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Abstract

Brain-computer interface (BCI) is an innovative method of integrating technology 
for healthcare. Utilizing BCI technology allows for direct communication and/or control 
between the brain and an external device, thereby displacing conventional neuromus-
cular pathways. The primary goal of BCI in healthcare is to repair or reinstate useful 
function to people who have impairments caused by neuromuscular disorders (e.g., 
stroke, amyotrophic lateral sclerosis, spinal cord injury, or cerebral palsy). BCI brings 
with it technical and usability flaws in addition to its benefits. We present an overview 
of BCI in this chapter, followed by its applications in the medical sector in diagnosis, 
rehabilitation, and assistive technology. We also discuss BCI’s strengths and limitations, 
as well as its future direction.

Keywords: BCI, EEG, healthcare, clinical application, diagnosis, neurorehabilitation, 
assistive technology

1. Introduction

Technological advancement is ushering in a new frontier in the healthcare sector 
with the emergence of brain-computer interface (BCI). The BCI is a brain-machine 
interface that interacts with external parameters in real time, offering innovative 
solutions for various medical conditions and disabilities. In the recent decades, BCI 
has increasingly become a subject of great interest and importance, transforming the 
medical device industry with its vast potential applications [1]. It is the fastest-grow-
ing field in modern computing, with the study of BCI commonly aiming to support, 
enhance, or restore human cognitive or sensory-motor functions [2], particularly in 
cases where satisfactory treatment options are currently lacking.

BCI technology has transformed numerous fields of study, spanning domains such 
as healthcare, smart environments, neuromarketing and advertising, neuroergo-
nomics, security, education, games, and entertainment. Many studies are underway 
around the world to investigate the potential of BCI applications as a viable piece of 
technology in the fields of healthcare and medical sciences, with particular emphasis 
on assisting individuals and improving their quality of life, especially those affected 
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by diseases, disabilities, impairments, or paralysis. BCI systems play a crucial role 
in areas such as diagnosis, neurorehabilitation, and assistive technology, aiming to 
restore patients’ ability to engage with and control different activities and environ-
ments, thereby compensating lost neurologic functions. These systems enable users 
to communicate, operate wheelchairs or prostheses, and support rehabilitation from 
a care perspective [1, 3, 4]. As such, BCIs may play a crucial role in managing, and 
possibly even treating, these conditions in the future [5].

BCIs offer numerous potential applications in clinical contexts, namely, the 
rehabilitation and restoration of lost neurological function [6]. In particular, the BCI 
feature offers hope to those who are suffering from the most severe motor disabilities, 
such as amyotrophic lateral sclerosis (ALS), spinal cord injury stroke, and other 
serious neuromuscular diseases or injuries. These technologies have the potential 
to significantly improve these patients’ quality of life by enhancing their personal 
autonomy, independence, and mobility. Furthermore, BCIs serve as valuable tools 
for neurofeedback and neuroplasticity training, facilitating the recovery process in 
patients with neurological disorders such as stroke, Parkinson’s disease, or traumatic 
brain injuries [7]. Beyond motor-related applications, BCIs have a broad range of 
clinical and nonclinical uses. In clinical contexts, they are employed for the treatment 
of mental health issues, offering novel avenues for diagnosing and treating psychiatric 
disorders like depression, anxiety, and post-traumatic stress disorder (PTSD), while 
in nonclinical domains, BCIs offer possibilities for neuro-enhancement, neuromar-
keting, and gaming products [3].

Despite the immense potential of BCIs, integrating contemporary technology 
into practical and useful clinical applications is always fraught with difficulties, and 
BCIs are no exception. However, as research and development in this field continue to 
advance, the future holds great promise for further breakthroughs that will transform 
the healthcare landscape, improving the lives of countless individuals worldwide. 
This chapter aims to provide an overview of BCIs with regard to its clinical applica-
tion. We start by defining BCI and discussing the different types of BCIs and the 
essential components of a BCI system. We then explore the potential applications 
of BCI systems, as well as some of the limitations and challenges that the field faces. 
Finally, we look forward to the future developments that may shape the field in the 
coming years.

2. Overview of BCI

2.1 Definition

A BCI, sometimes referred to as brain-machine interface (BMI), is understood as 
a system that enables real-time communication and/or control between the human 
brain and external devices. Some of these external devices include wheelchairs, 
computers, robotic arms, and muscle-activating gadgets. It is important to note that 
voice-activated or muscle-activated communication system does not fall under the 
BCI category. Essentially, a BCI is designed to identify and analyze brain signals that 
represent an individual’s intention and then converts those signals into real-time 
device commands that execute a task [8].

BCI enables users to interact with the environment by using brain signals rather 
than by relying on muscles and nerves. It substitutes nerves and muscles, as well 
as the movements they produce, with hardware and software that measures brain 
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signals, which are then translated into actions by transforming electrophysiological 
signals from mere reflections of central nervous system (CNS) activity into messages 
and commands to accomplish the user’s intent [7, 9]. For a visual representation of the 
process by which targeted brainwave signals originate from visual stimuli or cognitive 
processes, Figure 1 offers valuable insight [9]. The figure visually depicts the sequen-
tial steps of a BCI operation that will be further described in the following section.

Successful BCI operation relies on the essential interaction between the user and 
the BCI, both acting as adaptive controllers. To ensure seamless functionality, the 
user and the system must collaborate and synchronize, entailing a period of practice 
and mutual adaptation [7, 8]. Through this process, the user will be able to generate 
specific brain signals that encode intention, and subsequently, the BCI deciphers the 
signals and processes them into orders to another device to perform the user’s desired 
action. The BCI functions as an adaptive close-loop control system to replace tradi-
tional neuromuscular output channel. Thus, the BCI presents the user with real-time 
feedback so that the user can augment the brain signals to optimize the intended 
action [10]. This dynamic partnership between the user and the BCI is instrumental 
in achieving optimal BCI performance and unlocking its full potential.

In theory, a wide range of neurobiological signals illustrating brain activities could 
be captured and applied to operate a BCI. These signals can be broadly classified into 
three types based on the biophysical environment of the signal source: electrophysi-
ological, magnetic, and metabolic [11]. This chapter will focus on electrophysiological 
signals. Electrical signals generated by brain activity have been studied using two 
main approaches. The first method is concerned with detecting brain oscillations 
that are not always caused or correlated by external stimulation, whereas the second 
approach focuses on investigating the effects of various trigger inducing conditions 
on the oscillations, such as in evoked potentials [12, 13].

2.2 Components of BCI

An EEG machine can only record the brain signals and does not produce or process 
signals into the user’s environment. BCIs are the computational systems that obtain the 
neural signals, analyze them, and decode the information into commands that can be 
conveyed to an output device to perform its designed function. A BCI system consists of 
various components that enable the acquisition, processing, and translation of neural 

Figure 1. 
Schematic representation of a basic BCI showcasing the origin of targeted brainwave signals from visual stimuli 
or cognitive processes, followed by their acquisition, processing, and translation into actionable commands [9].



New Insights in Brain-Computer Interface Systems

4

signals into device commands. The BCI system’s interactive functionality is character-
ized by the operating protocol, which needs to be flexible and serve the specific need of 
the user. The system is made up of four steps: (a) signal acquisition, (b) feature extrac-
tion, (c) feature translation, and (d) device output. These components work together 
in a sequential manner to facilitate effective interaction between the user and the BCI 
system. In this section, we provide an overview of the key components involved in a BCI 
system. The information below is extracted from the literature [1, 8, 10, 14]. Please refer 
to Figure 2 for a depiction of the basic architecture of a BCI system.

2.2.1 Signal acquisition

A vital component of any BCI-based system is the capability to record brain gener-
ated oscillations. Signal acquisition is the measuring of the brain’s neurophysiologic 
condition using a specific neuroimaging sensor modality. It displays the volitional 
neural actions produced by the user’s present activity. The recording interface moni-
tors neural information depicting one’s objective embedded in present brain activity 
during BCI operation. The electrodes collect, amplify to levels suitable for electronic 
processing, and digitize the electrical signals from the brain. The appropriate signal 
acquisition method and its measured phenomena are determined by the BCI applica-
tion and the classification of its intended users.

2.2.2 Feature extraction

In the feature extraction stage, relevant signal features encoding user intent 
are extracted from the acquired brain signals. These features can be derived from 
the frequency-domain, time-domain, or a combination of both. The amplitudes or 

Figure 2. 
Basic architecture of BCI system from Mridha et al., [4]. This diagram offers a clear and comprehensive 
illustration of the key components and their interconnections within a BCI system. It highlights the flow of 
information from the brain to external devices, emphasizing the crucial stages of signal acquisition, processing, 
decoding, device output, and the presence of a feedback loop.
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latencies of event-evoked potentials, frequency power spectra, or firing rates of par-
ticular cortical neurons are the most regular signal characteristics used in modern BCI 
systems. Strong correlations between the extracted electrophysiological features and 
the user’s intention are vital for successful BCI functioning. The features that will be 
used to control the BCI are extracted from the digitized data using filtering technique. 
For reliable evaluation of the brain signal characteristics, environmental and physi-
ological artifacts, such as electromyographic signals, are avoided or eliminated.

2.2.3 Feature translation

The feature translation process involves converting the extracted and processed 
signal features into appropriate device commands. This stage requires mapping the 
brain’s electrophysiological attributes or parameters to control parameters that gov-
ern specific actions, such as cursor movement on a computer screen, letter selection, 
prosthetic control, or the operation of other assistive devices. The range of available 
individual signal characteristics from the user must encompass the entire spectrum 
of device control; hence, a translation process must be dynamic to accommodate and 
react to the signal features’ ongoing changes.

2.2.4 Device output

The final component of a BCI system is the device output, which utilizes the 
extracted and processed signal features to operate external devices. The user receives 
feedback from the device operation, closing the control loop. Common applications 
of device output include moving a cursor on a computer screen, controlling a wheel-
chair or other assistive devices, operating a robotic arm, or enabling movement of a 
paralyzed limb through the use of a neuroprosthesis. Currently, the computer screen 
is the most commonly applied output device for communication purposes.

2.3 Types of BCI (noninvasive and invasive)

Providing a new output channel, BCI technology revolutionizes human-computer 
interaction by harnessing brain signals to communicate and control external devices, 
circumventing the conventional neuromuscular and peripheral nerves pathways. 
These devices allow individuals to interact with computers while measuring their 
brain activity, enabling the BCI to discern the user’s intent by interpreting brain sig-
nals, and issuing corresponding commands for desired actuation [10]. These devices 
typically rely on the interpretation of electrophysiological brain signals, commonly 
captured using techniques such as electroencephalography (EEG), electrocorticog-
raphy (ECoG), and near-infrared spectroscopy (NIRS) [15, 16]. Among these tech-
niques, EEG is the most widely practiced for BCI applications [16–18].

Electrophysiological signals can be observed on the surface of the scalp, under 
the scalp, or even within the brain itself. Some systems use magnetic sensors or other 
methods to collect other physiological signals. Based on the degree of invasiveness of 
the techniques used, BCI systems can be classified into two main categories: invasive 
and noninvasive methods.

Invasive BCI techniques require neurosurgery to implant electrodes directly into 
the brain tissue, rendering it a highly complex, expensive, and dangerous procedure. 
As a result, invasive BCIs are primarily reserved for patients who are blind or immobi-
lized [4]. To address these challenges and expand the accessibility of BCI technology, 
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noninvasive BCI approaches have gained significant attention. The noninvasive 
method rely on external sensors, such as scalp electrodes or wearable devices, to 
capture brain signals. Hence, in recent years, research interest has been lying in 
developing noninvasive wireless devices that address these concerns. Currently, 
due to practical constraints and limitations associated with invasive BCI, its clinical 
applications have relied mainly on scalp-recorded EEG signals to date. Overall, each 
method—whether invasive or noninvasive—has its pros and cons; therefore, the 
choice of BCI approach may be determined by the individual’s specific BCI usage 
requirements and overall goals.

2.3.1 Noninvasive

The noninvasive method is the preferred and the safest of these options [19]. A 
noninvasive BCI operates on the principles of EEG and does not require any surgical or 
intrusive intervention as signals are recorded from the scalp [3]. The noninvasive BCI 
is the present focus of the majority of studies, which is expected to grow significantly 
in the coming years. Although it contains less data than intracortical recordings, EEG 
recorded by scalp electrodes has similarly been shown to be a viable basis for BCI 
control [20]. The noninvasive BCI offers various benefits over the invasive BCI owing 
to its simplicity, minimal risk, lower costs, ease of use and operation, portability, and 
high temporal resolution [2]. No surgical intervention is required, and thus, there 
is no possibility of scar tissue or tissue damage of the brain, making it a much safer 
approach. Noninvasive BCI can be used by people from all walks of life, and it does not 
require the supervision of medical professionals. However, due to the interference of 
the skull, this process has a poorer spatial resolution, captures weaker signals, and has 
limited frequency range [14]. Moreover, it is more prone to outside noise and artifacts 
from electromyographic (EMG) or electrooculographic (EOG) activity.

EEG signals are used to control many devices such as wheelchairs. Kaufmann 
et al. proposed a BCI method for controlling a wheelchair using the EEG signals and 
tactile event-related potential (ERP), focusing on people with neurodegenerative 
diseases [21]. Fifteen participants were tested as they operated a virtual wheelchair 
around a building. The majority of participants established tactile ERP-BCI control 
that was reliable and accurate enough to control a wheelchair [21]. Following that, 
utilizing EEG and tactile ERP as well, Herweg et al. demonstrated to 10 healthy 
elderly participants how to teach the user to operate the wheelchair. The system uses 
14 orders in virtual environments, achieving a 90% accuracy in the navigation tasks 
involving virtual wheelchair control [22]. More recently, it has been emerging as a 
promising approach in rehabilitation and assistive devices. In stroke patients, Li et al. 
examined a BCI-operated lower limb rehabilitation robot, which led to enhanced leg 
functional recovery that may arise in people who suffered stroke, and it also improved 
daily living activities [23]. Bundy et al. tested a powered exoskeleton operated by BCI 
using the spectral power from EEG data from undamaged cortical regions with 10 
chronic hemiparetic stroke survivors that have moderate to severe upper-limb motor 
disability. Results demonstrated significant improvement in motor recovery [24]. 
Moreover, findings from Frolov et al. also revealed that incorporating exoskeleton-
assisted physical therapy with BCI control can optimize poststroke recovery results 
[25]. Similarly, 13 study participants were able to use their brain activity to control a 
robotic arm and perform reach-and-grasp tasks with high accuracy using EEG-based 
BCI, exhibiting the practicability of prosthetics limbs operated by humans using 
noninvasive BCI technology [26].
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2.3.2 Invasive

In invasive BCI, some form of brain surgery is required as the electrodes need to be 
attached on the human brain using techniques such as electrocorticography (ECoG), 
intracranial electroencephalography (iEEG), or deep brain stimulation (DBS). Each 
technique has its unique characteristics and applications.

ECoG is commonly used in clinical settings to identify brain areas that may be 
affected by surgical resection of lesions. ECoG signals are recorded from electrodes 
surgically positioned under the scalp and is considered partially invasive. The elec-
trodes implanted track electrical activity emanating from the brain’s cortical surface 
and provide accurate readings of neural activity, similar to EEG [1]. One of the key 
advantages of ECoG is its close proximity to the brain, as the removal of the insulat-
ing aspects of the skull and dura produces greater signal amplitude, resulting in 
superior temporal and spatial resolution and wider spectral bandwidth. ECoG enables 
the detection of higher-frequency (40-Hz gamma band) activity up to 200 Hz and 
beyond, along with lower-frequency (40 Hz) activity that dominates the EEG [14]. 
This enhanced signal quality makes ECoG an ideal tool for recording wider detectable 
frequency range and achieving better topographical resolution.

However, despite its advantages, this technique comes with a number of flaws, 
foremost being usability issues due to the involvement of a surgical procedure. While 
ECoG electrode arrays can be removed, this process necessitates the involvement 
of a skilled neurosurgeon. In addition to concerns regarding implant stability and 
infection prevention, medical complications can occur if the body fails to adapt to 
the insertion of a foreign object. Furthermore, ECoG-based systems face limitations 
in terms of the system’s readout due to the relatively small size of the recorded brain 
area. Once the electrodes are affixed, they cannot be easily repositioned to monitor 
brain activity in different regions unless a surgical procedure is undertaken. As a 
result, the use of invasive recording in the real world has predominantly been limited 
to BCI-based medical applications catering to a select group of severely disable users 
such as neural motor prostheses device using BCI ECoG for paralyzed patients [6].

Vansteensel et al. fully implanted BCI that included a transmitter inserted 
beneath the skin on the left side of the thorax and subdural electrodes placed over the 
motor cortex in locked-in ALS patients. Using software that automatically extracted 
electrocortical signal features, the patient operated a software that has the ability to 
type, although somewhat slowly, by trying to move her hand [27]. Another study by 
Degenhart et al. implanted high-density ECoG electrode grids over sensorimotor cor-
tical areas on two subjects with upper-limb paralysis due to ALS and brachial plexus 
injury. After training, participants were able to produce strong cortical modulation 
that could be distinguished between attempts to move their paralyzed limbs’ hands 
and arms. Utilizing the somatotopic control method, they were able to deliberately 
modulate the control of the movement of a computer cursor with up to three degrees 
of freedom [28]. Subsequently, Cajigas et al. implanted a portable BCI on a patient 
with spinal cord injury with complete cervical quadriplegia to restore hand func-
tion. The BCI was made up of subdural surface electrodes that are embedded over 
the motor cortex of the dominant hand and is connected to an electric transmitter 
inserted below the clavicle subcutaneously to enable continuous readout of the 
electrocorticographic activity. During the preliminary 29-week laboratory trial, func-
tional electrical stimulation of the dominant hand was triggered by movement-intent 
and, later, during at-home usage of a mechanical hand orthosis. Movement-intent 
date could be reliably deciphered, whereas various upper extremity tasks, such as 
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lifting tiny items and transporting objects to particular targets, were performed better 
in both speed and accuracy [29]. Thus, an implanted BCI can be employed securely to 
robustly interpret movement-intent from the motor cortex, enabling precise voli-
tional control of hand grasp.

ECoG is primarily employed for clinical purposes in humans due to its invasive 
nature and its application within a specific patient population. Consequently, one of 
the major challenges faced by BCI researchers in the field of ECoG is the scarcity of 
research subjects, as their availability is contingent upon the diagnostic and therapeu-
tic conditions of patients. The invasive nature of ECoG and its clinical focus restrict 
the pool of potential participants for research studies. Additionally, the placement of 
ECoG electrode arrays is primarily guided by clinical considerations and the specific 
needs of patients, which may not always cover cortical areas associated with advanta-
geous brain patterns for BCI applications.

Next, one of the most invasive technique employs intracortical acquisition, where 
electrodes are implanted under the cortex surface of the brain measuring spikes of 
action potentials in individual neurons or local field potentials. The ability to record 
activities of individual neurons with great signal quality makes this technique highly 
advantageous. This technique is utilized to aim for deeper brain regions such as the 
limbic system [30]. Electrodes are positioned in close proximity to signal sources; 
the arrays must be stable over time. The application of iEEG in source localization 
issues is highly urged because of its comparatively high spatial resolution. Similar to 
ECoG, iEEG are less affected by EOG and EMG activity and provide greater temporal 
and spatial resolution, higher bandwidth of up to 500 Hz [10]. However, other than 
complications of implantation surgery, the recording quality diminishes over time 
[31]. Long-term signal fluctuation could be observed during intracortical recording 
as a result of displacement of electrodes, increased tissue resistance, or neuronal cell 
loss. Additionally, if the system uses a stimulus to trigger a paralyzed limb, this extra 
input could have a sizeable noise impact [4].

The Figure 3 presents an overview of a typical BCI system, providing a visual 
representation of the essential components and processes involved, as discussed in 
the previous paragraphs.

Finally, DBS, on the other hand, entails the implantation of electrodes deep within 
specific brain regions associated with neurological disorders and delivers electrical 
impulses through the implanted electrodes to modulate and restore balanced neural 
activity [32, 33]. It is a prominent application of BCI technology within the pres-
ent healthcare setting as ongoing research is exploring the integration of these two 
approaches. BCI DBS enables real-time monitoring and analysis of brain signals, 
allowing for precise control and customization of stimulation parameters to optimize 
therapeutic outcome [32, 34]. These signals are then translated into commands that 
control the timing, intensity, and duration of electrical stimulation, enabling precise 
modulation of neural circuits involved in the pathogenesis of the disorder. The ability 
to customize stimulation parameters according to individual patient needs is a key 
advantage of BCI-based DBS.

Furthermore, it has shown significant efficacy in managing conditions like 
Parkinson’s disease, essential tremor, dystonia, and certain psychiatric disorders 
[15, 34–36]. By targeting the dysfunctional brain circuits responsible for movement 
disorders, such as tremors and rigidity in Parkinson’s disease, DBS can significantly 
reduce these symptoms and restore motor function [37–40]. Moreover, DBS has shown 
promising results in addressing treatment-resistant psychiatric conditions, such as 
obsessive-compulsive disorder, borderline personality disorder, and major depression, by 
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modulating the brain regions involved in emotional and cognitive processes [32, 34, 41]. 
Through the interface with the brain’s electrical signals, BCI-based DBS allows for precise 
and targeted stimulation, leading to substantial improvements in motor function, 
reduction in tremors, and alleviation of symptoms [37, 42–45]. This innovative approach 
enhances the quality of life for patients who have previously experienced limited success 
with traditional therapies, opening new possibilities for neurologists and patients alike. 
However, much like ECoG and iEEG, DBS offers significant therapeutic benefits but car-
ries surgical risks, and the long-term efficacy may be influenced by factors like electrode 
displacement or tissue response. While DBS has demonstrated efficacy in managing 
various neurological conditions and is a promising treatment option, it is important to 
note that findings in the field are limited and not without mixed results [32, 46–48], 
paired with significant methodological and ethical constraints within the two respec-
tive fields [49, 50]. Research in the field of DBS-BCI integration is ongoing, and further 
studies are needed to fully understand its effectiveness, long-term outcomes, and the 
factors influencing its therapeutic success. The complex interplay of brain circuits and 
individual variability contribute to the challenges associated with DBS-BCI, warranting 
continued investigation and refinement of this integrated approach.

In summary, ECoG, iEEG, and DBS are distinct invasive BCI techniques that 
require brain surgery for electrode placement. ECoG provides wide spectral 

Figure 3. 
Schematic overview of BCI [15]. The brain generates electrical signals that are captured using EEG, ECoG, or 
iEEG methods. These signals are processed using signal processing algorithms, and the resulting decoded commands 
are utilized to control a range of external devices for communication, environmental control, movement 
assistance, locomotion, and neurorehabilitation.
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bandwidth and good topographical resolution, while iEEG offers highly localized and 
precise recordings of neural activity. DBS utilizes electrical stimulation to modulate 
targeted brain circuits. While they offer distinct advantages in terms of signal quality 
and targeted stimulation, they also come with challenges such as surgical risks, lim-
ited repositioning capabilities, and potential long-term complications. Thus, ongoing 
research is needed focusing on improving electrode design, developing closed-loop 
systems that adapt stimulation parameters based on real-time feedback, and refining 
the surgical techniques involved. Each technique has its advantages and limitations, 
and the integration of BCI technology enhances their potential in managing neuro-
logical and neuropsychiatric disorders.

3. BCI clinical applications

This section offers a comprehensive exploration of the clinical applications of BCI 
technology. BCIs have shown tremendous potential in transforming healthcare and 
medical sciences by introducing groundbreaking solutions for diagnosis, rehabilitation, 
and assistive devices. Through an in-depth review of the existing literature, this section 
critically examines the body of research that focuses on BCI applications in clinical set-
tings. Specifically, it highlights the significant contributions and advancements made in 
the domains of diagnosis and detection, rehabilitation, and assistive devices. To provide 
a concise overview of BCI applications in clinical contexts, Table 1 presents a summary 
of key findings. By elucidating the current state of BCI clinical applications, this section 
aims to contribute to a deeper understanding of the implications and future prospects 
of this pioneering technology in the field of healthcare.

3.1 Diagnosis and detection

For starters, in diagnosis, BCI has helped predict and detect health issues such as 
abnormal brain structure in brain tumor and epilepsy with the mental state moni-
toring function of BCI systems [74]. An automated EEG analysis combines neural 
network techniques and digital signal processing and will be able to identify the 
presence of any abnormality or disease, eliminating the arduousness and chance error 
of manual analysis of EEG reading. A system developed by Sharanreddy and Kulkarni 
can identify EEG anomalies connected to seizures and brain malignancies. Using a 
feed-forward neural network, they are able to recognize the EEG signal as normal 
with a classification accuracy of 98%, brain tumor for 87%, and epileptic for 93% 
[51]. Many different methods have been explored for feature extraction and clas-
sification in the detection of epilepsy and brain tumor. Some of the most commonly 
used feature extraction methods in epilepsy detection tasks are frequency and time 
domain, with more recent studies employing discrete wavelet transform [52, 53] and 
convolutional neural network [54, 55]. Slow waves in EEG may be denoted to loss of 
local electrical activity due to the growth of a tumor on the brain, making it a useful 
tool for screening of suspicious causes. Particularly, EEG is better suited for detecting 
and diagnosis tumors on the cerebral hemispheres, as opposed to ones in the deeper 
subcortical regions that are harder to locate. Though limited, several studies have 
explored various methods for extraction and classification to provide accurate reliable 
detection of brain tumors some of which are independent component analysis [56], 
principal component analysis, and radial basis function [57]. As for disorders of con-
sciousness, Spataro et al. tested a P300 BCI paradigm with a behavioral assessment 
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Application Sample Type/Signal Reference

Diagnosis Seizure and brain 

malignancies

EEG – feedforward neural network [51]

Epilepsy EEG – discrete wavelet transforms [52]

Epilepsy EEG – discrete wavelet transforms [53]

Epilepsy EEG - convolutional neural network [54]

Epilepsy EEG - convolutional neural network [55]

Brain Tumor EEG – independent component 

analysis

[56]

Brain Tumor EEG – principal component analysis 

and radial basis function

[57]

Disorders of 

Consciousness

P300 [58]

Dementia P300 [59]

Sleep apnea EEG-based deep learning neural net [60]

Rehabilitation Stroke BCI with FES [61]

Stroke BCI with FES [62]

Stroke BCI with transcranial magnetic 

closed-loop stimulation

[63]

Stroke and 

healthy subjects

BCI with peripheral electrical 

stimulation

[64]

Assistive Devices 

(Neuroprosthetic)

Seizure - 

prosthetic finger

ECoG-based BCIs [65]

4 participants -  

Robotic prosthetic 

arm

EEG based motor imagery BCI [66]

1 amputee  

subject - lower 

extremity 

prosthetic

EEG BCI [67]

Assistive Devices 

(Environmental 

control)

12 healthy 

subjects and 2 

disabled subjects

EEG BCI Smart home [68]

NA EEG - Intention recognition [69]

3 subjects Wheelchair control BCI with 

autonomous navigation technique

•  Motor imagery and P300

[70]

Assistive Devices 

(Communication)

3 paralyzed 

patients

High-performance iBCI

• Assistive Communication device

[71]

3 paralyzed 

patients

High-performance iBCI

• Tablet Computer Control

[72]

Person with 

paralysis and 

anarthria

High density ECoG

• With natural language modeling

[73]

Table 1. 
Overview of articles for BCI clinical applications comprising three main domains; diagnosis and detection; 
rehabilitation; assistive devices.
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(Coma Recovery Scale- Revised) and reported its reliability and efficacy in improving 
diagnostic precision for the evaluation of consciousness level [58]. Other conditions 
that can apply BCI for diagnosis and classification are stroke diseases [75], dementia 
[59], and sleep apnea [60].

3.2 Rehabilitation

BCI systems may be used therapeutically to assist people in relearning and 
regaining effective motor function after impairing their neuromuscular function 
due to trauma or disease. Mobility rehabilitation is a type of physical therapy that 
can help people with mobility problems regain their abilities or regain function to a 
level or assimilate to their new disability [76]. Essentially, the BCI systems work by 
synchronizing brain activity that pertain and correlate to movement intent with real 
motions and sensations produced by end-effector devices, generating brain plastic-
ity, and helping to restore normal central nervous system function [6]. BCI-based 
neurorehabilitation facilitates functional recovery and may improve quality of life. 
Primarily, SMR-based BCI systems are studied in movement control along with corti-
cal stimulation.

In stroke rehabilitation, BCI is implemented to transform brain signals into desired 
movement of the paralyzed limb. Testing BCI with functional electrical simulation 
(FES), Biasiucci et al. reported that the intervention generated significant increase 
in functional connectivity between motor areas in the afflicted hemisphere, which 
was associated to functional improvement in chronic stroke survivors. This result was 
found more effectively than sham FES [61]. Moreover, Tabernig et al. also conducted 
a similar study and reported significant improvement posttreatment, suggesting that 
functional electrical stimulation commanded by BCI may be an effective neuroreha-
bilitation for stroke patients [62]. Another study by Kraus et al. explores the utility 
of closed-looped cortical stimulation that is dependent on brain state sensorimotor 
desynchronization. The study produced significant increase in corticospinal excit-
ability in healthy subjects, denoting that this approach may be applied in neuroreha-
bilitation to activate brain plasticity and maximize motor recovery [63], as was also 
reported in Kim et al., in healthy subjects and stroke patients [64].

3.3 Assistive devices

Assistive technology (AT) helps individuals with motor, sensory, or cognitive 
disabilities in carrying out tasks that would be challenging or unattainable for them 
otherwise. Mobility aids, such as neuroprosthetic limbs, are one of BCI’s primary 
applications in healthcare. This system helps those who are severely incapacitated due 
to illnesses like persistent peripheral neuropathies, ALS, cerebral palsy, spinal cord 
injuries, brainstem stroke, or muscle dystrophies [6]. According to Mak and Wolpaw, 
the major user demographic for current BCI systems is made up of patients who still 
have minimal neuromuscular control, such as weak eye movements or a small muscle 
twitch, as traditional assistive communication technology that relies on muscle move-
ment is insufficient and unsuitable for them [10]. Thus, BCI systems will allow them 
more efficient and reliable control and communication with the environment.

For those who are paralyzed, regaining independent locomotion is another 
crucial concern. Several studies recommended that patients who struggled or are 
unable to regain upper limb movement would benefit from using neuroprosthetic 
devices that use motor imagery-based BCI to recover normal functioning [77]. 
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Hotson et al. showed the use of ECoG-based BCIs in a human subject on the popu-
lations of sensorimotor cortex’s native functional anatomy to control and move 
individual prosthetic finger in real time [65]. Bousseta et al. also devised a novel 
technology using mental imagery and cognitive tasks to control the movement of 
a robotic prosthetic arm that can move in up, down, left, and right directions. The 
system had an average accuracy of 85.45% across four participants [66]. A case 
study by Murphy et al. was also successful in demonstrating the viability of employ-
ing EEG-BCI to control a lower extremity prosthetic. The transfemoral amputee 
participant was trained with EEG rhythm-feedback to move a prosthetic knee and 
unlock the knee by switch activation [67].

Other than movement control, BCI-based environmental control would also 
greatly contribute to the well-being and daily living of people with severe disabilities 
and provide relief for caregivers. This will enable users to operate domestic appliances 
including door openers, lights and bulbs, mechanized beds, TVs and stereo systems, 
and telephones from a distance with the integration of EEG-based BCI technology 
[10]. Kosmyna et al. devised a BCI control mechanism for smart homes that permits 
users to control a coffee machine, lighting, shutters, and a TV set. They discovered 
that 12 healthy subjects achieve 77% task accuracy, whereas two disabled subjects 
achieve 81% accuracy [68]. However, Minguillon et al. reviewed the feasibility of 
EEG-BCI for potential daily applications and denoted that existing artifact removal 
techniques require further development before they can be used in real-world 
EEG-BCI [78]. Other studies are also exploring its utility and proposing different 
approaches and mechanisms such as Yue et al., to improve intention recognition 
accuracy [69]. To resolve the issue of mental burden as well as unstable and noisy EEG 
signals, Zhang et al. integrated BCI with an autonomous navigation technique for 
wheelchair control. The researchers tested both BCI based on motor imagery (MI) or 
P300 and found them to be effective [70]. This works by allowing the user to choose a 
destination using a MI or P300, and the automatic navigation system determines the 
path and waypoints.

On top of that, another application for BCI within this context is communication. 
Pandarinath et al. showcased how BCIs can be useful as powerful assistive com-
munication devices for people who have reduced motor function. Three paralyzed 
participants tested a high-performance intracortical BCI (iBCI) for communica-
tion, producing a good typing rate and information throughout [71]. In a study by 
Nuyujukian et al., three paralyzed subjects were able to control a tablet computer 
through iBCI with multielectrode array attached to the motor cortex [72]. A step for-
ward from the current assisted communication technique is a program that interprets 
words and sentences from patients’ cerebral cortical activity directly. Recently, Moses 
et al. showed that complete words and phrases could be deciphered from electrical 
activity in the sensorimotor cortex of a person with paralysis and anarthria who was 
trying in vain to make understandable speech. Decoding was accomplished at 15 
words per minute with a 25% error rate when paired with natural language modeling 
that predicts likely future words [73].

4. Limitations and strengths

BCI has made a lot of progress in the past 20 years. The strength of BCI lies in 
its potentiality and utility. The notion of controlling an external device with one’s 
thoughts is a very favorable and viable respite for people with impaired functions 
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such as speech or movement. Within the healthcare paradigm, developments in BCI 
system endeavor to provide a specialized multimodal approach to communication and 
therapeutic intervention. BCI technology is valuable and useful because it provides 
an opportunity for those who cannot move or speak to communicate and engage with 
others as well as operate appliances and assistive devices such as computers, home 
appliances, and speech synthesizers [79]. Beyond its promising applications and 
integration into the lives of people with motor impairment, BCI benefits by bridging 
its scientific understanding and experimental design into clinical benefits, facilitating 
real-time communication between the user and the outside world.

No BCI system and technique developed are currently free from limitations. 
Different approaches and types present their respective advantages and drawbacks. A 
satisfactory solution has not yet been found for the safety and long-term stability of the 
electrodes applied in invasive BCI systems. The electrodes are usually implanted tem-
porarily and are limited to short-term studies. Recently, Benabid et al. had implanted 
a participant with tetraplegia with two bilateral wireless epidurals with 64 electrodes 
to control a four-limb neuroprosthetic exoskeleton that was found to be stable over a 
period of 24 months [80]. Additionally, the electrodes in invasive BCI can be implanted 
only in a limited range of sites and can record only few cell populations, of which the 
recording quality declines over time [31]. However, the use of microelectrode arrays 
has evolved and attained popularity as a means of real-time capture of the current local 
neural activity state. In both preclinical and even clinical trials, recent improvements in 
array design and fabrication have enabled the development of multichannel probes that 
are perfectly matched to the geometry of the selected area of the brain [81, 82].

On the other hand, EEG-based BCI systems, which are noninvasive and do 
not need for surgery or the ongoing upkeep of implanted electrodes, do not have 
these hazards or concerns because the electrodes are surface and simple to replace. 
However, EEG-based devices can only detect relatively weak and limited frequency 
brain waves. Albeit so, within the recording modalities, EEG-based BCIs are the most 
affordable and have now been used for clinical applications.

Usability challenges relate to human acceptance and constraints. First and 
foremost is the heterogeneity of the human brain. Neurological issues encompass a 
wide range of problems that relate to the anatomy and structure of the brain. These 
problems can be due to the complexity of our genetic makeup, or the diversity of the 
structure of human brains [14]. The psychological factors of memory load, fatigue, 
attention, conflicting cognitive processes, and the individual qualities of the user, 
such as lifestyle, gender, and age, all directly and immediately affect the brain dynam-
ics [4]. For the BCI to function effectively, training is required for the user to give 
them the necessary skills to communicate with the system and learn how to control 
their neurophysiological signals. However, this process is time-consuming and labori-
ous as proper guidance and repeated sessions are needed for the user. Determining 
the appropriate number of training sessions required may ease the process for both 
parties, avoid fatigue, and produce positive outcomes and consistent performance 
[83]. In the initial phase, the user is shown and taught how to operate the system and 
control brain feedback signals. Subsequently, during the calibration phase, the signal 
from trained users is applied to train the classifier [14].

BCI systems may be complicated and challenging for users to manage though 
designing a user-friendly simple interface is effortful for researchers [84]. The 
ability to translate current technology into real-life practices is imperative to allow 
for widespread usage of BCI. It requires signal acquisition equipment that is afford-
able, transportable, robust, commercially viable, and simple to operate. Apart from 
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weariness from wearing electrodes, users experience fatigue as they have to maintain 
intense concentration and mental effort to produce input to the BCI. The discomfort 
from the heavy EEG headset also affects the user experience.

In real-life, day-to-day setting, the BCI application may be limited due to the 
presence of artifacts and lack of mobility given to users. Home BCI systems ought 
to function consistently in dynamic and irregular settings that ordinarily contain 
electronic noise sources. Even the use of implantable neural bypass systems is cur-
rently restricted to lab settings since patients must be constantly linked to an external 
power supply and recording equipment [85, 86]. Though there are studies conducted 
using EEG-BCI in home environment instead of in laboratory settings, many techni-
cal issues still need to be resolved before it can be widely utilized [1]. This is due to its 
poor signal-to-noise ratios (SNR), susceptibility to artifacts, and role of caregivers 
in maintaining and operating it, which makes it difficult to utilize it conveniently at 
home. Potential BCI users’ physical and social situations, such as their living arrange-
ments, social networks, and support systems, are crucial. Home BCI systems must be 
smaller than those used in laboratories and able to blend in with the user’s surround-
ings with little to no disruption.

Technological issues are problems associated with various components of the 
BCI system. The recorded electrophysiological properties of brain activities provide 
challenges due to nonlinearity, noise, non-stationarity, the dimensionality curse, and 
limited training sets [4]. ERPs are target-specific and are created by external stimula-
tion. Patients with disabilities may not be able to successfully use BCI systems that 
are visual-based or auditory-based if they are visually or hearing impaired. This may 
lead to high variability and poor performance in the patients. BCIs systems should be 
customized to users’ suitability and capacities.

5. Future direction

BCI will continue to develop and advance as research continue into the develop-
ment of diagnostic measures, treatment, and assistive technology. Although BCIs have 
shown promise for implementation in therapeutic environments, including patients’ 
homes, their application is still limited to research settings. BCI technologies have 
been proven to be reliable and effective. Despite so, most of the recently published 
research are essentially proof-of-concept experiments that lack any data from clini-
cal trials demonstrating regular and routine use by patients. It can even be said that 
only until this technology reaches the consistency of natural muscle activity will it be 
acceptable by the general population for everyday use. Therefore, depending on the 
size, complexity, and effectual running of the EEG device, research should account 
for the acceptance and practicality BCI systems when designing and developing [12]. 
Furthermore, the potential for BCI applications could be significantly increased if 
noninvasive BCI systems with various independent control channels such as multidi-
mensional control of neuroprosthesis [10] or hybrid signals [8, 19, 87] are developed 
further. This would allow for users to execute more challenging tasks, such as the per-
forming sequential movements or seamlessly ceasing the execution once completed.

Additionally, adoption of BCIs in healthcare systems necessitates the involvement of 
various stakeholders as well as an understanding of their perspectives and roles. This will 
steer the advancement of BCI and foster confidence and support in its application. The 
collaborative efforts of scientific researchers, healthcare personnel, and the tech indus-
tries will pave the way for commercialization and make BCI accessible to the public.
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6. Conclusions

To sum up, the BCI technology exhibits significant potential to revolutionize the 
healthcare industry by enabling direct communication and control between the brain 
and external devices. The chapter at hand has highlighted the various applications 
of BCI technology in the healthcare domain, encompassing diagnostic, rehabilita-
tive, and assistive technology purposes. Although BCI technology holds potential for 
addressing neuromuscular disorders, it presents technical and usability obstacles that 
necessitate additional investigation. The benefits of BCI technology in healthcare are 
apparent and indisputable, though, and continuous research will surely yield novel 
applications and greater outcomes. Hence, the technology of BCI exhibits immense 
potential for the healthcare sector, and it is anticipated to have a substantial impact on 
ameliorating and augmenting the standard of living of individuals who suffer from 
functional disabilities.
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