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1. Introduction  

Our goal is as follows: build a suite/swarm of (very) small robots that can search a room for 
a “target”.  We envision that the robots will be about the size of a quarter dollar, or smaller, 
and have a sensor or sensors that “sniff” out the desired target.  For example, the target 
could be a bomb and the robot sensors would be a chemical detectors that can distinguish 
the bomb from its surroundings.  Or the target could be a radiation leak and the sensors 
would be radiation detectors.  In each search scenario, we assume that the target gives off a 
diffuse residue that can be detected with a sensor. 
It is not very efficient to have the suite of robots looking randomly around the room hoping 
to “get lucky” and find the target.  There needs to be some way to coordinate the 
movements of the many robots.  There needs to be an algorithm that can guide the robots 
toward promising regions to search while not getting distracted by local variations.  The 
search algorithm must have the following constraints: 
 The search algorithm should be distributed among the many robots.  If the algorithm is 

located in one robot, then the system will fail if that robot fails.   
 The search algorithm should be computationally simple.  The processor on each bot is 

small, has limited memory, and there is a limited power source (a battery) so the 
processor needs to be power efficient.  Therefore, the processor will be a simple 
processor.    

 The algorithm needs to be scalable from one robot up to 10’s, 100’s, even 1000’s of 
robots.  The upper limit on the number of robots will be set by the communication links 
among the robots; there needs to be a way to share information among the robots 
without requiring lots of communication traffic. 

 The search algorithm must allow for contiguous movement of the robots.   
This chapter will describe two search strategies for robot swarms that are based on 
biological systems.  The first search strategy is based on the flocking behavior of birds and 
fishes. This flocking behavior is the inspiration behind the Particle Swarm Optimization 
(PSO) algorithm that has been used in software for many types of optimization problems. In 
the PSO algorithm the potential solutions, called particles, “fly” through the problem space 
by following some simple rules.  All of the particles have a fitness value based on the value 
or measurement at the particle’s position and have velocities which direct the flight of the 
particles. The velocity of each particle is updated based on the particle’s current velocity as 
well as the best fitness of any particle in the group.  
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We describe how the PSO algorithm can be embedded into a robot swarm by letting each 
bot’s behavior be like a particle in the PSO. We call the algorithm the physically embedded 
PSO (pePSO). The bots swarm throughout the search space and take measurements. Over 
time, they cluster near the peak(s) or targets. We show through both 2D simulation results 
and robot hardware results that the pePSO effectively finds the targets with a minimum 
number of bot-bot communications.  
The second search strategy is based on the trophallactic behavior of social insects. 
Trophallaxis is the exchange of fluid by direct mouth-to-mouth contact. This phenomenon is 
observed in ants, bees, wasps and even dogs and birds. In our trophallaxis-based algorithm, 
the bots do not actually exchange information but instead make sensor measurements when 
two or more bots/particles are “in contact”. The bots remain stationary for a certain time 
that is proportional to the measurement value. Bots thus cluster in areas of the search space 
that have high fitness/measurement values.  
This new trophallaxis-based search algorithm has several advantages over other swarm-
based search techniques. First, no bot-bot communication is required. Thus, there is no 
concern with communication radius, protocol, or bandwidth. Second, the bots do not have 
to know their position. During the search, the bot/particle moves randomly except when it 
collides and stops, takes a measurement, and waits. At the end of the search, the cluster 
locations can be determined from a remote camera, special-purpose robot, or human 
canvassing. 
This paper is organized as follows: section 2 gives background on the Particle Swarm 
Optimization algorithm and its use in robot swarms and section 3 gives results from 
simulations and hardware results of embedding the PSO into a robot swarm. Section 4 
discusses the trophallaxis- based search algorithm and section 5 gives simulation results 
using the trophallaxis algorithm. In section 6 we give our conclusions.   

 
2. Particle Swarm Optimization and robots  

In Particle Swarm Optimization (PSO) (Eberhart & Kennedy, 1995; Clerc &Kennedy, 2002; 
Eberhart & Shi, 2004), the potential solutions, called particles, “fly” through the problem 
space by following some simple rules.  All of the particles have fitness values based on their 
position and have velocities which direct the flight of the particles.  PSO is initialized with a 
group of random particles (solutions), and then searches for optima by updating 
generations. In every iteration, each particle is updated by following two "best" values. The 
first one is the best solution (fitness) the particle has achieved so far.  This value is called 
pbest. Another "best" value that is tracked by the particle swarm optimizer is the best value 
obtained so far by any particle within the neighborhood. This best value is a neighborhood 
or local best and called lbest.  
After finding the two best values, the particle updates its velocity and positions with 
following equations:  
    npnlbestrcnpnpbestrcnviwnv  *2*2*1*11

 (1) 

 
11  nvnpnp

 (2) 

 
wi is the inertia coefficient which slows velocity over time; vn is the current particle velocity; 

 

pn is the current particle position in the search space; r1 and r2 are random numbers 
between (0,1); c1 and c2 are learning factors.  The stop condition is usually the maximum 
number of allowed iterations for PSO to execute or the minimum error requirement.   
Because of the required search algorithm characteristics listed in section 1, we chose the PSO 
as the starting point for the search control algorithm.  The PSO is computationally simple.  It 
requires only four multiplies and four add/subtracts to update the velocity and then one 
add to update the position. The PSO can also be a distributed algorithm. Each 
agent/particle/bot can update its own velocity and position.  The only external information 
is the local best – the best value by any particle within the neighborhood.  The calculation of 
the local best can be done with a simple comparative statement.  Thus, each bot does not 
need to know the results from each member of the population as in many traditional 
schemes.  (Though in some versions of the PSO, the lbest is replaced by gbest, the global 
best – the best value of any particle within the population.) 
The PSO also allows the contiguous movement of the bots.  The updated position is relative 
to the current position so there are no jump changes in position or random movements.  If 
there are constraints on the movement of the bot during each iteration, then limitations can 
be placed on the maximum and minimum velocity that is allowed for each particle/bot.   
We propose embedding the PSO into a swarm of robots.  In our approach, each bot is 
behaves as one particle in the PSO. Thus, each bot moves based on the  PSO update 
equations (eqs. 1 and 2), makes a measurement and then broadcasts to the other bots in the 
swarm if it finds a new lbest measurement. We make some slight changes to the classic PSO 
algorithm to make it work with a robot swarm, so we call our algorithm the physically-
embedded PSO (pePSO).  
Other authors have investigated using biological principles (Zarzhitsky & Spears, 2005; 
Valdastri et al., 2006; Schmickl & Crailsheim, 2006; Triannni et al., 2006) and PSO-type 
algorithms (Hayes et al., 2000; Hayes et al., 2002, Doctor et al., 2004; Pugh & Martinoli, 2006; 
Pugh & Martinoli, 2007; Jatmiko et al., 2006; Jatmiko et al., 2007) with multiple (simple) 
robots for search applications.  Specifically, Hayes et al. report using autonomous mobile 
robots for beacon localization (Hayes et al., 2000) and plume tracking/odor source 
localization (Hayes et al., 2002); they base their search techniques on biological principles 
(surge “upwind”) but do not use the PSO algorithm directly.  Doctor et al. (Doctor et al., 
2004) discuss using the PSO for multiple robot searches.  Their focus is on optimizing the 
parameters of the search PSO and do not consider the scalability of the standard PSO to 
large numbers of robots.   
There are at least three other research groups that have investigated using mobile robots to 
do searches under the control of a PSO algorithm.  Pugh et al. (Pugh & Martinoli, 2006; Pugh 
& Martinoli, 2007), explored using PSO on problems in noisy environments, focusing on 
unsupervised robotic learning.  They used the PSO to evolve a robot controller that avoids 
obstacles and finds the source.  They also investigated the possibility of using PSO without 
global position information.  Jatmiko et al. (Jatmiko et al., 2006; Jatmiko et al., 2007) used 
mobile robots for plume detection and traversal.  They utilized a modified form of the PSO 
to control the robots and consider how the robots respond to search space changes such as 
turbulence and wind changes.  Akat and Gazi (Akat  and Gazi, 2008) propose a version of 
the PSO for robot swarms that uses dynamic neighborhoods and asynchronous updates.  

www.intechopen.com



Bio-inspired search strategies for robot swarms 3

 

We describe how the PSO algorithm can be embedded into a robot swarm by letting each 
bot’s behavior be like a particle in the PSO. We call the algorithm the physically embedded 
PSO (pePSO). The bots swarm throughout the search space and take measurements. Over 
time, they cluster near the peak(s) or targets. We show through both 2D simulation results 
and robot hardware results that the pePSO effectively finds the targets with a minimum 
number of bot-bot communications.  
The second search strategy is based on the trophallactic behavior of social insects. 
Trophallaxis is the exchange of fluid by direct mouth-to-mouth contact. This phenomenon is 
observed in ants, bees, wasps and even dogs and birds. In our trophallaxis-based algorithm, 
the bots do not actually exchange information but instead make sensor measurements when 
two or more bots/particles are “in contact”. The bots remain stationary for a certain time 
that is proportional to the measurement value. Bots thus cluster in areas of the search space 
that have high fitness/measurement values.  
This new trophallaxis-based search algorithm has several advantages over other swarm-
based search techniques. First, no bot-bot communication is required. Thus, there is no 
concern with communication radius, protocol, or bandwidth. Second, the bots do not have 
to know their position. During the search, the bot/particle moves randomly except when it 
collides and stops, takes a measurement, and waits. At the end of the search, the cluster 
locations can be determined from a remote camera, special-purpose robot, or human 
canvassing. 
This paper is organized as follows: section 2 gives background on the Particle Swarm 
Optimization algorithm and its use in robot swarms and section 3 gives results from 
simulations and hardware results of embedding the PSO into a robot swarm. Section 4 
discusses the trophallaxis- based search algorithm and section 5 gives simulation results 
using the trophallaxis algorithm. In section 6 we give our conclusions.   

 
2. Particle Swarm Optimization and robots  

In Particle Swarm Optimization (PSO) (Eberhart & Kennedy, 1995; Clerc &Kennedy, 2002; 
Eberhart & Shi, 2004), the potential solutions, called particles, “fly” through the problem 
space by following some simple rules.  All of the particles have fitness values based on their 
position and have velocities which direct the flight of the particles.  PSO is initialized with a 
group of random particles (solutions), and then searches for optima by updating 
generations. In every iteration, each particle is updated by following two "best" values. The 
first one is the best solution (fitness) the particle has achieved so far.  This value is called 
pbest. Another "best" value that is tracked by the particle swarm optimizer is the best value 
obtained so far by any particle within the neighborhood. This best value is a neighborhood 
or local best and called lbest.  
After finding the two best values, the particle updates its velocity and positions with 
following equations:  
    npnlbestrcnpnpbestrcnviwnv  *2*2*1*11

 (1) 

 
11  nvnpnp

 (2) 

 
wi is the inertia coefficient which slows velocity over time; vn is the current particle velocity; 

 

pn is the current particle position in the search space; r1 and r2 are random numbers 
between (0,1); c1 and c2 are learning factors.  The stop condition is usually the maximum 
number of allowed iterations for PSO to execute or the minimum error requirement.   
Because of the required search algorithm characteristics listed in section 1, we chose the PSO 
as the starting point for the search control algorithm.  The PSO is computationally simple.  It 
requires only four multiplies and four add/subtracts to update the velocity and then one 
add to update the position. The PSO can also be a distributed algorithm. Each 
agent/particle/bot can update its own velocity and position.  The only external information 
is the local best – the best value by any particle within the neighborhood.  The calculation of 
the local best can be done with a simple comparative statement.  Thus, each bot does not 
need to know the results from each member of the population as in many traditional 
schemes.  (Though in some versions of the PSO, the lbest is replaced by gbest, the global 
best – the best value of any particle within the population.) 
The PSO also allows the contiguous movement of the bots.  The updated position is relative 
to the current position so there are no jump changes in position or random movements.  If 
there are constraints on the movement of the bot during each iteration, then limitations can 
be placed on the maximum and minimum velocity that is allowed for each particle/bot.   
We propose embedding the PSO into a swarm of robots.  In our approach, each bot is 
behaves as one particle in the PSO. Thus, each bot moves based on the  PSO update 
equations (eqs. 1 and 2), makes a measurement and then broadcasts to the other bots in the 
swarm if it finds a new lbest measurement. We make some slight changes to the classic PSO 
algorithm to make it work with a robot swarm, so we call our algorithm the physically-
embedded PSO (pePSO).  
Other authors have investigated using biological principles (Zarzhitsky & Spears, 2005; 
Valdastri et al., 2006; Schmickl & Crailsheim, 2006; Triannni et al., 2006) and PSO-type 
algorithms (Hayes et al., 2000; Hayes et al., 2002, Doctor et al., 2004; Pugh & Martinoli, 2006; 
Pugh & Martinoli, 2007; Jatmiko et al., 2006; Jatmiko et al., 2007) with multiple (simple) 
robots for search applications.  Specifically, Hayes et al. report using autonomous mobile 
robots for beacon localization (Hayes et al., 2000) and plume tracking/odor source 
localization (Hayes et al., 2002); they base their search techniques on biological principles 
(surge “upwind”) but do not use the PSO algorithm directly.  Doctor et al. (Doctor et al., 
2004) discuss using the PSO for multiple robot searches.  Their focus is on optimizing the 
parameters of the search PSO and do not consider the scalability of the standard PSO to 
large numbers of robots.   
There are at least three other research groups that have investigated using mobile robots to 
do searches under the control of a PSO algorithm.  Pugh et al. (Pugh & Martinoli, 2006; Pugh 
& Martinoli, 2007), explored using PSO on problems in noisy environments, focusing on 
unsupervised robotic learning.  They used the PSO to evolve a robot controller that avoids 
obstacles and finds the source.  They also investigated the possibility of using PSO without 
global position information.  Jatmiko et al. (Jatmiko et al., 2006; Jatmiko et al., 2007) used 
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3. pePSO results 

3.1 Simulation Conditions 
We simulated the pePSO using three different test functions and five different target points 
with each function.  The five different target points are shown in Figure 1. Only one target 
point was active during each simulation run; that is, there is only one target value in the 
search space at a time. 
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Fig. 1. Map of simulation search space scaled to cover -1 to +1 and showing the 5 different 
target point locations.  
 
The three functions used in the simulation were the parabolic/spherical function, Rastrigin 
function, and Rosenbrock function.  The three test functions are given by: 
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where (x,y) is the position of the bot/particle and (xtarget, ytarget) is the position of the target 
point.  The spherical function was chosen because it approximates the expected dissipation 
pattern of chemicals, heat, etc that would be emitted by real-world targets.  The Rastrigin 
and Rosenbrock functions were chosen because they are commonly used functions in PSO 
testing and they approximate a search space with obstacles and undulations.  The 
Rosenbrock function used in our simulations is slightly different than the one reported in 
other simulations.  We have shifted the minimum value of the function to the target location 

 

instead of offset by (1,1) in x and y.  This ensures that the target point is within the search 
space.  
Plots of the three test functions are shown in Figure 2. In each case, we are trying to find the 
location of the global minimum.  The size of the search spaces were -100 to 100 for the 
parabolic function and -5.1 to 5.1 for the Rastrigin and Rosenbrock functions.  (The 
dimensions correspond roughly to meters as we set the velocity on the bot based on meters 
per second.)  Unlike most PSO simulations, the search space boundary for our simulations 
represents a “hard” border – the particles/bots can not go outside the search space.  We use 
a hard border because we want to approximate the conditions of actual robots searching in a 
room or some other confined space.  The target point locations shown in Figure 1 were 
scaled for each of the search spaces. The (x,y) target locations are given in Table 1. 
 

Target 
point 

Parabolic Rastrigin/ 
Rosenbrock 

1 (0,0) (0,0) 
2 (94.7, 90.0) (4.86, 4.61) 
3 (45.1, -98.5) (2.3, -5.02) 
4 (-48.0, -52.7) (-2.46, -2.71) 
5 (-79.6, 29.9) (-4.1, 1.54) 

Table 1. Target Locations for each of the three Test Functions 
 

 

 
Fig. 2. Plots of three test functions. (a) Parabolic function with contours. Min value (the 
target value) is at [-4.1 1.54]; (b) Rastrigin function with min (target) point at -2.46 -2.71; (b) 
Rosenbrock function with target point = [0 0]. Min value is at a saddle point.  
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The simulation incorporated the mobility limitations of our small robots.  The max turning 
radius allowed was 36 degrees and the maximum velocity was 0.9 m/s.  The bots were 
positioned randomly around the search space at t = 0.  In our expected deployment scenario 
the bots will most likely be “dropped off” at a particular point (e.g., near a door or window) 
and not dispersed randomly about the search space.  However, we can easily incorporate a 
dispersion algorithm (Hsiang  et al. 2002; Morlok & Gini, 2004) to spread the bots 
throughout the search space before beginning the search phase using pePSO. 
For the simulation results, we used the following parameter values.  Inertia coefficient, wi, 
was set to 0.9.  The max velocity of the bots was set to 0.9 m/s.  Note that this is different 
than the old Vmax parameter in the original version of the PSO.  We set an initial v for each 
bot/particle to simulate the behavior of the physical robot.  The c1 and c2 coefficients were 
both set to 2.1.  Since only three bots were used, the lbest topology was the same as gbest.  
That is, all of the bots communicated gbest and gbest location with all of the other bots.  
One major difference between our simulations and the PSO results reported in the literature 
is how we calculate a successful search, and, relatedly, the stop condition.  A successful 
search occurred when a bot/particle got within a tolerance of 0.2 in the x and y dimensions 
of the target location.  Most PSO researchers track function value but we used location 
because of our search application.  The simulation stopped when a bot got near the target or 
when 5400 function evaluations (about 15 minuntes) elapsed.  Compared to other results, 
5400 is a relatively small number of function evaluations but we want the bots to find the 
target within a reasonable time period.   

 
3.2 Simulation results 
To evaluate the effectiveness of the pePSO, we made several simulation runs.  An effective 
“hit” occurred when one of the bots found the global peak within 15 minutes of simulation 
time (5400 function iterations).  We used the 5 different target points and did 200 test cases 
for each target point for a total of 1000 runs for each test function.  In each test case, the 
initial start locations of the bots were different.  We evaluated the overall effectiveness of the 
algorithm (i.e., how many times it found the “target”) and compared the pePSO to the 
standard PSO.  In tables 2, 3 and 4 we compare the pePSO to the standard PSO with the 
number of particles set to 3.  We modified the standard PSO to calculate the percent found 
(number of hits) based on proximity to the target location rather than on the function value 
so that it was consistent with the pePSO. The tables report the percentage of targets found.  
The results are shown for each of the three test functions as well as the total for all five target 
points. 
For all three test functions, the pePSO performed much better than the PSO using same 
number of particles. 

 Target point 
1 

Target point 
2 

Target point 
3 

Target point 
4 

Target 
point 5 

Tot
al 

PSO 100 38.5 51 98 90.5 75.6 
pePSO 99.5 99.5 99.5 99.5 100 99.6 

Table 2. Parabolic Function, Results show the percent of targets found (out of 200 searches) 
for each of the five target points and also the overall results.  
 

 

 Target 
point 1 

Target 
point 2 

Target 
point 3 

Target 
point 4 

Target 
point 5 

Total 

PSO 31 33.5 48 26 19 31.5 
pePSO 97.5 96.5 65.5 99.5 92 90.2 

Table 3. Rastrigin Function. Results show the percent of targets foune (out of 200 searches) 
for each of the five target points and also the overall results. 
 

 Target 
point 1 

Target 
point 2 

Target 
point 3 

Target 
point 4 

Target 
point 5 

Total 

PSO 75 53 29.5 51.5 45 50.8 
pePSO 86.5 92 55.5 88.5 92 82.9 

Table 4. Rosenbrock Function. Results show the percent of targets foune (out of 200 
searches) for each of the five target points and also the overall results. 
 
The results in Tables 2-4 show that none of the algorithms found the target location 100% of 
the time, even with a relatively easy problem like the parabolic function.  There are a 
number of reasons for the missed detections. First, we declared a failed search after 
relatively few function evaluations (relative compared to other researchers’ results); we 
limited both the standard PSO and the pePSO to 5400 function evaluations.  Second, we are 
not using very many particles/bots. Third, we have placed some of the target locations at 
positions near the edge of the search space which makes it somewhat more difficult for the 
PSO to find them.  

 
3.3 Hardware test conditions 
To investigate the effectiveness of the pePSO algorithm, we did several hardware 
experiments.  In the experiments, a diffuse light source was placed near the ceiling of a dark 
room and pointed downward.  Bots with light sensors were placed at various starting 
positions about 2 m apart to see (a) how often and (b) how quickly they could find the 
brightest spot of light in the room. 
The layout of the test area is shown in Figure 3.  The hatched boxes in the middle represent the 
obstacles that we placed in the search space for the second half of the testing. The highest 
concentration of light is immediately to the left of the vertical obstacle. Since we are using a 
diffuse light source, the global best is actually a rectangle approximately .25 m by .3 m. 
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The simulation incorporated the mobility limitations of our small robots.  The max turning 
radius allowed was 36 degrees and the maximum velocity was 0.9 m/s.  The bots were 
positioned randomly around the search space at t = 0.  In our expected deployment scenario 
the bots will most likely be “dropped off” at a particular point (e.g., near a door or window) 
and not dispersed randomly about the search space.  However, we can easily incorporate a 
dispersion algorithm (Hsiang  et al. 2002; Morlok & Gini, 2004) to spread the bots 
throughout the search space before beginning the search phase using pePSO. 
For the simulation results, we used the following parameter values.  Inertia coefficient, wi, 
was set to 0.9.  The max velocity of the bots was set to 0.9 m/s.  Note that this is different 
than the old Vmax parameter in the original version of the PSO.  We set an initial v for each 
bot/particle to simulate the behavior of the physical robot.  The c1 and c2 coefficients were 
both set to 2.1.  Since only three bots were used, the lbest topology was the same as gbest.  
That is, all of the bots communicated gbest and gbest location with all of the other bots.  
One major difference between our simulations and the PSO results reported in the literature 
is how we calculate a successful search, and, relatedly, the stop condition.  A successful 
search occurred when a bot/particle got within a tolerance of 0.2 in the x and y dimensions 
of the target location.  Most PSO researchers track function value but we used location 
because of our search application.  The simulation stopped when a bot got near the target or 
when 5400 function evaluations (about 15 minuntes) elapsed.  Compared to other results, 
5400 is a relatively small number of function evaluations but we want the bots to find the 
target within a reasonable time period.   

 
3.2 Simulation results 
To evaluate the effectiveness of the pePSO, we made several simulation runs.  An effective 
“hit” occurred when one of the bots found the global peak within 15 minutes of simulation 
time (5400 function iterations).  We used the 5 different target points and did 200 test cases 
for each target point for a total of 1000 runs for each test function.  In each test case, the 
initial start locations of the bots were different.  We evaluated the overall effectiveness of the 
algorithm (i.e., how many times it found the “target”) and compared the pePSO to the 
standard PSO.  In tables 2, 3 and 4 we compare the pePSO to the standard PSO with the 
number of particles set to 3.  We modified the standard PSO to calculate the percent found 
(number of hits) based on proximity to the target location rather than on the function value 
so that it was consistent with the pePSO. The tables report the percentage of targets found.  
The results are shown for each of the three test functions as well as the total for all five target 
points. 
For all three test functions, the pePSO performed much better than the PSO using same 
number of particles. 

 Target point 
1 

Target point 
2 

Target point 
3 

Target point 
4 

Target 
point 5 

Tot
al 

PSO 100 38.5 51 98 90.5 75.6 
pePSO 99.5 99.5 99.5 99.5 100 99.6 

Table 2. Parabolic Function, Results show the percent of targets found (out of 200 searches) 
for each of the five target points and also the overall results.  
 

 

 Target 
point 1 

Target 
point 2 

Target 
point 3 

Target 
point 4 

Target 
point 5 

Total 

PSO 31 33.5 48 26 19 31.5 
pePSO 97.5 96.5 65.5 99.5 92 90.2 

Table 3. Rastrigin Function. Results show the percent of targets foune (out of 200 searches) 
for each of the five target points and also the overall results. 
 

 Target 
point 1 

Target 
point 2 

Target 
point 3 

Target 
point 4 

Target 
point 5 

Total 

PSO 75 53 29.5 51.5 45 50.8 
pePSO 86.5 92 55.5 88.5 92 82.9 

Table 4. Rosenbrock Function. Results show the percent of targets foune (out of 200 
searches) for each of the five target points and also the overall results. 
 
The results in Tables 2-4 show that none of the algorithms found the target location 100% of 
the time, even with a relatively easy problem like the parabolic function.  There are a 
number of reasons for the missed detections. First, we declared a failed search after 
relatively few function evaluations (relative compared to other researchers’ results); we 
limited both the standard PSO and the pePSO to 5400 function evaluations.  Second, we are 
not using very many particles/bots. Third, we have placed some of the target locations at 
positions near the edge of the search space which makes it somewhat more difficult for the 
PSO to find them.  

 
3.3 Hardware test conditions 
To investigate the effectiveness of the pePSO algorithm, we did several hardware 
experiments.  In the experiments, a diffuse light source was placed near the ceiling of a dark 
room and pointed downward.  Bots with light sensors were placed at various starting 
positions about 2 m apart to see (a) how often and (b) how quickly they could find the 
brightest spot of light in the room. 
The layout of the test area is shown in Figure 3.  The hatched boxes in the middle represent the 
obstacles that we placed in the search space for the second half of the testing. The highest 
concentration of light is immediately to the left of the vertical obstacle. Since we are using a 
diffuse light source, the global best is actually a rectangle approximately .25 m by .3 m. 

www.intechopen.com



Swarm Robotics, From Biology to Robotics8

 

 
Fig. 3. Graphical representation of test area.  Dimensions shown are in meters. Figure shows 
two obstacles and starred area is location of peak light intensity. 
 
To make the pePSO work in a robotic swarm, we had to make several adjustments.  First, 
the bots determine their position by triangulating from three cricket motes set up as 
beacons. To correct for any missed packets, the bots are programmed to move to the next 
position and then wait for two consecutive “clean” measurements (distance measurements 
within 2 cm of each other) from all three beacons.  This wait leads to relatively long search 
times. 
A second adjustment had to be made because of mechanical limitations in each bot.  Since 
the bots steer with the front two wheels, the bots move in arcs rather than straight lines (see 
Figure 4). Each bot moves toward the desired position in the search space but upon arrival 
at the destination point, the orientation of the bot, as given by the direction of the wheels, is 
usually skewed relative to the movement.  To compensate, we updated the bot’s orientation 
angle at each iteration based on the bot’s current position and its previous position.  This 
eliminates the buildup of orientation errors that occur when a strict dead reckoning system 
for orientation is used.  
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Fig. 4. Illustration of bot orientation mismatch.  
 

 

A third adjustment was required because of the size of the bots.  Unlike a simulation-only 
PSO, the hardware bots can get “stuck” at an obstacle or collide with another bot (particle).  
Once a bot got stuck or collided, we programmed the bot to back up and turn right. This 
allows the bot to move around long obstacles, such as a wall, even though it may require 
more than one cycle of backing up and turning to avoid.   

 
3.4 Hardware results 
During the hardware experiments, we programmed each bot in the swarm with identical 
programs.  (The only difference is that each bot has a different identification number.)  The 
PSO parameters used were c1 = 2, c2 = 2, and wi = 1.0.  We tried using wi = 0.8 but it slowed 
the bots down considerably and led to many failed searches.    Each bot was programmed to 
move in the desired direction for approximately 0.5 sec.  The bot would then make a 
measurement, determine its new position, calculate its desired movement direction based 
on the PSO update, orient its wheels to that direction, if possible, and then move for 0.5 sec. 
The search was ended when there had been 20 iterations of the algorithm with no new local 
best discovered.  We made some test runs using a stop condition with 10 iterations with no 
new lbest but we determined that 10 was insufficient.  
Figure 5 shows the path traced out by 1 bot during a search sequence.  The x and y axes are 
to scale and the axes are in cm. The asterisks (*) marks in the figures represent positions 
where a new local best was found.  The rectangular box is the peak area of the search space.  
The bot starts in lower right corner. It moves up (north), finds new lbests and continues 
upward. When it starts to move away from the peak, it circles clockwise and then begins 
moving to the left (westward).  When the light intensity measurements begin to taper off 
again, the bot circles counterclockwise back toward its previous best.  The circle behavior is 
because the bot is limited in its turning radius – it can not make a sharp turn.  Thus, it must 
move toward the global best in a roundabout fashion. Eventually, it settles on to the peak 
light value.  
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Fig. 5. Path in search space with no obstacles for 1 bot. Asterisks show positions where lbests 
were recorded.  
 
The PSO algorithm was tested using swarm sizes of 1, 2 and 3 bots.  (The 1-bot swarm was 
merely for baseline comparison.)  Ten runs were made for each of the three cases.  We 
tracked how many times the bots found the brightest spot and how long it took for the bots 
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position and then wait for two consecutive “clean” measurements (distance measurements 
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times. 
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Figure 4). Each bot moves toward the desired position in the search space but upon arrival 
at the destination point, the orientation of the bot, as given by the direction of the wheels, is 
usually skewed relative to the movement.  To compensate, we updated the bot’s orientation 
angle at each iteration based on the bot’s current position and its previous position.  This 
eliminates the buildup of orientation errors that occur when a strict dead reckoning system 
for orientation is used.  
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Fig. 4. Illustration of bot orientation mismatch.  
 

 

A third adjustment was required because of the size of the bots.  Unlike a simulation-only 
PSO, the hardware bots can get “stuck” at an obstacle or collide with another bot (particle).  
Once a bot got stuck or collided, we programmed the bot to back up and turn right. This 
allows the bot to move around long obstacles, such as a wall, even though it may require 
more than one cycle of backing up and turning to avoid.   

 
3.4 Hardware results 
During the hardware experiments, we programmed each bot in the swarm with identical 
programs.  (The only difference is that each bot has a different identification number.)  The 
PSO parameters used were c1 = 2, c2 = 2, and wi = 1.0.  We tried using wi = 0.8 but it slowed 
the bots down considerably and led to many failed searches.    Each bot was programmed to 
move in the desired direction for approximately 0.5 sec.  The bot would then make a 
measurement, determine its new position, calculate its desired movement direction based 
on the PSO update, orient its wheels to that direction, if possible, and then move for 0.5 sec. 
The search was ended when there had been 20 iterations of the algorithm with no new local 
best discovered.  We made some test runs using a stop condition with 10 iterations with no 
new lbest but we determined that 10 was insufficient.  
Figure 5 shows the path traced out by 1 bot during a search sequence.  The x and y axes are 
to scale and the axes are in cm. The asterisks (*) marks in the figures represent positions 
where a new local best was found.  The rectangular box is the peak area of the search space.  
The bot starts in lower right corner. It moves up (north), finds new lbests and continues 
upward. When it starts to move away from the peak, it circles clockwise and then begins 
moving to the left (westward).  When the light intensity measurements begin to taper off 
again, the bot circles counterclockwise back toward its previous best.  The circle behavior is 
because the bot is limited in its turning radius – it can not make a sharp turn.  Thus, it must 
move toward the global best in a roundabout fashion. Eventually, it settles on to the peak 
light value.  
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Fig. 5. Path in search space with no obstacles for 1 bot. Asterisks show positions where lbests 
were recorded.  
 
The PSO algorithm was tested using swarm sizes of 1, 2 and 3 bots.  (The 1-bot swarm was 
merely for baseline comparison.)  Ten runs were made for each of the three cases.  We 
tracked how many times the bots found the brightest spot and how long it took for the bots 
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to locate the peak. If twenty iterations of the algorithm passed with no new global best, then 
we declare the search is over. 
The quantitative results are shown in Tables 5 and 6.  The results are for two different search 
spaces: one with no obstacles and one with obstacles.  The table shows the number of bots in 
the swarm, the number of successful (completed) runs, the median search time for all 
searches, the average search time for just the successful searches, the standard deviation of 
the successful search times and the 90% confidence interval for the average time.  The 
confidence interval is based on t-statistics using the successful searches as the degrees of 
freedom. 
 

Runs without obstacles. 
Test 
condition 

Complete 
runs (out of 

10) 

Median time 
(sec) 

Average 
(sec) 

Standard 
deviation (sec) 

Confidence 
Interval (90%) 

pePSO (1 
bot) 

6 118.5 180.2 101 ± 83.1 

pePSO (2 
bots) 

10 177 176.1 68.9 ± 39.9 

pePSO (3 
bots) 

10 133.5 109.6 55.0 ± 31.9 

Phototaxis 
(1 bot) 

9 280 273.8 45.1 ± 28.0 

3 bot (no 
commun) 

10 351.5 362.7 98.7 ± 57.2 

Table 5. Results from using PSO to program a suite of bots with sensor and position 
corrections.  No obstacles in the search space 
 

Test 
condition 

Complete 
runs (out 

of 10) 

Median time 
(sec) 

Average 
(sec) 

Standard 
deviation 

(sec) 

Confidence 
Interval (90%) 

pePSO (1 
bot) 

8 268 250.2 108.6 ± 71.4 

pePSO (2 
bots) 

10 178 181.7 76.1 ± 44.1 

pePSO (3 
bots) 

10 108.5 125.8 65.2 ± 37.8 

3 bot (no 
commun) 

9 290 294.1 111.3 ± 69.0 

Table 6. Results from pePSO in a search space with obstacles 
 
Table 5 also shows the results from searches using a phototaxis approach and using three 
bots without any communication among the bots.  These experiments provide a comparison 
for the effectiveness and search times for the pePSO. For the phototaxis experiments, we 
used a cylinder to make a directional light sensor on one of the bots.  The bot then took light 
intensity measurements as it made a 360 degree loop.  (The loop had a radius of 0.25 m.) The 
bot then moved in the direction of the greatest light reading.  Our test results show that the 
multi-bot pePSO is faster and more effective than the phototaxis approach. 

 

To compare the effectiveness of the multi-bot pePSO, we did a 3 bot search with no 
communication among the bots.  Essentially, each bot moved toward bright regions of the 
room based on the PSO update equation without the lbest term.  If a bot received a higher 
light reading than ever before, then it continued moving in that direction; thus, it is a 
pseudo-gradient method.  The results in Table 6 show that the 3-bot pseudo-gradient 
method was effective (19 out of 20 successful runs) but it was much slower than the 3-bot 
pePSO.  The 3-bot pePSO search is over 55% faster than the pseudo-gradient based 3-bot 
search both with obstacles and without obstacles. 
Increasing the number of bots does two things.  It leads to more successful searches and 
reduces the time to find the peak/best value.  We see that even with the obstacles in the 
search space, the swarm is still able to find the “target” or peak light intensity every time for 
a multi-bot search.  In general, the searches take longer when there are obstacles in the 
search space but the search is still successful.  The times should be used for comparison 
purposes and not necessarily as an absolute reference.  As mentioned earlier, sketchy 
communications with the beacons forced the bots to wait for two consecutive good data 
points at each iteration.  This waiting time greatly increased the search time.  
To overcome the weak signal from one of the beacons, we modified the position algorithm 
to allow the bot to calculate its position with distance data from only two beacons.  The bot 
initially tried to get two consecutive good measurements from all three beacons.  If after 
seven seconds there was still not accurate distance information, then the bot would use the 
distance measurements from two beacons to calculate its (x,y) position.  
During our initial experiments, we noticed that the light sensors on the bots were 
mismatched.  That is, different bots would read different values for the same light level.  
This imbalance led to some erroneous values for the search times.  Specifically, if the bot 
with the lowest light readings found the peak value first, then other bots would circle 
toward that point.  When another bot (with a light sensor that recorded higher light values) 
moved to the same location, it would record a higher light value and the algorithm would 
think a “new” target had been found.  To correct for the different sensor readings, we used 
linear splines for each individual sensor to adjust and match the light sensor outputs of the 
three bots.   

 
4. Trophallaxis and robots 

4.1 Background 
In our trophallaxis-based algorithm, the bots (or, more generally, particles) do not actually 
exchange information but instead make sensor measurements when two or more 
bots/particles are “in contact”. The bots remain stationary for a certain time that is 
proportional to the measurement value. Bots thus cluster in areas of the search space that 
have high fitness/measurement values. Each bot is independent (i.e., not reliant on neighbor 
bot measurements) but must have contact with the other bots to find the peaks.  
This new trophallaxis-based search algorithm has several advantages over other swarm-
based search techniques. First, no bot-bot (particle-particle) communication is required. 
Thus, there is no concern with communication radius, protocol, or bandwidth. Unlike classic 
PSO-based techniques, the bots do not have to be arranged in topologies or communicate 
personal or global best information to any neighbors. The only communication that may be 
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to locate the peak. If twenty iterations of the algorithm passed with no new global best, then 
we declare the search is over. 
The quantitative results are shown in Tables 5 and 6.  The results are for two different search 
spaces: one with no obstacles and one with obstacles.  The table shows the number of bots in 
the swarm, the number of successful (completed) runs, the median search time for all 
searches, the average search time for just the successful searches, the standard deviation of 
the successful search times and the 90% confidence interval for the average time.  The 
confidence interval is based on t-statistics using the successful searches as the degrees of 
freedom. 
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Complete 
runs (out of 

10) 
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Average 
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Standard 
deviation (sec) 

Confidence 
Interval (90%) 

pePSO (1 
bot) 

6 118.5 180.2 101 ± 83.1 

pePSO (2 
bots) 

10 177 176.1 68.9 ± 39.9 

pePSO (3 
bots) 

10 133.5 109.6 55.0 ± 31.9 

Phototaxis 
(1 bot) 

9 280 273.8 45.1 ± 28.0 

3 bot (no 
commun) 

10 351.5 362.7 98.7 ± 57.2 

Table 5. Results from using PSO to program a suite of bots with sensor and position 
corrections.  No obstacles in the search space 
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8 268 250.2 108.6 ± 71.4 
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bots) 

10 178 181.7 76.1 ± 44.1 

pePSO (3 
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10 108.5 125.8 65.2 ± 37.8 

3 bot (no 
commun) 

9 290 294.1 111.3 ± 69.0 

Table 6. Results from pePSO in a search space with obstacles 
 
Table 5 also shows the results from searches using a phototaxis approach and using three 
bots without any communication among the bots.  These experiments provide a comparison 
for the effectiveness and search times for the pePSO. For the phototaxis experiments, we 
used a cylinder to make a directional light sensor on one of the bots.  The bot then took light 
intensity measurements as it made a 360 degree loop.  (The loop had a radius of 0.25 m.) The 
bot then moved in the direction of the greatest light reading.  Our test results show that the 
multi-bot pePSO is faster and more effective than the phototaxis approach. 

 

To compare the effectiveness of the multi-bot pePSO, we did a 3 bot search with no 
communication among the bots.  Essentially, each bot moved toward bright regions of the 
room based on the PSO update equation without the lbest term.  If a bot received a higher 
light reading than ever before, then it continued moving in that direction; thus, it is a 
pseudo-gradient method.  The results in Table 6 show that the 3-bot pseudo-gradient 
method was effective (19 out of 20 successful runs) but it was much slower than the 3-bot 
pePSO.  The 3-bot pePSO search is over 55% faster than the pseudo-gradient based 3-bot 
search both with obstacles and without obstacles. 
Increasing the number of bots does two things.  It leads to more successful searches and 
reduces the time to find the peak/best value.  We see that even with the obstacles in the 
search space, the swarm is still able to find the “target” or peak light intensity every time for 
a multi-bot search.  In general, the searches take longer when there are obstacles in the 
search space but the search is still successful.  The times should be used for comparison 
purposes and not necessarily as an absolute reference.  As mentioned earlier, sketchy 
communications with the beacons forced the bots to wait for two consecutive good data 
points at each iteration.  This waiting time greatly increased the search time.  
To overcome the weak signal from one of the beacons, we modified the position algorithm 
to allow the bot to calculate its position with distance data from only two beacons.  The bot 
initially tried to get two consecutive good measurements from all three beacons.  If after 
seven seconds there was still not accurate distance information, then the bot would use the 
distance measurements from two beacons to calculate its (x,y) position.  
During our initial experiments, we noticed that the light sensors on the bots were 
mismatched.  That is, different bots would read different values for the same light level.  
This imbalance led to some erroneous values for the search times.  Specifically, if the bot 
with the lowest light readings found the peak value first, then other bots would circle 
toward that point.  When another bot (with a light sensor that recorded higher light values) 
moved to the same location, it would record a higher light value and the algorithm would 
think a “new” target had been found.  To correct for the different sensor readings, we used 
linear splines for each individual sensor to adjust and match the light sensor outputs of the 
three bots.   

 
4. Trophallaxis and robots 

4.1 Background 
In our trophallaxis-based algorithm, the bots (or, more generally, particles) do not actually 
exchange information but instead make sensor measurements when two or more 
bots/particles are “in contact”. The bots remain stationary for a certain time that is 
proportional to the measurement value. Bots thus cluster in areas of the search space that 
have high fitness/measurement values. Each bot is independent (i.e., not reliant on neighbor 
bot measurements) but must have contact with the other bots to find the peaks.  
This new trophallaxis-based search algorithm has several advantages over other swarm-
based search techniques. First, no bot-bot (particle-particle) communication is required. 
Thus, there is no concern with communication radius, protocol, or bandwidth. Unlike classic 
PSO-based techniques, the bots do not have to be arranged in topologies or communicate 
personal or global best information to any neighbors. The only communication that may be 
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required is signaling between bots to differentiate collisions between bots and collisions 
with obstacles.  
Second, the bots do not have to know their position. If position information is available, 
from beacons or some other source, then position information can be communicated at the 
end of the search. But during the search, the bot/particle moves randomly except when it 
stops, takes a measurement, and waits. At the end of the search, the cluster locations can be 
determined from a remote camera, special-purpose robot, or human canvassing.  
Third, no on-board processing or memory is required – the bot does not even have to do the 
relatively simple PSO update equations. The bot/particle moves at random, takes a 
measurement and does a multiplication. It is so simple that a microcontroller may not be 
required, only some simple digital logic hardware. 
The Trophallactic Cluster Algorithm (TCA) has four basic steps: 
Step 1: Bots start randomly throughout the search space and then move at random through 
the search space. 
Step 2: If a bot intersects or collides with another bot, then it stops. 
Step 3: After stopping, the bot measures the “fitness” or function value at that point in 
space. It then waits at that point for a prescribed time based on the measurement. The 
higher the measurement value, then the longer the wait time. 
Step 4: When done, determine the locations of the clusters of bots. (We assume that this step 
is performed by an agent or agents that are separate from the swarm.) 
Step 1 is similar to the first step in the standard Particle Swarm Optimization (PSO) algorithm. 
For a software only optimization scheme, it is straightforward to randomly initialize the 
particles within the search boundaries. For a hardware scheme, a dispersion algorithm 
(Siebold & Hereford 2008; Spears et al., 2006) can be used to randomly place the bots.  
For random movement, we pick a direction and then have the bots move in a straight line in 
that direction until they encounter an obstacle, boundary or other bot. Thus, there is no path 
adjustment or Brownian motion type movement once the (random) initial direction is set. 
There is a maximum velocity at which the bots move throughout the search space. We 
experimented briefly with different maximum velocities to see its affect on overall results 
but we usually set it based on the expected maximum velocity of our hardware bots. 
In step 2, we detect collision by determining whether bots are within a certain distance of 
each other. In software, this is done after each time step. In hardware, it can be done using 
infrared sensors on each bot.  
In a hardware implementation of the TCA, we would need to distinguish between collisions 
with obstacles and collisions with other bots. Obstacles and walls just cause the bot/particle 
to reorient and move in a new direction. They do not lead to a stop/measure/wait 
sequence. So once a collision is detected, the bot would have to determine if the collision is 
with another bot or with an obstacle. One way to do this is to have the bots signal with 
LEDS (ala trophallaxis where only neighbors next to each other can exchange info). In this 
way, each bot will know it has encountered another bot. 
Once a bot is stopped (as a result of a collision with another bot), then it measures the value 
of the function at that location. (In hardware, the bot would take a sensor reading.) Since the 
bots are nearly co-located, the function value will be nearly the same for both bots. The wait 
time is a multiple of the function value so the bot(s) will wait longer in areas of high fitness 
relative to areas with low function values. Other bots may also “collide” with the stopped 
and waiting bots but that will not reset the wait times for the stopped bots. For the results in 

 

this paper the wait time was exponentially related to the measurement value;  we 
experimented with linear wait times as well.  
We did step 4 (determine the clusters) when the search is “done”. In general, the bots begin 
to collide/stop/wait at the beginning. Thus, the bots tend to cluster soon after the search 
begins so the search can be stopped at any time to observe the location(s) of the clusters. In 
2D, the clusters tend to become more pronounced as the iterations increase so waiting a 
longer time can make the position(s) of the peak(s) more obvious. 

 
4.2 Related work 
The TCA is based on the work of Thomas Schmickl and Karl Crailsheim (Schmickl & 
Crailsheim 2006; Schmickl & Crailsheim 2008) who developed the concept based on the 
trophallactic behavior of honey bees. Schmickl and Crailsheim use the trophallactic concept 
to have a swarm of bots move (simulated) dirt from a source point to a dump point. The 
bots can upload “nectar” from the source point, where the amount of nectar for each bot is 
stored in an internal variable. As the robots move, the amount of stored nectar decreases, so 
the higher the nectar level, then the closer to the source. Each robot also queries the nectar 
level of the robots in the local neighborhood and can use this information to navigate uphill 
in the gradient. There is a also a dump area where the loaded robots aggregate and drop the 
“dirt” particles. The swarm had to navigate between the source and the dump and achieved 
this by establishing two distinct gradients in parallel.  
Their preliminary results showed a problem where the bots tended to aggregate near the 
dump and the source. When that happened, the bridge or gradient information between the 
source and the dump was lost. To prevent the aggregation, they prevented a percentage of 
their robots from moving uphill and just performed a random walk with obstacle avoidance.  
Even though the work of Schmickl and Crailsheim is significant, they show no published 
results where they apply the trophallactic concept to strictly search/optimization type 
problems. Nor do they show results when there is more than one peak (or source point) in 
the search space. They also require bot-bot communications to form the pseudo-gradient 
that the loaded (or empty) bots follow, while our TCA approach does not require adjacent 
particles/bots to exchange nectar levels (or any other measured values).  
In (Ngo & Schioler, 2008), Ngo and Schioler model a group of autonomous mobile robots 
with the possibility of self-refueling. Inspired by the natural concept of trophallaxis, they 
investigate a system of multiple robots that is capable of energy sharing to sustain robot life. 
Energy (via the exchange of rechargeable batteries) is transferred by direct contact with 
other robots and fixed docking stations.   
In this research, we are applying the concept of trophallaxis to solve a completely different 
type of problem than Ngo and Schioler, though some of their results may be applicable if we 
expand our research to include energy use by the robots. 

 
5. Trophallaxis search results 

5.1 Test conditions 
We tested the TCA algorithm on three functions: two 1D and one 2D. The 1D functions are 
denoted F3 and F4 and were used by Parrott and Li (Parrott and Li, 2006) for testing PSO-
based algorithms that find multiple peaks in the search space. The equations for F3 and F4 
are given by 
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Their preliminary results showed a problem where the bots tended to aggregate near the 
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source and the dump was lost. To prevent the aggregation, they prevented a percentage of 
their robots from moving uphill and just performed a random walk with obstacle avoidance.  
Even though the work of Schmickl and Crailsheim is significant, they show no published 
results where they apply the trophallactic concept to strictly search/optimization type 
problems. Nor do they show results when there is more than one peak (or source point) in 
the search space. They also require bot-bot communications to form the pseudo-gradient 
that the loaded (or empty) bots follow, while our TCA approach does not require adjacent 
particles/bots to exchange nectar levels (or any other measured values).  
In (Ngo & Schioler, 2008), Ngo and Schioler model a group of autonomous mobile robots 
with the possibility of self-refueling. Inspired by the natural concept of trophallaxis, they 
investigate a system of multiple robots that is capable of energy sharing to sustain robot life. 
Energy (via the exchange of rechargeable batteries) is transferred by direct contact with 
other robots and fixed docking stations.   
In this research, we are applying the concept of trophallaxis to solve a completely different 
type of problem than Ngo and Schioler, though some of their results may be applicable if we 
expand our research to include energy use by the robots. 

 
5. Trophallaxis search results 

5.1 Test conditions 
We tested the TCA algorithm on three functions: two 1D and one 2D. The 1D functions are 
denoted F3 and F4 and were used by Parrott and Li (Parrott and Li, 2006) for testing PSO-
based algorithms that find multiple peaks in the search space. The equations for F3 and F4 
are given by 
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Plots for the function F3 and F4 are shown in figure 6. Each 1D test function is defined over 
the scale of 0 ≤ x ≤ 1. F3 has five equal-height peaks (global optima) that are unevenly 
spaced in the search space. F4 also has five unevenly spaced peaks but only one is a global 
optimum while the other four peaks are local optima. Our goal is to find all five peaks; that 
is, the global optimum plus the local optima. The peak locations are given in Table 7.  
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Fig. 6. 1D test function with equal peaks, F3, and with unequal peaks, F4 

 
Peak # 1 2 3 4 5 
X locations .0797 .2465 .4505 .6815 .9340 

Table 7. Peak locations for test functions F3 and F4 
 
The 2D function is a slight variation of the standard Rastrigin function. The equation for the 
Rastrigin is given in equation 4 with the range on x and y is -5.12 to 5.12. The Rastrigin is 

 

highly multimodal (see figure 2) and has one global minimum.  For the TCA simulations, 
we modified the Rastrigin so that it has a peak of 1 at (.35, .35) instead of a minimum at the 
origin. We also scaled the function slightly so that there are nine peaks (1 global, 8 local) 
within the [-5.12, 5.12] range. The modified Rastrigin function is shown in figure 7.  
 

 
Fig. 7. Plot of modified Rastrigin function scaled so that it has 9 peaks in [-5.12,5.12] range 
and peak value is equal to 1. 
 
We evaluated the effectiveness of the TCA algorithm using two different metrics. The first 
metric is the total percentage of peaks found (found rate). Since each function has multiple 
peaks (both global and local) we totaled the number of actual peaks that the swarm found 
divided by the total number of peaks (see equation 8). Note that “peaks found” refers to 
only those bot clusters that are within ± .04 (1D) or a radius of .4 (2D) of the actual peak 
location. 
Found rate = (peaks found)/(total number of peaks in search space)   (8) 
The second metric is related to the success rate from Parrott and Li: 
Success rate = (Runs where more than half of total peaks found)/(total number of runs)  (9) 
The success rate gives an indication of how many of the runs were successful. We designate a 
successful run as one where a majority of the peaks (more than half) in the search space are 
found. This definition is based on the robot search idea where the goal is for the robots to 
quickly cluster near the target points.  We note that this is a slightly different definition for 
success rate than Parrott and Li; their success rate is based on the closest particle and finding 
all of the peaks in the search space.  
The locations of the bot clusters were determined using the K-means clustering algorithm. 
The K-means algorithm minimizes the sum, over all clusters, of the point-to-cluster centroid 
distances. We then compared the cluster centroid to the actual peak location to determine if 
the peak was found or not. For the 1D functions, we used a tolerance of ± 0.04 between the 
cluster centroid and the actual peak and for the 2D functions we used a radius of 0.4.  
We considered two clustering approaches; the first one uses all of the bots when 
determining the cluster centroids. The second approach uses only the final position of the 
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highly multimodal (see figure 2) and has one global minimum.  For the TCA simulations, 
we modified the Rastrigin so that it has a peak of 1 at (.35, .35) instead of a minimum at the 
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We evaluated the effectiveness of the TCA algorithm using two different metrics. The first 
metric is the total percentage of peaks found (found rate). Since each function has multiple 
peaks (both global and local) we totaled the number of actual peaks that the swarm found 
divided by the total number of peaks (see equation 8). Note that “peaks found” refers to 
only those bot clusters that are within ± .04 (1D) or a radius of .4 (2D) of the actual peak 
location. 
Found rate = (peaks found)/(total number of peaks in search space)   (8) 
The second metric is related to the success rate from Parrott and Li: 
Success rate = (Runs where more than half of total peaks found)/(total number of runs)  (9) 
The success rate gives an indication of how many of the runs were successful. We designate a 
successful run as one where a majority of the peaks (more than half) in the search space are 
found. This definition is based on the robot search idea where the goal is for the robots to 
quickly cluster near the target points.  We note that this is a slightly different definition for 
success rate than Parrott and Li; their success rate is based on the closest particle and finding 
all of the peaks in the search space.  
The locations of the bot clusters were determined using the K-means clustering algorithm. 
The K-means algorithm minimizes the sum, over all clusters, of the point-to-cluster centroid 
distances. We then compared the cluster centroid to the actual peak location to determine if 
the peak was found or not. For the 1D functions, we used a tolerance of ± 0.04 between the 
cluster centroid and the actual peak and for the 2D functions we used a radius of 0.4.  
We considered two clustering approaches; the first one uses all of the bots when 
determining the cluster centroids. The second approach uses only the final position of the 
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bots that are stopped (that is, in a collision) when determining clusters. We refer to the 
second approach as “cluster reduction”, since it reduces the number of bots that are 
considered.  

 
5.2 Trophallactic Cluster Algorithm 1D results 
Qualitative results from computer simulations of the TCA for the two 1D functions F3 and 
F4 are shown in Figure 8. The top plot in the figure shows the original function; the middle 
plot shows the final bot positions (after 400 iterations) with each bot position represented by 
a star (*). The bottom plot is a normalized histogram; the histogram is made by tracking the 
position of each bot after each time interval. The figure reveals that the bots do cluster 
around the peaks in the function and thus give evidence that the TCA will reliably find 
multiple peaks.  
The histogram plots reveal some interesting information. For both F3 and F4, there are 
significant peaks in the histogram at the same locations as the function peaks, providing 
evidence that the bots spend a majority of time near the peaks and it is not just at the end of 
the simulation that the bots cluster. Also, for F3 the histogram peaks have approximately the 
same amplitude (peak amplitudes range from 0.7 to 1.0). For F4, however, the histogram 
peaks diminish in amplitude in almost direct proportion to the function peaks (peak 
amplitudes diminish from 1.0 down to 0.25). This implies that the bots are spending more 
time in the vicinity of the larger peaks. The bots are thus “attracted” to stronger signals, as 
expected.  

 

 
Fig. 8. Qualitative results for function F3 (left) and function F4 (right). Final bot locations are 
shown in the middle plot and histograms of bot positions are shown in the bottom plot 
 
We performed computer simulations to tailor three of the parameters of TCA algorithm for 
1D functions. The three parameters were tmax, the maximum number of iterations for the 
simulation, nbots, the number of bots to use, and waitfactor. The waitfactor sets how long each 
bot waits based on the measured value after a collision. We tried linear wait functions (wait 
time increases linearly with measurement value) but had more success with exponential 
wait functions give by 
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 Wait time = waitfactor * (e(measurement)-1) (11) 
 
For the parameter selection, we varied one parameter at a time and repeated the simulation 
100 times. Plots of the average found rate for parameters nbots and waitfactor with no cluster 
reduction are shown in Figure 9. The first plot shows the found rate as nbots is varied from 
10 to 200 with tmax set to 500 and waitfactor set to 5. The second plot shows the found rate as 
waitfactor is varied from 1 to 10 with tmax = 500 and nbots = 80. Similar tests were done with 
cluster reduction.  
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Fig. 9. Results showing found rate vs nbots (left figure) and waitfactor (right figure) for F3 
function 
 
When the peaks were found with no cluster reduction, the found rate versus the parameter 
value curve resembled (1-e-x) shape and asymptotically approached a found rate of about 
78%. Thus, there was not one precise parameter value but a range of parameter values that 
led to the best performance: nbots greater than 80 and waitfactor greater than 3. The tmax 
curve was flat – it appears that the bots quickly cluster near the peaks and there is little 
change in performance as the tmax is increased. A summary for the parameter selection 
process is shown in Table 7. 

 

Parameter w/out cluster reduction w/ cluster reduction 
nbots ≥ 80 < 20 
tmax ≥ 300 ≥ 100 
waitfactor ≥ 3 ≥ 4 

Table 7. Best parameter ranges for TCA for 1D functions 
 
When the bot cluster centroids were found with cluster reduction, the response curves for 
tmax (flat) and waitfactor (exponential) were similar in shape as without cluster reduction, 
though the curve asymptotically approached a found rate of 86%. The response curve for 
nbots was different, however. The found rate went up as nbots decreased so fewer bots was 
better than more bots, assuming that there at least 5 stopped bots in the search space. It 
appears that for a small number of bots, that there was a smaller percentage of bots in the 
clusters (say 13 out of 20 instead of 85 out of 90) and those off-clusters bots moved the 
cluster centers away from the peaks and led to missed detections.  
For the final results we used the parameter values tmax = 500, waitfactor = 4, and nbots = 60. 
We used the same parameter values for all test cases: two different functions (F3 and F4) 
and with and without cluster reduction. There was a slight dilemma on the choice for nbots 
since more bots did better without cluster reduction and fewer bots did better without 
cluster reduction so we compromised on 60. We ran the 1D simulations 500 times and the 
results are shown in Table 8.  
 

 F3 F4 
 Avg # 

peaks 
found 

Std 
dev 

Found 
rate 

Success 
rate 

Avg # 
peaks 
found 

Std 
dev 

Found 
rate 

Succes
s rate 

w/out 
cluster 
reduction 

4.052 .9311 81.04 
% 

97.2% 4.016 .9195 80.32% 97.6% 

w/ cluster 
reduction 

4.130 .7761 82.6% 98.2% 4.098 .7782 81.96% 99.0% 

Table 8. Final results showing average number of peaks found (out of 5 peaks), found rate 
and success rate for 500 iterations  
 
The 1D results show that the TCA was very effective at finding a majority of the peaks in the 
2 different functions. The success rate was above 97% and the found rate was above 80%. 
These are good results for an algorithm where the individual particles/bots do not have 
position information and no bot-bot communication is required.  
The results shown in Table 8 are very consistent. The TCA algorithm finds 4 out of the 5 
peaks and there is little difference in the results between F3 (peaks of equal height) and F4 
(peaks have different heights). There is a slight improvement with cluster reduction, that is, 
when only the stopped bots are used to determine the peak locations. 

 
5.3 Trophallactic Cluster Algorithm 2D results 
The results of a typical two dimensional search using the TCA are shown in Figure 10. The 
first figure shows a plot of the Rastrigin function with the final bot positions superimposed 
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curve was flat – it appears that the bots quickly cluster near the peaks and there is little 
change in performance as the tmax is increased. A summary for the parameter selection 
process is shown in Table 7. 

 

Parameter w/out cluster reduction w/ cluster reduction 
nbots ≥ 80 < 20 
tmax ≥ 300 ≥ 100 
waitfactor ≥ 3 ≥ 4 

Table 7. Best parameter ranges for TCA for 1D functions 
 
When the bot cluster centroids were found with cluster reduction, the response curves for 
tmax (flat) and waitfactor (exponential) were similar in shape as without cluster reduction, 
though the curve asymptotically approached a found rate of 86%. The response curve for 
nbots was different, however. The found rate went up as nbots decreased so fewer bots was 
better than more bots, assuming that there at least 5 stopped bots in the search space. It 
appears that for a small number of bots, that there was a smaller percentage of bots in the 
clusters (say 13 out of 20 instead of 85 out of 90) and those off-clusters bots moved the 
cluster centers away from the peaks and led to missed detections.  
For the final results we used the parameter values tmax = 500, waitfactor = 4, and nbots = 60. 
We used the same parameter values for all test cases: two different functions (F3 and F4) 
and with and without cluster reduction. There was a slight dilemma on the choice for nbots 
since more bots did better without cluster reduction and fewer bots did better without 
cluster reduction so we compromised on 60. We ran the 1D simulations 500 times and the 
results are shown in Table 8.  
 

 F3 F4 
 Avg # 

peaks 
found 

Std 
dev 

Found 
rate 

Success 
rate 

Avg # 
peaks 
found 

Std 
dev 

Found 
rate 

Succes
s rate 

w/out 
cluster 
reduction 

4.052 .9311 81.04 
% 

97.2% 4.016 .9195 80.32% 97.6% 

w/ cluster 
reduction 

4.130 .7761 82.6% 98.2% 4.098 .7782 81.96% 99.0% 

Table 8. Final results showing average number of peaks found (out of 5 peaks), found rate 
and success rate for 500 iterations  
 
The 1D results show that the TCA was very effective at finding a majority of the peaks in the 
2 different functions. The success rate was above 97% and the found rate was above 80%. 
These are good results for an algorithm where the individual particles/bots do not have 
position information and no bot-bot communication is required.  
The results shown in Table 8 are very consistent. The TCA algorithm finds 4 out of the 5 
peaks and there is little difference in the results between F3 (peaks of equal height) and F4 
(peaks have different heights). There is a slight improvement with cluster reduction, that is, 
when only the stopped bots are used to determine the peak locations. 

 
5.3 Trophallactic Cluster Algorithm 2D results 
The results of a typical two dimensional search using the TCA are shown in Figure 10. The 
first figure shows a plot of the Rastrigin function with the final bot positions superimposed 
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on top of it. The second figure shows the final bot positions and the centroids of nine 
clusters found by the K-means clustering algorithm (black stars). Note that six of the cluster 
centroids are close to actual peaks in the Rastrigin function, but only one of the centroids 
was within the required tolerance and was thus declared a peak (red diamond). 
The initial 2D results, like those shown in Figure 10, illustrate the usefulness of cluster 
reduction. Figure 11 shows the same final bot positions as in Figure 10, except only the 
clusters with three of more bots are kept. That is, small clusters of two bots and any bots not 
in a cluster are eliminated. The K-means clustering is performed with this smaller set of bots 
and the cluster centroids compared to the peak locations.  
After cluster reduction, there are four cluster centroids that are within the tolerance radius 
of the peak instead on only one centroid.  Thus, ignoring the still-moving bots after the 
conclusion of the search clarifies the definition of the clusters of bots. This in turn leads to 
more accurate identification of the peaks in the function.  
As with the 1D test functions, computer simulations were conducted to refine the three 
parameters of tmax, nbots, and waitfactor for the 2D case. The results from these simulations 
for nbots and tmax are shown in Figure 12.  Each graph shows the found rate as the 
parameter was varied; they are the result of averaging 100 simulations for each set of 
parameters. For found rate vs nbots graph, tmax was set to 1600 and waitfactor was set to 4. 
For the found rate vs tmax graph, nbots= 300 and waitfactor = 4.  
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Fig. 10. Typical TCA search results for the Rastrigin 2D function. Left figure: Rastrigin 
function showing final bot position. Right figure: final bot position with cluster centroids - 
red diamond denotes found peak and black star denotes cluster centroid. 
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Fig. 11. Analysis of typical TCA search with cluster reduction. Red diamond denotes found 
peak. Black star denotes inaccurate peak. 
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of the peak instead on only one centroid.  Thus, ignoring the still-moving bots after the 
conclusion of the search clarifies the definition of the clusters of bots. This in turn leads to 
more accurate identification of the peaks in the function.  
As with the 1D test functions, computer simulations were conducted to refine the three 
parameters of tmax, nbots, and waitfactor for the 2D case. The results from these simulations 
for nbots and tmax are shown in Figure 12.  Each graph shows the found rate as the 
parameter was varied; they are the result of averaging 100 simulations for each set of 
parameters. For found rate vs nbots graph, tmax was set to 1600 and waitfactor was set to 4. 
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Fig. 10. Typical TCA search results for the Rastrigin 2D function. Left figure: Rastrigin 
function showing final bot position. Right figure: final bot position with cluster centroids - 
red diamond denotes found peak and black star denotes cluster centroid. 
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Fig. 11. Analysis of typical TCA search with cluster reduction. Red diamond denotes found 
peak. Black star denotes inaccurate peak. 
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The results and interpretation of these two dimensional results are similar to the one 
dimensional case. The results roughly follow a (1-ex) form. Therefore, the appropriate 
parameter values are again ranges rather than precise values. The values are given in Table 9. 
 

100 200 300 400 500 600 700 800 900 1000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
, ,

F
ou

nd
 R

at
e

Number of Bots

0 500 1000 1500 2000 2500 3000 3500
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
ou

nd
 R

at
e

Time [s]  
Fig. 12. Results showing found rate vs nbots (left figure) and tmax (right figure) for Rastrigin 
function 
 

Parameter w/out cluster reduction w/ cluster reduction 
nbots ≥ 500 < 300 
tmax ≥ 1600 ≥ 1700 
waitfactor ≥ 4 ≥ 4 

Table 9. Best parameter ranges for 2D Rastrigin function 
 
The final two dimensional results were obtained using parameter values tmax = 1600, nbots 
= 600, andwaitfactor = 4. The same parameters were used both with and without cluster 
reduction. We averaged the results from 500 simulations and the results are shown in Table 
10.  

 

 Avg # peaks found Std deviation Found rate Success rate 
w/out cluster reduction 3.7360 1.4375 41.5% 29.2% 
w/ cluster reduction 3.3820 1.4888 37.6% 21.8% 

Table 10. Final results showing average number of peaks found (out of 9 peaks), found rate 
and success rate for 500 iterations for the Rastrigin 2D function 
 
The results from the 2D Rastrigin function are not as good as the results from the 1D 
functions. The lower found rate is due primarily to the fact that the Rastrigin function is a 
hard function – the peaks do not stand out as prominently as the F3 or even the F4 peaks. In 
addition, the 2D search space is much larger; for the Rastrigin function, we used a scale of -
5.1 to +5.12 for both x and y, while the 1D functions are only defined between 0 ≤ x  ≤ 1. We 
increased the tolerance for the 2D results to 0.4 and it appeared that many cluster centroids 
were close to the actual peaks but, unfortunately, not within the tolerance radius.  

 
6. Conclusions  

We developed and tested two biologically inspired search strategies for robot swarms. The 
first search technique, which we call the physically embedded Particle Swarm Optimization 
(pePSO) algorithm, is based on bird flocking and the PSO. The pePSO is able to find single 
peaks even in a complex search space such as the Rastrigin function and the Rosenbrock 
function. We were also the first research team to show that the pePSO could be 
implemented in an actual suite of robots.  
Our experiments with the pePSO led to the development of a robot swarm search strategy 
that did not require each bot to know its physical location. We based the second search 
strategy on the biological principle of trophallaxis and called the algorithm Trophallactic 
Cluster Algorithm (TCA). We have simulated the TCA and gotten good results with multi-
peak 1D functions but only fair results with multi-peak 2D functions. The next step to 
improve TCA performance is to evaluate the clustering algorithm. It appears that many 
times there is a cluster of bots near a peak but the clustering algorithm does not place the 
cluster centroid within the tolerance range of the actual peak. A realistic extension is to find 
the cluster locations via the K-means algorithm and then see if the actual peak falls within 
the bounds of the entire cluster.  
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The results and interpretation of these two dimensional results are similar to the one 
dimensional case. The results roughly follow a (1-ex) form. Therefore, the appropriate 
parameter values are again ranges rather than precise values. The values are given in Table 9. 
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Fig. 12. Results showing found rate vs nbots (left figure) and tmax (right figure) for Rastrigin 
function 
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describe such a collective behaviour as a consequence of local interactions with one another and with their

environment. This book has only provided a partial picture of the field of swarm robotics by focusing on

practical applications. The global assessment of the contributions contained in this book is reasonably positive

since they highlighted that it is necessary to adapt and remodel biological strategies to cope with the added

complexity and problems that arise when robot individuals are considered.
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