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Chapter

Decoupling of Attributes and
Aggregation for Fuzzy Number
Ranking
Simon Li

Abstract

Intuition, expressed as verbal arguments or axiom formulations, has often been used
as a guiding principle for fuzzy number ranking (FNR). This chapter adopts the multi-
attribute decision making (MADM) framework to analyze such intuition with three
results. First, intuition in FNR should have involved multiple attributes, which are often
implicated in the existing ranking methods. Then, we suggest three attributes (i.e.,
representative x-value, x-value range, overall membership ratio), which can be used to
characterize the FNR intuition. Second, we decouple two issues in FNR: selection of
attributes and aggregation of values, where aggregation is concerned with the trade-off
among attributes to determine a single index for FNR. Then, the discount factors are
proposed for the attributes of range and membership ratio to model the trade-off and
formulate a ranking index. Third, the decoupling of attributes and aggregation reveals a
fundamental tension between information content and the satisfaction of the FNR
axioms. That is, if we can consider more information (in terms of attributes) as relevant
to FNR, the ranking method will likely violate some FNR axioms. However, if we
consider less information, the ranking method will be less sensitive to distinguish some
fuzzy numbers for ranking. In the end, the proposed multi-attribute approach can
provide a practical aspect to analyze and address the FNR problems.

Keywords: fuzzy number ranking, multi-attribute decision making, aggregation,
decoupling, overall membership ratio

1. Introduction

Intuition has been a criterion for researchers to evaluate and comment the ranking
results from a set of fuzzy numbers. As a pattern described by Wang and Kerre [1], a
ranking method can be criticized by yielding “counter-intuitive” results from some
examples, and thus it is motivated to develop new ranking methods (e.g., [2, 3]).
Despite of its common use, the meaning of “intuition for ranking” is somewhat
unclear. It should be related to the ranking of real numbers, which is fundamental in
our intuition. However, this alone is not sufficient for fuzzy number ranking (FNR).
Why? When we compare two real numbers: 3 and 5, we can state 5 > 3 because these
real numbers can be ordered on a single dimension, i.e., the real line. In the context of
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fuzzy sets, the membership information is added. For example, consider two ordered
pairs: (3, 0.9) and (5, 0.4), where the second elements are the membership values.
Here, we cannot straightforwardly state (5, 0.4) ≻ (3, 0.9) due to the presence of the
second dimension, membership, in the ranking consideration. Notably, in this paper,
the symbol “>” is used to compare two real numbers, while the symbol “≻” or “≽” is
used to represent the ranking relation.

Consider that a fuzzy number contains a set of such ordered pairs. We argue that
the problem structure of FNR should contain multiple dimensions to explain “intui-
tion” properly. Then, we employ the classical framework of multi-attribute decision
making (MADM) [4] for the analysis of ranking intuition. The framework of MADM
distinguishes the concepts of attributes and aggregation. Attributes are used to evalu-
ate the properties of options, and they are subject to the selection by decision makers,
who determine what properties (or information) are deemed relevant to the decision
problems. On the other hand, aggregation captures the weighting strategies (e.g.,
weighted sum) to address the trade-off consideration among the option’s properties
(or information).

In FNR, each attribute represents a single dimension for ranking consideration. In
literature, numerous attributes have been implied in the formulations of ranking
indices. For example, the approach of the maximizing and minimizing sets [3, 5, 6]
implicates the attributes that articulate the optimistic and pessimistic aspects of a
fuzzy number for ranking. In the centroid-based approach [7, 8], centroid can be
interpreted as an attribute that focuses on the “middle” aspect over the geometry of a
fuzzy number. Notably, each notion of attribute can be quantified in multiple ways.
For example, we may express the notion of “average” via the formulations of “value”
by Delgado et al. [9] or “median” by Bodjanova [10]. In addition, new ranking
methods have been proposed by adding attributes to the ranking indices. For example,
to address some non-distinguishable results from Abbasbandy and Hajjari [2], Asady
[11] and Ezzati et al. [12] formulated additional attributes (namely, the epsilon-
neighborhood and Mag’(u), respectively) in their ranking indices.

The consideration of multiple attributes for FNR is not new. In literature, some
approaches have explicitly considered multiple measures (or attributes) to describe a
fuzzy number such as value and ambiguity [9, 13, 14], mean and standard deviation
[15], average value and degree of deviation [16], expected value (in transfer coeffi-
cient) and deviation degree [17, 18], general concepts of area/mode/spreads/weights
[19–21] and extensions from the centroid concept [21–25].

Aggregation is a separate issue from the selection of attributes. It aims to handle
the given information of attributes for decision making. In literature, different aggre-
gation approaches over the same attributes have been reported. For example, aggre-
gation over the x- and y-coordinates of a centroid can be done via a distance measure
[26] or an area measure [8, 27]. The weighted sum approach has been used to aggre-
gate two attributes such as the right/left utility values [3] and the average and devia-
tion values [16]. In addition to closed-form equations, aggregation can also be done by
rules and procedures. For example, Asady [11] and Chi and Yu [23] determine the
ranking of fuzzy numbers based on the priority of two or three attributes, which
basically is a lexicographical ordering procedure ([4], pp. 77–79).

The aggregation approach can influence the ranking results since it controls the
trade-off among attributes. To illustrate, consider the earlier ordered pairs (3, 0.9)
and (5, 0.4). Suppose that two attributes are considered for ranking: real number and
membership value, and we assume “higher value ➔ higher rank” for both attributes.
Then, we can have multiple ways to aggregate these two values such as 3 + 0.9 and
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3 � 0.9, which are consistent with the “higher-the-better” direction. However, dif-
ferent aggregation functions can lead to different ranking results, e.g., (3 + 0.9)
< (5 + 0.4) and (3 � 0.9) > (5 � 0.4). Different results can be explained by the trade-
off approach implied in the aggregation functions. For example, in this case, addition
tends to give an advantage to real number, whereas multiplication allows more influ-
ence from membership value.

Based on the above discussion, the theme of this chapter is to adopt the MADM
framework, which purposely decouples attributes and aggregation for FNR. In this
way, we can compare ranking methods in view of their selections of attributes and the
formulations of aggregation functions independently. In addition, the multi-attribute
aspect can help explain the axiomatic properties of ranking methods. To avoid the
reliance on the “intuition criterion”, Wang and Kerre [1] suggested seven axioms as
reasonable properties to specify the meaning of intuition more clearly. Ban and
Coroianu [28] derived a class of ranking functions that can satisfy six of these axioms
with literature examples that can belong to this class under some conditions (e.g.,
[2, 29, 30]).

Despite of the formal work by Ban and Coroianu [28], new ranking methods
emerge continually as researchers considered this class of ranking functions did not
address two aspects. First, the development by Ban and Coroianu [28] was intended
for normalized fuzzy numbers, and some work has been developed for the non-
normalized cases (e.g., [31]). Second, their class of ranking functions cannot distin-
guish two symmetric fuzzy numbers with different spreads (e.g., for cases in Ezzati
et al., [12]). In some recent work, Dombi and Jónás [32] applied the probability-based
preference intensity index, and Van Hop [33] developed the dominant interval mea-
sure (namely relative dominant degree) for fuzzy number ranking. Their approaches
basically generalized the numerical techniques of intervals for fuzzy number ranking
without decomposing or analyzing the ranking attributes.

More fundamentally, it seems to us that if a ranking function is designed to satisfy
the axioms by Wang and Kerre [1], this ranking function will be less sensitive to the
distribution of membership values and the spreads of fuzzy numbers to determine the
ranking results. In other words, the satisfaction of these axioms is strongly influenced
by the type of information (or attributes) that is selected for FNR but it is less relevant
to the aggregation approach. The distinction between information selection and
aggregation has not been investigated for fuzzy number ranking in literature. This
chapter will use the multi-attribute aspect to analyze this issue.

After the preliminaries in Section 2, this chapter will discuss and illustrate our
selection of three attributes for FNR in Section 3 and then our aggregation approach
using the discount factors in Section 4. Section 5 will suggest some guidance for the
application of the proposed multi-attribute ranking method. Section 6 will discuss the
relation between the information content for FNR and the axiomatic properties of
ranking methods. This chapter is concluded in Section 7.

2. Preliminaries

Fuzzy number is described as a fuzzy subset of the real line  [34]. This work
considers trapezoidal fuzzy number (TrFN) as a special case of fuzzy number. Let FA
denote a TrFN with a maximum membership equal to hA, as illustrated in Figure 1.
Let x be any element of the real line, and its membership according to TrFN, denoted
as μFA

xð Þ, can be expressed in the following formulation where a1, a2, a3, a4 are real
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numbers to specify FA. As a convenient notation, FA can be expressed as a 5-tuple,
where FA = (a1, a2, a3, a4; hA).

μFA
xð Þ ¼

0 x< a1
x� a1
a2 � a1

� �

hA a1 ≤ x< a2

hA a2 ≤ x< a3
x� a4
a3 � a4

� �

hA a3 ≤ x< a4

0 x> a4

8
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>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(1)

Let supp(FA) be the support of FA, and we have supp(FA) = {x ∈  | a1 ≤ x ≤ a4}.
Then we have the infimum and supremum of supp(FA) as inf supp(FA) = a1 and sup
supp(FA) = a4, respectively. Also, let IFA

αð Þ ¼ lFA
αð Þ, rFA

αð Þ½ � be the α-cut interval of
FA. For α ≤ hA, the left and right bounds of the α-cut interval can be formulated as
follows.

lFA
αð Þ ¼ a1 þ

α

hA

� �

a2 � a1ð Þ (2)

rFA αð Þ ¼ a4 þ
α

hA

� �

a3 � a4ð Þ (3)

Suppose we have two fuzzy numbers: FA = (a1, a2, a3, a4, hA) and FB = (b1, b2, b3,
b4, hB), and a constant, denoted as λ (i.e., λ∈ ). We can have fuzzy number addition
and multiplication with a constant as follows [17, 18, 34].

FA⊕FB ¼ a1 þ b1, a2 þ b2, a3 þ b3, a4 þ b4; min hA, hBf gð Þ (4)

λ � FA ¼ λ � a1, λ � a2, λ � a3, λ � a4; hAð Þ (5)

To describe some reasonable properties of ranking methods, Wang and Kerre [1]
have proposed seven axioms. Ban and Coroianu [28] have dropped one axiom by
considering a ranking (or an ordering) over a given set of fuzzy numbers. This chapter
follows the choice made by Ban and Coroianu [28]. Let F be a set of fuzzy numbers,

Figure 1.
A trapezoidal fuzzy number.
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and a ranking method determines the binary relation ≽ over F. Then, their six axioms
are summarized (without elaborating their variants) below.

Axiom 1: FA ≽ FA. for any FA∈ F.
Axiom 2: For any FA, FB∈ F, if FA ≽ FB and FB ≽ FA, then FA � FB.
Axiom 3: For any FA, FB, FC∈ F, if FA ≽ FB and FB ≽ FC, then FA ≽ FC.
Axiom 4: For any FA, FB∈ F, if inf supp(FA) ≥ sup supp(FB), then FA ≽ FB.
Axiom 5: Suppose that FA, FB, FA ⊕ FC, FB ⊕ FC are elements of F. If FA ≽ FB, then

Fa ⊕ Fc ≽ Fb ⊕ Fc.
Axiom 6: Suppose thatλ∈  and FA, FB, λ�FA, λ�FB are elements of F. If FA ≽ FB and

λ ≥ 0, then λ�FA ≽λ�FB. If FA ≽ FB and λ ≤ 0, then λ�FA≼ λ�FB.
Axioms 1 and 3 are referred to as the reflexive and transitive properties of binary

relations, respectively, for a total pre-order on F [28]. Axiom 2 defines the conditions
for the equality “�”. Axiom 4 specifies that FA is larger than or equal to FB if the lower
bound of the support of FA is larger than the upper bound of the support of FB.
Axioms 5 and 6 generally imply that the ordering of FA ≽ FB should be preserved if
they are added by the same fuzzy number FC or multiplied by the same positive
quantity λ. Notably, index-based ranking methods will satisfy Axioms 1 to 3 [1], and
this chapter will focus more on Axioms 4 to 6.

3. Three attributes for fuzzy number ranking

In this section, we characterize the comparison of fuzzy numbers through one
primary attribute and two secondary attributes. The primary measure is concerned
with the representative value of a fuzzy number on the real line, which is a common
intuition for ranking. One secondary attribute checks the range of real numbers
enclosed by a fuzzy number, which information is independent of the representative
value but can be relevant for ranking. Another secondary attribute is associated with
membership, which is concerned with the shape of a fuzzy number.

3.1 Representative x-value

Since the real line of a fuzzy number is often expressed on the x-axis, we use “x-
value” to label the values associated with the real line. As a fuzzy number encloses a
range of possible x-values, one common intuition is to identify a representative x-
value of a fuzzy number for comparison. There can be several options that are aligned
with this intuition such as the expected value [34, 35], the x-coordinate of a centroid
[36] and median [10]. In this chapter, we adopt the class of ranking indices derived by
Ban and Coroianu [28]. Let rep(FA, w) be the function to evaluate the representative
x-value of the fuzzy number FA, and its formulation is given as follows.

rep FA,wð Þ ¼ w � a1 þ
1

2
�w

� �

a2 þ
1

2
�w

� �

a3 þw � a4 (6)

where w is a weighting constant with 0 ≤ w ≤ 1. As proven by Ban and Coroianu
[28] (Theorem 39), if this function is used as a ranking index, it satisfies the six
axioms discussed in the preliminaries section. Beyond this theorem result, we can
interpret this formulation as a weighted function of a fuzzy number’s core values (a2
and a3) with a weight (1/2-w) and boundary values (a1 and a4) with a weight w. When
w = 0, only the core values are considered. Alternately, when w = 1/2, only the
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boundary values are considered. To emphasize the importance of core values (i.e., a2
and a3) through weighting, we set (1/2-w) ≥ w, and then we have 0 ≤ w ≤ 1/4.

Derived from Eq. (6), we have rep(FA, w) ≥ rep(FB, w) if the following condition is
satisfied.

w a1 þ a4ð Þ � b1 þ b4ð Þ½ � þ
1

2
�w

� �

a2 þ a3ð Þ � b2 þ b3ð Þ½ �≥0 (7)

This condition implies a weighted comparison between core and boundary values
of FA and FB. Apparently, we cannot guarantee the satisfaction of this condition if FA
and FB are partially overlapped (i.e., supp(FA) ∩ supp(FB) 6¼ ∅). Then, the value of w
can influence the ordering of rep(FA, w) and rep(FB, w). Following the discussion in
Ban and Coroianu [28], we consider the presence of w as a generalization of some
existing indices, which have implicitly pre-defined weighting factors for core and
boundary values of a fuzzy number. For example, the ranking index developed by
Abbasbandy and Hajjari [2] is an instance by setting w = 1/12. Given a ranking
problem, decision makers can consider some sensitivity analysis (e.g., evaluate the
value of w that makes rep(FA, w) = rep(FB, w)) to define the value of w for their
ranking problems.

3.2 X-value range

Another attribute is associated with the range of possible x-values of a fuzzy
number. Fuzzy numbers can have the same representative x-values with different
ranges (e.g., symmetric triangular fuzzy numbers with the same core value but dif-
ferent boundary values). Some argue that the information of range should be consid-
ered for ranking (e.g., [11]). There can be several options to quantify this intuition
such as ambiguity value [9, 13], standard deviation [15] and deviation degree [16–18].
In this chapter, we adopt the range (or size) of the α-cut interval (denoted as rng(FA,
α)), and it is formulated as follows.

rng FA, αð Þ ¼ rFA
αð Þ � lFA

αð Þ (8)

Figure 2 illustrates the α-cut interval of a trapezoidal fuzzy number FA., where the
lower (left) and upper (right) bounds of the α-cut interval are denoted as lFA

αð Þ and

Figure 2.
Illustration of the α-cut interval.
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rFA αð Þ, respectively. The formulations of lFA αð Þ and rFA αð Þ can be found in Eqs. (2) and
(3), respectively. The value of α can be interpreted as the minimum membership
value that is deemed relevant for the ranking analysis. For example, if we set α at a
lower value, we will receive a wider interval.

Here, we suppose that a large range of possible x-values tends to yield a lower rank
because decision makers do not want high uncertainty associated with a large range.
This stated intuition of “larger range ➔ lower rank” is aligned with Wang and Luo
[6] and Nasseri et al. [37]. Also, we classify range as a secondary attribute because
some decision makers may find this attribute not necessary to their ranking problems
(e.g., ranking a set of triangular fuzzy numbers with a similar size of support). Then,
using the measure of representative x-value only could be sufficient for ranking. In
contrast, if decision makers find the information of range relevant to their ranking
problems, our suggested approach is to take the range information as a modifier to the
representative x-value. This approach will be discussed in Section 5.

3.3 Overall membership ratio

The notion of overall membership is associated with the shape of a fuzzy number,
regardless of where this shape is placed on the real line. To illustrate, consider two
comparisons in Figure 3. In Figure 3a, while FA and FB have different representative
x-values, their overall membership values should be the same due to the common
shape. In contrast, FC in Figure 3b should have higher overall membership than FD as
FC’s membership values are higher than or equal to those of FD over the common
support (note: the common support is not necessary; it just makes the comparison
easier to observe).

To capture the above idea of the overall membership of a fuzzy number, we
formulate the ratio using two areas: the shape’s area and the full membership area over
the same support. Also, we keep the concept of α-cut interval so that the decision
maker can identify the minimum level of membership that is relevant for their rank-
ing problem. Figure 4 is used to illustrate the concept of both types of area. First, the
shape’s area is considered as the area under the fuzzy number and enclosed by the α-
cut interval, as shaded by gray lines in Figure 4. Then, the full membership area is
based on the rectangle with the width of the α-cut interval and the height of 1 (i.e.,
maximum membership). Accordingly, the shape’s area (denoted as areashape) and the
full membership area (denoted as areafull) can be formulated as follows.

Figure 3.
Illustration of the concept for overall membership a) FA and FB with same membership b) FC with higher
membership than FD.
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areashape FA, αð Þ ¼

ðrFA αð Þ

lFA αð Þ

μFA
xð Þdx (9)

areafull FA, αð Þ ¼ rFA
αð Þ � lFA

αð Þ½ � � 1 (10)

The overall membership ratio of a fuzzy number (denoted as mem(FA, α)) can be
expressed as follows.

mem FA, αð Þ ¼
areashape FA, αð Þ

areafull FA, αð Þ
(11)

Here, we suppose that higher overall membership ratio tends to yield a higher
rank. We classify (overall) membership ratio as another secondary attribute because it
may not be necessary for ranking problems with normal fuzzy numbers (e.g., if FA is a
normal triangular fuzzy number, mem(FA, 0) is always equal to 0.5). Yet, if this
information is considered relevant, Section 5 will suggest one approach to use it as a
modifying factor for ranking.

Notably, it is probably more common to apply two measures (instead of three) for
FNR in literature (e.g., [value, ambiguity] and [average value, degree of deviation] as
mentioned in Introduction). From there, they tend to integrate the information of
range and membership ratio into one measure. We choose to handle such information
in terms of two separate attributes for two reasons. First, the concepts of range and
membership ratio are relatively direct for decision makers to visualize and interpret
(thus supporting their intuition) in the comparison of fuzzy numbers. Second, range
and membership ratio can indicate independent information. For example, consider
two normal fuzzy numbers: one triangle and one trapezoid. While the trapezoid shape
always yields a higher membership ratio, the ranges of both shapes can be changed
arbitrarily, thus explaining the independence of range and membership ratio.

To demonstrate the evaluation of the three attributes, consider a fuzzy number:
FA = (1, 2, 3, 4; 1), which has a lower bound of 1 and an upper bound of 4. Its
maximum membership value is 1, which covers the range between 2 and 3 (check
Figure 1 for an illustrative reference). Suppose that α = 0 (i.e., we consider the whole
fuzzy number) and w = 1/12 (i.e., according to Abbasbandy and Hajjari [2]), we can
evaluate the values of the three attributes according to the following:

Figure 4.
Illustration of the shape’s area and full membership area.
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• Representative x-value using Eq. (6): rep FA,wð Þ = (1/12) � 1 + (1/2–
1/12) � 2 + (1/2–1/12) � 3 + (1/12) � 4 = 2.5

• X-value range using Eq. (8): rng FA, αð Þ ¼ rFA
αð Þ � lFA

αð Þ = 3

◦ From Eq. (2): lFA
αð Þ = 1 + (0/1) � (2–1) = 1

◦ From Eq. (3): rFA
αð Þ = 4 + (0/1) � (3–4) = 4

• Overall membership ratio using Eq. (11): mem FA, αð Þ ¼
areashape FA, αð Þ

areafull FA, αð Þ ¼ 2
3

◦ From Eq. (9) = areashape FA, αð Þ ¼ trapezoid’s area = (1 + 3) � 1/2 = 2

◦ From Eq. (10) = areafull FA, αð Þ ¼ 4–1½ � � 1 ¼ 3

3.4 Pareto optimality

After defining three attributes, we can rank fuzzy numbers for some cases
using the Pareto optimality principle [4]. In a less formal expression, we have
FA ≽ FB if rep(FA, w) ≥ rep(FB, w), rng(FA, α) ≤ rng(FB, α) and mem(FA, α) ≥
mem(FB, α). To examine how well these attributes can speak for the ranking
intuition, numerical examples are used in the next sub-section to check the following
situations.

• If two fuzzy numbers can be ranked based on Pareto optimality, this ranking
order should be considered “obvious” to the ranking intuition with less room for
arguments.

• If two fuzzy numbers cannot be ranked based on Pareto optimality,
decision makers can effectively use the selected attribute to explain their
arguments.

3.5 Numerical examples

The numerical cases from Bortolan and Degani [38] are employed for demonstra-
tion, and they can illustrate systematically how the selected attributes are changed
with different fuzzy numbers. While we keep the case labels from Bortolan and
Degani [38] for cross checking, we classify these cases into five groups for discussion.
Also, we follow Abbasbandy and Hajjari [2] by setting w = 1/12 to evaluate rep(FA, w).
Also we set α = 0 for rng(FA, α) and mem(FA, α) in this numerical demonstration.

Group 1: Non-overlapping, triangular fuzzy numbers
This group covers the cases of a, b, c, d and e from Bortolan and Degani [38], and

the results are shown in Table 1. By examining the Pareto optimality with the three
attributes, we can first pass the membership ratio because mem(FA, 0) is always equal
to 0.5 if FA is normal and triangular. The rankings of fuzzy numbers in cases a to d are
obvious as the fuzzy numbers with higher representative x-values have the same (i.e.,
cases a, b, d) or smaller (i.e., case c) ranges. In case e, while the fuzzy number FE3 is
ranked highest, we cannot immediately rank FE2 higher than FE1 based on Pareto
optimality only since FE2 has a larger range. Through these five cases, we want to note
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that the proposed attributes vary according to our “intuition” to interpret and rank
fuzzy numbers (e.g., check how representative x-values and ranges vary indepen-
dently in these cases).

Representative

x-value (rep)

Range

(rng)

Membership

ratio (mem)

Case a FA1 0.1 0.2 0.5

FA2 0.9 0.2 0.5

Case b FB1 0.7 0.2 0.5

FB2 0.9 0.2 0.5

Case c FC1 0.8 0.2 0.5

FC2 0.95 0.1 0.5

Case d FD1 0.2 0.2 0.5

FD2 0.4 0.2 0.5

FD3 0.7 0.2 0.5

Case e FE1 0.0083 0.1 0.5

FE2 0.6 0.2 0.5

FE3 0.9917 0.1 0.5

Table 1.
Results of comparing non-overlapping, triangular fuzzy numbers.
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Group 2: Overlapping, triangular fuzzy numbers
This group covers the cases of f, i and l from Bortolan and Degani [38], and the

results are shown in Table 2. In case f, while FF2 should be ranked higher than FF1 due
to higher representative x-value shown in Table 2, we should note that this ranking is
sensitive to the pre-set value of w. If w < 1/6 (i.e., more emphasis to the core values),
we have rep(FF2) > rep(FF1). If w ≥ 1/6 (i.e., more emphasis to the boundary values),
we have rep(FF1) ≥ rep(FF2).

In contrast, as the fuzzy numbers in case i share the same support, their ranking is
not sensitive to the value of w. Finally, the ranking in case l depends on the informa-
tion of range, and our intuition assumes that smaller range is better. Notably, our
intuition here is not universal, and some decision maker can rank a fuzzy number of
larger range higher for a positive likelihood of higher x-values. Here we are not
arguing which “intuition” (or ranking rule) is right. Instead, we want to keep the
intuition more transparent through explicit attributes so that researchers can argue
their ranking intuitions on a common ground.

Group 3: Triangular and trapezoidal fuzzy numbers
This group covers the cases of g and h from [38], and the results are shown in

Table 3. The trapezoid fuzzy numbers have a large shape, giving higher values of
range and membership ratio. The triangular fuzzy numbers in both cases have higher

Representative

x-value (rep)

Range

(rng)

Membership

ratio (mem)

Case

f

FF1 0.525 0.7 0.5

FF2 0.575 0.7 0.5

Case

i

FI1 0.8667 0.6 0.5

FI2 0.7 0.6 0.5

FI3 0.5333 0.6 0.5

Case

l

FL1 0.5 0.6 0.5

FL2 0.5 0.2 0.5

Table 2.
Results of comparing overlapping, triangular fuzzy numbers.
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representative x-values. Their triangular shapes are the same, with a shift to the right
side by 0.1 in case h. In view of Pareto optimality with three attributes, there is no
dominant fuzzy number. Yet, we can note that if FG2 ≽ FG1 in case g, we would have
FH2 ≽ FH1 in case h. It is because FH2 ≽ FG2 due to Pareto optimality and FG1 = FH1. This
note should make sense when we observe the graphical shift of triangular fuzzy
numbers from FG2 to FH2 in Table 3. This demonstrates how the three attributes can
characterize some intuitive reasoning in FNR.

Group 4: Nested fuzzy numbers.
This group covers the cases of j and k from [38], and the results are shown in

Table 4. In case j, FJ2 is created by shifting the lower bound of FJ1 to the left; FJ2 and
FJ3 share the same support with a different shape. Fuzzy numbers in case k have a
similar pattern in an opposite direction (see Table 4). By checking from the order FJ1
➔ FJ2 ➔ FJ3 or FK1 ➔ FK2 ➔ FK3, we argue that the three attributes can reasonably
capture and quantify the characteristics of these fuzzy numbers.

Representative

x-value (rep)

Range

(rng)

Membership

ratio (mem)

Case g FG1 0.3333 1 0.7

FG2 0.6 0.2 0.5

Case h FH1 0.3333 1 0.7

FH2 0.7 0.2 0.5

Table 3.
Results of comparing triangular and trapezoidal fuzzy numbers.

Representative

x-value (rep)

Range

(rng)

Membership

ratio (mem)

Case j FJ1 0.7 0.4 0.5

FJ2 0.6833 0.6 0.5

FJ3 0.5583 0.6 0.75
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Group 5: Non-normal fuzzy numbers.
Non-normal fuzzy numbers have their maximum membership less than 1 (i.e., hA

< 1). Notably, the literature of FNR often assumes normal fuzzy numbers (e.g., [28]).
By inspecting the earlier cases, we should note that the variations of membership
ratio of normal fuzzy numbers do not change much (from 0.5 for triangular to 0.7 or
0.75 for trapezoidal). Thus, it is not unreasonable if one chooses not to consider
membership ratio for comparing normal fuzzy numbers. Yet, non-normal fuzzy
numbers will open other possibilities, where the membership ratio can be an
important consideration.

This group covers the cases of n, o, p, q and r from Bortolan and Degani [38], and
the results are provided in Table 5. As shown in Table 5, the values of membership
ratio vary more significantly as some fuzzy numbers have smaller maximum mem-
bership. Consequently, the trade-off consideration can be more challenging. For
example, how should we compare FN1 and FN2 in case n with the trade-off of

Representative

x-value (rep)

Range

(rng)

Membership

ratio (mem)

Case k FK1 0.6417 0.6 0.75

FK2 0.5167 0.6 0.5

FK3 0.5 0.4 0.5

Table 4.
Results of comparing nested fuzzy numbers.

Representative

x-value (rep)

Range

(rng)

Membership

ratio (mem)

Case

n

FN1 0.2 0.4 0.5

FN2 0.8 0.4 0.4

Case

o

FO1 0.6 0.4 0.5

FO2 0.9 0.2 0.1
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representative x-value and membership ratio (similarly for case o)? While we see FP2
≽ FP1 in case p and FQ1 ≽ FQ2 in case q due to Pareto optimality, the trade-off
consideration is present in case r with different values of range.

The main theme of this section is that we need some attributes to characterize our
intuition for FNR. Otherwise, it is difficult to get a common ground for constructive
arguments. In this section, we choose three attributes to make clear our “intuition” for
FNR. Aligned with the note in Keeney and Raiffa [4], we do not claim the uniqueness
of this selection of attributes for FNR. Other researchers can propose other sets of
attributes to characterize their intuition.

4. Aggregation: proposal of a ranking index

If the Pareto optimality principle cannot rank two fuzzy numbers, trade-off con-
sideration is required to finalize the ranking decision. That is, a fuzzy number of a
higher rank must have some “weaker” aspect in terms of the three attributes but its
“stronger” aspect is sufficient to bring it to a higher rank overall. This ranking process
should involve an aggregation that combines all aspects into an overall evaluation and
then determines the ranking result. This section will propose a ranking index for
aggregation along with numerical examples.

Representative

x-value (rep)

Range

(rng)

Membership

ratio (mem)

Case

p

FP1 0.2 0.4 0.1

FP2 0.8 0.4 0.5

Case

q

FQ1 0.6 0.8 0.5

FQ2 0.6 0.8 0.1

Case

r

FR1 0.9667 0.4 0.5

FR2 0.95 0.1 0.1

Table 5.
Results of comparing non-normal fuzzy numbers.
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4.1 Discount factors and ranking index

As discussed in Section 3, representative x-values are used as the primary attribute
to rank fuzzy numbers. Then, we view the information of range and membership ratio
as secondary attributes that will “discount” the representative x-values. To illustrate,
consider a crisp number, 5, which has the representative x-value of 5, range of 0 and
membership ratio of 1. If a fuzzy number with the representative x-value of 5 has a
range larger than 0 and a membership ratio less than 1, this fuzzy number should be
ranked lower than the crisp number 5. The discount factors are intended to capture
this idea. Let Irank(FA) be the index as the discounted representative x-value of FA for
ranking, and it can be formulated as follows.

Irank FAð Þ ¼ drng FAð Þ � dmem FAð Þ � rep FA,wð Þ (12)

where drng(FA) and dmem(FA) are the discount factors associated with range and
membership ratio, respectively. To quantify these discount factors, we consider the
following conditions:

• 0 ≤ drng(FA) ≤ 1 and 0 ≤ dmem(FA) ≤ 1

• If rng(FA, α) ≥ rng(FB, α), drng(FA) ≤ drng(FB).

• If mem(FA, α) ≥ mem(FB, α), dmem(FA) ≥ dmem(FB).

Apparently, many forms of formulations can be used for the discount factors
and satisfy these conditions. In this chapter, we use a simple ratio with respect to
some reference (or extreme) values. Let rngmin be the minimum reference for range,
and memmax be the maximum reference for membership ratio. We also set that
rngmin > 0 and 0 < memmax ≤ 1. Then, the discount factors for FA can be formulated as
follows.

drng FAð Þ ¼
rngmin

rng FA, αð Þ
(13)

dmem FAð Þ ¼
mem FA, αð Þ

memmax
(14)

With these discount factors, if FA has a range equal to rngmin, its discount
factor, drng(FA), is equal to 1 (i.e., no discount). A similar effect is also set for
dmem(FA). The selection of the values for rngmin and memmax depends on how
decision makers interpret the discount ratio for their ranking problems. One
suggestion is to identify the minimum range and the maximum membership
ratio from the set of fuzzy numbers to be ranked. That is, suppose that FR = {FA, FB,
FC,… } be the set of fuzzy numbers that need to be ranked in a problem. We can select
rngmin and memmax according to the following equations. Then, we can interpret the
discount ratio with respect to the “best values” among the set of fuzzy numbers in the
problem.

rngmin ¼ min rng FA, αð Þ, rng FB, αð Þ, rng FC, αð Þ…f g (15)

memmax ¼ max mem FA, αð Þ,mem FB, αð Þ,mem FC, αð Þ…f g (16)
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4.2 Overview of the ranking method

After defining the attributes in Section 3 and the ranking index in Section 4.1, this
sub-section will overview our proposed approach to rank fuzzy numbers. The proce-
dure to determine the ranking index is illustrated in Figure 5. Given a fuzzy number
FA, we first determine the values of three attributes: representative x-value, x-value
range and overall membership ratio. Then, we can evaluate the discount factors for x-
value range and overall membership ratio. In the end, we can determine the ranking
index for the given fuzzy number.

Suppose that we are tasked to rank a set of fuzzy numbers. We first determine
the ranking index for each fuzzy number. Then, we can use the index, Irank, for this
ranking task. That is, if Irank FAð Þ≥ Irank FBð Þ, we rank FA higher than FB, symbolically,
FA≽FB.

4.3 Numerical examples

As a recall from Section 3, we set w = 1/12 and α = 0 to evaluate representative x-
value, range and membership ratio. We use Eqs. (15) and (16) to obtain rngmin and
memmax and then calculate the values of the discounts and the ranking index. We
reuse the numerical examples from Section 3.5 with the cases where Pareto optimality
cannot finalize the ranking. The results are presented in Table 6.

Case e comes from Group 1 (see Table 1), where FE3 is ranked on the top per
Pareto optimality (same result from the ranking index). Between FE1 and FE2, though
FE2 should be ranked higher intuitively, trade-off is involved logically because FE2 has
a large range (reflected in its range discount of 0.5 as well). Per the ranking index, we
still have FE2≽FE1, which matches the general intuition.

Cases g and h come from Group 3 (see Table 3), where wide trapezoidal fuzzy
numbers are compared with narrow triangular fuzzy numbers. Per the ranking index,
the triangular fuzzy numbers are ranked higher mainly because of the large difference
of the range discount (1 vs. 0.2). In contrast, the difference of the membership ratio
discount is less substantial.

Cases j and k come from Group 4 (see Table 4), where two triangular fuzzy
numbers are nested in a trapezoidal fuzzy number. In both cases, the wider triangular
fuzzy numbers (i.e., FJ2 and FK2) are ranked lowest as they receive both discounts

Figure 5.
Procedure to determine the ranking index.
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(i.e., drng = dmem = 0.6667). In case j, the narrower triangular fuzzy number (FJ1) is
ranked first because its representative x-value and range can “win” over its weaker
membership ratio as compared to the trapezoidal fuzzy number (FJ3). In contrast, in
case k, the trapezoidal fuzzy number (FK1) “wins” because it has better representative
x-value and membership ratio as compared to FK3.

Cases n, o and r come from Group 5 (see Table 5). In case n, we have FN2≽FN1, as
FN2 has higher representative x-value despite lower membership ratio (associated
with the discount dmem(FN2) = 0.8). In cases o, we have FO1≽FO2 because the mem-
bership ratio of FO2 is substantially lower despite its higher representative x-value. In
case r, the trade-off between range and membership ratio is relatively close. In the
end, we have FR1≽FR2, as FR2 has a lower value of the discount from membership ratio
(i.e., dmem(FR2) = 0.2 vs. drng(FR1) = 0.25).

Notably, the judgment for ranking with trade-off can become difficult when the
trade-off among the three attributes is getting close. We argue that such difficulty is
fundamentally embedded into the problem structure of FNR, which involves multiple
dimensions of considerations. Thus, our solution strategy is not about providing the
best ranking procedure. Instead, we emphasize the importance of defining attributes
to quantify the “intuition”. Then, decision makers can explicitly explain their trade-
off considerations in the ranking process.

Fuzzy number Range discount

(drng)

Mem. discount

(dmem)

Ranking index

(Irank)

Case e FE1 = (0, 0, 0, 0.1; 1) 1 1 0.0083

FE2 = (0.5, 0.6, 0.6, 0.7; 1) 0.5 1 0.3

FE3 = (0.9, 1, 1, 1; 1) 1 1 0.9917

Case g FG1 = (0, 0.1, 0.5, 1; 1) 0.2 1 0.0667

FG2 = (0.5, 0.6, 0.6, 0.7; 1) 1 0.7143 0.4286

Case h FH1 = (0, 0.1, 0.5, 1; 1) 0.2 1 0.0667

FH2 = (0.6, 0.7, 0.7, 0.8; 1) 1 0.7143 0.5

Case j FJ1 = (0.5, 0.7, 0.7, 0.9; 1) 1 0.6667 0.4667

FJ2 = (0.3; 0.7, 0.7, 0.9; 1) 0.6667 0.6667 0.3037

FJ3 = (0.3, 0.4, 0.7, 0.9; 1) 0.6667 1 0.3722

Case k FK1 = (0.3, 0.5, 0.8, 0.9; 1) 0.6667 1 0.4278

FK2 = (0.3, 0.5, 0.5, 0.9; 1) 0.6667 0.6667 0.2296

FK3 = (0.3, 0.5, 0.5, 0.7; 1) 1 0.6667 0.3333

Case n FN1 = (0, 0.2, 0.2, 0.4; 1) 1 1 0.2

FN2 = (0.6, 0.8, 0.8, 1; 0.8) 1 0.8 0.64

Case o FO1 = (0.4, 0.6, 0.6, 0.8; 1) 0.5 1 0.3

FO2 = (0.8, 0.9, 0.9, 1; 0.2) 1 0.2 0.18

Case r FR1 = (0.6, 1, 1, 1; 1) 0.25 1 0.2417

FR2 = (0.9, 0.95, 0.95, 1; 0.2) 1 0.2 0.19

Table 6.
Ranking index results for cases with trade-off consideration.
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5. Multi-attribute ranking method in practice

5.1 General suggestions for application

As we consider that ranking methods should be dependent on a given set of fuzzy
numbers to be ranked (i.e., context-dependent), we want to discuss two types of
adjustable elements of our proposed method in practice. The first type is the selection of
attributes. Among three attributes: representative x-value, range and membership ratio,
representative x-value should be a default choice as it intuitively corresponds to the
ranking of real numbers (e.g., compare representative x-values of different fuzzy num-
bers).We suggest the class of ranking indices by Ban and Coroianu [28] (i.e., in Eq. (6))
as it satisfies the six axioms. To determine the weight, w, of this attribute, decision
makers may consider sensitivity analysis for their given set of fuzzy numbers (i.e., how
sensitive of the value of w can alter the ranking of two fuzzy numbers).

In contrast to representative x-value, the choice of range and membership ratio is
optional. The attribute of x-value range is common in literature, and other formulations
of this attribute (e.g., ambiguity and deviation degree as mentioned in Section 3.2) can
be considered as a choice by decision makers for this attribute. If the ranking problem
has fuzzy numbers of similar ranges (e.g., triangular fuzzy numbers with similar sup-
ports), we think it is legitimate not to consider range in FNR (in order to preserve some
axiomatic properties, to be discussed in Section 6). The attribute of membership ratio is
less common, and it should be more relevant for non-normal fuzzy numbers (e.g.,
normal triangular fuzzy numbers always have the same membership ratio equal to 0.5).

The second type of adjustable elements of our proposed method is the specification
of the reference values (i.e., rngmin and memmax) and the formulations of the discount
factors. Notably, our formulations of discount factors (i.e., Eqs. (13) and (14)) are
only one simple suggestion. One possible disadvantage of our discount factors is that
they can be too sensitive to the reference values. For example, if two fuzzy numbers
with the range values of 0.5 and 1 are compared, the range discount (drng) can be equal
to 0.5 for one fuzzy number, cutting half of its representative x-value. Decision
makers can consider adjusting the effects of discount factors through other formula-
tions for their problems (e.g., additional scaling component).

5.2 Applicability to specific forms

The origin of fuzzy numbers can be viewed as a generalization of crisp numbers to
describe approximate information. Consider the 5-tuple definition of a fuzzy number,
FA = (a1, a2, a3, a4; hA) as the generalized form of fuzzy numbers in this work.
Accordingly, three specific forms can be considered as follows.

• Interval: if a1 = a2, a3 = a4 and hA = 1;

• Ordered pair (an element of a fuzzy set): if a1 = a2 = a3 = a4 and hA < 1;

• Crisp number: if a1 = a2 = a3 = a4 and hA = 1.

Then, we want to investigate the reducibility property that whether a ranking
method can still be applicable if the above specific forms are considered. Table 7
shows that our proposed ranking method can be still used for these specific forms.
First, a general fuzzy number can be evaluated using the equations as listed in the first
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row of Table 7. When these equations are applied to interval, ordered pair and crisp
number, we can obtain the results that match our expectations. For example, the
representative x-value of an interval will be the midpoint of a2 and a3, and a crisp
number has no discount effect (i.e., drng = 1 and dmem = 1). In this way, our proposed
method can be used to compare fuzzy numbers with intervals or crisp numbers in the
same methodical framework.

6. Information content and axiomatic properties

Since the pioneer work by Wang and Kerre [1], researchers have examined the
axiomatic properties (i.e., the six axioms listed in Section 2) of fuzzy number ranking
methods. The intent of this section is to discuss how the information content for
ranking can influence the axiomatic properties in the context of our ranking approach.
One key message is that the satisfaction of axioms depends on the selection of infor-
mation that is deemed relevant to FNR. If more information is selected and considered
for ranking, the ranking method is more likely to violate the axioms. This message is
aligned with the topic of information basis in the analysis of the Arrow’s Impossibility
Theorem [39, 40].

6.1 Analysis of Axiom 4

Axiom 4 somewhat dictates the ranking of non-overlapping fuzzy numbers. If we
only consider representative x-values for ranking (i.e., no range, membership ratio
and discount factors), our ranking procedure will directly follow the results from Ban
and Coroianu [28], and it will thus satisfy Axiom 4. However, if range and member-
ship ratio are considered as relevant information for ranking, Axiom 4 can be violated,
and the reason is given below.

Axiom 4 only focuses on the boundary values without considering any distribu-
tional information (e.g., range and membership). When multiple attributes are con-
sidered for ranking, Axiom 4 can be violated by strengthening the distributional
aspect of the inferior fuzzy number (in view of Axiom 4). For example, we have
FO2≽FO1 in case o (see Table 5) according to Axiom 4, no matter how small of
membership ratio of FO2. However, when we consider range and membership ratio,
we obtain FO1≽FO2 (see Table 6), which violates Axiom 4. Notably, the logic of such
violation can be held whenever we deem membership ratio as relevant information
for FNR, regardless of the details of the ranking procedures.

Representative x-

value (rep)

Range

(rng)

Membership

ratio (mem)

Range discount

(drng)

Membership

discount (dmem)

Fuzzy

number

Eq. (6) Eq. (8) Eq. (11) Eq. (13) Eq. (14)

Interval (a2 + a3)/2 (a4–a1) 1 Eq. (13) 1

Ordered pair a1 (= a2 = a3 = a4) 0 hA 1 Eq. (14)

Crisp number a1 (= a2 = a3 = a4) 0 1 1 1

Table 7.
Overview of the reducibility property.
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Notably, this discussion is not about rejecting Axiom 4. Instead, we want to explain
one logical tension with Axiom 4. That is, Axiom 4 dictates some ranking of fuzzy
numbers based on their boundary values only, and this opens a chance for the infor-
mation of range and membership ratio to violate Axiom 4. Alternately, if we choose the
index class by [28], representative x-values will be the only information considered for
ranking, and the information of range (for example) will become irrelevant for FNR. In
other words, if we consider that FNR should involve trade-off with multiple attributes
in addition to representative x-value, Axiom 4 could be violated in some situations.

6.2 Dependence of rngmin and memmax

As we use reference values (i.e., rngmin and memmax) to evaluate the discount
factors (i.e., drng and dmem), the ranking index, Irank, belongs to the second class of
ranking indices according to the classification by [1]. In their axiomatic analysis, they
have identified five indices of the second class, i.e., JK(), K(), CHK(), W() and KPK(),
which all do not satisfy Axioms 5 and 6. Without listing counter-examples, Irank of the
same class follows the same conclusion because they share a common feature of these
ranking indices, i.e., use of reference values.

Why using reference values could violate Axioms 5 and 6? It is because the index
values would depend on the information that is external to the fuzzy numbers them-
selves. For example, if a fuzzy number with a very small range is added to a set of
fuzzy numbers for ranking (i.e., FR), this newly added fuzzy number will decrease
the reference value, rngmin, and thus generally decrease the range discount values
(drng) for the original set of fuzzy numbers. Then, all values of Irank would change
because of adding a new fuzzy number to the set (i.e., FR).

While it seems undesirable by setting rngmin and memmax per individual sets of
fuzzy numbers, can we simply set these two values as universal numbers that are
applicable to all ranking problems (e.g., simply set memmax = 1)? Theoretically, it is a
viable option. However, by doing so, we somehow lose our interpretation of “dis-
count” factors that are relevant to a given set of fuzzy numbers that we want to rank
in the problem. For example, it is not easy to interpret if the range of a fuzzy number,
say 5, is large or small until we know a reference for comparison (e.g., if rngmin = 1, the
range of 5 will quite large). In other words, the reference values, rngmin and memmax,
provide a numerical context as relevant information for comparison.

To close this section, we want to make a note about the historical development of
the Arrow’s Impossibility Theorem, which proves that no voting method (or social
welfare function) can satisfy a set of “reasonable” properties (or axioms) [41]. One
famous “escaping route” is the information basis approach, which classifies the infor-
mation content (or availability) for interpersonal comparisons with different axiom-
atic results [39, 40]. Back to our context, if representative x-value is taken as the only
relevant information for FNR, the results by [28] are sufficient to design a ranking
index that satisfies the six axioms in Section 2. However, if additional information is
considered for FNR, the axiomatic properties cannot be guaranteed. To us, this ten-
sion seems fundamental.

7. Conclusion

The main theme of this chapter is to use the multi-attribute approach to analyze
and address the problems of fuzzy number ranking (FNR) since numerous ranking
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methods in literature have implicated multiple attributes in their ranking intuition.
The multi-attribute approach has two phases: the selection of attributes and the
formulation of the aggregation function. The selection of attributes determines what
information is deemed relevant for FNR, and the aggregation function controls the
trade-off of the attribute values of fuzzy numbers. In this work, we propose three
attributes (i.e., representative x-value, range and membership ratio) as three possible
dimensions to evaluate a fuzzy number. In aggregation, we formulate the discount
factors for range and membership ratio to modify the representative x-value of a
fuzzy number for FNR. The proposed method has been illustrated via numerical
examples to reveal the rationale of using multiple attributes to articulate the intuition
behind FNR.

In future work, there can be two directions to consider: practice and theory. In the
practice direction, we can develop more methodical guidance toward the selection and
formulations of attributes and the aggregation procedures. In particular, we can for-
malize the ranking intuition in terms of the selected attributes and the trade-off
rationale through the aggregation approach for different FNR problems. Along this
effort, we can also compare the ranking results from this multi-attribute approach
with other FNR approaches. In the theory direction, while this chapter has initially
explored the tension between information content and the satisfaction of the FNR
axioms. This tension should call for more mathematical analyses such as classification
of information content for FNR and relaxation of axioms for expanded information
basis.
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