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1. Abstract 

Among other uses, metallic silver and silver salts have currently been applied as 
antimicrobial agents in many aspects of medical industries, such as coating of catheters, 
dental resin composites and burn wounds, as well as in homeopathic medicine, with a 
minimal risk of toxicity in humans. However, their use in animal feeding as prebiotics have 
remain minimised, mostly because of the low cost antibiotics used as growth promoters in 
the second half of the XX Century. However, after the ban of this practice in the European 
Community, silver compounds appear as a potential alternative to other already in use, 
such as organic acids, oligosaccharides, plant extracts, etc. The major concerns about the safe 
use of an additive in animal feeding are its effective role as antimicrobial, acting selectively 
over potential pathogens but not over symbiotic microbial communities; a low toxic effect 
over the animal and its human consumer; and a low risk of environmental pollution. 
Metallic silver nanoparticles (up to 100 nm) allow for a higher antimicrobial effect than 
silver salts, are more resistant to deactivation by gastric acids and have a low absorption rate 
through the intestinal mucosa, thus minimising its potential risk of toxicity. Besides, it has 
been shown that the doses that promote animal physiological and productive effects are 
very low (20 to 40 ppm), especially compared to the 10 to 100-fold higher concentration used 
with other metallic compounds such as copper and zinc, thus precluding a harmful 
environmental effect. This chapter describes the reasons why silver nanoparticles could be 
applied to animal feeding, and provides with some available data in this regard. In any case, 
its registration as feed additive is a previous requisite before being applied in practical 
conditions. 

 
2. Introduction 

From the second half of the XX Century, the modern application of technology on animal 
production has been associated to the intensification of the applied systems, looking for a 
higher economic profitability by reducing the time and increasing the total magnitude of 
production. The necessary shortening of the productive cycles and the earlier weaning of 
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animals leads to an increasing of sensitivity of animals, adapted to focus all their 
physiological resources to high growth performances and consequently making them more 
sensitive to the environmental conditions and the infection by different diseases, not 
necessarily of severe gravity, but that in any case produce considerable reductions in 
productivity. In terms of animal feeding and nutrition, this situation allowed to the 
transition from the concept of giving nutrients to meet the needs for improving growth as 
the basic rule to, once this has been assumed, the use of additives to improve productive 
performances over nutritive standards by reaching an optimum health status of animals. 
Any substance is considered as a feed additive when, not having a direct utilisation as 
nutrient, is included at an optimum concentration in diet or in the drinking water to exert a 
positive action over the animal health status or the dietary nutrient utilisation. Because of their 
chemical nature as active principles, are generally included in very small proportions in diet. 
With the onset of the mentioned productive situation, the use of antibiotics as feed additives – 
or growth promoters – became predominant over other alternatives, because of their low cost 
and high and uniform response. It has to be considered that the use of antibiotics as growth 
promoters, given at sub therapeutical levels to all animals and for prolonged periods of time, is 
different to their use as therapeutics, administered at higher proportions to sick animals and 
only until recovery. Briefly, if a small amount of a substance selectively acts against some 
harmful microbial species occasionally established or transient in the digestive tract, thus 
controlling the microbial equilibrium of its microbiota, host animals would need to spend less 
metabolic effort in the immunological control of the situation. Then they would use the extra 
nutrients for other physiological purposes, thus reaching better productive performances. In 
this scenario, the magnitude of such growth promoter substances will be highest in young 
weaned animals, which low immune development and high growth requirements make them 
more exposed to pathological challenges. It has been reported that using antibiotics as growth 
promoters in diets increases weight gain and reduces feed to gain ratio (the amount of feed 
ingested to reach each unit of weight gain) in pigs by 0.16 and 0.07, respectively (Cromwell, 
1991). It has to be noticed that, whereas this concept of host health improvement through 
microbial manipulation is generally applied for monogastric animals (pigs, poultry, rabbits, 
etc.), it is not totally so for ruminants, where the search of the digestive health interacts with 
the presence in former sites of the tract of a large fermentation chamber of extreme importance 
for the ruminant physiology. 
As it has been shown that the continuous use of antibiotics as growth promoters provoke 
the retention in animal tissues and that the human consumption of such animal products 
would potentially increase processes of antibiotic resistance, movements of social pressure 
towards food security were claiming for a strict control and against their use in animal 
feeding, reaching the banning of using antibiotics as growth promoters from 2006 in the 
European Community (CE 1831/2003). In other way, the use of some trace elements such as 
zinc and copper, that have been systematically included as growth promoters in diets for 
weaned piglets because of their beneficial role in pig health status (Hahn & Baker 1993; 
Smith et al., 1997) have been also restricted to those levels that satisfy the metabolic needs of 
animals because of both their retention in animal tissues and environmental hazard. The 
addition of high doses of zinc (from 2500 to 3500 ppm, as zinc oxide) or copper (from 150 to 
250 ppm, as copper sulphate) modulates the microbial status of the digestive tract and 
reduce the incidence of post-weaning diarrhoea (Jensen-Waern et al., 1998; Broom et al., 
2006), generally promoting increases in productive performances (Hill et al., 2000; Case & 

Carlson, 2002). However, it remains unclear to what extent the response is associated with 
its role over the digestive microbial ecosystem (Hogberg et al., 2005) or directly over the 
piglet metabolism (Zhou et al., 1994), by affecting the secretion and activity of pancreatic 
and intestinal digestive enzymes or the maintenance of the morphology of the intestinal 
mucosa (Li et al., 2001; Hedemann et al., 2006). 
Considerable efforts have been made to look for alternatives to antibiotics growth promoters 
in animal feeding during the last three decades. Among the most widely used products in 
pig and poultry production can be cited the organic acids (Partanen & Mroz, 1999; 
Ravindran & Kornegay, 1993), plant extracts (Cowan 1999; Burt 2004), oligosaccharides 
(Mull & Perry 2004) or probiotics (Gardiner et al., 2004). 

 
3. Silver as antimicrobial 

Silver compounds have been historically used to control microbial proliferation (Wadhera & 
Fung, 2005). The antifungal and antibacterial effect of silver nanoparticles, even against 
antibiotic-resistant bacteria (Wright et al., 1994; 1999) has been demonstrated in in vitro 
conditions. Nowadays, silver compounds are routinely applied in a wide array of industrial 
and sanitary fields, such as coating of catheters and surgery material, the production of 
synthetic compounds for odontology, treatment of burn injuries, homeopathic medicine or 
water purification (Spencer, 1999; Klasen, 2000; Wadhera & Fung, 2005; Atiyeh et al., 2007; 
Hwang et al., 2007).  
Traditionally, silver has been used as salts (ionic form), mainly nitrate, sulphate or chloride. 
However, silver cation is converted into the less effective silver chloride in the stomach or 
bloodstream, and can form complexes with various ligands. Silver nitrate is unstable, and can 
be toxic to tissues (Atiyeh et al., 2007). In contrast, metallic silver in form of colloidal solution 
or as 5 to 100 nm nanoparticles is more stable to hydrochloric acid, is absorbed at a much 
lower extent by euchariotic cells and therefore is minimally toxic, and at the same time exert a 
higher antimicrobial effect (Choi et al., 2008), which explains why its use has been promoted in 
the last decades (Atiyeh et al., 2007). Lok et al. (2006) showed that, even though silver 
nanoparticles and silver ions in form of silver nitrate have a similar mechanism of action, their 
effective concentrations are at nanomolar and micromolar levels, respectively. 
Silver exerts its antimicrobial activity through different mechanisms. It has been reported to 
uncouple the respiratory electron transport from oxidative phosphorylation and to inhibit 
respiratory chain enzymes (Schreurs & Rosemberg, 1982; Bard & Holt, 2005). Silver also 
adheres to bacterial surface, thus altering membrane functions, leading to a dissipation of 
the proton motive force (Percival et al., 2005; Lok et al., 2006), and interacts with nucleic acid 
bases, inhibiting cell replication (Wright et al., 1994; Yang et al., 2009). Some authors have 
demonstrated its toxic effect over different serovars of Escherichia coli (Zhao & Stevens, 1998; 
Sondi & Salopek-Sondi, 2004; Jung et al., 2008) and Streptococcus faecalis (Zhao & Stevens, 
1998), but its observed effect over Staphylococcus aureus has been  variable (Li et al., 2006; 
Kim et al., 2007; Jung et al., 2008). Yoon et al. (2007) observed a higher effect of silver 
nanoparticles on Bacillus subtilis than on Escherichia coli, suggesting a selective antimicrobial 
effect, possibly related to the structure of the bacterial membrane, although Singh et al. 
(2008) assume higher sensitivity of Gram-negative bacteria to treatment with nanoparticles. 
The possible effects of metallic silver and silver ions over microorganisms from the digestive 
tract are scarcely documented. The selective response of silver in such ecosystem, with a 
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animals leads to an increasing of sensitivity of animals, adapted to focus all their 
physiological resources to high growth performances and consequently making them more 
sensitive to the environmental conditions and the infection by different diseases, not 
necessarily of severe gravity, but that in any case produce considerable reductions in 
productivity. In terms of animal feeding and nutrition, this situation allowed to the 
transition from the concept of giving nutrients to meet the needs for improving growth as 
the basic rule to, once this has been assumed, the use of additives to improve productive 
performances over nutritive standards by reaching an optimum health status of animals. 
Any substance is considered as a feed additive when, not having a direct utilisation as 
nutrient, is included at an optimum concentration in diet or in the drinking water to exert a 
positive action over the animal health status or the dietary nutrient utilisation. Because of their 
chemical nature as active principles, are generally included in very small proportions in diet. 
With the onset of the mentioned productive situation, the use of antibiotics as feed additives – 
or growth promoters – became predominant over other alternatives, because of their low cost 
and high and uniform response. It has to be considered that the use of antibiotics as growth 
promoters, given at sub therapeutical levels to all animals and for prolonged periods of time, is 
different to their use as therapeutics, administered at higher proportions to sick animals and 
only until recovery. Briefly, if a small amount of a substance selectively acts against some 
harmful microbial species occasionally established or transient in the digestive tract, thus 
controlling the microbial equilibrium of its microbiota, host animals would need to spend less 
metabolic effort in the immunological control of the situation. Then they would use the extra 
nutrients for other physiological purposes, thus reaching better productive performances. In 
this scenario, the magnitude of such growth promoter substances will be highest in young 
weaned animals, which low immune development and high growth requirements make them 
more exposed to pathological challenges. It has been reported that using antibiotics as growth 
promoters in diets increases weight gain and reduces feed to gain ratio (the amount of feed 
ingested to reach each unit of weight gain) in pigs by 0.16 and 0.07, respectively (Cromwell, 
1991). It has to be noticed that, whereas this concept of host health improvement through 
microbial manipulation is generally applied for monogastric animals (pigs, poultry, rabbits, 
etc.), it is not totally so for ruminants, where the search of the digestive health interacts with 
the presence in former sites of the tract of a large fermentation chamber of extreme importance 
for the ruminant physiology. 
As it has been shown that the continuous use of antibiotics as growth promoters provoke 
the retention in animal tissues and that the human consumption of such animal products 
would potentially increase processes of antibiotic resistance, movements of social pressure 
towards food security were claiming for a strict control and against their use in animal 
feeding, reaching the banning of using antibiotics as growth promoters from 2006 in the 
European Community (CE 1831/2003). In other way, the use of some trace elements such as 
zinc and copper, that have been systematically included as growth promoters in diets for 
weaned piglets because of their beneficial role in pig health status (Hahn & Baker 1993; 
Smith et al., 1997) have been also restricted to those levels that satisfy the metabolic needs of 
animals because of both their retention in animal tissues and environmental hazard. The 
addition of high doses of zinc (from 2500 to 3500 ppm, as zinc oxide) or copper (from 150 to 
250 ppm, as copper sulphate) modulates the microbial status of the digestive tract and 
reduce the incidence of post-weaning diarrhoea (Jensen-Waern et al., 1998; Broom et al., 
2006), generally promoting increases in productive performances (Hill et al., 2000; Case & 

Carlson, 2002). However, it remains unclear to what extent the response is associated with 
its role over the digestive microbial ecosystem (Hogberg et al., 2005) or directly over the 
piglet metabolism (Zhou et al., 1994), by affecting the secretion and activity of pancreatic 
and intestinal digestive enzymes or the maintenance of the morphology of the intestinal 
mucosa (Li et al., 2001; Hedemann et al., 2006). 
Considerable efforts have been made to look for alternatives to antibiotics growth promoters 
in animal feeding during the last three decades. Among the most widely used products in 
pig and poultry production can be cited the organic acids (Partanen & Mroz, 1999; 
Ravindran & Kornegay, 1993), plant extracts (Cowan 1999; Burt 2004), oligosaccharides 
(Mull & Perry 2004) or probiotics (Gardiner et al., 2004). 

 
3. Silver as antimicrobial 

Silver compounds have been historically used to control microbial proliferation (Wadhera & 
Fung, 2005). The antifungal and antibacterial effect of silver nanoparticles, even against 
antibiotic-resistant bacteria (Wright et al., 1994; 1999) has been demonstrated in in vitro 
conditions. Nowadays, silver compounds are routinely applied in a wide array of industrial 
and sanitary fields, such as coating of catheters and surgery material, the production of 
synthetic compounds for odontology, treatment of burn injuries, homeopathic medicine or 
water purification (Spencer, 1999; Klasen, 2000; Wadhera & Fung, 2005; Atiyeh et al., 2007; 
Hwang et al., 2007).  
Traditionally, silver has been used as salts (ionic form), mainly nitrate, sulphate or chloride. 
However, silver cation is converted into the less effective silver chloride in the stomach or 
bloodstream, and can form complexes with various ligands. Silver nitrate is unstable, and can 
be toxic to tissues (Atiyeh et al., 2007). In contrast, metallic silver in form of colloidal solution 
or as 5 to 100 nm nanoparticles is more stable to hydrochloric acid, is absorbed at a much 
lower extent by euchariotic cells and therefore is minimally toxic, and at the same time exert a 
higher antimicrobial effect (Choi et al., 2008), which explains why its use has been promoted in 
the last decades (Atiyeh et al., 2007). Lok et al. (2006) showed that, even though silver 
nanoparticles and silver ions in form of silver nitrate have a similar mechanism of action, their 
effective concentrations are at nanomolar and micromolar levels, respectively. 
Silver exerts its antimicrobial activity through different mechanisms. It has been reported to 
uncouple the respiratory electron transport from oxidative phosphorylation and to inhibit 
respiratory chain enzymes (Schreurs & Rosemberg, 1982; Bard & Holt, 2005). Silver also 
adheres to bacterial surface, thus altering membrane functions, leading to a dissipation of 
the proton motive force (Percival et al., 2005; Lok et al., 2006), and interacts with nucleic acid 
bases, inhibiting cell replication (Wright et al., 1994; Yang et al., 2009). Some authors have 
demonstrated its toxic effect over different serovars of Escherichia coli (Zhao & Stevens, 1998; 
Sondi & Salopek-Sondi, 2004; Jung et al., 2008) and Streptococcus faecalis (Zhao & Stevens, 
1998), but its observed effect over Staphylococcus aureus has been  variable (Li et al., 2006; 
Kim et al., 2007; Jung et al., 2008). Yoon et al. (2007) observed a higher effect of silver 
nanoparticles on Bacillus subtilis than on Escherichia coli, suggesting a selective antimicrobial 
effect, possibly related to the structure of the bacterial membrane, although Singh et al. 
(2008) assume higher sensitivity of Gram-negative bacteria to treatment with nanoparticles. 
The possible effects of metallic silver and silver ions over microorganisms from the digestive 
tract are scarcely documented. The selective response of silver in such ecosystem, with a 
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wide diversity of species that can exert either symbiotic (positive) or pathogen (negative) 
effects, deserves further attention.  

 
4. Other effects of silver 

Despite its potential effect on digestive microbial biodiversity and function, other effects of 
metallic silver related with host physiological status, such as the immunological status, the 
digestive enzymatic activity and intestinal structure can be expected. This can be assumed 
considering the chemical similarity of silver with other metals such as zinc and copper and 
the characteristics of their antimicrobial response. The capability of zinc and copper to 
minimise the negative effect of weaning on the of height of intestinal villi, thus ensuring its 
absorbing potential (Li et al., 2001) and the enhancement of the metabolic pancreatic activity 
(Zhou et al., 1994) could also be potentially expected with the use of silver. Besides, studies 
related with the role of silver nanoparticles on wound treatment show its role on 
metalloproteinases regulation, reducing inflammation and favouring cellular apoptosis and 
cicatrisation (Wright et al., 2002; Warriner & Burrell, 2005). Lansdown (2002) indicates that 
the topic use of silver promotes an increase of zinc and copper concentration over epithelial 
tissue, thus indirectly stimulating its positive effects.  
A cytotoxic effect of silver on the host animal must also be considered. This has been 
occasionally observed in human medicine when chronic (extended in time) treatments with 
high doses of silver have been used, often related with the use of silver compounds for 
wound healing or in dental implants (Abe et al., 2003; Lam et al., 2004). Chronic ingestion of 
silver compounds may lead to its retention in skin, eyes and other organs such as liver, but 
it has been generally considered as a cosmetic problem, with minor or nil pathological 
symptoms (Lansdown, 2006). Wadhera & Fung (2005) state that no physiological alterations 
or damage of organs of patients with argyria (subcutaneous accumulation of silver 
associated with silver salts treatment), even with daily intake of 650 mg ionic silver for 10 
months (corresponding to a total of 200 g silver intake). The minimal dose causing 
generalised argyria in humans has been fixed in 4 to 5 g (Brandt et al., 2005). According to 
Ricketts et al. (1970), the minimal dose of silver nitrate to cause inhibition of cell respiration 
in tissues is about 25-fold higher to that inhibits growth of Pseudomonas aeruginosa, and 
Gopinath et al. (2008) concluded that a necrotic effect on human cells of silver nanoparticles 
occur at concentrations above 44 µg/ml (44 ppm). However, no limiting concentration of 
silver intake has been fixed for humans, although the US Environmental Protecting Agency 
(EPA) recommends a maximum silver dose in drinking water for chronic or short term (1 to 
10 days) intake of 0.05 and 1.14 ppm, respectively (ATSDS 1990). 

 
5. Potential use of silver in animal feeding 

In the 50´s, colloidal silver was used as zootechnical additive in poultry diets, but its high 
cost at that time avoided its possibility to compete with the lower cost of antibiotics. 
Nowadays, the development of industrial processes of silver nanoparticles allows for its 
consideration as a potential feed additive, once the banning of the use of antibiotics as 
growth promoters. However, the availability of results testing metallic silver nanoparticles 
in animal production experiments is very scarce. It has been observed in vitro that the 
proportion of coliforms in pigs ileal contents was linearly reduced (P<0.05), whereas no 

effect was observed on lactobacilli proportion, when the concentration of colloidal silver in 
the medium increased from 0 to 25, 50 or 100 ppm (Fondevila et al., 2009). According to 
these results, metallic silver nanoparticles would reduce the viability of organisms with a 
potentially harmful effect, such as coliforms, whereas it does not affect lactobacilli, which 
positively compete against pathogens proliferation and reduce their virulence (Blomberg et 
al., 1993). A trend (P = 0.07) to a coliform reduction in ileal contents was also observed in 
vivo by Fondevila et al. (2009) when 20 and 40 ppm of metallic silver nanoparticles were 
given to weaned piglets as metallic silver adsorbed in a sepiolite matrix (ARGENTA, 
Laboratorios Argenol S.L., Spain) as antimicrobial and growth promoter for weaned pigs 
during their transition phase (from 5 to 20 kg weight). Besides, although concentration of 
major bacterial groups in the ileum of pigs were not markedly affected, the concentration of 
the pathogen Clostridium perfringens/ Cl. histolyticum group was reduced with 20 ppm silver 
(P = 0.012). In the same way, Sawosz et al. (2007) did not observed a major effect of colloidal 
silver on bacterial concentration in the digestive tract of quails, but only a significant 
increase in lactic acid bacteria was observed with 25 ppm.  
Results on productive performances in several experiments with pigs and poultry carried 
out by our group were variable (Table 1): a numerical increase in daily growth was 
generally observed when 20 ppm silver were added compared with the control (no silver), 
but this effect was not generally significant. As the productive responses to an additive that 
improves the sanitary status of animals are in general inversely proportional to the 
environmental quality of the productive site (Cromwell 1995), it is likely that under the 
stress conditions of commercial farms the concentration of pathogenic bacteria increased 
and thus the effect of silver would be more manifested. In the same way, a lack of effect of 
adding zinc oxide had also been sometimes reported (Jensen-Waern et al., 1998; Broom et al., 
2006), which would partly explain this lack of significant results. Studies in animals as 
models for humans have shown that high silver concentrations (between 95 and 300 ppm, 
corresponding to 2.4 and 7.5-fold the concentrations used in these experiments) in form of 
silver salts and given as chronic dose (for more than 18 weeks) reduce weight of mice 
(Rungby & Danscher 1984) and turkeys (Jensen et al., 1974). However, these dosing 
conditions are considered of much higher toxic potential than low concentration metallic 
silver given for short periods of time (Wadhera & Fung 2005). In an experiment (E. Gonzalo, 
M.A. Latorre & M. Fondevila, unpublished) where pigs were given 0, 20 and 40 ppm silver 
from weaning to slaughter weight (91 kg), the feed to gain ratio (amount of feed per unit of 
increased weight) was reduced (P= 0.03) by silver addition, indicating a higher growth 
efficiency and showing a reduction in overall production cost.  
Another important aspect to verify when an additive is promoted to use is to what extent it 
does not challenge the health of the potential consumer. Inclusion of 2500 to 3000 ppm zinc 
in diets for post-weaning pig leads to tissue retention from 220 µg/g (Jensen-Waern et al., 
1998; Carlson et al., 1999)  to 445 µg/g  (Zhang & Guo, 2007) in liver, and retentions up to 
3020 µg/g  have been reported (Case and Carlson, 2002). In a study carried out with metallic 
silver, no silver retention was detected in renal or muscular (semimembranous) tissue in 
weaned piglets given 20 or 40 ppm silver for 35 days (n=18), and only 0.435 and 0.837 µg per 
g were recorded in liver (Fondevila et al., 2009). Another experiment repeated in the same 
conditions (Gonzalo, Latorre & Fondevila, unpublished) showed minimal silver retention in 
muscles (0.036 and 0.033 µg/g with 20 and 40 ppm silver in diet) and kidney (0.034 and 
0.039 µg/g, respectively) that was observed in 6 out of 8 animals, whereas silver was 
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wide diversity of species that can exert either symbiotic (positive) or pathogen (negative) 
effects, deserves further attention.  

 
4. Other effects of silver 

Despite its potential effect on digestive microbial biodiversity and function, other effects of 
metallic silver related with host physiological status, such as the immunological status, the 
digestive enzymatic activity and intestinal structure can be expected. This can be assumed 
considering the chemical similarity of silver with other metals such as zinc and copper and 
the characteristics of their antimicrobial response. The capability of zinc and copper to 
minimise the negative effect of weaning on the of height of intestinal villi, thus ensuring its 
absorbing potential (Li et al., 2001) and the enhancement of the metabolic pancreatic activity 
(Zhou et al., 1994) could also be potentially expected with the use of silver. Besides, studies 
related with the role of silver nanoparticles on wound treatment show its role on 
metalloproteinases regulation, reducing inflammation and favouring cellular apoptosis and 
cicatrisation (Wright et al., 2002; Warriner & Burrell, 2005). Lansdown (2002) indicates that 
the topic use of silver promotes an increase of zinc and copper concentration over epithelial 
tissue, thus indirectly stimulating its positive effects.  
A cytotoxic effect of silver on the host animal must also be considered. This has been 
occasionally observed in human medicine when chronic (extended in time) treatments with 
high doses of silver have been used, often related with the use of silver compounds for 
wound healing or in dental implants (Abe et al., 2003; Lam et al., 2004). Chronic ingestion of 
silver compounds may lead to its retention in skin, eyes and other organs such as liver, but 
it has been generally considered as a cosmetic problem, with minor or nil pathological 
symptoms (Lansdown, 2006). Wadhera & Fung (2005) state that no physiological alterations 
or damage of organs of patients with argyria (subcutaneous accumulation of silver 
associated with silver salts treatment), even with daily intake of 650 mg ionic silver for 10 
months (corresponding to a total of 200 g silver intake). The minimal dose causing 
generalised argyria in humans has been fixed in 4 to 5 g (Brandt et al., 2005). According to 
Ricketts et al. (1970), the minimal dose of silver nitrate to cause inhibition of cell respiration 
in tissues is about 25-fold higher to that inhibits growth of Pseudomonas aeruginosa, and 
Gopinath et al. (2008) concluded that a necrotic effect on human cells of silver nanoparticles 
occur at concentrations above 44 µg/ml (44 ppm). However, no limiting concentration of 
silver intake has been fixed for humans, although the US Environmental Protecting Agency 
(EPA) recommends a maximum silver dose in drinking water for chronic or short term (1 to 
10 days) intake of 0.05 and 1.14 ppm, respectively (ATSDS 1990). 

 
5. Potential use of silver in animal feeding 

In the 50´s, colloidal silver was used as zootechnical additive in poultry diets, but its high 
cost at that time avoided its possibility to compete with the lower cost of antibiotics. 
Nowadays, the development of industrial processes of silver nanoparticles allows for its 
consideration as a potential feed additive, once the banning of the use of antibiotics as 
growth promoters. However, the availability of results testing metallic silver nanoparticles 
in animal production experiments is very scarce. It has been observed in vitro that the 
proportion of coliforms in pigs ileal contents was linearly reduced (P<0.05), whereas no 

effect was observed on lactobacilli proportion, when the concentration of colloidal silver in 
the medium increased from 0 to 25, 50 or 100 ppm (Fondevila et al., 2009). According to 
these results, metallic silver nanoparticles would reduce the viability of organisms with a 
potentially harmful effect, such as coliforms, whereas it does not affect lactobacilli, which 
positively compete against pathogens proliferation and reduce their virulence (Blomberg et 
al., 1993). A trend (P = 0.07) to a coliform reduction in ileal contents was also observed in 
vivo by Fondevila et al. (2009) when 20 and 40 ppm of metallic silver nanoparticles were 
given to weaned piglets as metallic silver adsorbed in a sepiolite matrix (ARGENTA, 
Laboratorios Argenol S.L., Spain) as antimicrobial and growth promoter for weaned pigs 
during their transition phase (from 5 to 20 kg weight). Besides, although concentration of 
major bacterial groups in the ileum of pigs were not markedly affected, the concentration of 
the pathogen Clostridium perfringens/ Cl. histolyticum group was reduced with 20 ppm silver 
(P = 0.012). In the same way, Sawosz et al. (2007) did not observed a major effect of colloidal 
silver on bacterial concentration in the digestive tract of quails, but only a significant 
increase in lactic acid bacteria was observed with 25 ppm.  
Results on productive performances in several experiments with pigs and poultry carried 
out by our group were variable (Table 1): a numerical increase in daily growth was 
generally observed when 20 ppm silver were added compared with the control (no silver), 
but this effect was not generally significant. As the productive responses to an additive that 
improves the sanitary status of animals are in general inversely proportional to the 
environmental quality of the productive site (Cromwell 1995), it is likely that under the 
stress conditions of commercial farms the concentration of pathogenic bacteria increased 
and thus the effect of silver would be more manifested. In the same way, a lack of effect of 
adding zinc oxide had also been sometimes reported (Jensen-Waern et al., 1998; Broom et al., 
2006), which would partly explain this lack of significant results. Studies in animals as 
models for humans have shown that high silver concentrations (between 95 and 300 ppm, 
corresponding to 2.4 and 7.5-fold the concentrations used in these experiments) in form of 
silver salts and given as chronic dose (for more than 18 weeks) reduce weight of mice 
(Rungby & Danscher 1984) and turkeys (Jensen et al., 1974). However, these dosing 
conditions are considered of much higher toxic potential than low concentration metallic 
silver given for short periods of time (Wadhera & Fung 2005). In an experiment (E. Gonzalo, 
M.A. Latorre & M. Fondevila, unpublished) where pigs were given 0, 20 and 40 ppm silver 
from weaning to slaughter weight (91 kg), the feed to gain ratio (amount of feed per unit of 
increased weight) was reduced (P= 0.03) by silver addition, indicating a higher growth 
efficiency and showing a reduction in overall production cost.  
Another important aspect to verify when an additive is promoted to use is to what extent it 
does not challenge the health of the potential consumer. Inclusion of 2500 to 3000 ppm zinc 
in diets for post-weaning pig leads to tissue retention from 220 µg/g (Jensen-Waern et al., 
1998; Carlson et al., 1999)  to 445 µg/g  (Zhang & Guo, 2007) in liver, and retentions up to 
3020 µg/g  have been reported (Case and Carlson, 2002). In a study carried out with metallic 
silver, no silver retention was detected in renal or muscular (semimembranous) tissue in 
weaned piglets given 20 or 40 ppm silver for 35 days (n=18), and only 0.435 and 0.837 µg per 
g were recorded in liver (Fondevila et al., 2009). Another experiment repeated in the same 
conditions (Gonzalo, Latorre & Fondevila, unpublished) showed minimal silver retention in 
muscles (0.036 and 0.033 µg/g with 20 and 40 ppm silver in diet) and kidney (0.034 and 
0.039 µg/g, respectively) that was observed in 6 out of 8 animals, whereas silver was 
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detected in liver of all animals at 0.400 and 0.557 µg/g for 20 and 40 ppm, respectively. It has 
to be considered that these concentrations are more than 3000-fold lower than in the case of 
zinc and the range is below the EPA recommendation, as it has been commented above. 
Further, pigs are not given silver additive during their growth and finishing phases (from 20 
to 90-100 kg, commercial slaughter weight), and our group did not detect any traces of silver 
in muscles, kidneys or liver of 90 kg pigs receiving the additive up to 20 kg weight, thus 
showing the detoxifying capacity of liver to excrete silver (Lansdown, 2006). 
In an experiment with broiler chicks as another animal productive species, dosage of 
metallic silver nanoparticles (ARGENTA) for 5 weeks was continued by 7 days of non-
supplemented period (Prieto & Fondevila, unpublished). Silver retention was 0.035, 0.031 
and 0.045 µg/g in muscular tissue and 0.113, 0.086 and 0.185 µg/g for the same treatments 
in liver tissue for 20, 30 and 40 silver ppm in diet, respectively (n=10). Only 5 out of 10 
animals given 20 and 30 ppm silver showed detectable concentration in muscles, while 6 
and 7 out of 10 animals with the same treatments showed silver concentration in the liver.  
 

Experimental conditions Ag dose 
(mg/kg) 

Intake 
(g/d) 

Growth 
(g/d) 

F:G 
(kg/kg) Reference 

weaned pigs, n=5, 28 to 
35 d age 

0 
20 
40 

s.e.m. 

162 
143 
177 
-- 

107 
122 
157 
41.3 

 Fondevila et al. 
(2009) 

weaned pigs, n=5, 35 to 
42 d 

0 
20 
40 

s.e.m. 

253 
313 
365 
-- 

314b 
393ab 
461 a 
36.4 

 Fondevila et al. 
(2009) 

weaned pigs, n=6 pens 
of 4 pigs, 21 to  35 d 

0 
20 
40 

s.e.m. 

154b 
189a 
148 b 

8.5 

66 
102 
93 

11.0 

2.13 
1.95 
1.70 

0.196 

Fondevila et al. 
(2009) 

weaned pigs, n=6 pens 
of 4 pigs, 35 to  56 d 

0 
20 
40 

s.e.m. 

527b 
670a 
630a 
32.3 

337 
375 
347 
21.2 

1.56b 
1.80a 
1.82a 
0.050 

Fondevila et al. 
(2009) 

weaned pigs, n=6 pens 
of 2 pigs, 21 to 147 d; 
silver was dosed from 
21 to 56 d of age 

0 
20 
40 

s.e.m. 

1737 
1638 
1734 
46.9 

684 
677 
693 
16.8 

2.53a 
2.42b 
2.50ab 
0.029 

Gonzalo, Latorre 
&  Fondevila 

(unpublished) 

broilers, n=8 pens of 28 
chicks, 1 to 42 d; silver 
was dosed from 1 to 35 
d of age 

0 
20 
30 
40 

s.e.m. 

99.7 
97.3 
96.6 
99.0 
0.74 

54.6 
55.3 
53.9 
54.1 
1.28 

1.83 
1.76 
1.79 
1.83 

0.030 

Prieto &  
Fondevila 

(unpublished) 

Table 1. Effect of inclusion of metallic silver nanoparticles (ARGENTA) on productive 
performances of animals  
 
F:G, feed to gain ratio, a,b, letters show differences among means (P<0.05) 
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to be considered that these concentrations are more than 3000-fold lower than in the case of 
zinc and the range is below the EPA recommendation, as it has been commented above. 
Further, pigs are not given silver additive during their growth and finishing phases (from 20 
to 90-100 kg, commercial slaughter weight), and our group did not detect any traces of silver 
in muscles, kidneys or liver of 90 kg pigs receiving the additive up to 20 kg weight, thus 
showing the detoxifying capacity of liver to excrete silver (Lansdown, 2006). 
In an experiment with broiler chicks as another animal productive species, dosage of 
metallic silver nanoparticles (ARGENTA) for 5 weeks was continued by 7 days of non-
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in liver tissue for 20, 30 and 40 silver ppm in diet, respectively (n=10). Only 5 out of 10 
animals given 20 and 30 ppm silver showed detectable concentration in muscles, while 6 
and 7 out of 10 animals with the same treatments showed silver concentration in the liver.  
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Table 1. Effect of inclusion of metallic silver nanoparticles (ARGENTA) on productive 
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