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1. Introduction     

As robots move from the factory and into the daily lives of men, women, and children 
around the world, it is becoming increasingly clear that the skills they will require are vastly 
different from the majority of skills with which they were programmed in the 20th century. 
In fact, it would appear that many of these skills will center on the challenge of interacting 
with humans, rather than with machine parts or other robots. To this end, modern-day 
roboticists are actively studying the problem of human-robot interaction – how best to 
create robots that can interact with humans, usually in a social setting. Among the many 
problems of human robot interaction, one of the most interesting is the problem of intent 
recognition: the problem of predicting the intentions of a person, usually just by observing 
that person. If we understand intentions to be non-observable goal-directed mental 
activities, then we may (quite understandably) view the intent recognition problem for 
robots as one of reading peoples’ minds.  
As grandiose as this claim may sound, we believe that this understanding of intent 
recognition is quite reasonable; it is this interpretation that we seek to justify in the 
following pages. 
Every day, humans observe one another and on the basis of their observations “read 
people’s minds,” correctly inferring the intentions of others. Moreover, this ability is 
regarded not as remarkable, but as entirely ordinary and effortless. If we hope to build 
robots that are similarly capable of successfully interacting with people in a social setting, 
we must endow our robots with an ability to understand humans' intentions. 
In this paper, we review the intent recognition problem, and provide as an example a 

system we have been developing to recognize human intentions. Our approach is ultimately 

based on psychological and neuroscientific evidence for a theory of mind (Premack & 

Woodruff, 1978), which suggests that the ease with which humans recognize the intentions 

of others is the result of an innate mechanism for representing, interpreting, and predicting 

other's actions. The mechanism relies on taking the perspective of others (Gopnick & Moore, 

1994), which allows humans to correctly infer intentions. 

Although this process is innate to humans, it does not take place in a vacuum. Intuitively, it 
would seem that our understanding of others' intentions depend heavily on the contexts in 
which we find ourselves and those we observe. This intuition is supported by 

Source: Human-Robot Interaction, Book edited by: Daisuke Chugo,  
 ISBN 978-953-307-051-3, pp. 288, February 2010, INTECH, Croatia, downloaded from SCIYO.COM
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neuroscientific results (Iacobini et al., 2005), which suggest that the context of an activity 
plays an important and sometimes decisive role in correctly inferring underlying intentions.  
Before considering this process in detail, we first look at some of the related work on the 
problem of intent recognition. After that, we reconsider the problem of intent recognition, 
looking at it from a new perspective that will shed light on how the process is accomplished. 
After looking at this re-framing of the problem, we consider some more general questions 
related to intent recognition, before moving on to describe a specific example system. We 
describe the architecture of our system, as well as experimental results we have obtained 
during validation of our system. We move on to describe some of the challenges facing 
future intent recognition systems, including planning based on recognized intentions, 
complexity of recognition, and the incorporation of novel sources of information for intent 
recognition systems. We then conclude with a summary of the central issues in the field of 
intent recognition. 

2. Related work 

Whenever one wants to perform statistical classification in a system that is evolving over 
time, hidden Markov models may be appropriate (Duda et al., 2000). Such models have been 
very successfully used in problems involving speech recognition (Rabiner, 1989). Recently, 
there has been some indication that hidden Markov models may be just as useful in 
modelling activities and intentions. For example, HMMs have been used by robots to 
perform a number of manipulation tasks (Pook and Ballard, 93), (Hovland et al., 96), 
(Ogawara et al., 2002). These approaches all have the crucial problem that they only allow 
the robot to detect that a goal has been achieved after the activity has been performed; to the 
extent that intent recognition is about prediction, these systems do not use HMMs in a way 
that facilitates the recognition of intentions. Moreover, there are reasons to believe (see Sec. 
3) that without considering the disambiguation component of intent recognition, there will 
be unavoidable limitations on a system, regardless of whether it uses HMMs or any other 
classification approach. 
The use of HMMs in intent recognition (emphasizing the prediction element of the intent 
recognition problem) was first suggested in (Tavakkoli et al., 2007). That paper also 
elaborates on the connection between the HMM approach and theory of mind. However, the 
system proposed there has shortcomings that the present work seeks to overcome. 
The problem of intent recognition is also of great interest to researchers in neuroscience. 

Recent research in that field informs us that the mirror neuron system may play a role in 

intent recognition, and that contextual information is employed by the brain when ascribing 

intentions to others (Iacobini et al., 2005).  

3. Reconsidering the intent recognition problem 

Although some researchers consider the problems of activity recognition and intent 
recognition to be essentially the same, a much more common claim is that intent recognition 
differs from activity recognition in that intent recognition has a predictive component: by 
determining an agent's intentions, we are in effect making a judgment about what we 
believe are the likely actions of the agent in the immediate or near future. Emphasizing the 
predictive component of intent recognition is important, but may not reveal all of the 
significant facets of the problem.  
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In contrast with the more traditional view of intent recognition, we contend that   
disambiguation is an essential task that any completely functional intent recognition system 
must be capable of performing. In emphasizing the disambiguation component of an intent 
recognition system, we recognize that there are some pairs of actions that may appear 
identical in all respects except for their underlying intentions. To understand such pairs of 
activities, our system must be able to recognize intentions even when making intent-based 
predictions is not necessary. 
For an example of intent recognition as disambiguation, consider an agent playing chess. 
When the agent reaches for a chess piece, we can observe that activity and ascribe to the 
agent any number of possible intentions. Before the game, an agent reaching for a chess 
piece may putting the piece into its initial position; during the game, the agent may be 
making a move using that piece; and after the game, the agent may be cleaning up and 
putting the piece away. In each of these cases, it is entirely possible (if not likely) that the 
activity of reaching for the piece will appear identical to the other cases. It is only the 
intentional component of each action that distinguishes it from the others. Moreover, this 
component is determined by the context of agent's activity: before, during, or after the game. 
Notice that we need to infer the agent's intention in this example even when we are not 
interested in making any predictions. Disambiguation in such circumstances is essential to 
even a basic understanding of the agent's actions.  

4. Vision-based capabilities 

We provide a set of vision-based perceptual capabilities for our robotic system that facilitate 
the modelling and recognition of actions carried out by other agents. As the appearance of 
these agents is generally not known a priori, the only visual cue that can be used for 
detecting and tracking them is image motion. Although it is possible to perform 
segmentation from an image sequence that contains global motion, such approaches -- 
typically based on optical flow estimation (Efros et al., 2003) -- are not very robust and are 
time consuming. Therefore, our approach uses more efficient and reliable techniques from 
real-time surveillance, based on background modelling and segmentation: 

• During the activity modelling stage, the robot is moving while performing various 
activities. The appearance models of other mobile agents, necessary for tracking, are 
built in a separate, prior process where the static robot observes each agent that will    
be used for action learning. The robot uses an   enhanced mean-shift tracking method to 
track the foreground object. 

• During the intent recognition stage, the static robot observes the actions carried out by 
other agents. This allows the use of a foreground-background segmentation technique 
to build appearance models on-line, and to improve the speed and robustness of the 
tracker. The robot is stationary for efficiency reasons. If   the robot moves during intent 
recognition we can use the approach from the modelling stage. 

Fig. 1 shows the block diagram of the proposed object tracking frameworks. 

4.1 Intent recognition visual tracking module  
We propose an efficient Spatio-Spectral Tracking module (SST) to detect objects of interest 
and track them in the video sequence. The major assumption is that the observer robot is 
static.  However, we do not make any further restrictions on the background composition, 
thus allowing for local changes in the background such as fluctuating lights, water 
fountains, waving tree branches, etc. 
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Fig. 1. The two object tracking frameworks for (a) activity modelling using a modified mean-
shift tracker and (b) intent recognition using a spatio-spectral tracker.  

The proposed system models the background pixel changes using an Incremental Support 
Vector Data Description module. The background model is then used to detect foreground 
regions in new frames. The foreground regions are processed further by employing a 
connected component processing in conjunction with a blob detection module to find objects 
of interest. These objects are tracked by their corresponding statistical models that are built 
from the objects' spectral (color) information. A laser-based range finder is used to extract 
the objects' trajectories and relative angles from their 2-D tracking trajectories and their 
depth in the scene. However, the spatio-spectral coherency of tracked objects may be 
violated in cases when two or more objects occlude each other. 
A collision resolution mechanism is devised to address the issue of occlusion of objects of 
interest. This mechanism uses the spatial object properties such as their size, the relative 
location of their center of mass, and their relative orientations to predict the occlusion 
(collision). 

4.2 Incremental support vector data description 

Background modelling is one of the most effective and widely used techniques to detect 
moving objects in videos with a quasi-stationary background. In these scenarios, despite the 
presence of a static camera, the background is not completely stationary due to inherent 
changes, such as water fountains, waving flags, etc. Statistical modelling approaches 
estimate the probability density function of the background pixel values. If the data is not 
drawn from a mixture of normal distributions the parametric density estimation techniques 
may not be useful. As an alternative, non-parametric density estimation approaches can be 
used to estimate the probability of a given sample belonging to the same distribution 
function as the data set (Tavakkoli et al., 2006). However, the memory requirements of the 
non-parametric approach and its computational costs are high since they require the 
evaluation of a kernel function for all data samples. 
Support Vector Data Description (SVDD) is a technique that uses support vectors in order to 
model a data set (Tax & Duin, 2004). The SVDD represents one class of known data samples 
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in such a way that for a given test sample it can be recognized as known, or rejected as 
novel. Training of SVDDs is a quadratic programming optimization problem. This 
optimization converges by optimizing only on two data points with a specific condition 
(Platt, 1998) which requires at least one of the data points to violate the KKT conditions – the 
conditions by which the classification requirements are satisfied (Osuna et al., 1997). Our 
experimental results show that our SVDD training achieves higher speed and require less 
memory than the online and the canonical training (Tax & Duin, 2004). 

4.3 Blob detection and object localization 

In the blob detection module, the system uses a spatial connected component processing to 
label foreground regions from the previous stage. However, to label objects of interest a blob 
refinement framework is used to compensate for inaccuracies in physical appearance of the 
detected blobs due to unintended region split and merge, inaccurate foreground detection, 
and small foreground regions. A list of objects of interest corresponding to each detected 
blob is created and maintained to further process and track each object individually. This 
raw list of blobs corresponding to objects of interest is called the spatial connected 
component list. 
Spatial properties about each blob such as its center and size are kept in the spatial 
connected component list. The list does not incorporate individual objects' appearances and 
thus is not solely useful for tracking purposes. The process of tracking individual objects 
based on their appearance in conjunction with their corresponding spatial features is carried 
out in the spatio-spectral tracking mechanism. 

4.4 Spatio-spectral tracking mechanism 

A system that can track moving objects (i.e. humans) requires a model for individual objects. 
These appearance models are employed to search for correspondences among the pool of 
objects detected in new frames. Once the target for each individual has been found in the 
new frame they are assigned a unique ID. In the update stage the new location, geometric 
and photometric information for each visible individual are updated. This helps recognize 
the objects and recover their new location in future frames.  
Our proposed appearance modelling module represents an object with two sets of histograms, 
for the lower and upper half of the body. In the spatio-spectral tracking module a list of known 
objects of interest is maintained. This list represents each individual object and its 
corresponding spatial and color information along with its unique ID. During the tracking 
process the system uses the raw spatial connected component list as the list of observed objects 
and uses a statistical correspondence matching to maintain the ordered objects list and track 
each object individually. The tracking module is composed of three components: 

• Appearance modelling. For each object in the raw connected component list a model is 
generated which contains the object center of mass, its height and width, the upper and 
lower section foreground masks, and the multivariate Gaussian distribution models of 
its upper and lower section pixels. 

• Correspondence matching. The pixels in the upper and lower sections of each object in 
the raw list are used against each model in the ordered list of tracked objects. The 
winner model's ID then is used to represent the object. 

• Model update. Once the tracking is performed the models will be updated. Any unseen 
object in the raw list is then assigned a new ID and their models are updated accordingly. 
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4.5 Collision resolution 

In order for the system to be robust to collisions -- when individuals get too close so that one 
occludes the other-- the models for the occluded individual may not reliable for tracking 
purposes. Our method uses the distance of detected objects and uses that as a means of 
detecting a collision. After a collision is detected we match each of the individual models 
with their corresponding representatives. The one with the smallest matching score is 
considered to be occluded. The occluded object's model will not be updated but its new 
position is predicted by a Kalman filter. The position of the occluding agent is updated and 
tracked by a well-known mean-shift algorithm. After the collision is over the spatio-spectral 
tracker resumes its normal process for these objects. 

5. Recognition system 

5.1 Low-level recognition via hidden Markov models 

As mentioned above, our system uses HMMs to model activities that consist of a number of 
parts that have intentional significance. Recall that a hidden Markov model consists of a set 
of hidden states, a set of visible states, a probability distribution that describes the probability 
of transitioning from one hidden state to another, and a probability distribution that 
describes the probability of observing a particular visible state given that the model is in a 
particular hidden state. To apply HMMs, one must give an interpretation to both the hidden 
states and the visible states of the model, as well as an interpretation for the model as a 
whole. In our case, each model represents a single well-defined activity. The hidden states of 
represent the intentions underlying the parts of the activity, and the visible symbols 
represent changes in measurable parameters that are relevant to the activity. Notice in 
particular that our visible states correspond to dynamic properties of the activity, so that our 
system can perform recognition as the observed agents are interacting. 
As an example, consider the activity of meeting another person. To a first approximation, the 
act of meeting someone consists of approaching the person up to a point, interacting with 
the stationary person in some way (talking, exchanging something, etc.), and then parting. 
In our framework, we would model meeting using a single HMM. The hidden states would 
correspond to approach, halt, and part, since these correspond with the short-term 
intermediate goals of the meeting activity. When observing two people meeting, the two 
parameters of interest that we can use to characterize the activity are the distance and the 
angle between the two agents we're observing; in a meeting activity, we would expect that 
both the distance and the angle between two agents should decrease as the agents approach 
and face one another. With this in mind, we make the visible states represent changes in the 
distance and angle between two agents. Since each of these parameters is a real number, it 
can either be positive, negative, or (approximately) zero. There are then nine possibilities for 
a pair representing “change in distance” and “change in angle,” and each of these nine 
possibilities represents a single visible state that our system can observe.  
We train our HMMs by having our robot perform the activity that it later will recognize. As 
it performs the activity, it records the changes in the parameters of interest for the activity, 
and uses those to generate sequences of observable states representing the activity. These 
are then used with the Baum-Welch algorithm (Rabiner, 1989) to train the models, whose 
topologies have been determined by a human operator in advance. 
During recognition, the stationary robot observes a number of individuals interacting with 
one another and with stationary objects. It tracks those individuals using the visual 
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capabilities described above, and takes the perspective of the agents it is observing. Based 
on its perspective-taking and its prior understanding of the activities it has been trained to 
understand, the robot infers the intention of each agent in the scene. It does this using 
maximum likelihood estimation, calculating the most probable intention given the 
observation sequence that it has recorded up to the current time for each pair of interacting 
agents.  

5.2 Context modeling 

To use contextual information to perform intent recognition, we must decide how we want 
to model the relationship between intentions and contexts. This requires that we describe 
what intentions and contexts are, and that we specify how they are related. There are at least 
two plausible ways to deal with the latter consideration: we could choose to make intentions 
“aware” of contexts, or we might make contexts “aware” of intentions. In the first 
possibility, each intention knows all of the contexts in which it can occur. This would imply 
that we know in advance all contexts that are possible in our environment. Such an 
assumption may or may not be appropriate, given a particular application. On the other 
hand, we might make contexts aware of intentions. This would require that each context 
know, either deterministically or probabilistically, what intentions are possible in it. The 
corresponding assumption is that we know in advance all of the possible (or at least likely) 
intentions of the agents we may observe. Either of these approaches is possible, and may be 
appropriate for a particular application. In the present work, we adopt the latter approach 
by making each context aware of its possible intentions. This awareness is achieved by 
specifying the content of intention models and context models. 
An intention model consists of two parts: first, an activity model, which is given by a 
particular HMM, and secondly a name. This is the minimal amount of information 
necessary to allow a robot to perform disambiguation. If necessary or desirable, intentions 
could be augmented with additional information that a robot could use to support 
interaction. As an example we might augment an intention model to specify an action to 
take in response to detecting a particular sequence of hidden states from the activity model. 
A context model, at a minimum, must consist of a name or other identifier to distinguish it 

from other possible contexts in the system, as well as some method for discriminating 

between intentions. This method might take the form of a set of deterministic rules, or it 

might be a discrete probability distribution defined over the intentions about which the 

context is aware. In general, a context model can contain as many or as few features as are 

necessary to distinguish the intentions of interest. Moreover, the context can be either static 

or dynamic. 

A static context consists of a name for the context and a probability distribution over all 

possible intentions. This is the simplest approach to context-based intent recognition in our 

framework, and is useful for modelling context that depends on unchanging location of an 

observer robot (as we would see in the case of a guard or service robot that only works in a 

single room or building), or on time or the date.  

A dynamic context consists of features that are inferred by the observer. This could include 
objects that are being manipulated by the observed agents, visually detected features of the 
agents, or aspects of the environment that vary in hard-to-predict ways. In general, a 
dynamic context consists of a name and a probability distribution over feature values given 
the context. While being obviously more general than static context, a dynamic-context 
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approach depends on good algorithms outside of the intent recognition domain, and can be 
(very) computationally expensive. However, the flexibility of the approach may justify the 
cost in a large number of potential applications.  
Suppose that we have an activity model (i.e. an HMM) denoted by w. Let s denote an 
intention, let c denote a context, and let v denote a sequence of visible states from the 
activity model w. If we are given a context and a sequence of observation, we would like to 
find the intention that is maximally likely. Mathematically, we would like to find the s that 
maximizes p(s | v, c), where the probability structure is determined by the activity model w.  
We can further simplify matters by noting that the denominator is independent of our 
choice of s. Moreover, because the context is simply a distribution over intention names, the 
observable symbols are independent of the current context. Based on these observations, we 
can say that p(s|v,c) is approximately equal to p(v|s)p(s|c). 
This approximation suggests an algorithm for determining the most likely intention given a 
series of observations and a context: for each possible intention s for which p(s|c) > 0, we 
compute the probability p(v|s)p(s|c) and choose as our intention that s whose probability is 
greatest. Because we assume a static context, the probability p(s|c) is available by 
assumption, and if the HMM w represents the activity model associated with intention s, 
then we assume that p(v|s) = p(v|w). In our case this assumption is justified since our 
intention models contain only a name and an activity model, so that our assumption only 
amounts to assuming that observation sequences are independent of intention names. 

5.3 Intention-based control 

In robotics applications, simply determining an observed agent's intentions may not be 
enough. Once a robot knows what another's intentions are, the robot should be able to act 
on its knowledge to achieve a goal. With this in mind, we developed a simple method to 
allow a robot to dispatch a behavior based on its intent recognition capabilities. The robot 
first infers the global intentions of all the agents it is tracking, and for the activity 
corresponding to the inferred global intention determines the most likely local intention. If 
the robot determines over multiple time steps that a certain local intention has the largest 
probability, it can dispatch a behavior in response to the situation it believes is taking place. 
For example, consider the activity of stealing an object. The local intentions for this activity 
might include “approaching the object,” “picking up the object,” and “walking off with the 
object.” If the robot knows that in its current context the local intention “picking up the 
object” is not acceptable and it infers that an agent is in fact picking up the object, it can 
execute a behavior, for example stopping the thief or warning another person or robot of the 
theft.  

6. Experimental validation 

6.1 Setup  
To validate our approach, we performed a set of experiments using a Pioneer 3DX mobile 
robot, with an on-board computer, a laser rangefinder, and a Sony PTZ camera. We trained 
our robot to understand three basic activities: following, in which one agent trails behind 
another; meeting, in which two agents approach one another directly; and passing, in which 
two agents move past each other without otherwise directly interacting. 
We placed our trained robot in an indoor environment and had it observe the interactions of 
multiple human agents with each other, and with multiple static objects. In our experiments, 
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we considered both the case where the robot acts as a passive observer and the case where 
the robot executes an action on the basis of the intentions it infers in the agents under its 
watch. 
We were particularly interested in the performance of the system in two cases. In the first 
case, we wanted to determine the performance of the system when a single activity could 
have different underlying intentions based on the current context (so that, returning to our 
example in Sec. 3, the activity of “moving one's hand toward a chess piece” could be 
interpreted as “making a move” during a game but as “cleaning up” after the game is over). 
This case deals directly with the problem that in some situations, two apparently identical 
activities may in fact be very different, although the difference may lie entirely in 
contextually determined intentional component of the activity.  
In our second case of interest, we sought to determine the performance of the system in 
disambiguating two activities that were in fact different, but due to environmental 
conditions appeared superficially very similar. This situation represents one of the larger 
stumbling blocks of systems that do not incorporate contextual awareness.  
In the first set of experiments, the same visual data was given to the system several times, 
each with different a context, to determine whether the system could use the context alone 
to disambiguate agents' intentions. We considered three pairs of scenarios, which provided 
the context we gave to our system: leaving the building on a normal day/evacuating the 
building, getting a drink from a vending machine/repairing a vending machine, and going 
to a movie during the day/going to clean the theater at night. We would expect our intent 
recognition system to correctly disambiguate between each of these pairs using its 
knowledge of its current context. 
The second set of experiments was performed in a lobby, and had agents meeting each other 
and passing each other both with and without contextual information about which of these 
two activities is more likely in the context of the lobby. To the extent that meeting and 
passing appear to be similar, we would expect that the use of context would help to 
disambiguate the activities. 
Lastly, to test our intention-based control, we set up two scenarios. In the first scenario (the 
“theft” scenario), a human enters his office carrying a bag. As he enters, he sets his bag 
down by the entrance. Another human enters the room, takes the bag and leaves. Our robot 
was set up to observe these actions and send a signal to a “patrol robot” in the hall that a 
theft had occurred. The patrol robot is then supposed to follow the thief as long as possible. 
In the second scenario, our robot is waiting in the hall, and observes a human leaving the 
bag in the hallway. The robot is supposed to recognize this as a suspicious activity and 
follow the human who dropped the bag for as long as possible. 

6.2 Results  
In all of the scenarios considered, our robot was able to effectively observe the agents within 
its field of view and correctly infer the intentions of the agents that it observed. 
To provide a quantitative evaluation of intent recognition performance, we use two 
measures:  
• Accuracy rate = the ratio of the number of observation   sequences, of which the winning 

intentional state matches the ground   truth, to the total number of test sequences. 
• Correct Duration = C/T, where C is the total time during   which the intentional state 

with the highest probability matches the ground truth and T is the number of 
observations. 
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The accuracy rate of our system is 100%: the system ultimately chose the correct intention in 

all of the scenarios in which it was tested. We consider the correct duration measure in more 

detail for each of the cases in which we were interested. 

6.3 One activity, many intentions 

Table 1 indicates the system's disambiguation performance. For example, we see that in the 

case of the scenario Leave Building, the intentions normal and evacuation are correctly inferred 

96.2 and 96.4 percent of the time, respectively. We obtain similar results in two other 

scenarios where the only difference between the two activities in question is the intentional 

information represented by the robot's current context. We thus see that the system is able to 

use this contextual information to correctly disambiguate intentions.  
 

Scenario (With Context) Correct Duration [%] 

Leave Building (Normal) 96.2 

Leave Building (Evacuation) 96.4 

Theater (Cleanup) 87.9 

Theater (Movie) 90.9 

Vending (Getting a Drink) 91.1 

Vending (Repair) 91.4 

Table 1. Quantitative Evaluation. 

6.4 Similar-looking activities 

As we can see from Table 2, the system performs substantially better when using context 

than it does without contextual information. Because meeting and passing can, depending on 

the position of the observer, appear very similar, without context it may be hard to decide 

what two agents are trying to do. With the proper contextual information, though, it 

becomes much easier to determine the intentions of the agents in the scene. 
 

Meet (No Context) – Agent 1 65.8 

Meet (No Context) – Agent 2 74.2 

Meet (Context) - Agent 1 97.8 

Meet (Context) – Agent 2 100.0 

Table 2. Quantitative Evaluation. 

6.5 Intention-based control 

In both the scenarios we developed to test our intention-based control, our robot correctly 

inferred the ground-truth intention, and correctly responded the inferred intention. In the 

theft scenario, the robot correctly recognized the theft and reported it to the patrol robot in 

the hallway, which was able to track the thief (Figure 2). In the bag drop scenario, the robot 

correctly recognized that dropping a bag off in a hallway is a suspicious activity, and was 

able to follow the suspicious agent through the hall. Both examples indicate that intention-

based control using context and hidden Markov models is a feasible approach. 
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Fig. 2. An observer robot catches a human stealing a bag (left). The top left view shows the 
robot equipped with our system. The bottom right is the view of a patrol robot. The next 
frame (right) shows the patrol robot using vision and a map to track the thief.  

6.6 Complexity of recognition 

In real-world applications, the number of possible intentions that a robot has to be prepared to 
deal with may be very large. Without effective heuristics, efficiently performing maximum 
likelihood estimation in such large spaces is likely to be difficult if not impossible. In each of 
the above scenarios, the number of possible intentions the system had to consider was reduced 
through the use of contextual information. In general, such information may be used as an 
effective heuristic for reducing the size of the space the robot has to search to classify agents' 
intentions. As systems are deployed in increasingly complex situations, it is likely that 
heuristics of this sort will become important for the proper functioning of social robots. 

7. Discussion 

7.1 Strengths 

In addition to the improved performance of a context-aware system over a context-agnostic 
one that we see in the experimental results above, the proposed approach has a few other 
advantages worth mentioning. First, our approach recognizes the importance of context in 
recognizing intentions and activities, and can successfully operate in situations that 
previous intent recognition systems have had trouble with. 
Most importantly, though, from a design perspective it makes sense to separately perform 
inference for activities and for contexts. By “factoring” our solution in this way, we increase 
modularity and create the potential for improving the system by improving its individual 
parts. For example, it may turn out that another classifier works better than HMMs to model 
activities. We could then use that superior classifier in place of HMMs, along with an 
unmodified context module, to obtain a better-performing system. 

7.2 Shortcomings  
Our particular implementation has some shortcomings that are worth noting. First, the use 
of static context is inflexible. In some applications, such as surveillance using a set of 
stationary cameras, the use of static context may make sense. However, in the case of robots, 
the use of static context means that it is unlikely that the system will be able to take much 
advantage of one of the chief benefits of robots, namely their mobility.  
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Along similar lines, the current design of the intention-based control mechanism is probably 

not flexible enough to work “in the field.” Inherent stochasticity, sensor limitations, and 

approximation error make it likely that a system that dispatches behaviors based only on a 

running count of certain HMM states is likely to run into problems with false positives and 

false negatives. In many situations (such as the theft scenario describe above), even a 

relatively small number of such errors may not be acceptable. 

In short, then, the system we propose faces a few substantial challenges, all centering on a 

lack of flexibility or robustness in the face of highly uncertain or unpredictable 

environments.  

8. Extensions  

To deal with the problems of flexibility and scalability, we extend the system just described 
in two directions. First, we introduce a new source for contextual information, the lexical 
digraph. These data structures provide the system with contextual knowledge from 
linguistic sources, and have proved thus far to be highly general and flexible. 
To deal with the problem of scalability, we introduce the interaction space, which abstracts 

the notion that people who are interacting are “closer” to each other than people who aren’t, 

we are careful about how we talk about “closeness.” In what follows, we outline these 

extensions, discussing how they improve upon the system described thus far. 

9. Lexical digraphs 

As mentioned above, our system relies on contextual information to perform intent 

recognition. While there are many sources of contextual information that may be useful to 

infer intentions, we chose to focus primarily on the information provided by object 

affordances, which indicate the actions that one can perform with an object. The problem, 

once this choice is made, is one of training and representation: given that we wish the 

system to infer intentions from contextual information provided by knowledge of object 

affordances, how do we learn and represent those affordances? We would like, for each 

object our system may encounter, to build a representation that contains the likelihood of all 

actions that can be performed on that object. 

Although there are many possible approaches to constructing such a representation, we 

chose to use a representation that is based heavily on a graph-theoretic approach to natural 

language -- in particular, English. Specifically, we construct a graph in which the vertices are 

words and a labeled, weighted edge exists between two vertices if and only if the words 

corresponding to the vertices exist in some kind of grammatical relationship. The label 

indicates the nature of the relationship, and the edge weight is proportional to the frequency 

with which the pair of words exists in that particular relationship. For example, we may 

have vertices drink and water, along with the edge ((drink, water), direct_object, 4), indicating 

that the word “water” appears as a direct object of the verb “drink” four times in the 

experience of the system. From this graph, we compute probabilities that provide the 

necessary context to interpret an activity. 

There are a number of justifications for and consequences of the decision to take such an 

approach. 

www.intechopen.com



Understanding Activities and Intentions for Human-Robot Interaction   

 

13 

9.1 Using language for context 

The use of a linguistic approach is well motivated by human experience. Natural language is 
a highly effective vehicle for expressing facts about the world, including object affordances. 
Moreover, it is often the case that such affordances can be easily inferred directly from 
grammatical relationships, as in the example above. 
From a computational perspective, we would prefer models that are time and space 
efficient, both to build and to use. If the graph we construct to represent our affordances is 
sufficiently sparse, then it should be space efficient. As we discuss below, the graph we use 
has a number of edges that is linear in the number of vertices, which is in turn linear in the 
number of sentences that the system “reads.” We thus attain space efficiency. Moreover, we 
can efficiently access the neighbors of any vertex using standard graph algorithms. 
In practical terms, the wide availability of texts that discuss or describe human activities and 
object affordances means that an approach to modelling affordances based on language can 
scale well beyond a system that uses another means for acquiring affordance models. The 
act of “reading” about the world can, with the right model, replace direct experience for the 
robot in many situations. 
Note that the above discussion makes an important assumption that, although convenient, 
may not be accurate in all situations. Namely, we assume that for any given action-object 
pair, the likelihood of the edge representing that pair in the graph is at least approximately 
equal to the likelihood that the action takes place in the world. Or in other words, we 
assume that linguistic frequency well approximates action frequency. Such an assumption is 
intuitively reasonable. We are more likely to read a book than we are to throw a book; as it 
happens, this fact is represented in our graph. We are currently exploring the extent to 
which this assumption is valid and may be safely relied upon; at this point, though, it 
appears that the assumption is valid for a wide enough range of situations to allow for 
practical use in the field. 

9.2 Dependency parsing and graph representation 

To obtain our pairwise relations between words, we use the Stanford labeled dependency 

parser (Marneffe et al., 2006). The parser takes as input a sentence and produces the set of all 

pairs of words that are grammatically related in the sentence, along with a label for each 

pair, as in the “water” example above. 

Using the parser, we construct a graph G = (V,E), where E is the set of all labeled pairs of 
words returned by the parser for all sentences, and each edge is given an integer weight 
equal to the number of times the edge appears in the text parsed by the system. V then 
consists of the words that appear in the corpus processed by the system. 

9.3 Graph construction and complexity 

One of the greatest strengths of the dependency-grammar approach is its space efficiency: 

the output of the parser is either a tree on the words of the input sentence, or a graph made 

of a tree plus a (small) constant number of additional edges. This means that the number of 

edges in our graph is a linear function of the number of nodes in the graph, which 

(assuming a bounded number of words per sentence in our corpus) is linear in the number 

of sentences the system processes. In our experience, the digraphs our system has produced 

have had statistics confirming this analysis, as can be seen by considering the graph used in 

our recognition experiments. For our corpus, we used two sources: first, the simplified-
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English Wikipedia, which contains many of the same articles as the standard Wikipedia, 

except with a smaller vocabulary and simpler grammatical structure, and second, a 

collection of childrens' stories about the objects in which we were interested. In Figure 3, we 

show the number of edges in the Wikipedia graph as a function of the number of vertices at 

various points during the growth of the graph. The scales on both axes are identical, and the 

graph shows that the number of edges for this graph does depend linearly on the number of 

vertices. 

 

 
 

Fig. 3. The number of edges in the Wikipedia graph as a function of the number of vertices 
during the process of graph growth. 

The final Wikipedia graph we used in our experiments consists of 244,267 vertices and 

2,074,578 edges. The childrens' story graph is much smaller, being built from just a few 

hundred sentences: it consists of 1754 vertices and 3873 edges. This graph was built to fill in 

gaps in the information contained in the Wikipedia graph. The graphs were merged to 

create the final graph we used by taking the union of the vertex and edge sets of the graphs, 

adding the edge weights of any edges that appeared in both graphs. 

9.4 Experimental validation and results 

To test the lexical-digraph-based system, we had the robot observe an individual as he 

performed a number of activities involving various objects. These included books, glasses of 

soda, computers, bags of candy, and a fire extinguisher.  

To test the lexically informed system, we considered three different scenarios. In the first, 

the robot observed a human during a meal, eating and drinking. In the second, the human 
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was doing homework, reading a book and taking notes on a computer. In the last scenario, the 

robot observed a person sitting on a couch, eating candy. A trashcan in the scene then catches 

on fire, and the robot observes the human using a fire extinguisher to put the fire out.  
 

 

Fig. 4. The robot observer watches as a human uses a fire extinguisher to put out a trashcan 
fire. 

Defining a ground truth for these scenarios is slightly more difficult than in the previous 
scenarios, since in these scenarios the observed agent performs multiple activities and the 
boundaries between activities in sequence are not clearly defined. However, we can still 
make the interesting observation that, except on the boundary between two activities, the 
correct duration of the system is 100%. Performance on the boundary is more variable, but it 
isn't clear that this is an avoidable phenomenon. We are currently working on carefully 
ground-truthed videos to allow us to better compute the accuracy rate and the correct 
duration for these sorts of scenarios. However, the results we have thus far obtained are 
encouraging. 

10. Identifying interactions 

The first step in the recognition process is deciding what to recognize. In general, a scene 
may consist of many agents, interacting with each other and with objects in the 
environment. If the scene is sufficiently complex, approaches that don't first narrow down 
the likely interactions before using time-intensive classifiers are likely to suffer, both in 
terms of performance and accuracy. To avoid this problem, we introduce the interaction space 
abstraction: for each identified object or agent in the scene, we represent the agent or object 
as a point in a space with a weak notion of distance defined on it. In this space, the points 
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ideally (and in our particular models) have a relatively simple internal structure to permit 
efficient access and computation. We then calculate the distance between all pairs of points 
in this space, and identify as interacting all those pairs of entities for which the distance is 
less than some threshold. The goal in designing an interaction space model is that the 
distance function should be chosen so that the probability of interaction is decreasing in 
distance. We should not expect, in general, that the distance function will be a metric in the 
sense of analysis. In particular, there is no reason to expect that the triangle inequality will 
hold for all useful functions. Also, it is unlikely that the function will satisfy a symmetry 
condition: Alice may intend to interact with Bob (perhaps by secretly following him 
everywhere) even if Bob knows nothing about Alice's stalking habits. At a minimum, we 
only require nonnegativity and the trivial condition that the distance between any entity 
and itself is always zero. Such functions are sometimes known as premetrics. 
For our current system, we considered four factors that we identified as particularly 
relevant to identifying interaction: distance in physical space, the angle of an entity from the 
center of an agent's field of view, velocity, and acceleration. Other factors that may be 
important that we chose not to model include sensed communication between two agents 
(this would be strongly indicative of interaction between two agents), time spent in and out 
of an agent's field of view, and others. We classify agents as interacting whenever a 
weighted sum of these distances is less than a human-set threshold. 

10.1 Experimental validation and results 

To test the interaction space model, we wished to use a large number of interacting agents 
behaving in a predictable fashion, and compare the results of an intent recognition system 
that used interaction spaces against the results of a system that did not. Given these 
requirements, we decided that the best approach was to simulate a large number of agents 
interacting in pre-programmed ways. This satisfied our requirements and gave us a well-
defined ground truth to compare against.  
The scenario we used for these experiments was very simple. The scenario consisted of 2n 

simulated agents. These agents were randomly paired with one another, and tasked with 

approaching each other or engaging in a wander/follow activity. We looked at collections of 

eight and thirty-two agents. We then executed the simulation, recording the performance of 

the two test recognition systems. The reasoning behind such a simple scenario is that if a 

substantial difference in performance exists between the systems in this case, then 

regardless of the absolute performance of the systems for more complex scenarios, it is likely 

that the interaction-space method will outperform the baseline system. 

The results of the simulation experiments show that as the number of entities to be classified 
increases, the system that uses interaction spaces outperforms a system that does not. As we 
can see in Table 3, for a relatively small number of agents, the two systems have somewhat 
comparable performance in terms of correct duration. However, when we increase the 
number of agents to be classified, we see that the interaction-space approach substantially 
outperforms the baseline approach.  
  

 8 Agents 32 Agents 

System with Interaction Spaces 96% 94% 

Baseline System 79% 6% 

Table 3. Simulation results – correct duration. 
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11. Future work in intent recognition 

There is substantial room for future work in intent recognition. Generally speaking, the task 
moving forward will be to increase the flexibility and generality of intent recognition 
systems. There are a number of ways in which this can be done. First, further work should 
address the problem of a non-stationary robot. One might have noticed that our work 
assumes a robot that is not moving. While this is largely for reasons of simplicity, further 
work is necessary to ensure that an intent recognition system works fluidly in a highly 
dynamic environment. 
More importantly, further work should be done on context awareness for robots to 
understand people. We contend that a linguistically based system, perhaps evolved from 
the one described here, could provide the basis for a system that can understand behavior 
and intentions in a wide variety of situations. 
Lastly, beyond extending robots’ understanding of activities and intentions, further work is 
necessary to extend robots’ ability to act on their understanding. A more general framework 
for intention-based control would, when combined with a system for recognition in 
dynamic environments, allow robots to work in human environments as genuine partners, 
rather than mere tools. 

12. Conclusion 

In this chapter, we proposed an approach to intent recognition that combines visual tracking 
and recognition with contextual awareness in a mobile robot. Understanding intentions in 
context is an essential human activity, and with high likelihood will be just as essential in 
any robot that must function in social domains. Our approach is based on the view that to be 
effective, an intent recognition system should process information from the system's 
sensors, as well as relevant social information. To encode that information, we introduced 
the lexical digraph data structure, and showed how such a structure can be built and used. 
We demonstrated the effectiveness of separating interaction identification from interaction 
classification for building scalable systems. We discussed the visual capabilities necessary to 
implement our framework, and validated our approach in simulation and on a physical 
robot. 
When we view robots as autonomous agents that increasingly must exist in challenging and 
unpredictable human social environments, it becomes clear that robots must be able to 
understand and predict human behaviors. While the work discussed here is hardly the final 
say in the matter of how to endow robots with such capabilities, it reveals many of the 
challenges and suggests some of the strategies necessary to make socially intelligent 
machines a reality. 
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