshi",middleName:null,surname:"Tsuda",slug:"harutoshi-tsuda",fullName:"Harutoshi Tsuda"}]},{id:"42322",doi:"10.5772/51282",title:"The Current Status and Future Expectations in Industrial Production of Lactic Acid by Lactic Acid Bacteria",slug:"the-current-status-and-future-expectations-in-industrial-production-of-lactic-acid-by-lactic-acid-ba",totalDownloads:9071,totalCrossrefCites:18,totalDimensionsCites:46,abstract:null,book:{id:"2796",slug:"lactic-acid-bacteria-r-d-for-food-health-and-livestock-purposes",title:"Lactic Acid Bacteria",fullTitle:"Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes"},signatures:"Sanna Taskila and Heikki Ojamo",authors:[{id:"139705",title:"Dr.",name:null,middleName:null,surname:"Taskila",slug:"taskila",fullName:"Taskila"},{id:"142916",title:"Prof.",name:"Heikki",middleName:null,surname:"Ojamo",slug:"heikki-ojamo",fullName:"Heikki Ojamo"}]}],mostDownloadedChaptersLast30Days:[{id:"49873",title:"An Introduction to Actinobacteria",slug:"an-introduction-to-actinobacteria",totalDownloads:7968,totalCrossrefCites:27,totalDimensionsCites:96,abstract:"Actinobacteria, which share the characteristics of both bacteria and fungi, are widely distributed in both terrestrial and aquatic ecosystems, mainly in soil, where they play an essential role in recycling refractory biomaterials by decomposing complex mixtures of polymers in dead plants and animals and fungal materials. They are considered as the biotechnologically valuable bacteria that are exploited for its secondary metabolite production. Approximately, 10,000 bioactive metabolites are produced by Actinobacteria, which is 45% of all bioactive microbial metabolites discovered. Especially Streptomyces species produce industrially important microorganisms as they are a rich source of several useful bioactive natural products with potential applications. Though it has various applications, some Actinobacteria have its own negative effect against plants, animals, and humans. On this context, this chapter summarizes the general characteristics of Actinobacteria, its habitat, systematic classification, various biotechnological applications, and negative impact on plants and animals.",book:{id:"5056",slug:"actinobacteria-basics-and-biotechnological-applications",title:"Actinobacteria",fullTitle:"Actinobacteria - Basics and Biotechnological Applications"},signatures:"Ranjani Anandan, Dhanasekaran Dharumadurai and Gopinath\nPonnusamy Manogaran",authors:[{id:"48914",title:"Dr.",name:"Dharumadurai",middleName:null,surname:"Dhanasekaran",slug:"dharumadurai-dhanasekaran",fullName:"Dharumadurai Dhanasekaran"}]},{id:"55303",title:"Classification of Anti‐Bacterial Agents and Their Functions",slug:"classification-of-anti-bacterial-agents-and-their-functions",totalDownloads:9090,totalCrossrefCites:10,totalDimensionsCites:18,abstract:"Bacteria that cause bacterial infections and disease are called pathogenic bacteria. They cause diseases and infections when they get into the body and begin to reproduce and crowd out healthy bacteria or to grow into tissues that are normally sterile. To cure infectious diseases, researchers discovered antibacterial agents, which are considered to be the most promising chemotherapeutic agents. Keeping in mind the resistance phenomenon developing against antibacterial agents, new drugs are frequently entering into the market along with the existing drugs. In this chapter, we discussed a revised classification and function of the antibacterial agent based on a literature survey. The antibacterial agents can be classified into five major groups, i.e. type of action, source, spectrum of activity, chemical structure, and function.",book:{id:"5867",slug:"antibacterial-agents",title:"Antibacterial Agents",fullTitle:"Antibacterial Agents"},signatures:"Hamid Ullah and Saqib Ali",authors:[{id:"201024",title:"Dr.",name:"Hamid",middleName:null,surname:"Ullah",slug:"hamid-ullah",fullName:"Hamid Ullah"},{id:"202624",title:"Dr.",name:"Saqib",middleName:null,surname:"Ali",slug:"saqib-ali",fullName:"Saqib Ali"}]},{id:"58507",title:"Probiotics and Ruminant Health",slug:"probiotics-and-ruminant-health",totalDownloads:2775,totalCrossrefCites:5,totalDimensionsCites:8,abstract:"Probiotics are viable microorganisms with beneficial health effects for humans and animals. They are formulated into many functional foods and animal feed. There is a growing research interest in the application and benefits of probiotics in ruminant production. Several recent studies have evaluated the potential of probiotics in animal nutrition and health. In this chapter, we have reviewed current research on the benefits of probiotics on gut microbial communities in ruminants and their impact on ruminant production, health and overall wellbeing.",book:{id:"6425",slug:"probiotics-current-knowledge-and-future-prospects",title:"Probiotics",fullTitle:"Probiotics - Current Knowledge and Future Prospects"},signatures:"Sarah Adjei-Fremah, Kingsley Ekwemalor, Mulumebet Worku and\nSalam Ibrahim",authors:[{id:"107905",title:"Prof.",name:"Salam",middleName:null,surname:"Ibrahim",slug:"salam-ibrahim",fullName:"Salam Ibrahim"},{id:"218786",title:"Dr.",name:'Mulumebet "Millie"',middleName:null,surname:"Worku",slug:'mulumebet-"millie"-worku',fullName:'Mulumebet "Millie" Worku'},{id:"218789",title:"Dr.",name:"Kingsley",middleName:null,surname:"Ekwemalor",slug:"kingsley-ekwemalor",fullName:"Kingsley Ekwemalor"},{id:"223195",title:"Dr.",name:"Sarah",middleName:null,surname:"Adjei-Fremah",slug:"sarah-adjei-fremah",fullName:"Sarah Adjei-Fremah"}]},{id:"49285",title:"Morphological Identification of Actinobacteria",slug:"morphological-identification-of-actinobacteria",totalDownloads:8456,totalCrossrefCites:18,totalDimensionsCites:43,abstract:"Actinobacteria is a phylum of gram-positive bacteria with high G+C content. Among gram-positive bacteria, actinobacteria exhibit the richest morphological differentiation, which is based on a filamentous degree of organization like filamentous fungi. The actinobacteria morphological characteristics are basic foundation and information of phylogenetic systematics. Classic actinomycetes have well-developed radial mycelium, which can be divided into substrate mycelium and aerial mycelium according to morphology and function. Some actinobacteria can form complicated structures, such as spore, spore chain, sporangia, and sporangiospore. The structure of hyphae and ultrastructure of spore or sporangia can be observed with microscopy. Actinobacteria have different cultural characteristics in various kinds of culture media, which are important in the classification identification, general with spores, aerial hyphae, with or without color and the soluble pigment, different growth condition on various media as the main characteristics. The morphological differentiation of actinobacteria, especially streptomycetes, is controlled by relevant genes. Both morphogenesis and antibiotic production in the streptomycetes are initiated in response to starvation, and these events are coupled.",book:{id:"5056",slug:"actinobacteria-basics-and-biotechnological-applications",title:"Actinobacteria",fullTitle:"Actinobacteria - Basics and Biotechnological Applications"},signatures:"Qinyuan Li, Xiu Chen, Yi Jiang and Chenglin Jiang",authors:[{id:"175852",title:"Dr.",name:"Chen",middleName:null,surname:"Jiang",slug:"chen-jiang",fullName:"Chen Jiang"}]},{id:"68772",title:"Multidrug-Resistant Bacterial Foodborne Pathogens: Impact on Human Health and Economy",slug:"multidrug-resistant-bacterial-foodborne-pathogens-impact-on-human-health-and-economy",totalDownloads:1030,totalCrossrefCites:3,totalDimensionsCites:7,abstract:"The drug abuse known to occur during growth of animals intended for food production, because of their use as either a prophylactic or therapeutic treatment, promotes the emergence of bacterial drug resistance. It has been reported that at least 25% of the foodborne isolates show drug resistance to one or more classes of antimicrobials (FAO 2018). There are diverse mechanisms that promote drug resistance. It is known that the use of sub-therapeutic doses of antibiotics in animals intended for food production promotes mutations of some chromosomal genes such as gyrA-parC and mphA, which are responsible for quinolone and azithromycin resistance, respectively. Also, the horizontal transfer of resistance genes as groups (“cassettes”) or plasmids makes the spread of resistance to different bacterial genera possible, among which there could be pathogens. The World Health Organization considers the emergence of multidrug-resistant pathogenic bacteria as a health problem, since the illnesses caused by them complicate the treatment and increase the morbidity and mortality rates. The complication in the illness treatment caused by a multidrug-resistant pathogen causes economic losses to patients for the payment of long stays in hospitals and also causes economic losses to companies due to the absenteeism of their workers.",book:{id:"8133",slug:"pathogenic-bacteria",title:"Pathogenic Bacteria",fullTitle:"Pathogenic Bacteria"},signatures:"Lilia M. Mancilla-Becerra, Teresa Lías-Macías, Cristina L. Ramírez-Jiménez and Jeannette Barba León",authors:[{id:"81852",title:"D.Sc.",name:"Jeannette",middleName:null,surname:"Barba-León",slug:"jeannette-barba-leon",fullName:"Jeannette Barba-León"},{id:"307705",title:"MSc.",name:"Lilia Mercedes",middleName:null,surname:"Mancilla-Becerra",slug:"lilia-mercedes-mancilla-becerra",fullName:"Lilia Mercedes Mancilla-Becerra"},{id:"307706",title:"BSc.",name:"Teresa",middleName:null,surname:"Lías-Macías",slug:"teresa-lias-macias",fullName:"Teresa Lías-Macías"},{id:"307707",title:"BSc.",name:"Cristina Lizbeth",middleName:null,surname:"Ramírez-Jiménez",slug:"cristina-lizbeth-ramirez-jimenez",fullName:"Cristina Lizbeth Ramírez-Jiménez"}]}],onlineFirstChaptersFilter:{topicId:"409",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:49,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:null},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",country:{name:"Romania"}}},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356823",title:"MSc.",name:"Seonghee",middleName:null,surname:"Min",slug:"seonghee-min",fullName:"Seonghee Min",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Daegu University",country:{name:"Korea, South"}}},{id:"353307",title:"Prof.",name:"Yoosoo",middleName:null,surname:"Oh",slug:"yoosoo-oh",fullName:"Yoosoo Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Yoosoo Oh received his Bachelor's degree in the Department of Electronics and Engineering from Kyungpook National University in 2002. He obtained his Master’s degree in the Department of Information and Communications from Gwangju Institute of Science and Technology (GIST) in 2003. In 2010, he received his Ph.D. degree in the School of Information and Mechatronics from GIST. In the meantime, he was an executed team leader at Culture Technology Institute, GIST, 2010-2012. In 2011, he worked at Lancaster University, the UK as a visiting scholar. In September 2012, he joined Daegu University, where he is currently an associate professor in the School of ICT Conver, Daegu University. Also, he served as the Board of Directors of KSIIS since 2019, and HCI Korea since 2016. From 2017~2019, he worked as a center director of the Mixed Reality Convergence Research Center at Daegu University. From 2015-2017, He worked as a director in the Enterprise Supporting Office of LINC Project Group, Daegu University. His research interests include Activity Fusion & Reasoning, Machine Learning, Context-aware Middleware, Human-Computer Interaction, etc.",institutionString:null,institution:{name:"Daegu Gyeongbuk Institute of Science and Technology",country:{name:"Korea, South"}}},{id:"262719",title:"Dr.",name:"Esma",middleName:null,surname:"Ergüner Özkoç",slug:"esma-erguner-ozkoc",fullName:"Esma Ergüner Özkoç",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Başkent University",country:{name:"Turkey"}}},{id:"346530",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Kaya",slug:"ibrahim-kaya",fullName:"Ibrahim Kaya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"419199",title:"Dr.",name:"Qun",middleName:null,surname:"Yang",slug:"qun-yang",fullName:"Qun Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Auckland",country:{name:"New Zealand"}}},{id:"351158",title:"Prof.",name:"David W.",middleName:null,surname:"Anderson",slug:"david-w.-anderson",fullName:"David W. Anderson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Calgary",country:{name:"Canada"}}}]}},subseries:{item:{id:"24",type:"subseries",title:"Computer Vision",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11420,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"1177",title:"Prof.",name:"Antonio",middleName:"J. R.",surname:"Neves",slug:"antonio-neves",fullName:"Antonio Neves",profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"220565",title:"Dr.",name:"Jucheng",middleName:null,surname:"Yang",slug:"jucheng-yang",fullName:"Jucheng Yang",profilePictureURL:"https://mts.intechopen.com/storage/users/220565/images/5988_n.jpg",institutionString:null,institution:{name:"Tianjin University of Technology",institutionURL:null,country:{name:"China"}}},{id:"29299",title:"Prof.",name:"Serestina",middleName:null,surname:"Viriri",slug:"serestina-viriri",fullName:"Serestina Viriri",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOalQAG/Profile_Picture_1620817405517",institutionString:null,institution:{name:"University of KwaZulu-Natal",institutionURL:null,country:{name:"South Africa"}}},{id:"315933",title:"Dr.",name:"Yalın",middleName:null,surname:"Baştanlar",slug:"yalin-bastanlar",fullName:"Yalın Baştanlar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpr7hQAA/Profile_Picture_1621430127547",institutionString:null,institution:{name:"Izmir Institute of Technology",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:8,paginationItems:[{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81234",title:"Cognitive Visual Tracking of Hand Gestures in Real-Time RGB Videos",doi:"10.5772/intechopen.103170",signatures:"Richa Golash and Yogendra Kumar Jain",slug:"cognitive-visual-tracking-of-hand-gestures-in-real-time-rgb-videos",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"80064",title:"Robust Template Update Strategy for Efficient Visual Object Tracking",doi:"10.5772/intechopen.101800",signatures:"Awet Haileslassie Gebrehiwot, Jesus Bescos and Alvaro Garcia-Martin",slug:"robust-template-update-strategy-for-efficient-visual-object-tracking",totalDownloads:61,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"80109",title:"Siamese-Based Attention Learning Networks for Robust Visual Object Tracking",doi:"10.5772/intechopen.101698",signatures:"Md. Maklachur Rahman and Soon Ki Jung",slug:"siamese-based-attention-learning-networks-for-robust-visual-object-tracking",totalDownloads:88,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"79005",title:"Smart-Road: Road Damage Estimation Using a Mobile Device",doi:"10.5772/intechopen.100289",signatures:"Izyalith E. Álvarez-Cisneros, Blanca E. Carvajal-Gámez, David Araujo-Díaz, Miguel A. Castillo-Martínez and L. Méndez-Segundo",slug:"smart-road-road-damage-estimation-using-a-mobile-device",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"78576",title:"A Study on Traditional and CNN Based Computer Vision Sensors for Detection and Recognition of Road Signs with Realization for ADAS",doi:"10.5772/intechopen.99416",signatures:"Vinay M. Shivanna, Kuan-Chou Chen, Bo-Xun Wu and Jiun-In Guo",slug:"a-study-on-traditional-and-cnn-based-computer-vision-sensors-for-detection-and-recognition-of-road-s",totalDownloads:92,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"77617",title:"Adsorption-Semiconductor Sensor Based on Nanosized SnO2 for Early Warning of Indoor Fires",doi:"10.5772/intechopen.98989",signatures:"Nelli Maksymovych, Ludmila Oleksenko and George Fedorenko",slug:"adsorption-semiconductor-sensor-based-on-nanosized-sno2-for-early-warning-of-indoor-fires",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"onlineFirst.detail",path:"/online-first/80400",hash:"",query:{},params:{id:"80400"},fullPath:"/online-first/80400",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()