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Abstract

During the past decade, research in the area of synthesis and applications of nano-
structured titanium dioxide (NS TiO2) has become tremendous. NS TiO2 materials 
have shown great potential and a wide range of applications. The decrease in the parti-
cle size and the increase of the surface/volume ratio lead to the increase of the specific 
surface and the modification of the physicochemical properties and the appearance of 
new interesting properties (photocatalytic, optical, magnetic, electronic...). Their new 
morphology even allows the appearance of new biological properties. NS TiO2 can thus 
be used for the same applications as those known for their precursors before transfor-
mation and their nanostructures are accompanied by new properties allowing applica-
tions. This chapter briefly describes the synthesis process of the different NS TiO2, 
their chemical and surface modifications, and their application. The preparation of 
NS TiO2, including nanoparticles, nanorods, nanowires, nanosheets, nanofibers, and 
nanotubes is described. This chapter discusses the effects of precursor properties and 
synthesis conditions on the structure, crystallinity, surface specificity, and morphol-
ogy of titanium dioxide nanoparticles. Recent advances in NS TiO2 in nano-biosensing, 
medical implants, drug delivery, and antibacterial fields, pharmaceutical applications, 
as well as their toxicity and biocompatibility, were presented.

Keywords: titanium dioxide nanoparticle, syntheses process, chemical methods, 
physical methods, biosynthesis, environmental applications, biomedical applications, 
biocompatibility

1. Introduction

Nanotechnology encompasses biology, chemistry, materials science, medicine and 
physics. Today, With the advent of nanoscience and titanium dioxide nanostructured 
materials nanotechnology, nanostructured materials are an important research 
area due to their various unique properties. Among all transition metal oxides, TiO2 
nanostructures are the most attractive materials in modern science and technology 
[1]. TiO2 is used commercially in donuts, cosmetics, pigments [2], catalysts, sun-
screens [3, 4], solar cells [5], water splitting, and more. TiO2 is used in plastics, paints, 
varnishes, paper, pharmaceuticals, inks, pharmaceuticals, toothpaste, food, and 
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industry [6, 7]. Nanostructured titanium dioxide (NS-TiO2) is a non-toxic, environ-
mentally friendly, inexpensive, and efficient functional material with a broad range 
of applications [8–11]. In the past decade, nanostructured TiO2, which can have either 
a stoichiometric or nonstoichiometric composition, has attracted increasing atten-
tion from researchers around the world as a promising highly efficient photocatalyst 
for the synthesis of organic compounds that meets the principles of green chemistry 
[12–17]. Today, nano-structured materials are an important area of research due to 
their several unique characteristic features. Among all the transition metal oxides, 
TiO2 nanostructures are the best-looking materials in modern science and technology 
[1]. Nano-TiO2 nanostructures include titanium dioxide nanoparticles (TiO2-NPs) 
and titanium dioxide nanotubes (TNTs) [18]. With the advent of nanotechnology, 
NS–TiO2 has found many applications. Nanoscale titanium dioxide (nano-TiO2) has 
been widely used in environmental protection, cosmetics, antibacterial agents, self–
cleaning coatings and cancer treatment, solar cells, photocatalysis, and composite 
nanofillers [19–21]; due to the fact of its unique size and high specific surface area, 
nano-TiO2 has more stable physical and chemical properties compared to titanium 
dioxide. In addition, nano-TiO2 has great application potential in biomedical fields  
[22, 23] due to the fact of its good antibacterial activity, favorable biocompatibility, 
and unique photocatalytic activity [24]. Research has shown that nanostructured 
TiO2 elicits a favorable molecular response and osseointegration, with better bone 
formation than non-nanostructured materials [25–27]. The unique physicochemical 
properties of all these forms of NS–TiO2, render this material a promising future 
in many applications. Several reviews and reports on different aspects of titanium 
dioxide, including its properties, preparation, modification, and application, have 
been published. However, despite advances in the development of nanostructured 
TiO2 systems for bone repair, review articles addressing this topic are still scanty [28].

The purpose of this chapter is to introduce and discuss the properties [29], fabri-
cation, modification, and applications of nanostructured titanium dioxide (NS-TiO2). 
With the advent of nanotechnology, NS-TiO2 has found many applications.

2. Synthesis process of NS TiO2

Various synthesis methods such as sol-gel, hydrothermal and solvothermal 
methods, vapor deposition, electrochemical deposition, oxidation, and sonochemical 
and micro-waves methods are used to obtain high-quality TiO2 nanostructures [12, 
15]. In this section, we will analyze the most used methods for the preparation of TiO2 
nanostructures.

2.1 Chemical and physical methods

2.1.1 Sol: gel process

Sol-gel is a versatile method used for the synthesis of TiO2 nanostructures of 
different morphologies such as sheets, tubes, particles, wires, rods, mesoporous, and 
aerogels [30–32]. Mehrotra and Singh [33] suggested different steps and conditions 
that can control the morphology of the final products in the sol-gel process (Figure 1).

The sol-gel method can use two ways of synthesis: the inorganic or colloidal route in 
which the precursors used are metal salts such as chlorides, nitrates, and oxychlorides 
in an aqueous solution. The Metallo-organic or polymeric route: obtained from metal 
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alkoxides in organic solutions. The polymerization reaction to obtain titanium dioxide 
takes place in two steps, namely hydrolysis, and condensation.

2.1.2 Hydrothermal and solvothermal processing

These two methods of synthesis are quite similar. The hydrothermal method is 
considered one of the most promising techniques for obtaining nanostructured TiO2 at 
stable temperatures and pressures. It has the advantage of following simple steps and 
being inexpensive. The hydrothermal technique allows the production of high-quality 
1D nanostructures, especially nanorods. By adapting the synthesis parameters, it is 
possible to control the morphology of the structures. However, the disadvantages of 
this method include the high capital requirement for instrumentation, the inability to 
monitor crystal growth, and the method can only be performed under supercritical 
solvent conditions [32, 34, 35]. Solvothermal methods use non-aqueous solvents with 
very high boiling points. When synthesizing with the solvents, better control of the 
properties of the titanium dioxide particles is achieved. The physicochemical charac-
teristics (viscosity, polarity, boiling point, thermal conductivity, dielectric constant) of 
the solvent have a great influence on the nanostructures of the product [36]. Kathirvel 
et al. [37] prepared TiO2 nanocrystals by the solvothermal method using six alcohols 
of different classes (primary, secondary, and tertiary). The synthesis was carried out 
using titanium isopropoxide as a precursor at a temperature of 150°C for 8 h. The crys-
tallinity and morphology of TiO2 nanocrystals varied depending on the chain length 
and the class of alcohol [37]. Li et al. [38] on the other hand, used the solvothermal 
method to obtain TiO2 microspheres with suitable size without surfactant in a single 
step. The synthesis was performed using titanocene dichloride and acetone, heated at 
180°C for 12 h [39]. It has been shown that the addition of surfactants to the synthesis 
effectively controls the growth of the particles [40–42].

Figure 1. 
Sol-gel process steps for the synthesis of TiO2 nanostructures [30, 32, 33].
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2.1.3 Vapor deposition

Deposition methods form high-quality solid materials by condensing materials 
in a vaporous state. The deposition process is usually performed at low pressure in a 
vacuum chamber. If a chemical reaction occurs, it is called chemical vapor deposition 
(CVD) and if no reaction occurs, it is called physical vapor deposition (PVD). In this 
process, a precursor (solid or liquid) is heated to form an active gaseous reactant that 
is transferred to the reaction chamber. When the substrate is exposed to the volatile 
precursor, a reaction occurs on the surface of the substrate and the deposition process 
begins to produce the desired product. The precursors used in this method are highly 
volatile, non-toxic, and pyrophoric. The by-products formed during this process are 
degraded through the reaction chamber by the gas flow. This technique proved to be 
suitable to prepare TiO2 nanostructures with tailored morphologies [43, 44].

2.1.4 Oxidation method

The principle of this method is to oxidize metallic titanium into titanium oxide 
by anodization or by the use of oxidants. Anodization or anodic oxidation consists in 
performing a surface treatment to form a titanium structure of pores/nanotubes on 
TiO2. Oxidation of titanium can be achieved by using oxygen sources such as hydro-
gen peroxide, pure oxygen, acetone, and a mixture of argon and oxygen [30]. Mohan 
et al. [45] used this technique to synthesize self-organized titanium oxide nanotube 
layers from titanium alloys in electrolyte mixtures. The length and diameter of the 
nanotubes were controlled by playing on different anodization parameters such as 
temperature and time. Significant results were observed at 25°C. Indeed, at this tem-
perature compared to others, smooth and circular nanotube arrays, with no apparent 
defects in their morphology were obtained [45]. From a previously treated titanium 
plate dissolved in 30% hydrogen peroxide, titanium dioxide nanorods were obtained 
by a dissolution precipitation mechanism. The addition of inorganic sodium salts can 
lead to the formation of anatase (NaF and Na2SO4) or rutile (NaCl addition) titanium 
dioxide nanorods [46].

2.1.5 Electrochemical anodization/electrodeposition process

Electrochemical anodization is an electrochemical process used to manufacture 
nanoparticles such as titanium nanotubes and nanopores. This method consists in 
growing the oxide layer on the metal surface. This process is performed in a standard 
two-electrode system immersed in a first, second, or third-generation electrolyte 
solution. The titanium forms the anode electrode and the platinum the cathode.

2.1.6 Sonochemical synthesis

Sonochemical synthesis has proven to be an efficient method to obtain nanopar-
ticles with interesting properties in a short time [47]. The chemical effects observed 
during this technique are attributed to acoustic cavitation phenomena. Indeed, during 
cavitation in a liquid medium, there is formation, growth, and collapse of bubbles 
in the liquid. The violent implosion of the bubbles in less than a microsecond gener-
ates short-lived hot spots with a temperature of about 5000 K, pressures close to 
1000 atm, and cooling rates higher than 109 K/s. Under these conditions, metal ions 
are reduced to metal or metal oxide nanoparticles [48]. The main advantage of this 
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method is that the reaction times are reduced and the manipulations are performed 
under ambient conditions. In addition, it is a simple technique to implement and 
energy efficient. The nanostructures obtained are ultrafine particles. Studies have 
shown that ultrasonic synthesis of TiO2 nanostructures can improve their properties. 
This technique is more efficient than other methods including microwaves [49].

2.1.7 Microwave method

The microwave-assisted synthesis method also uses electromagnetic waves such 
as sonication. Titanium dioxide can be synthesized by this technique at frequencies 
ranging from 0.3 to 300 GHz and wavelengths from 0.001 to 1 m. Two different 
mechanisms can be involved in microwave chaffing: dipolar polarization and ionic con-
duction [50]. Any material or substance containing mobile electric charges such as polar 
molecules or conducting ions can be heated using microwaves. In the dipolar polariza-
tion mechanism, microwave energy allows molecules to try to orient themselves with 
the electric field oscillating billions of times per second. The constant rotary motion of 
the molecule trying to align itself with the field causes friction and collisions.

3. Physical and chemical properties of NS TiO2

Titanium dioxide is one of the most studied and well-researched compounds in 
materials science, due to its outstanding and exceptional properties which include 
stability of its chemical structure, biocompatibility, physical, optical, and electrical 
properties, nontoxicity, corrosion resistance, and low cost [51–53]. Generally, the 
morphology and physical/chemical properties of TiO2 nanostructures depend on the 
synthesis process, precursor type, and concentration, use of capping agents, synthesis 
temperature, pressure, and time [31]. Titanium dioxide, CI 77891, also known as 
Titanium (IV) oxide or Titania, CAS No: 13463-67-7 is a naturally occurring oxide 
with the chemical formula TiO2 and a molecular weight of 79.87 g mol−1. It belongs 
to the family of transition metal oxides [54]. The most important titanium minerals 
are rutile (TiO2), ilmenite (FeTiO3), and titanite (CaTiSiO5) [54]. In nature, titanium 
dioxide occurs mainly in three crystalline forms: rutile, anatase, and brookite. In addi-
tion, other polymorphs have also been reported (Figure 2) [32]. In addition, there are 
at least 3 reported non-crystalline TiO2 phases: a low-density amorphous TiO2 and 
two high-density amorphous TiO2 types. TiO2 (II) and TiO2 (H) are high-pressure 
forms that have been synthesized from the rutile phase [31, 54–56].

In various technologically relevant applications, nano-size-scaled materials have 
shown beneficial properties related not only to their chemical composition but also to 
the small dimensions and the large surface-to-volume ratio. Generally, a material is 
defined as a nanomaterial when it has a specific surface area by volume greater than 60 
m2cm−3, excluding materials consisting of particles with a size lower than 1 nm [57].

The high surface area brought about by small particle size is a crucial parameter 
for the high performance of many TiO2-based devices. It provides more active sites 
and a large interface for any type of reaction/interaction between the device and the 
interacting media. Thus, the performance of TiO2-based devices is largely influenced 
by the size of TiO2 building units. For example, high surface area TiO2 nanomateri-
als can guarantee good accessibility and contact with the electrolyte in lithium-ion 
batteries. Small primary crystals offer short diffusion paths for lithium and are 
beneficial for short charging–discharging times in batteries. Anatase, which has a 
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greater surface area than its counterparts, is widely used as a photocatalyst in pho-
ton–electron transfer, whereas rutile is used for light scattering [57]. Surface charge is 
an important property of nanoparticle dispersions. When nanoparticles are dispersed 
in an aqueous solution, surface ionization and adsorption of cations or anions gener-
ate a surface charge, creating an electric potential between the particle surface and 
the bulk of the dispersion medium [58]. Depending on the measurement technique, 
the surface charge can be expressed either as surface charge density (potentiometric 

Figure 2. 
Structures of TiO2 phases: (a) rutile, (b) anatase, (c) brookite, (d) TiO2 (B), (e) TiO2 (II), (f) TiO2(R),  
(g) TiO2 (II), (h) baddeleyite TiO2, (i) TiO2-OI, (j) TiO2-OII and (f) cubic TiO2 [32].
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titration) or zeta potential (electrokinetic method). The point where the surface 
charge density is zero is defined as the point of zero charges (ZPC), and the point 
where the zeta potential is zero is defined as the isoelectric point (IEP) [58].

The surface of TiO2 nanoparticles dispersed in aqueous media or humid atmo-
sphere can react immediately with water molecules, and reasonable amounts of 
hydroxyl groups are formed as shown in Eq. 1 [30, 58].

 ++ → − +
2

IV IV
Ti H O Ti OH H   (1)

When the surface of TiO2 is fully hydroxylated, the oxide ions in the oxide and 
water absorbed on the surface would distribute electrons and form equal quantities of 
two types of hydroxyl groups [30].

The surface charge of titania is a function of solution pH, which is affected by the 
reactions that occur on the particle surface as shown in Eqs. 2 and 3.

       + +− + → −
2

IV IV
Ti OH H Ti OH  (2)

 − +− → − +IV IV
Ti OH Ti O H   (3)

A variety of nanostructured TiO2 materials with fascinating morphologies have 
been reported. The synthesis methods used for the fabrication of these nanostruc-
tures have a significant effect on their dimensions. In general, nanostructure forms 
of TiO2 have been classified into 0D (nanospheres, quantum dots), 1D (nanowires, 
rods, and tubes), 2D (layers and sheets), and 3D (nanoparticles, nanoflowers, etc.) 
architectures, which are summarized in Figure 3 [61, 62].

Dissolution is defined as the dynamic process during which constituent molecules 
of the dissolving solid migrate from the surface to the bulk solution through a dif-
fusion layer. The thermodynamic parameter that controls this process is described 
as solubility and along with the concentration gradient between the particle surface 
and the bulk, the solution acts as the driving force of particle dissolution [36]. Both 
solubility and rate of dissolution are dependent on a particle’s chemical and surface 
properties such as surface area, surface morphology, and surface energy, as well as 
size. Crystallinity and crystal structure also need to be considered. They depend also 
on the possible adsorbed species, and the state of aggregation of the nanoparticles 

Figure 3. 
Categorization of hierarchical TiO2 nanostructure form [59, 60].
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and are further impacted by the surrounding media (properties of the diffusion layer 
and the possible solute concentration) [36, 63].

Studies have shown that TiO2 nanoparticles tend to aggregate and their aggrega-
tion has a strong influence on nanoparticle behavior due to the nature and size of 
the aggregates (i.e., the packing density of the nanoparticles), and aggregation can 
potentially impact their reactivity, nanoparticle-cellular interactions, and toxicity 
[43]. There are two types of aggregations: homo-aggregation and hetero-aggregation. 
Homoaggregation refers to the aggregation of two particles of identical characteristics 
(i.e., NP–NP attachment). Heteroaggregation refers to the aggregation of particles 
with different physical or chemical characteristics (e.g., NP–clay particle attach-
ment). In the natural environment of aquatic systems, the state of aggregation of the 
nanoparticles is greatly influenced by diverse conditions such as ionic strength (IS), 
ionic composition, co-existing colloids, natural organic matter (NOM) (e.g., humic y 
fulvic and humic substances), pH, and other physicochemical factors [64].

4. Potential and applications of NS TiO2

Metal oxide nanoparticles (NPs) have found a variety of applications in numerous 
industrial, medical, and environmental fields s, attributable to recent advances in the 
nanotechnology field.

4.1 Photocatalytic applications

Photocatalysis is the decomposition and degradation of pollutants under the action 
of light rays on the surface of a catalyst, usually titanium dioxide (TiO2). It allows the 
destruction of volatile organic compounds, inorganic pollutants, and microorganisms. 
The finalized process produces essential water and carbon dioxide [65]. All current 
applications of photocatalysis use TiO2 as a semiconductor for several reasons [66]. 
Titanium dioxide, in its current commercial forms, is not toxic (apart from recent res-
ervations about the use of reservations regarding the use of nanoparticles) and, due to 
its photostability in air and water, does not release toxic elements [67]. As titanium is a 
relatively abundant element, the cost of TiO2 is not too high, at least for some applica-
tions. The most widely used crystallographic form is the anatase form because TiO2 
with a rutile structure (although having a lower band gap value allowing it to absorb 
light in the early visible spectrum) is significantly less active. The most effective com-
mercial composition at present is TiO2 Degussa P25 (80% anatase, 20% rutile) [68]. 
For practical industrial applications of semiconductor photocatalysts, Sharma et al. 
[52] proved the development of research of new semiconductor materials in visible-
light active TiO2/SnX (X = S and Se) and their application as photocatalysts since it is a 
new area of scientific interest. Indeed, they focused on the addition of TiO2 composites 
with SnX (X = S, Se) as potential candidates for environmental purification.

4.2 Photovoltaic applications

In the current global scenario, the rise in technological demands of the world’s 
population has caused a rapid increase in energy consumption, which in turn has 
led to an exponential increase in environmental pollution, which we have witnessed 
seriously in the last decades. To surmount this situation, the efficient use of green 
energy has become a hot topic worldwide. On the other hand, intelligent materials 
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are also of great value in the current market due to their multipurpose for a variety 
of applications. Among the green energy alternatives available today, solar energy 
provides more promising perspectives as the sun can deliver the ultimate solution to 
the prevailing sustainable energy supply challenge. Among the different solar cell 
technologies currently available, dye-sensitized solar cells have drawn a lot of atten-
tion due to their promising prospects. On the Other Side, photocatalysis has also 
made a strong case for itself due to its promising opportunities for clean, green, and 
sustainable development in environmental technology applications [69, 70].

4.3 Sensing applications

In recent years, gas sensors have become extremely important for environmental 
and industrial atmosphere monitoring [71]. Gas detection techniques are based on 
resistance sensing, electrochemical and optical methods, gas and liquid chromatog-
raphy, and acoustic waves. Nevertheless, certain sensors have various drawbacks: 
they consume energy and time, they are wide in size, they are expensive, and they 
display slow response and low selectivity [72, 73]. Consequently, special attention 
has been given to chemoresistive sensors, which are formed by metal oxides, carbon-
based materials, and conducting polymers. Among these materials, semiconducting 
metal oxides have been extensively investigated and explored due to the potential 
for different valences, morphologies, and physicochemical characteristics [74]. They 
are becoming more complex than pure metals, with bonding going from ionic to 
highly covalent to metallic. For this reason, metal oxide nanoparticles are attracting 
considerable attention from industry for use in diverse applications such as catalytic 
processes, magnetic storage media, electronics, sensors, and solar energy conversion.

4.4 Hydrogen production and storage

Hydrogen (H2) generation has become viral in the last few decades due to hydro-
gen as a future energy source and its capacity to replace expensive and polluting fossil 
fuels [75]. In addition, hydrogen also contributes to the development of a green world 
due to its zero emissions and minimizes dependence on non-renewable resources. 
In general, hydrogen production processes can be divided into two categories based 
on the usage of renewable and non-renewable resources. The methods for utilizing 
renewable energy resources are photoelectrolysis, thermal and photocatalytic water 
splitting, and steam reforming and gasification. Steam reforming and gasification 
methods are processes that depend on non-renewable resources [76]. Among carbon 
materials, activated carbon (AC) can be produced easily from agricultural residues 
such as hardwoods, coconut shells, fruit pits, walnut shells, and lignite. Which makes 
CA abundantly available and less expensive. CA also has characteristics such as a high 
surface area and a porous structure [77]. Such as high surface area and porous struc-
ture [77]. Due to these characteristics, AC-TiO2 nanocomposites have been exten-
sively investigated for the photocatalytic decomposition of dyes [78]. As an example, 
Mahadwad et al. [79] decomposed the reactive black dye 5 under mercury vapor light 
with AC-TiO2 nanocomposites. Recently, Xing et al. [80] reported the H2 generation 
activity with different types of simulated seawater with Rh/Cr2O3GaN nanowire 
photocatalyst [81]. Reddy et al. [82] have developed a low-cost nanocomposite such 
as AC-TiO2 by a one-step hydrothermal method, which is a potential catalyst for H2 
generation under sunlight. In the photocatalytic H2 generation process, sacrificial 
agents have a crucial role in consuming the valence band (VB) holes.
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4.5 Environmental applications

TiO2 is an environmental-friendly material that has been widely used in the 
photodegradation of a large number of pollutants. Nanostructured TiO2 was used in 
pollution abatement, energy conversion (i.e. hydrogen production and solar cells), and 
energy storage (i.e. lithium batteries and supercapacitors). Its practical interest was 
also described in water purification, self-cleaning, self-sterilization of surfaces, as well 
as light-assisted H2 production [83]. In the textile field, Gaminian and Montazer [84] 
assessed the self-cleaning effects of Cu2O/TiO2 on polyester fabric and concluded that 
both washed and unwashed samples showed significant photodegradation properties 
of methylene blue. Production of the reducing agent ethylene glycol as a product of 
the alkaline hydrolysis for the synthesis of Cu nanoparticles was reported indeed. In 
another trial, Harifi and Montazer [85] developed Fe3 + −doped Ag/TiO2 nanostruc-
tures for photocatalytic uses under the UV-vis light spectrum. The photodegradation 
activity assessed using methylene blue was confirmed under both UV and visible light 
regions. Zhou et al. [86] explored the degradation of acetone in the air using iron-
doped mesoporous TiO2 nanoparticles. Their findings showed a high degradation rate 
of this organic pollutant. In the same way, El-Roz et al. [87] reported an enhanced pho-
tocatalytic activity of luffa/TiO2 nanocomposites against methanol. Píšťková et al. [88] 
investigated the photodecomposition of acebutolol, propranolol, atenolol, nadolol, and 
metoprolol, which are β-blockers, using immobilized TiO2 in an aqueous media. Their 
results showed a complete photodegradation in 2 h of all tested β-blockers. Coronado 
et al. [89] described some TiO2 applications in water purification. This application is 
argued by the excellent optical and catalytic properties of nanostructured TiO2, allow-
ing oxidation and reduction catalysis of both organic and inorganic contaminants. 
The photo-generated free radicals and e−/h + pairs are highly implicated in degrading 
organic substances, water pollutants, and harmful microorganisms [90]. In this trend, 
nanocomposite TiO2 thins films (P/Ag/Ag2O/Ag3PO4) were able to decompose up to 
90% of rhodamine B under solar light exposure [91, 92].

4.6 Biomedical applications

Nanomedicine is defined as “the development of nanoscale (1–100 nm) or nano-
structured objects/nano-robots/skin patches and their use in medicine for diagnostic 
and therapeutic purposes based on the use of their structure, which has unique medical 
effects” [93]. It relies on the use of nanodevices and nanostructures operating at the cel-
lular level, providing therefore comprehensive monitoring, control, repair, and enhance-
ment of biological systems at the molecular level. The use of nanoparticles is deep-rooted 
in the history of medicine. The application of nanosilver to overcome bacterial infections 
and the use of nanosized agents to modulate immune response are some examples. TiO2 
nanostructures are one of the most plentiful nanomaterials having a broad spectrum of 
applications in nanomedicine. TiO2 is not only a cost-effective and highly biocompatible 
nanoparticle [94], but it is also a non-toxic substance [95], which use in food and drugs 
has been approved by the American Food and Drug Administration (FDA) to be [96].

5. Future challenges and perspectives

In this chapter, the use of nanostructured titanium dioxide is an effective and 
attractive alternative for fabricating flexible devices for multiple applications, which 



11

Nanostructured Titanium Dioxide (NS-TiO2)
DOI: http://dx.doi.org/10.5772/intechopen.111648

can be explored based on TiO2 properties, fabrication, and modification. A further 
challenge is to enhance the spectral sensitivity of these structures to the visible and 
near-infrared regions and the biocompatibility of TiO2 nanostructures. Therefore, 
future studies focused on long-term, constant photoactivity are greatly needed. These 
can be achieved by changing the synthesis route. Nonmetal-doped TiO2 nanostruc-
tures exhibit low photocatalytic activity under visible UV light. Some materials, such 
as polymers, glasses, ceramics, and metals, therefore serve as magical identities for 
economical and environmentally friendly applications in this field. Future research 
requires the development of new synthetic methods and nanostructures with higher 
surface states. This can be serviced by techniques compatible with non-lithographic 
complementary metal oxide semiconductors. This technique has potential applica-
tions in new dopant materials, incorporation of dopants into TiO2 nanostructures, 
and environmental and alternative energy applications. Therefore, there is a great 
need to improve the structure and properties of these materials. Basic knowledge of 
chemistry, physics, and computer modeling will help you accomplish your task.

6. Conclusion

Many reviews and reports have been published on various aspects such as the 
properties, production, modification, and application of titanium dioxide. This 
chapter provided a detailed overview of the synthesis, properties, and applica-
tions of nanostructured titanium dioxide (NS-TiO2). Moreover, Titanium dioxide 
nanoparticles have gained a lot of attention because of their numerous applications. 
The formation of TiO2 from various biological sources (plants, microorganisms, 
and related bioproducts) has been discussed. Furthermore, the mechanism of their 
uptake, translocation, and accumulation in plants is explored. The potential impact of 
TiO2 has also been reported. Titanium dioxide nanoparticles have found a variety of 
applications in numerous industrial, medical, and environmental fields, attributable 
to recent advances in the nanotechnology field.
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