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1. Introduction

This chapter aims to give the reader an overview of the application of semiconductor
photocatalysis, as well as of the Fenton process, as new technologies employed for the
decontamination of chlorinated organic compounds in liquid waste.

Advanced oxidation processes (AOPs) constitute an effective technology for the treatment of
wastewaters containing non-easily removable organic compounds and among these AOPs
photocatalysis in particular is the most promising. Therefore, in this chapter the theoretical
aspects of semiconductor photocatalysis will be discussed, followed by a review on the
applications. Since the most commonly used semiconductor photocatalyst is TiO,, efforts on
the modification of TiO; in order to improve the catalyst’s efficiency will also be presented.
Finally, the high efficiency Fenton process that it is being increasingly used in the treatment
of contaminated water, will be presented, along with applications in the decontamination of
synthetic wastewaters.

2. General

As it is generally known, water constitutes the elementary ingredient of life on our planet.
Despite its great importance, until a few decades ago it was treated by mankind as an
abundant and cheap raw material, which will never run scarce. During the last years,
however, we all realize that our philosophy towards water has changed dramatically. Water
is at present considered as a valuable good that becomes easily polluted and disperses into
all layers of the biosphere, while, on the other hand, it is difficult to decontaminate. Human
activity has led to a huge production of liquid waste, which aggravates particularly the
urban and industrial areas.

The pollution induced to water due to the increased production of liquid waste in
combination with the increased consumption as the planet’s population increases in great
numbers, lead mankind to take action in two basic directions: (a) cleaning polluted water
found on the surface as well as underground in order to make it potable, and (b) to the
decontamination of liquid waste containing ingredients toxic to the ecosystem.
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90 New Trends in Technologies

Particularly, chlorinated organic compounds constitute a group of contaminants with a
complex diversity of biologic effects that has been designated as priority pollutants. The
domestic use and industrial activity generate high amounts of residual wastewater
containing chlorinated organic compounds, whose direct disposal to natural channels
causes a considerable effect in the environment. Therefore, the need arises to develop
processes for the purification of water.

Advanced oxidation processes (AOPs) constitute a promising technology for the treatment
of wastewaters containing non-easily removable organic compounds and are at present
considered to have great potential in degrading chlorinated organic compounds.

Hydrogen peroxide is a strong oxidant (standard potential 1.80 and 0.87 V at pH 0 and 14
respectively) and its application in the treatment of various inorganic and organic pollutants
is well established. Numerous applications of H,O; in the removal of pollutants from
wastewater, such as sulphites, hypochlorites, nitrites, cyanides, and chlorine are known
(Venkatadri and Peeters, 1993).

Oxidation by H>O, alone is not effective for high concentrations of certain refractory
contaminants such as highly chlorinated aromatic compounds and inorganic compounds
(e.g. cyanides), because of low rates of reaction at reasonable H>O, concentrations.
Transition metal salts (e.g. iron salts), ozone and UV-light can activate H>O, to form
hydroxyl radicals which are strong oxidants:

e  Ozone and hydrogen peroxide

O3 + HyOy — OH® + 0y + HOS @)

e Iron salts and hydrogen peroxide
Fe** + HyOy — Fe3* + OH® + OH™ 2)

e  UV-light and hydrogen peroxide
HyOo[+UV] — 20H" (3)

AOPs make use of different reacting systems, including photochemical degradation
processes (UV/Os, UV/H0,), photocatalysis (TiO./UV, photo-Fenton reagent), and
chemical oxidation processes (Os, O3/ H2O,, H2O/Fe?*). The light driven AOPs involve the
production of hydroxyl radicals, which react almost non-selectively with the organic
pollutants at very high rates. Chemical treatment of wastewaters by AOPs can result in the
complete mineralization of the pollutants to carbon dioxide, water, inorganic compounds or,
at least, in their transformation to harmless end products.

3. The Fenton Process

The oxidation processes utilizing activation of H,O» by iron salts is reffered to as Fenton’s
reagent. Fenton’s reagent was discovered about 100 years ago, but its application as an
oxidizing process for destroying toxic organics was not applied until the late 1960s (Huang
et. al, 1993). Fenton reaction wastewater treatment processes are known to be very effective
in the removal of many hazardous organic pollutants from water. The main advantage is the
complete destruction of contaminants to harmless compounds, e.g. CO, water and
inorganic salts. The Fenton reaction causes the dissociation of the oxidant and the formation
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Photocatalytic processes on the oxidation of organic compounds in water 91

of highly reactive hydroxyl radicals that attack and destroy the organic pollutants.

The Fenton process, in one or other of its various forms, is being increasingly used in the
treatment of contaminated water and soil. The conventional “dark” Fenton process involves
the use of one or more oxidizing agents [usually hydrogen peroxide and /or oxygen] and a
catalyst (a metal salt or oxide, usually iron), while the photo-Fenton (or photo-assisted
Fenton) process also involves irradiation with sunlight or an artificial light source, which
increases the rate of contaminant degradation by stimulating the reduction of Fe(III) to
Fe(Il). The reactions produce a range of free radicals, which can react with most organic
compounds. Reactions involving the highly reactive hydroxyl radical (*OH) (or “hydroxyl
radical-like” species) are the most important, and are characteristic of all advanced
oxidation processes.

Fenton-type processes can be divided into two categories: homogeneous processes
(Fe(I)/H20,/ dark, Fe(Ill) /H,O,/ dark, Fe(Il) / H2O,/light, Fe(IlI)-ligand / H>O,/ light, Fe(IlI)-
ligand/ light) and heterogeneous processes (Fe(Ill)oxide/H>O,/dark, supported iron
catalysts, electrochemical Fenton processes).

Fenton’s reagent is a mixture of H>O; and ferrous iron, which generates hydroxyl radicals
according to the reaction (Kitis et al.,1999; Yoon et al., 2001; Lu et al., 2001)

Fe** + HyOy — Fe>* + OH® + OH™ (4)

The ferrous iron (Fe2*) initiates and catalyses the decomposition of HoO,, resulting in the
generation of hydroxyl radicals. The generation of the radicals involves a complex reaction
sequence in an aqueous solution

F2t 4 HyOy > F St L OH® + OH™ (chain initiation) (5)
K5=70 M-1s1 (Rigg et al., 1954)
OH® + F2t —s Ft + O™ (chain termination) (6)

K6=3.2 M-1s-1 (Buxton and Greenstock, 1988)

Moreover, the newly formed ferric ions may catalyse hydrogen peroxide, causing it to be
decomposed into water and oxygen. Ferrous ions and radicals are also formed in the
reactions. The reactions are as shown in Egs. (3)-(7).

F&3* + Hy0y <> Fe— OOH? + H* 7)
K7=0.001-0.01 M-1s1 (Walling and Goosen, 1973)
Fe—OOH*" — HOS + Fe** (8)

The reaction of hydrogen peroxide with ferric ions is referred to as a Fenton-like reaction
[reactions (7) and (8)] (Walling and Goosen, 1973; De Laat and Gallard, 1999).
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Fe** + HO,® — F&* + HOy ©)
Ko=1.3x10¢ M-1s-1 (at pH=3, Bielski et al., 1985)

FT + HOY® — Fe¥ + 0y + HY (10)

K10=1.2x106 M-1s1 (at pH=3, Bielski et al., 1985)

OH® + Hy0y — HyO + HOS (11)

K11=3.3x10¢ M-1s1 (Buxton and Greenstock, 1988)

As seen in reaction (11), H>O» can act as an OH® scavenger as well as an initiator [reaction
7).

Hydroxyl radicals can oxidise organics (RH) by abstraction of protons producing organic
radicals (R*), which are highly reactive and can be further oxidised (Walling and Kato, 1971;
Venkatadri and Peters, 1993; Lin and Lo, 1997)

RH + OH® — H,0 + R® — further oxidation (12)

If the concentrations of reactants are not limiting, the organics can be completely detoxified
by full conversion to CO,, water and in the case of substituted organics, inorganic salts if the
treatment is continued.

Walling, 1975, simplified the overall Fenton chemistry by accounting for the dissociation of

water

2Fe + HyOy + 2HT — 2FeST +2H,0 (13)

This equation suggests that the presence of H+ is required in the decomposition of H>O,,
indicating the need for an acid environment to produce the maximum amount of hydroxyl
radicals. Previous Fenton studies have shown that acidic pH levels near 3 are usually
optimum for Fenton oxidations (Hickey et al., 1995). In the presence of organic substrates
(RH), excess ferrous ion, and at low pH, hydroxyl radicals can add to the aromatic or
heterocyclic rings (as well as to the unsaturated bonds of alkenes or alkynes)

They can also abstract a hydrogen atom, initiating a radical chain oxidation (Walling, 1975;
Lipczynska-Kochany et al., 1995)

RH +OH® —> HyO+ R® (chain propagation) (14)
(15)
(16)

R® + HyOy — ROH + OH*
R®* + 0y, — ROO®

The organic free radicals produced in reaction (14) may then be oxidised by Fe3*, reduced by
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Fe2*, or dimerised according to the following reactions (Tang and Tassos, 1997)

(oxidation) (17)
(reduction) (18)
(dimerization) (19)

R*+Fe&" - R + Fe**

R*+Fe** > R +Fe*

2R* 5> R-R

The sequence of reactions (1), (2), (10) and (13) constitute the present accepted scheme for
the Fenton's reagent chain.

The ferrous ions generated in the above redox reactions (8) and (9) react with hydroxide ions
to form ferric hydroxo complexes according to (Walling and Kato, 1971, Lin and Lo, 1997)

[Fe(H,0)g ™ + Hy0 <> [Fe(H,0)s OH** + H30™ (20)
[Fe(H0)sOHT** + HyO <> [Fe(H0)4(OH)y ]+ H30™ (21)
Within pH 3 and 7, the above complexes become
A Fe(Hy0)sOHTF <> [Fe(Hy0)g(OH)»T* +2H,0 (22)
[Fe(H,0)3(OH)2 1% + HyO <> [Fey (H20)7(OH)3 P+ + H30* (23)
[Fey(H0)7 (OH)3 1 +[Fe(H,0)5OHTEY  [Fey (H20)7 (OH)4 T +210 24

which accounts for the coagulation capability of Fenton’s reagent. Dissolved suspended
solids are captured and precipitated. It should be noted that large amounts of small flocs are
consistently observed in the Fenton oxidation step. Those flocs take a very long time,
sometimes overnight, to settle out. Chemical coagulation using polymer is therefore
necessary. Fenton’s reagent is known to have different treatment functions, as mentioned
earlier, depending on the H>O,/FeSO4 ratio. When the amount of Fe2* employed exceeds
that of HyO,, the treatment tends to have the effect of chemical coagulation. When the two
amounts are reversed, the treatment tends to have the effect of chemical oxidation.

Reaction (13) competes with both the chain termination reaction [reaction (2)] and with the
propagation reaction (10) of Fenton chemistry. This competition for hydroxyl radical
between Fe2*, RH and Fe3* leads to the non-productive decomposition of hydrogen peroxide
and limits the yield of hydroxylated (oxidised) organic compounds. Therefore, the
stoichiometric relationship between Fe2*, RH and Fe3* has to be established to maximize the
efficiency of the degradation process.

3.1 Applications of the Fenton Process

Fenton's reagent can be employed to treat a variety of industrial wastes containing a range
of organic compounds like phenols, formaldehyde, pesticides, wood preservatives, plastic
additives, and rubber chemicals [Barbeni et al., 1987; Gau and Chang, 1996; Lipczynska-
Kochany and Bolton, 1992; Lipczynska-Kochany, 1991, 1994; Lipczynska-Kochany et al.,
1995; Miller et al., 1996, Murphy et al.,, 1989; Pignatello, 1992; Pera-Titus et al., 2004;
Poulopoulos et al., 2008] resulting to a reduction of toxicity, an improvement of
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biodegradability, and odor and color removal. In Table 1 is given a list of compounds
degraded by the Fenton and photo-Fenton processes as well as the reaction conditions and
the value of the pseudo-first order kinetic rate constant .

Fenton’s Reagent
Compound Initial [H202]o [Fe>*]o mM) | K (min?) | Reference
Concentration | (mM)
(mM)
2-CP 0.50 5.00 0.20 1.67 Tang and Huang, 1996
2-CP 0.39 2.20 0.008 1.92x102 | Lu, 1999
3-CP 0.80 4.00 0.020 - Shul'pin et al., 1997
4-CP 0.50 4.00 0.040 0.320 Linsebigler et al., 1995
4-CP 0.80 4.00 0.020 - Shul’pin et al., 1997
4-CP 2.00 6.00 0.30 1.55 Kwon et al., 1999
4-CP 0.30 7.50 0.10 1.88 Benitez et al., 2000
4-CP 10.00 30.00 0.005 - Yoon et al., 2000
4-CP 0.30 0.50 0.010 0.007 Benitez et al., 2001
4-CP 2.27 8.20 0.054 0.007 Chamarro et al., 2001
2,4-DCP 0.50 5.07.500 | 0.20 0.995 Tang and Huang, 1996
2,4-DCP 0.30 4.00 0.010 0.0007 Benitez et al., 2001
2,4,5-TCP 0.80 5.00 0.020 - Shul’pin et al., 1997
2,4,6-TCP 0.50 5.90 0.20 0.15 Tang and Huang, 1996
2,4,6-TCP 0.30 0.50 0.010 0.0005 Benitez et al., 2001
PCP 0.80 4.00 0.020 - Shul’pin et al., 1997
Photo-Fenton’s Reagent
Compound Initial [H202]o [Fe?*]o (mM) K (min?) | Reference
Concentration | (mM)
(mM)
4-CP 0.30 0.50 0.010 0.642 Benitez et al., 2001
4-CP 10.00 30.00 0.005 - Yoon et al., 2000
4-CP 0.80 4.00 0.020 - Shul’pin et al., 1997
4-CP 0.30 0.50 0.010 0.642 Benitez et al., 2000
4-CP 1.00 10.00 0.25 1.25 Bauer et al., 1999
2,4-DCP 0.80 4.00 0.020 - Shul’pin et al., 1997
2,4-DCP 0.30 0.50 0.010 0.088 Benitez et al., 2000
2,4-DCP 0.30 0.50 0.010 0.088 Benitez et al., 2001
2,4,5-TCP 0.80 4.00 0.020 - Shul’pin et al., 1997
2,4,6-TCP 0.30 0.50 0.010 0.078 Benitez et al., 2000
2,4,6-TCP 0.30 0.50 0.010 0.078 Benitez et al., 2001
2,34,6-TTCP | 0.30 0.50 0.010 0.058 Benitez et al., 2000
2,34,6-TTCP | 0.30 0.50 0.010 0.058 Benitez et al., 2001
PCP 0.80 4.00 0.020 - Shul'pin et al., 1997

Table 1. Pseudo-first order kinetic rate constants and under different initial experimental
conditions for 2-chlorophenol (2-CP), 3-chlorophenol (3-CP), 4-chlorophenol (4-CP), 2,4-
dichlorophenol (2,4-DCP), 2,4,5-trichlorophenol (2,4,5-TCP), 2,4,6-trichlorophenol (2,4,6-
TCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TTCP), pentachlorophenol (PCP).
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4. Heterogeneous semiconductor photocatalysis

The most important among the Advanced Oxidation Processes is heterogeneous
photocatalytic oxidation, often referred to as photocatalysis. This method deals with the
oxidation mostly of organic molecules, with the use of a solid catalyst, which is activated by
the incidence of radiation of an appropriate wavelength. It can take place both in the
aqueous phase as well as in the gas phase. In the past years it is gaining considerable
interest in comparison to homogeneous catalysis due to disadvantages of the latter. The
most important are the separation process of the products that may be implicated, and that
in most cases is economically and/or technically impracticable, as well as the inappropriate,
from an environmental point of view, use of some homogeneous catalysts, such as metal
salts. These disadvantages have given a boost to the development of heterogeneous catalytic
processes, despite the fact that controlling such a process is difficult, since it comprises of
five stages:

1. the transfer of the reactants from the liquid phase on to the catalytic surface,

2. the adsorption of at least one of the reactants,

3. the reaction in the adsorbed phase,

4. the desorption of the products,

5. the transfer of the products away from the diphasic area.

The photocatalytic reaction takes place in the adsorbed phase (stage 3). The difference from
classic catalysis is that instead of the thermal activation of the catalyst, we have a photonic
activation from the incident radiation.

In photocatalytic reactions in the aqueous media the most commonly used process is the
photocatalytic degradation of organic pollutants in the presence of a semiconducting solid
catalyst (mostly TiOy).

4.1 The Photocatalytic mechanism

The last decade has seen the emergence of a major new initiative in the area of water and
wastewater treatment, namely semiconductor photocatalysis. In semiconductor
photocatalysis, the light-absorbing species is a semiconducting material. The electronic
structure of most semiconductor materials comprises a highest occupied band full of
electrons called the valence band (VB), and a lowest unoccupied called the conductance
band (CB). These bands are separated by a region that is largely devoid of energy levels, and
the difference in energy between two bands is called the bandgap energy, Epg. Ultra-
bandgap illumination of such semiconductor materials produces electron-hole pairs, h* e -,
which can either recombine to liberate heat, or make their separate ways to the surface of the
semiconductor material, where they have the possibility of reacting with surface absorbed
species.

The major processes that occur on a semiconductor photocatalyst particle upon ultra-
bandgap excitation in an aqueous solution containing dissolved oxygen and an oxidizable
pollutant are: (a) electron-hole recombination in the bulk, (b) electron-hole recombination at
the surface, (c) direct or indirect (through trap sites) reduction of oxygen, or oxidizing
intermediates by the photogenerated electron at the surface of the semiconductor and (d)
direct or indirect (through trap sites) oxidation of the pollutant, or an oxidized intermediate
by the photogenerated hole at the surface of the semiconductor, leading eventually to the
mineralization of the pollutant.
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Fig. 1. Photocatalysis on a semiconductor

Ideally, a semiconductor photocatalyst for the purification of water should be chemically and
biologically inert, photocatalytically active, easy to produce and use, and activated by sunlight.
TiO; is currently considered as the most promising photocatalyst because of its reasonable
photocatalytic activity, relatively low cost, and high stability toward photocorrosion (Peternel
at al., 2007; Serpone et al., 2005; Chen and Dionysiou, 2007; Dionysiou et al., 2006). However,
recent research questions the absence of toxicity of TiO, indicating that nanosize TiO, could
pose a risk to biological targets that are sensitive to oxidative stress damage [dcp19]. However,
the very positive features of TiO, as a semiconductor photocatalyst far outweigh the
limitations of its spectral profile and thus, it has become the semiconducting material for
research in the field of semiconductor photocatalysis for water purification.

It must be noted that the process of electron transport (or equally for holes) is more effective, if
the electron acceptors (or donors) are adsorbed on the particle surface. Their transport rate
depends upon the relative positions of the conduction and valence bands, as well as upon the
redox potential of the adsorbed species.

The efficiency of a photocatalytic process is measured by quantum yield, which is the ratio of
the stimulation incidents per absorbed photon. In the heterogeneous processes, however, there
is a difficulty in measuring the exact amount of the absorbed radiation, because a part of it is
scattered by the semiconductor’s surface. Therefore, it is assumed that all the incident
radiation is absorbed and an apparent quantum yield is calculated instead.

An alternative definition for the efficiency (based on the reaction kinetics) is that the efficiency
is equal to the ratio of the photocatalytic reaction rate (mols?) to the absorbed radiation flux
(photons s?). In order to calculate the process quantum yield, all possible interaction
phenomena between electrons and holes must be taken into account. Therefore the quantum
yield is defined as:

® o —_KMD (20)
kyvo +kep

where kyo and kgp the charge transfer rate (electrons or holes) and the recombination rate
respectively. It is obvious that if it were not for charge recombination, the quantum yield of the
process would be equal to unity. In this case, the transfer rate would depend solely upon
electron and hole diffusion to the surface. This is however an ideal case, because in fact
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recombination takes place and the electron and hole concentration on the surface of the
semiconductor is not uniform. In order to reduce the electron-hole recombination rate and to
increase the efficiency of the photocatalytic process, researchers are trying to modify the
semiconductor surface with various ways, such as metal addition, in combination with other
semiconductors and so on.
Finally, it should be noted that the knowledge of the parameter @ is very important mainly for
three reasons:

a) it provides the capability of comparing the efficiency of different catalysts for a given

reaction
b) it provides an estimation means of the relative applicability of different reactions
c) it calculates the energy efficiency of a process as well as the relative cost.

4.2 Mechanism of the photocatalytic degradation of different organic pollutants

in the presence of semiconductors

The reaction describing the process for the implementation of semiconductor photocatalysis on
the degradation of organic pollutants is given by the following equation:

TiOy,hv2E, (20)

Organic pollutant + O CO, + H,O + inorganic matter

One of the major products of this reaction is carbon dioxide, as the result of the oxidation of
organic compounds. Organic compounds contain inorganic atoms and so during their
oxidation inorganic compounds are produced.

Studying the mechanism implied in this reaction, the most important steps of the process
are given in Table 2.

Initial steps of the photocatalytic process process Indicative Time
Charge carrier generation (electrons-holes) fs (very fast)

TiOy +hv —h* +e”

Charge carrier trapping
10ns (fast)

+ IV AV o+
KT OH 21" OH 100ps (surface  trapping-  dynamic

e~ +Ti" o > i OH equilibrium)
10ns (bulk trapping- irreversible)

T-II[

e +Til" ST

Charge carrier recombination

e +1i"oH*t > 1il" o1

n* +1i" oH - 1i"" oH

Charge transfer to the interfacial region
e +Ti" OH*" + P> Ti" OH + P
i o +0, > 1i' OH + 05~

P: organic pollutant, P*: oxidized organic pollutant
Table 2. Initial steps of the photocatalytic process

100ns (slow)
10ns (fast)

100ns (slow)
ms (very slow)
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At this point, it should be mentioned that the exact mechanism of the process, as well as the
role of each component in the reaction course, still remains a research field. For example, the
role of oxygen has not been yet clearly defined. It is possible that among the different
chemical species arising from oxygen reduction, some of them play an important role in the
organic compound oxidation. Hydrogen peroxide has also been proven to be very effective
and as a result it is used in many processes as a strong oxidant. Most researchers converge
to the fact that the organic substance does not undergo direct oxidation by the produced
holes, but the oxidation takes place through a hydroxyl radical on the surface, such as

Ti'” OH*" . Some researchers suggest the direct oxidation of the organic radical by the
produced hole, before the latter is trapped in the bulk or on the surface of the
semiconductor.

Photocatalytic processes employing TiO> can be divided into two categories:

(@) Semiconductor photocatalysis using TiO, powder dispersions. The use of such slurries
obviously requires a subsequent separation step involving either filtration, centrifugation or
coagulation/flocculation which instantly compromises the system’s economical viability.
However, slurry reactor photocatalytic systems are usually very efficient in terms of
photons (relative to thin film reactors) and easy to make and maintain.

(b) Photocatalytic reactors utilizing a fixed bed of a semiconductor material. These systems
are usually less photo-efficient for pollutant destruction, due to an intrinsic low surface area
to volume ratio; in addition, such systems are difficult to make, can be difficult to maintain
(if passivation of the photocatalyst occurs) and are costly to replace. However, the major
advantage of such fixed-film photoreactors is that no subsequent separation step is required.
However, the application of TiO, for photocatalytic oxidation of organic molecules is limited
by both high charge carrier recombination rates and, usually, the need for ultraviolet
excitation.

4.3 Applications using TiO, powder dispersions

TiO, photocatalysis is now considered an increasingly attractive approach for the
degradation of organic compounds. To increase the activity of TiO, and to extend the
wavelength range response of TiO. to the visible region, different methods have been
developed for the modification of TiO, nanoparticles. These methods include the
modification through noble metals in order to enable TiO; nanoparticles to be active in the
energy range of visible light and to enhance the photocatalytic activity. However, TiO»
modification with noble metals as a practical remediation technology is restricted because
noble metals are expensive. In contrast, modification of TiO, with transition metals provides
a successful and cost effective alternative, also leading successfully to the complete
degradation of organic compounds. In Table 3 are summarized the results of several studies
employing TiO, particles modified with noble and transition metals.

Type of catalyst Reaction  Conditions and  degradation | Reference
efficiency for organic dyes

1 wt. % Ag-TiOx Under UVC (254 nm) irradiation Sokmen et al.,
100mL of 19 mg L' MV, 95% in 4 min (pH 7) 2001

100mL of 19 mg L' GRL, 88% in 5 min (pH 11)
100mL of 100 mg L FMR, 90% in 30 min (pH
3.5)
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1at. % Ag-TiOx

Under 300-450 nm irradiation

60mL of 5x10-5 M AO7, 100% in 45 min, 60mL of
5x10-5 M tartrazine, 89% in 20 min, 60mL of
4x10-> M 3-nitrobenzenesulfonic acid, 100% in
25h

Kambala et al.,
2003

1 wt. % Ag-TiO

Under UVC (254 nm) irradiation
100mL of 20 mg L' SG-GC, 97% in 8 min (pH 3.5)
and 95% in 10 min (pH 7)

Ozkan et al,
2004

2 at.% Agf-TiO2 nanosol

Under visible light irradiation
50mL of 1x10° M RB, 90% in4 h

Sung-Suh et al.,
2004

60mL of 50 mg L7 of the dyes: 88% for ARB,
92% for K-2G, 32% for X-GRL, 98% for X-3B in 1
h

0.05 wt. % Ag-TiO2 Under UVA (365 nm) irradiation Qi et al., 2005
500mL of 20 mg L1 X-3B, 98% in 60 min (pH 4)
Ag-AgBr-TiOz Under visible light irradiation, Hu et al., 2006

1at. % Ag*-TiO,

Under UVA (365 nm) irradiation, 60 mL of
mixed CV (5x10° M) and MR (7.5x10-° M), >99%
degraded (>86% mineralized) in 1.5 h)

Gupta et al,
2006

Ag-TiOz nanotube,
Au-TiOz nanotube

Under UVA (360 nm) irradiation, 3 mL of
2.5x105 M AO7, 80% with Ag-TiO. and 67%
with Au-TiO2in1 h

Paramasivam et
al., 2008

0.5 at.% Au3*-TiO2

165mL of 12 mg L! MB, 100% with 0.5 at.%
Aud+-TiO,, and 96% with 0.5 at.% Au-TiO2in1h

Ag (2 wt. %)- In2Os Under UVB (313 nm) irradiation, 90 mL of 25 | Yang et al., 2008
(1.9 wt. %)- TiO2 mg L1 RB, 100% decolorized in 45 min (100%
mineralized in 105 min)
0.5 at.% Au-TiO,, Under visible light irradiation (400-800 nm), Li and Li, 2001

2 wt.% Pt-S6+-TiO2

Under 340-420 nm irradiation, 15 mL of 1x10+4
M AO7,97% in 30 min

Kryukova et al,,
2007

PtCls>-TiOg,
[Pt3(CO)s]6>-TiO2

PtCle2-TiOs,

Under UV-vis irradiation, 1x10+ M RB, 100%
with [Pt3(CO)s]s> modified P25 TiOz in 15 min,
100% with PtCle> modified TiO2 (sol-gel
synthesized) in 20 min.

Under visible irradiation (>450 nm), 1x104 M
RB, 90% with PtCls> modified P25 TiOzin 2 h,
100% with [Pt3(CO)sJs> modified TiO2 (sol-gel
synthesized) in 70 min

Kowalska et al.,
2008

Fe3* - TiOy, Fe?*- TiO:

Under UV irradiation, 60mL of 100 mg L XRG,
60% with 0.09 at.% Fe2*- TiO,, and 70% with 0.09
at.% Fe3*-TiO2in 1 h;

Under visible light irradiation, 60mL of 100 mg
L1 XRG, 25% with 0.09 at.% Fe2*- TiO,, and 41%
with 0.09 at.% Fe3+- TiOin 7 h

Zhu et al., 2004

L1 X-3B, 97% in 60 min (pH 4)

Fe3* - TiO2 Under visible light (>420 nm) irradiation, 15 mL | Kumbhar and
of 1x107 M SRB, 60% in 90 min Chumanov,
2005
0.1 wt.% Fe- TiO2 Under UV irradiation (365 nm), 500mL of 20 mg | Qi et al., 2005

0.15 at.% Fe3* - TiO»

Under visible light (>380 nm) irradiation, 60 mL
of 100 mg L1 XRG, 82% in 7h

Zhu et al., 2006
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N- 0.5at.% Fe3* - TiOz

Under visible light (>420 nm) irradiation, 50 mL
of 20 mg L' RB, 100% in 4 h

Cong et al., 2007

Fe(OH)s-
TiO»

TiOs, Cu(OH)-

Under UV irradiation, half-time of 250 mL of 10
mg L1 MO at pH 6 was decreased from 332 min
for unmodified TiO2 to 63 min for Fe(OH)s- TiO2
and 65 min for Cu(OH).- TiO, respectively (pH
3-7)

Wang et al,
2008

1 at.% Cu-TiO2

Under UV irradiation (254 nm), 400 mL of 2x10+
M AO7,100% (99%) mineralized in 150 min

Wong et al,
2005

Cut-, Cu?*- TiO2 nanotubes

Under UV irradiation, 100 mL of 3 mg L RB,
97.5% in 50 min

Li et al., 2008

Titamium-niobium mixed

oxide

Under UV irradiation, 25 mL of 14.24 mg L1 BG,
100% in 18 min (pH 2.1)

Saupe et al,
2005

1 mol% V-TiO2

Under UV-vis irradiation, 450 mL of 19 mg L-
1IMB, 75% in4 h

Bettinelli et al.,
2007

0.1 at.% Zn-TiO» Under UV irradiation, 700 mL of 20 mg L' MO, | Chen et al., 2008
100% in 30 min

Sr-TiOy, (SrTiOs-TiOz) Under UV irradiation (325 nm), 100 mL of 40 | Lv etal., 2008
mg L1 RBB, 95% in3 h

3 mol% Bi*+-TiOz Under UV irradiation, 25 mL of 20 mg L MO, | Yuetsl., 2008

94.4% in 90 min

Under visible light (>410 nm), 100 mL of 20 mg
L11IC,100% in 40 min

Table 3. TiO; particles modified with noble and transition metals.

Bi-\S-TiO2 Wang et al,

2008

4.4 Applications using TiO; thin films

In the case of TiO, powder slurries, the major problems are: the need for separation or
filtration steps, the problematic use in continuous flow systems and the particles
aggregation, especially at high concentrations. To overcome these drawbacks, investigations
on TiO; photocatalysis have been oriented towards the photocatalyst immobilization in the
form of a thin film in recent years. However, the overall photocatalytic performance of TiO.
thin films decrease in comparison with corresponding slurry solution. The photocatalytic
process is a surface and not a volume or mass phenomenon. Easy access to illuminating
light and organic compound is essential for successful photocatalytic degradation. In the
case of the film this only corresponds to its external surface which is much lower than the
TiO, powder surface area. A proficient solution to enhance the photocatalytic reaction rate is
the modification of TiO, thin films with noble metals, transition metals and non-metals.
Such modifications aim to hinder the photo-generated electron-hole pair recombination and
accelerate the photoexcitation and formation of oxidizing species. In Table 4 are listed
indicatively a number of researches along with the results on the photocatalytic degradation
of organic compounds using TiO; thin films modified with noble and transition metals.
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Type of catalyst Reaction conditions and degradation | reference
efficiency

Ag*-TiOz thin film Under UV irradiation (350 nm), 5 mL of | Arabatzis et al,
1.9x10-° M MO, 90% in 2 h (initial pH 9.2) 2003

Au-TiO; thin film Under UV irradiation (350 nm), 4 mL of | Arabatzis et al,
2.056x10-° M MO, 100% in 2.5 h 2003b

Pt-TiO; thin film Under visible light illumination, 30 mL of | Zhang et al., 2006
10 mg L1 MO, 97% in2 h

Fe3*-TiO; thin film Under UV irradiation (365 nm), 25 mL of | Yuetal., 2006
1.53x10 M MO, degradation rate 9.3x10+
min-!

Sn4+-TiO; thin film Under UV irradiation, 2 mg L RB, 80% in | Zheng et al., 2002
160 min

N-TiO: thin film Under visible light illumination, 47.2% and | Zhao et al., 2008

46.4% degradation of 30 mL of 20 mg L~
MB and MO solutions was achieved
1 wt.% Ag/0.5 wt.% InVOs | Under visible light irradiation (>400 nm), | Ge et al., 2006

TiO; thin film 30 mL of 10 mg L' MO, 45% in15 h

CdO/ZnO-TiO; thin film Under visible light irradiation, 500 mL of | Suarez-Parra et al.,
100 mg L textile blue azo dye, 100% in 2 h | 2003
(pH 3)

Table 4. TiO, thin films modified with noble and transition metals

5 Future Research

Titanium dioxide photocatalysts are widely employed in the photocatalytic technologies for
the removal of organic compounds removal from water. However, in this promising
research area, the following problems need to be addressed in order to achieve further
progress: (a) the loss of TiO, nanoparticle surface area throughout the growth of TiO;
nanocrystallites during high temperature calcination process and serious aggregation of
prepared nanoparticles when dispersed in aqueous solution, (b) the efficiency of recycled
TiO; photocatalysts is reduced after several cycles of use, (c) Development of pilot scale
treatment systems in order to provide useful information for further large-scale application
especially for huge amount of real wastewater purification needs to be fully explored. It is
worthwhile to indicate that no universal TiO, photocatalytic system is available for a
complete treatment encompassing the essential features such as high mineralization
efficiency for wastewaters, easy retrieval from treated solution and visible light photo-active.
The degradation of organic compounds using the Fenton process is strongly dependent on
the concentration of hydrogen peroxide, the reaction temperature, the pH and the Fe2*-
concentration in the oxidative treatment. Drawbacks associated with the use of Fenton
oxidation are the safety hazards associated with using H>O; and the need to firstly reduce
the pH, followed by a subsequent neutralisation. Even though these techniques can provide
the conversion of contaminants to less harmful compounds, usually oxygenated organic
products and low molecular acids, they are limited to treat waters which contain low
concentrations of organic or inorganic scavenging material.

Even though titanium dioxide photocatalysts and Fenton's reagent are promising
techniques for water and wastewater treatment, showing high efficiencies, they actually
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work at high cost, and appear to be suitable for Chemical Oxygen Demand contents lower
than 5 g L, since higher COD contents would require the consumption of too large
amounts of reactants. In order to make these processes economically viable without
reducing their efficiency, the scientific interest is currently directed to the combination of an
Advanced Oxidation Process as a preliminary treatment, followed by an inexpensive
biological process.

6 Conclusions

Fenton reaction wastewater treatment processes are known to be very effective in the
removal of many hazardous organic pollutants from water and have been also reported to
achieve the degradation of organic compounds in a short period of time. In this chapter we
reviewed briefly the various reactions which constitute the overall kinetic scheme and we
presented some applications proving the efficiency of this process in the degradation of
chlorinated organic compounds.

On the other hand, titanium dioxide has long been used to remediate organic substances
present in wastewater and significant effort has been directed towards the modification of
this semiconductor material. In this chapter, we have summarized the theoretical aspects of
titanium dioxide heterogeneous photocatalysis as well as some applications demonstrating
the use of TiO, and modified TiO, photocatalysts for the degradation of organic compounds,
and especially aiming at high efficiency, activity in visible range of the solar spectrum and
effective reuse of the catalyst.

The applications presented in this chapter confirm the efficiency of TiO, photocatalytic
oxidation and of the Fenton process in water purification in laboratory scale, and it is
apparent that the need to develop pilot scale treatment systems and to apply these
techniques in cost effective purification processes stipulates continued indepth research.
Thus extensive possibilities exist in this promising area of research, which need to be given
full attention and outcome of such exploration should benefit commercial sector both in
terms of ecology and economy.
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