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Mobility of Spatial Parallel Manipulators 
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Tsinghua University, Beijing 100084, 
P. R. China 

 

1. Introduction 

This chapter focuses on the mobility analysis of spatial parallel manipulators. It first 

develops an analytical methodology to investigate the instantaneous degree of freedom 

(DOF) of the end-effector of a parallel manipulator. And then, the instantaneous 

controllability of the end-effector is discussed from the viewpoint of the possible actuation 

schemes which will be especially useful for the designers of the parallel manipulators. Via 

comparing the differences and essential mobility of a set of underactuated, over actuated 

and equally actuated manipulators, this chapter demonstrates that the underactuated, over 

actuated and equally actuated manipulators are all substantially fully actuated mechanisms. 

This work is significantly important for a designer to contrive his or her manipulators with 

underactuated or over actuated structures. 

Based on the analytical model of the DOF of a spatial parallel manipulator, this chapter 

develops a general process to synthesize the manipulators with the specified mobility. The 

outstanding characteristics of the synthesis method are that the whole process is also 

analytical and each step can be programmed at a computer. Because of the restrictions of the 

traditional general mobility formulas for spatial mechanisms, a lot of mechanisms having 

special manoeuvrability might not be synthesized. However, any mechanism can be 

synthesized with this analytical theory of degrees of freedom for spatial mechanisms. 

2. The valid means to investigate the mobility of a mechanism 

The quick calculation approaches based on the algebra summations of the number of the 

links, joints and the constraints induced by the joints can not be completely perfected by 

itself. This is true even the analytical methods are applied in seeking the common 

constraints (Hunt, 1978)(Waldron, 1966)(Huang, 2006). These problems are becoming more 

and more obvious with the advent of spatial parallel manipulators. The primary 

considerations of the designers for the parallel manipulators have been focused on nothing 

but the mobility of the end-effector and its controllability. Therefore, the concept of general 

mobility of a mechanism should be divided into two basic concepts♯♯the degree of freedom of 

the end-effector and the number of actuations needed to control the end-effector. With this regard, 

this chapter first introduces two primary definitions: 

Source: Parallel Manipulators, Towards New Applications, Book edited by: Huapeng Wu, ISBN 978-3-902613-40-0, pp. 506, April 2008, 
I-Tech Education and Publishing, Vienna, Austria

O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.in

te
hw

eb
.c

om

www.intechopen.com



 Parallel Manipulators, Towards New Applications 

 

468 

Definition 1: 
The DOF of an end-effector totally characterizes the motions of the end-effector including 
the number, type and direction of the independent motions (Zhao et al, 2004a)(Zhao et al, 
2006a). 
Definition 2: 
The configuration degree of freedom (CDOF) of a mechanism with an end-effector indicates 
the independent number of actuations required to uniquely control the end-effector under a 
configuration (Zhao et al, 2004b)(Zhao et al, 2006c). 
Obviously, the DOF of an end-effector in number is not larger than 6 but the independent 
number of actuations required to uniquely control the end-effector might be any 
nonnegative integer. Bearing the above two definitions in mind, one can fall into two steps 

to investigate the mobility of a mechanism♯♯the DOF of the end-effector and the CDOF of 
the mechanism with the prescribed end-effector. The former definition indicates the full 
instantaneous mobility properties of the end-effector through a mathematics concept of free 
mobility space while the later one presents the instantaneous controllability of the 
mechanism system. By definition 1, one can find that the DOF of an end-effector is only 
subjected to the constraint(s) exerted by the kinematic chain(s) connecting the end-effector 
with the fixed base or ground. Besides, the degree of freedom of the end-effector, 
instantaneously associated with the spatial configurations of the kinematic chain(s), should 
clearly depict the number, the direction and the type of the free motion of the end-effector 
instantaneously. Therefore, only analytical methods can fulfil such a task. 
After obtaining the free motions of the end-effector, an engineering question will naturally 
arise♯♯how many actuations are needed to control the end-effector? By definition 2, one can 
find that a checking process is given for verifying the controllability of the mechanism with 
the specified end-effector. Besides, this process can also allow the different selections of the 
actuation schemes, which is most adapted to the concept design of a manipulator. 
Consequently, the valid means to investigate the mobility of mechanisms can be addressed 

as: (1) investigate the instantaneous DOF of the prescribed end-effector; and (2) investigate 

the number of actuations required to uniquely control the end-effector of the mechanism. 

For the instantaneous characteristics of the mobility of a mechanism, only analytical means 

is acceptable for such a task. Because of the elegance in depicting the relationship between 

the motions and the constraints, reciprocal screw theory does be a well selection to 

accomplish the task. Therefore, the following analytical model for the mobility of a parallel 

manipulator will be built up by applying the reciprocal screw theory. 
According to reciprocal screw theory (Hunt, 1978)(Phillips, 1984)(Phillips, 1990)(Phillips et 
al, 1964)(Waldron, 1966)(Ball, 1900), a screw $  is defined by a straight line with an 

associated pitch h  and is conveniently denoted by six Plücker homogeneous coordinates: 

 
0

s
$

s sh

⎡ ⎤
= ⎢ ⎥+⎣ ⎦

  (1) 

where s  denotes direction ratios pointing along the screw axis, srs ×=0  defines the 

moment of the screw axis about the origin of the coordinate system, r  is the position vector 
of any point on the screw axis with respect to the coordinate system. Consequently, the 

screw axis can be denoted by the Plücker homogeneous coordinates 
0

s
$

s
axis

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. 
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Assume 

 
( )

( )⎪⎩

⎪
⎨
⎧

=+
=

T

T

RQPh

NML

ss

s

0

  (2) 

Considering ( ) hhh
22

00 sssssss =+⋅=+⋅  and presuming 0≠s , one obtains the instant 

pitch of a screw: 

 
( )

2222

0

NML

NRMQLPh
h

++

++
=

+⋅
=

s

sss
  (3) 

Therefore, the axis of the screw can also be denoted as: 

 ( )Taxis NhRMhQLhPNML −−−=$   (4) 

Assume that the vector of the projective point of the origin on the screw axis is represented 

by 
PO

r , there will be 
PO

rs ⊥  and: 

 ( ) ( ) ( )
PPPP OOOO rssrsrsssrs

2=⋅−⋅=××  (5) 

According to equations (1) and (2), there are: 

 
( )

( )⎪⎩

⎪
⎨
⎧

−−−=×
=

T
O

T

NhRMhQLhP

NML

P
sr

s
  (6) 

which yields: 

 
( ) ( ) ( )

( ) ( )
( ) ( )⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−

++
=

××
=

LhPMMhQL

NhRLLhPN

MhQNNhRM

NML

P

P

O
O 2222

1

s

srs
r   (7) 

Consequently, if the Plücker coordinates of a screw are given, one can easily obtain the unit 

direction vector, s , the pitch, h , the screw axis and the vector of the projective point of the 

origin on the axis, 
PO

r , with equations (1) through (7). 

If the pitch of a screw equals zero, the screw coordinates reduce to be: 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

0s

s
$   (8) 

which is just the Plücker homogeneous coordinates of the screw axis. 
In fact, formula (8) uniquely defines a line in a three-dimensional space. Assume that point 

PO  is the projective point of the origin on a line l  and point A  is any other point on the 

line. Then, 
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s

s
rrrr

a
PPP OAOOA +=+=   (9) 

where s  is a direction vector of line l , a  is the length of line segment AOP . 

The moment of line l  about the origin at point A  will be: 

 srs
s

s
rsrs ×=×⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=×=

PP OOA

a
0  (10) 

From equations (9) and (10), one obtains that the moment of a line about the origin is 
irrelevant to the point’s selection on the line. 
If a screw passes through the origin of the coordinate system, the screw coordinates can be 
denoted as: 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

s

s
$

h
  (11) 

On the other hand, if the pitch of a screw is infinite, the screw is defined as: 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

s
$

0
  (12) 

where ( )T000=0  is a three dimensional vector. 

According to the above definitions, a screw associated with a revolute pair is a twist of zero 
pitch pointing along the pair axis while a screw associated with a prismatic pair is a twist of 
infinite pitch pointing in the direction of the translational guide line of the pair. 
From equation (11), one has known that the kinematic screw is often denoted in the form of 
Plücker homogeneous coordinates: 

 ( )TRQPNML=$   (13) 

where the first three components denote the angular velocity, the last three components 
denote the linear velocity of a point in the rigid body that is instantaneously coincident with 
the origin of the coordinate system. 

Similarly, 
r

$  is defined as: 

 
T

rrrrrrr
RQPNML ⎟

⎠
⎞⎜

⎝
⎛=$  (14) 

where the first three components denote the resultant force and the last three components 
denote the resultant moment about the origin of the coordinate system. 

Two screws, $  and 
r

$ , are called to be reciprocal if they satisfy the equation: 

 0=+++++
rrrrrr

RNQMPLNRMQLP   (15) 
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Obviously, the free motions (general twists) $  and the prescribed constraints (general 

wrenches) 
r

$  of an equilibrium rigid body should satisfy equation (15). Equation (15) is 

often written for short (Kumar, 1992): 

 ( ) 0=
rT

E$$   (16) 

where $  and 
r

$  are column vectors, ⎥
⎦

⎤
⎢
⎣

⎡
=

33

33

0I

I0
E , and 3I  and 30  are 33×  identity and 

zero matrices, respectively.  
Similarly, if one gets a set of terminal constraints exerted to a rigid body, its free motion(s) 
can also be solved through equation (16). Next, one can investigate the instantaneous 
mobility of the end-effector of a parallel manipulator with equation (16). 

2.1 The degree of freedom of the end-effector of a parallel manipulator 

The free motions of the end-effector can be instantaneously expressed in a set of Plücker 
homogeneous coordinates in one Cartesian coordinate system. The main steps are: 
1. Investigate the Terminal Constraints of the Kinematic Chains 

In general, any parallel manipulator can be decomposed into ( )1n n ≥  kinematic chains 

connecting the end effector with the base. In order to instantaneously analyze the mobility 
properties of the end-effector, this section only establishes one absolute coordinate system. 

After establishing the coordinate system, the Plücker homogeneous coordinates of all 
kinematic pairs in a chain can be obtained. Group all of the kinematic screws of the same 

chain to be ( )nii ,,,$ A21=  and solve the terminal constraint(s) 
r

$i  with equation (16). 

In fact, if all of the terminal constraints of the kinematic chains are gained, the constraints 

exerted to the end-effector, denoted by 
r

E$ , should also be obtained. The dimension of 

constraint spaces spanned by the terminal constraints of kinematic chains can be simplified 

as ⎟
⎠
⎞⎜

⎝
⎛=

r

ERankd $ . 

2. Solve the Free Motion(s), 
F

E$ , of the End-Effector with Equation (16) 

Naturally, the mobility properties of the end-effector is fully expressed by 
F

E$ . Its number of 

DOF can be expressed as: 

 dRankM E −=⎟
⎠
⎞⎜

⎝
⎛= 6

F
$   (17) 

Now, the DOF of the end-effector of the parallel manipulator shown in Fig. 1 can be 
instantaneously investigated with the above two steps. In this manipulator, the end-effector 

321 CCC  has three identical PPRR kinematic chains connected with the fixed base. For the 

sake of modelling, one can establish any Cartesian coordinate system for the manipulator. 

Assume that the direction vector of the prismatic joint ( )1,2,3
i
A i =  is denoted by 

( )TiiiA cbae
i 111= , the direction vector of the prismatic joint ( )1, 2,3

i
B i =  is denoted by 
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( )TiiiB cbae
i 222= , the rotational vector of the revolute joint iB  is denoted by 

( )TiiiiiiiiiiiiBAB
babacacacbcbeee

ii
r
i

122121121221 −−−=×= , the rotational vector of the revolute joint 

( )1, 2,3
i
C i =  is denoted by r

i

r

i BC
ee = . Also suppose that 

321 AAA eee ≠≠  and 0
i iB A
e e⋅ = . 

 

 

Fig. 1 a 3-PPRR Spatial Mechanism 

So, the kinematic screws for each kinematic chain can be expressed as: 

 ⎥⎦
⎤

⎢⎣
⎡= r

i

r

i
iiiii CBBACBA $$$$$   (18) 

where ( )TiiiA cba
i 111000=$ , ( )TiiiB cba

i 222000=$ , 

( )
( )

( )
( )

( )
( )

1 2 2 1 1 2 2 1 2 1 1 2

1 2 2 1 2 1 1 2 1 2 2 1

2 1 1 2 1 2 2 1 1 2 2 1

$
i i i

r
i

i i i

T

B i i i i B i i i i B i i i i

i i i i i i i i i i i iB

B i i i i B i i i i B i i i i

y a b a b z b c b c x a c a c
b c b c a c a c a b a b

z a c a c x a b a b y b c b c

− − −⎛ ⎞
= − − −⎜ ⎟⎜ ⎟− − − − − −⎝ ⎠

,  

( )
( )

( )
( )

( )
( )

1 2 2 1 1 2 2 1 2 1 1 2

1 2 2 1 2 1 1 2 1 2 2 1

2 1 1 2 1 2 2 1 1 2 2 1

$
i i i

r
i

i i i

T

C i i i i C i i i i C i i i i

i i i i i i i i i i i iC

C i i i i C i i i i C i i i i

y a b a b z b c b c x a c a c
b c b c a c a c a b a b

z a c a c x a b a b y b c b c

− − −⎛ ⎞
= − − −⎜ ⎟⎜ ⎟− − − − − −⎝ ⎠

. 

The terminal constraints of the kinematic chain can be solved with (16): 

 ⎥⎦
⎤

⎢⎣
⎡= 321 r

i

r

i

r

i

r

CBA iii
$$$$   (19) 

where ( )Tiii

r

i cba 111000
1 =$ , ( )Tiii

r

i cba 222000
2 =$ ,  
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T
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According to the mechanism shown in Fig. 1, 
321 BBB eee == . Therefore, the terminal 

constraints exerted to the end-effector by these three kinematic chains are: 

 ⎥⎦
⎤

⎢⎣
⎡= 3332111

321 3211321

rrrrrrrr

CCC $$$$$$$$   (20) 

It is not difficult to find that the rank of 
r

CCC 321
$  expressed by equation (20) is 5, and the free 

motions of the end-effector 321 CCC  can be again solved with equation (16): 

 ( )
1 2 3 12 22 32

$ 0 0 0
TF

C C C
a b c=   (21) 

Equation (21) indicates that the end-effector has one translational DOF along the direction 

vector ( )12 22 32

T

e a b c= . Of course, the number of the DOF of the end-effector is 

1
321

=⎟
⎠
⎞⎜

⎝
⎛ F

CCCRank $ , the direction is ( )12 22 32

T

e a b c=  and the type is translation, which is 

fully represented by the screw expression (21). 

2.2 The number of actuations required to control the end-effector of a spatial parallel 
manipulator 

After obtaining the instantaneous mobility of the end-effector, one can directly exert M  

actuations to the manipulator, and then investigate the CDOF of the end-effector by solving 

the free motion(s) of the end-effector within its workspace. If the newly solved motion(s), 

denoted by A,,,$ 21
niF

=iE , satisfy that ( )TE 000000
niF
≠$ , then, additional actuations 

are needed under this configuration and the actuation scheme. Of course, we can either 

reselect the actuation scheme or add ⎟
⎠
⎞

⎜
⎝
⎛ niF

ERank $  more actuation(s) under this configuration 

until ( )TE 000000
niF
=$ . The total number of actuations under the configuration 

with this actuation scheme is the CDOF. However, what must be pointed out is that the 

actuation(s) should not be exerted to the joint when the newly increased terminal constraint 

can be transformed by the other actuation(s). Otherwise, the over constraint case will occur. 

When there are a lot of possible actuation schemes any one of which can be selected to set 

the actuators, the controllability of the manipulator is also affected by the actuation scheme’s 

selection. For instance, one can analyze the number of actuation(s) required to control the 

end-effector of the parallel manipulator shown in Fig. 1. Because the number of DOF of the 

end-effector is 1, it is reasonable for us to expect that the end-effector can be fully controlled 

only with one actuation. If one actuation is exerted to any joint of the mechanism, 1A  for an 

example, it is not difficult to find that the end-effector still remains one translational DOF in 

the direction ( )Tcbae 111111=  when one repeats the above two steps in section 2.1. 

Therefore, one has to add another actuation to the mechanism. Of course, he can add the 

second actuation to any one of the rest joints. However, it is not difficult to prove that the 
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end-effector will not be controlled unless the second actuation is exerted to the prismatic 

joint ( )321 ,,=iBi  under the condition that the first actuation is exerted to ( )321 ,,=iAi . 

However, just as mentioned above, the new-added actuation should not be accepted if the 
newly-increased terminal constraint can be obtained by translating the former actuation(s). 

For an example, if the second actuation is assigned to the revolute joint 1B , the newly-

increased terminal constraints of the kinematic chain 111 CBA  will be: 

 ( )TCCCCCC

r
aybxcxazbzcycba

n

1111111111111111111 111111
−−−=$  (22) 

Equation (22) is the transformation of the actuation exerted to the prismatic joint 1A . So, the 

newly-added actuation is an over actuation for the actuation scheme whose first actuation is 

assigned to 1A . 

Of course, one can also exert the second actuation to the prismatic joint 2A  after assigning 

the first actuation to the prismatic joint 1A . Again, one can find that the end-effector still has 

the free translation in the direction ( )12 22 32

T

e a b c=  when one repeats the above two 

steps in section 2.1. So, one can continue to add the third actuation to the prismatic joint 3A . 

However, the end-effector will not be controlled until a fourth actuation is applied to one of 

the prismatic joints, 1B , 2B  and 3B . This forms a second actuation scheme. So, under this 

actuation scheme, the number of actuations needed to control the end-effector shown in Fig. 
1 is 4. 
The differences between the second actuation scheme and the first one are that the second 
one not only completely control the end-effector but also completely control every link in 
the manipulator. The selections of different actuation schemes can be well accomplished by 
a computer especially when the possible selections are numerous such as the one shown in 
Fig. 1. Unfortunately, this properties of a mechanism is ignored by the general mobility 
formulas. 

3. The substantial mobility of underactuated, over actuated and equally 
actuated manipulators 

A manipulator is said to be underactuated when the number of actuators in the manipulator 
is smaller than the number of degrees of freedom of the mechanism (Laliberté & Gosselin, 
1998). When applied to mechanical fingers, the concept of underactuation leads to shape 
adaptation, i.e. underactuated fingers will envelope the objects to be grasped and adapt to 
their shape although each of the fingers is controlled by a reduced number of actuators 
(Laliberté & Gosselin, 1998). The concept of underactuation in robotic fingers—with fewer 
actuators than the degrees of freedom—allows the hand to adjust itself to an irregularly 
shaped object without complex control strategy and sensors (Birglen & Gosselin, 2006a). 
These underactuated manipulators arise in a number of important applications such as 
space robots, hyper redundant manipulators, manipulators with structural flexibility, etc 
(Jain & Rodriguez, 1993). The fact that the underactuated robotic fingers allow the hand to 
adjust itself to an irregularly shaped object makes it possible that no complex control 
strategy or numerous sensors are necessary in these manipulators (Birglen & Gosselin, 
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2006b). However, the over actuated mechanical systems often occur in biomechanical 
systems during the contact with ground and is recently introduced in redundantly actuated 
parallel robots. Yi and Kim (Yi & Kim, 2002) designed a singularity free load-distribution 
scheme for a redundantly actuated three-wheeled Omnidirectional mobile robot. The most 
outstanding advantage of the redundantly actuated mobile robot is that the singularities of 
the mechanism can be well avoided. Yiu and Li (Yiu & Li, 2003) investigated the trajectory 
generation for an over actuated parallel manipulator, in which there is one redundant 
actuator. Of course, the redundant actuator(s) and the required actuator(s) must obey a 
certain relationship determined by the mechanism, which will be discussed in section 3.2. 
This section aims at clarifying the substantial relationships between the underactuated, over 
actuated and the equally actuated manipulators. The underactuated manipulator, which is 
also called under-determinate input system, means that the number of actuations provided 
is less than that is necessary; while the over actuated manipulator, which is also called 
redundant actuation or redundant input system, means that the number of actuations 
provided is larger than that is necessary. Equally actuated manipulator, which is also called 
fully actuated or determinate system, means that the actuations provided is equal to that is 
needed. 
From the viewpoint of mechanisms, this classification of manipulators seems to be 
reasonable and has been widely used in engineering. However, it is not a properly scientific 
categorization for mechanisms. Therefore, this section will briefly study the substantial 
relationships between the underactuated, over actuated and equally actuated manipulators 
that are easily misunderstood in engineering applications. 

3.1 The essence of the underactuated manipulator 
To begin with this section, one might first investigate a famous inverted pendulum system 
shown in Fig. 2, which is also a representative, underactuated mechanical system. This 
inverted pendulum system is a planar two degrees of freedom catenation mechanical 
system. The vehicle can only make reciprocal translation along the x -axis and the 
pendulum can only rotate about the pivot attached to the moving vehicle. 
In applications, only one actuation is provided to control the system, which seems to conflict 
with the definition of a fully actuated mechanism. In order to reveal the essence of this 
puzzling phenomenon, one might first turn to analyze the dynamics of this two-degree-of-
freedom system. 

Suppose the mass of the vehicle is denoted by M , the mass of the pendulum is m  and the 

distance from the pivot attached to the vehicle to the mass center of the pendulum is l  and 

the moment of inertia of the pendulum is denoted by J . The dynamics of the system can be 

immediately established via Lagrange method. The kinetic energy of the vehicle is: 

2

2

1 •
= xMTv  

where vT  represents the kinetic energy of the vehicle. 

The kinetic energy of the pendulum is: 

( ) ( )
222

2

1
cos

2

1
sin

2

1 •
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+= θθθ Jl

dt

d
mlx

dt

d
mTp  

where pT  represents the kinetic energy of the pendulum. 
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Fig. 2 a single inverted pendulum system 

The total kinetic energy of the system is: 

( )
2

2
2

2

1
cos

2

1 ••••
⎟
⎠
⎞⎜

⎝
⎛ ++++=+= θθθ mlJxmlxmMTTT pv  

The potential energy of the system is: 

θcosmglV =  

Therefore, the Lagrange function of the system is: 

 ( ) θθθθ cos
2

1
cos

2

1
2

2
2

mglmlJxmlxmML −⎟
⎠
⎞⎜

⎝
⎛ ++++=

••••
  (23) 

where L  indicates the Lagrange function. 
The dynamics equations for the two-degree-of-freedom system shown in Fig. 2 can be 
expressed as: 
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θ

θ
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d

F
x

L

x

L
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d

  (24) 

where τ  represents the torque exerted to the revolute joint that connect the inverse 
pendulum and the vehicle. 

F  

x   

θ   

l   

M

m 
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From the Lagrange function, one immediately obtains: 

( ) θθ cos
••

•
++=

∂

∂
mlxmM

x

L
, 0=
∂
∂
x

L
 

••

• ⎟
⎠
⎞⎜

⎝
⎛ ++=

∂

∂ θθ
θ

2
cos mlJxml

L
, θθ

θ
sin⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

∂
∂ ••

xgml
L

 

Substituting the above equations into equation (24), one has: 

 
( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−⎟
⎠
⎞⎜

⎝
⎛ ++

=+−+
••••

•••••

τθθθ

θθθθ

sincos

cossin

2

2

mglmlJxml

FmlmlxmM
  (25) 

Of course, in the underactuated condition, there is 0=τ . The first formula in equation set 

(25) is the apparent actuation formula while the second one in equation set (25) is a hidden 
relationship of the mechanical system, in which the gravity, the inertia force and moment of 
the pendulum are associated precisely. As a matter of fact, therefore, this relationship 
depicted by the second formula in equation set (25) provided another actuation constraint 
for the two-degrees-of-freedom mechanical system in dynamics but not in statics. Therefore, 
the mechanical system shown in Fig. 2 is fully actuated in dynamics but not in statics. When 

0=
••
x  and 0=τ , equation set (25) can be simplified as: 

 
θ

θθ
sin

cos
2 ml

F

mlJ

mgl
−

+
±=

•
 (26) 

where “ ± ” is determined by the initial condition of the system and the sign should be “+” 

in the case shown in Fig. 2. 

From equations (25) and (26), it is not difficulty to find that the inverted pendulum system 

shown in Fig. 2 can only keep a dynamic equilibrium but not a static equilibrium which is a 

primary requirement for a mechanism. 

A much more familiar example is the differential gear train mechanism used in the driving 

axle of all kinds of automobiles. The basic mechanism structure is shown in Fig. 3. The 

pinion gear transforms the torque from the engine to the driving axle shafts by a differential 

gear train mechanism, in which the ring gear shown in Fig. 3 acts as an actuator and the 

right and the left shafts act as executors. 

Obviously, this mechanism also has two degrees of freedom. However, the actuation is just 

one rotational input from the pinion gear. One might draw a conclusion in haste that this 

mechanism should be an outstanding representative example for the applications of 

underactuated mechanical systems because it is so widely used in the modern vehicles. This 

mechanical system is really quite different from the inverted pendulum system shown in 

Fig. 2 in that the hidden mechanical constraint or “actuation” is more easily ignored. The 

reaction difference between the right and left wheels from the road surface provides such an 
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“actuation”, which is apparent when the reactions to the right and left wheels from the road 

surface are different, and which often occurs when the vehicle makes a right or left turn. 

 

 

Fig. 3 the differential gear train mechanism 

Another facility usually used in civil engineering is the inertial rammer shown in Fig. 4. This 

can also be modelled with a planar mechanism shown in Fig. 5. The apparent actuation is 

provided by the eccentric force of the eccentric rotor under the actuation of the electric 

motor. However, the motion of the rammer’s body is indeterminate if the control of hF  is 

not exerted to the handle. Therefore, the inertia rammer is not an underactuated mechanical 

system but a fully actuated system although the apparent actuation seems to be restricted to 

the eccentric force resulting from the eccentric rotating rotor. 

 

 Fig. 4 the inertia rammer                     Fig. 5 the mechanism of the inertia rammer 

From the above analysis, it is not difficult to find that all the underactuated mechanical 

systems are substantially actuation determinate from the viewpoint of mechanisms. 
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3.2 The essence of the over actuated manipulator 

Over-determinate actuation manipulators also witnesses wide applications in mechanical 
engineering, especially in biomechanical engineering. In order to investigate the essence of 
these manipulators, this section addresses this problem via some mechanism examples. 
As a simple example, one might first investigate the motion of a vehicle with one degree of 
freedom under the actions of two persons shown in Fig. 6. The vehicle can only translate 
forward and backward along the road direction. However, two different actions are exerted 
to both sides of the vehicle. So, it is an over actuated mechanical system. 
 

 

Fig. 6 an over actuated mechanical system 

Out of question, the vehicle shown in Fig. 6 will move along the direction of the resultant 
force of the two persons, in spite of which the two actuations are not independent because 

these two actuations should satisfy that xxx == 21 . Otherwise, the two actuations might not 

do continuous work to the vehicle. These additional constraints are also called compliant 
equations. 
 

 

Fig. 7 a planar four-bar mechanism with two actuations 

Next, one can consider a planar four-bar mechanism under two actuations shown in figure 
7. Obviously, only one actuation is needed to control the mechanism. In engineering 
applications, however, it is also available to exert two actuations to increase the input torque 
or force to drive the mechanism to output a larger power. Therefore, the mechanism in such 
a case is a representative of the over actuated mechanical systems. 
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Following, one can investigate the problems that might be ignored or misunderstood. For 
the sake of conveniences, a coordinate system is established by setting the origin to 

superimpose with revolute joint A  and x -axis along the link AD  and y -axis 

perpendicular upward to link AD . If the planar four-bar mechanism has a determinate 
motion, the equation below should hold: 

 ( ) ( ) 2

4
2

23
2

213 sinsincoscos llllll =−+−+ αβαβ   (27) 

Therefore, differentiating equation (27) with respect to time and rearranging yields: 

 
( )[ ]
( )[ ]βαβ

βαα

α

β
−+
−+

=
•

•

sinsin

sinsin

213

312

lll

lll
  (28) 

where 
•
α  and 

•
β  represent the angular velocities of the crank AB  and the rocker DC  

shown in Fig. 7, individually. 

Therefore, the actuations exerted to the crank AB  and the rocker DC  should keep in a 

precise relationship specified by equation (27). Otherwise, the link BC  might be cracked 

due to the increasing internal forces. Equation (27) or (28) is the compliant equation for the 
over actuated manipulator shown in Fig. 7. 
Consequently, it is not difficult to find that there always are compliant constraint equations 
for the over actuated mechanical systems. And therefore, these mechanical systems are also 
substantially equally actuated. 

3.3 The problems to be noted in engineering applications 

The dexterity of an underactuated manipulator differs from the dexterity of a fully actuated 
one, even if their mechanical structures are identical. Therefore, the underactuated 
mechanical systems are widely used in the cases for fault tolerance and energy saving 
purposes. From the above analysis, one knows that any mechanical system that has a 
determinate motion should be an equally actuated system in essence. Next, one investigates 
an underactuated mechanical finger with return actuation shown in Fig. 8. 
This mechanism is used in the finger of the United States patent initially applied by Gosselin 
et al (Gosselin & Laliberté, 1998) for dexterity hand in 1998. The primary structure of the 
mechanism shown in Fig. 8 (Birglen & Gosselin, 2006a) is a planar four-bar mechanism. 

Links AB  and AD  are simultaneously pivoted with the fixed wrist. Links AB  and BC  are 

connected by a passive spring. Next, the mobility of the mechanism will be investigated in 
several cases. 

Firstly, when the finger does not contact any object, the links AB  and BC   connected by a 

passive spring might be disposed as one link, and therefore, ABCDE  forms one link and 

rotates about the fixed pivot, A , under the actuation of the force F . When AB  contacts a 

target object, the link AB  will degenerate to an unmovable base attached to the wrist, and 

therefore, the spring will be deform under the action of the force F  and finger ABCDE  

forms a real four-bar mechanism. This will be holding until the side BE  also touches the 

boundary of the target object, after which the continuous increasing of the force F  will only 
results the deforming of the target object. 
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Fig. 8 underactuated mechanical finger with return actuation 

The above analysis indicates that the so called underactuated mechanical finger is equally or 
fully actuated at any instant from the viewpoint of mechanisms. Consequently, no matter 
what kind does a mechanism belong to, it should have a determinate motion and equal 
actuation(s) at any instant, which should be particularly noticed in the concept design of 
underactuated mechanical systems. Theoretical and example analysis indicate that the 
underactuated, over actuated and fully actuated mechanical systems are all substantially 
equally actuated mechanisms. 

4. Synthesis of a spatial parallel manipulator with a specified mobility 

Usually, suspension is a general term of the equipments transforming forces and moments 
from the wheel to the vehicle body. Its primary function is to determine the geometry of the 
wheel motion during jounce and rebound, and to withstand forces and moments on the 
suspension in accelerating motion (Raghavan, 1996). The ride and handling characteristics of 
a vehicle are heavily dependent on the kinematic and compliance properties of the 
suspension mechanism (Raghavan, 2005). Compared with dependent suspensions, 
independent suspensions can eliminate undesirable dynamic phenomena such as shimmy 
and caster wobble resulting from wheel coupling in solid-axle suspensions (Raghavan, 
1996). The most common independent suspension mechanisms utilized in automobiles are 
short-long arm suspension (Suh, 1998), the MacPherson strut (Raghavan, 2005), the 
multilink suspensions (Simionescu, 2002), and the short-long arm front suspension with a 
true kingpin (Murakami, 1989), etc. Most automotive independent suspension mechanisms 
are single degree-of-freedom mechanisms with the predominant motion being wheel jounce 
and rebound. In order to allow the wheel to pass the uneven terrain without slipping, 
Chakraborty and Ghosal (Chakraborty & Ghosal, 2004) investigated the kinematics of a 
wheeled mobile robot moving on uneven terrain by modeling the wheels as a torus and 
proposing a lateral passive joint. Applications indicate that the wheel orientation and 
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position parameters such as kingpin, caster, camber, toe change, axes distance, and the 
wheel track are primary consideration in the design of suspension mechanism. These 
parameters, as a matter of fact, are dependent on the wheel jounce and rebound, an 
independent parameter (Raghavan, 2005). 
Therefore, a particular rigid guidance mechanism whose end-effector only has one straight 
line translation should maintain the orientation and position parameters invariable. Yan and 
Kuo (Yan & Kuo, 2006) addressed the topological representations and characteristics of 
variable kinematic joints, which might be utilized in spatial mechanism synthesis. By 
considering workspace, dexterity, stiffness and singularity avoidance, Arsenault and 
Boudreau (Arsenault & Boudreau, 2006) discussed the synthesis problems of planar parallel 
mechanisms. In the history of mechanism synthesis, a significant example is that the 
creation of linkages to produce exact straight line motion was an important engineering as 
well as a mathematical problem of the 19th century (Kempe, 1877). While many engineers 
and mathematicians were searching for a 4- 5- or 6-bar straight line linkage all suffered from 
the fact that they could not attain such a motion in the middle of 19th century, Peaucellier 
investigated an eight bar linkage shown in Fig. 9 and discovered he could generate an exact 
straight line motion from a rotary input. 
 

 

Fig. 9 Structure of Peaucellier-Lipkin Eight-Bar Linkage 

This invention was recognized by several mathematicians as being very important to the 
design of general mathematical calculators (Kempe, 1877). This eight-link linkage was the 
one of the first to produce exact straight line motion and was independently invented by a 
French engineer named Peaucellier and by a Russian mathematician named Lipkin (Kempe, 
1877), which is therefore often called Peaucellier-Lipkin eight-link linkage. 
However, Peaucellier-Lipkin linkage is mostly utilized as a motion generator but not a rigid 
guidance mechanism. Obviously, because of its complexity, such a mechanism can not be 
used as a suspension in spite of the fact that it can really make the wheel move in a straight 
line during jounce and rebound. Therefore, this section first discusses the synthesis 
processes with the analytical model of the instantaneous mobility of a manipulator for the 
rigid guidance mechanism with the specified mobility; and then presents a rectilinear 
motion generating manipulator that can be utilized as a suspension mechanism. 
The general synthesis process might be: 
Step 1: Express the free motions required for the prescribed end-effector in Plücker 
coordinates at a Cartesian coordinate system. 
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The Plücker coordinates of the specified motions should be firstly expressed in a Cartesian 
coordinate system. This chapter supposes that the twists of the free motion(s) of the end-

effector are denoted by 
F

End$ . 

Step 2: Solve the constraint(s) exerted to the end-effector by its kinematic chain(s). 
According to reciprocities between free motion(s) and constraint(s) of an end-effector, the 
constraint(s) applied to the end-effector can be solved with the equation (16): 

 0=⎟
⎠
⎞⎜

⎝
⎛ C

End

T
F

End E$$   (29) 

where 
F

End$  indicates the specified free motion(s) of the end-effector and
C

End$  denotes any 

constraint applied to the end-effector. 

Step 3: Decide the number of kinematic chains, )( 1≥mm , that will be used to connect the 

end-effector with the fixed base. 
If every link in the chain is connected to at least two other links, the chain forms one or more 
closed loops and is called a closed kinematic chain; if not, the chain is referred to as open 
(Shigley & Uicker, 1980). For the later open chain case, the synthesis is simply stated as: any 

kinematic chain is feasible if the twist basis, 
F

Bi
$ , of the chain contains 

F

End$ . However, the 

following steps should be further discussed if the mechanism is a closed one. 
Step 4: Synthesize the terminal constraint(s) of each kinematic chain. 
Suppose 

 ⎥⎦
⎤

⎢⎣
⎡= nC

End

C

End

C

End

C

End $$$$ A21  (30) 

where n  indicates the dimension of the constraint basis of the end-effector. 

Suppose that the terminal constraint(s) of the ith ( mi ,,, A21= ) kinematic chain is denoted 

by 
C

i$ , the terminal constraint(s) of the chain might be synthesized with: 

 i

C

End

C

i K$$ =   (31) 

where [ ]
iiniii KKKK A21= , and ( )Tiniiij kkkK A21=  and inj ,,, A21= . 

For a feasible mechanism that makes the end-effector only have the prescribed free 
motion(s), the necessary and sufficient criterion is that the resultant terminal constraint(s) of 

all these m  kinematic chain(s), 
C

i

m

i
U $

1=

, should be equivalent to 
C

End$ . This is called the 

construction criterion 1 of the feasible kinematic chains. 
The necessity and sufficiency of this criterion can be immediately deduced from equation 
(29) with linear algebra theory. 

Step 5: Solve the twist basis of the ith kinematic chain with the terminal constraints, 
C

i$ , 

synthesized in step 4. 
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With reciprocal screw theory, a basis of the twist(s) of the ith kinematic chain, denoted by 
F

Bi
$ , can be obtained by solving the following equation: 

 0=⎟
⎠
⎞⎜

⎝
⎛ F

B

T
C

i i
E$$   (32) 

where 
C

i$  represents the terminal constraint(s) of the ith kinematic chain synthesized in 

step 4. 
Step 6: Synthesize the twist(s) of the ith kinematic chain with the twist basis of the ith chain, 
F

Bi
$ , obtained in step 5. 

Suppose 

 ⎥
⎦

⎤
⎢
⎣

⎡
= in

iiii

F

B

F

B

F

B

F

B $$$$ A21   (33) 

where in  indicates the dimension of the twist basis of the ith ( mi ,,, A21= ) kinematic chain. 

According to linear algebra, any twist of the ith kinematic chain can be expressed as the 
linear combinations of the twist basis of the chain: 

 C
F

B

F

i i

a
$$ =   (34) 

where ( )Tni
cccC A21= . 

Consequently, the twists of each kinematic chain can be synthesized through equation (34). 
However, in order to keep the twists of the ith chain to be equivalent to the twist basis of the 
chain, the rank of the total twists synthesized through equation (34) should equal the 
dimension of the twist basis of the chain. This is called the construction criterion 2 of the 
feasible kinematic chains. 
The necessary and sufficient of this criterion can be immediately obtained from equation 
(32). 
According to the construction criteria 1 and 2, the required synthesis target of a mechanism 
can be gradually accomplished with the above six steps. Obviously, with these six steps, 
different person might synthesize different kinematic chains and different mechanisms. 
However, all the end-effectors of the mechanisms synthesized with the same criteria will 
surely have the identical specified free motion(s).  
The next section will apply these steps to synthesize a rigid guidance mechanism that can be 
utilized as a suspension of an automobile. 
The synthesis target now is to use the least number of links and pure revolute joints to 
design a mechanism whose end-effector has one pure translation along an exact straight 
line; therefore, the mechanism must be a closed one. The reason is that it will need at least 
two actuations to generate a pure straight line translation with an open chain mechanism. 
And therefore, for the purpose of the suspension required, one at least needs two kinematic 
chains to generate a pure straight line translation with one actuation input. According to 
step 1, the specified free motion of the end-effector should be expressed in a Cartesian 
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coordinate system. Without loss of generality, the precise straight line translation of the end-
effector can be assumed to parallel z -axis. Therefore, the free motion can be described in 

Plücker coordinates as: 

 ( )TF

End 100000=$   (35) 

So, the target now can be depicted as whether one can find two sets of screws whose pitches 

represented by equation (3) are all zeros provided that they were all reciprocal to 
F

End$  of 

equation (35). 

According to step 2, substituting equation (35) into equation (29) yields the constraints 

exerted to the end-effector, 
C

End$ : 

 ⎥⎦
⎤

⎢⎣
⎡= 54321 C

End

C

End

C

End

C

End

C

End

C

End $$$$$$   (36) 

where ( )TC

End 000001
1 =$  represents a force along x -axis, 

( )TC

End 000010
2 =$  represents a force along y -axis, ( )TC

End 001000
3 =$  

represents a torque about x -axis, ( )TC

End 010000
4 =$  represents a torque about y -

axis, and ( )TC

End 100000
5 =$  represents a torque about z -axis. 

From equation (32), it is not difficult to find that the sum of the number of the independent 

twists and the number of the terminal constraints of a chain is six. In order to reduce the 

number of revolute joints, one might have to increase the number of the terminal constraints 

of the chains as many as possible. According to equations (31) and (36), the maximum 

number of the terminal constraints of a chain is five. However, if such a structure scheme is 

used, one may find each kinematic chain only consists of one revolute joint, which is 

unfeasible in reality. Similarly, it is not difficult to find that only when each kinematic chain 

provides three terminal constraints at most, can the structure scheme is feasible. 

With equation (31), one can synthesize the terminal constraints of these two kinematic 

chains, individually. Selecting different ( )1, 2, ,5
i
k i = A  and substituting them into 

equation (31), one can synthesize three independent terminal constraints for the first 

kinematic chain, for example: 

Assuming 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

100

010

000

000

001

1K , one obtains 

 ⎥⎦
⎤

⎢⎣
⎡= 321

1111

CCCC
$$$$   (37) 
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where ( )TC
000001

1

1 =$  indicates a force along x -axis, ( )TC
010000

2

1 =$  

indicates a torque about y -axis, and ( )TC
100000

3

1 =$  indicates a torque about z -

axis. 

Assuming 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

100

00

00

00

00

2

a

b

b

a

K , one can obtain 

 ⎥⎦
⎤

⎢⎣
⎡= 321

2222

CCCC
$$$$   (38) 

where ( )TC
ba 0000

1

1 =$  denotes a force along the direction ( )Tba 0 , 

( )TC
ab 0000

2

1 −=$  denotes a torque about the direction ( )Tab 0− , 

( )TC
100000

3

1 =$  denotes a torque about z -axis and 0≠ab . 

Because { } 5dim 21 =KKspan , , the resultant terminal constraints of these 2 kinematic chains, 
2

1

$
C

i
i
U
=

 must be equivalent to 
C

End$ . So the construction criterion 1 is satisfied. 

According to equation (32), one immediately obtains the twist bases for the two kinematic 
chains with equations (37) and (38): 

 ⎥⎦
⎤

⎢⎣
⎡= 3

1

2

1

1

11

F

B

F

B

F

B

F

B $$$$   (39) 

where ( )TF

B 000001
1

1
=$  represents a rotation about x -axis, 

( )TF

B 010000
2

1
=$  represents a translation along y -axis, ( )TF

B 100000
3

1
=$  

represents a translation along z -axis, and 

 31 2

2 2 2 2
$ $ $ $

FF FF

B B B B
⎡ ⎤= ⎣ ⎦   (40) 

where ( )TF

B 0000sincos
1

2
αα=$  denotes a rotation about the direction 

( )T0sincos αα , ( )TF

B 0cossin000
2

2
αα−=$  denotes a translation along the 

direction ( )T0cossin αα− , ( )TF

B 100000
3

2
=$  denotes a translation along z -axis, 

and 
22

cos

ba

a

+
=α  and 

22
sin

ba

b

+
=α . 

According to step 6, one can synthesize the twists of the two kinematic chains with their 
twist bases (39) and (40), individually. Considering the construction criterion 2, one can find 
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that the least number of twists in each kinematic chain is three. Therefore, the twist of the 
first kinematic chain can be synthesized below with equation (34): 

 ( )TF

B

F

B

F

B

Fa
cccccc 3213211 000

3

1

2

1

1

1
=++= $$$$   (41) 

Substituting equation (41) into equation (3) yields: 

 
1

0
Fa
h =   (42) 

Equation (42) indicates that any twist having the form of equation (41) will naturally satisfy 

the free motion requirements of the end-effector. The Cartesian coordinates of the joint, 
1A

r , 

can be found from equations (7) and (9): 

T

A
c

c

c

c
a

a
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=+

×
=

1

2

1

3

2

0
1 s

s

s

ss
r  

To make the twists of the chain be equivalent to the twist basis, there are at least three twists 
indicated in the form of equation (41). 

Suppose 11 =c  and the three joints’ coordinates are 

( )
( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

=
=
=

T
CCC

T
BBB

T
A

zya

zya

a

r

r

r 00

 

then, the twists of the first kinematic chain will be: 

 ⎥⎦
⎤

⎢⎣
⎡= CBA FFF

ABC 111 $$$$   (43) 

where ( )TFA
0000011 =$  represents a rotation about x -axis, 

( )TBB

F
yz

B −= 00011$  represents a rotation about a line passing through point 

( )BBB zyx  and paralleling x -axis, and ( )TCC

F
yz

C −= 00011$  represents a 

rotation about a line passing through point ( )CCC zyx  and paralleling x -axis. 

According to equation (34), a twist of the second kinematic chain, denoted by 
Fa

2$ , can be 

expressed as: 

 ( )TF

B

F

B

F

B

Fa

B 32211321 cossin0sincos
3

2

2

2

1

22
ηαηαηαηαηηηη −=++= $$$$  (44) 

where iη  denote real numbers and 321 ,,=i . 

Substituting equation (44) into equation (3) yields: 

 02 =
Fa
h   (45) 
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Equation (45) indicates that any twist having the form of equation (44) will naturally satisfy 

the free motion requirements of the end-effector. 

The Cartesian coordinates of the joint, 
2A

r , can be found from equations (7) and (9): 

T

A bb
b

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+=+

×
=

1

2

1

3

1

3

2

0 sincoscossin
2 η

η
αα

η
η

αα
η
η

s

s

s

ss
r  

 

To keep the twists of the chain be equivalent to the twist basis, one can only select three 

independent twists indicated with equation (44) by selecting three sets of ( )321 ηηη . 

If one supposes 11 =η , Fz=2η , ααη cossin3 FF yx −=  and αα sincos FF yxb += , he obtains 

the coordinates of revolute joint F , ( )TFFFF zyx=r ; similarly, if one supposes 11 =η , 

Ez=2η , ααη cossin3 EE yx −=  and αα sincos EE yxb += , he obtains the coordinates of 

revolute joint E , ( )TEEEE zyx=r ; and if one supposes 11 =η , Dz=2η , 

ααη cossin3 DD yx −=  and αα sincos DD yxb += , he can obtain the coordinates of revolute 

joint D , ( )r
T

D D D D
x y z= . Therefore, the three joints’ coordinates can be assumed 

( )
( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

=
=
=

T
DDDD

T
EEEE

T
FFFF

zyx

zyx

zyx

r

r

r

 

 

then, the twists of the second kinematic chain will be: 

 ⎥⎦
⎤

⎢⎣
⎡= DEF FFF

FED 222 $$$$  (46) 

 

where ( )TFF
0000sincos2 αα=$  represents a rotation about a line passing through 

the origin of the coordinate system and in the direction ( )T0sincos αα , 

( )TEEEE

F
yxzz

E αααααα cossincossin0sincos2 −−=$  represents a rotation about a line 

passing through point ( )EEE zyx  and in the direction ( )T0sincos αα , and 

( )TDDDD

F
yxzz

D αααααα cossincossin0sincos2 −−=$  represents a rotation about a line 

passing through point ( )DDD zyx  and in the direction ( )T0sincos αα . 

With equations (43) and (46), one can synthesize a spatial six link mechanism ABCDEF  

shown in Fig. 10. It is not difficult to find that α  is the angle from x -axis to the 'y -axis of 

the revolute joint F  and the revolute joints F , E  and D  have the same axis direction, 

which is denoted by ( )TFED 0sincos αα=n . 
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Fig. 10 a Spatial Six-Link Mechanism with a Straight line Translational End-Effector 

From the above analysis, it is not difficult to find that the two kinematic chains ABC  and 

FED  can surely guarantee the pure straight line translation of the end-effector CD  so long 

as ABC$  and FED$  do not descend in ranks. To analyze the sensitivity of the structure 

stability to the angle α , one should turn to the equations (37) and (38) and investigate the 

resultant terminal constraints, which can be expressed with: 

 ( )

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

10000

01cos00

00sin00

00000

000sin0

000cos1

α
α

α
α

α
C

CD$   (47) 

where 
22

cos

ba

a

+
=α  and 

22
sin

ba

b

+
=α . 

If the terminal constraints denoted by ( )αC

CD$  are well conditioned, the mechanism will 

have fine structure stability. From equations (29) and (47), one can find that the end-effector 

will have one straight line translation along z -axis so long as ( ) 5=⎟
⎠
⎞⎜

⎝
⎛ α
C

CDrank $ , which can 

be immediately transformed to investigate the following sub matrix of ( )αC

CD$ : 

x   

D  

B   

E     

F     

C    

A    

z   

y'   

o  

y   

α End-Effector     

www.intechopen.com



 Parallel Manipulators, Towards New Applications 

 

490 

( )

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

10000

01cos00

00sin00

000sin0

000cos1

α
α

α
α

αA  

Letting ( )( ) 0det =αA , one immediately obtains 0=α  or πα = . Therefore, in order to keep 

the end-effector CD  have one straight line translation along z -axis, there will be 0≠α  and 

πα ≠ . So, the rigid guidance mechanism synthesized in this chapter has a wider adaptation 

of angle between the planes of its two kinematic chains. Now, the sensitivity of the structure 
stability to the angle α  of the mechanism can be judged by the condition number of matrix 

( )αA  (Kelley, 1995). Let 

 ( ) 1

min

max

2

1

22 =
⎟
⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

==
−

AA

AA

AAAcond
T

T

λ

λ
   (48) 

where ( )2Acond  indicates the condition number of matrix A , 
2

A  indicates the 2-norm of 

matrix A , and ⎟
⎠
⎞⎜

⎝
⎛ AA
T

λ  indicates the eigenvalues of matrix AA
T

. 

 

 

 
 

Fig. 11 a Spatial Six-Link Mechanism with the Best Structure Stability 

The solution of equation (48) is: 

                                                                    
2

πα =                                                   (49) 
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Equation (49) indicates that the mechanism will have the best structure stability when 

2

πα = , which is shown in Fig. 11. Compared with Peaucellier-Lipkin eight-link linkage, the 

spatial six-link mechanism synthesized in this chapter has the least links and revolute joints, 

and the whole end-effector CD  can make an exact straight line translation while Peaucellier-

Lipkin eight-link linkage can only allow one specified point to make such a motion. 
As a matter of fact, the mechanism shown in Fig. 11 is a Sarrus linkage. However, the 

mechanism proposed here does not necessarily require that the two kinematic chains must 

within two orthogonal planes which are needed for Sarrus linkage. The so-called Sarrus 

linkage, which is shown in Fig. 12, is a linkage that converts circular motion to linear motion 

by using hinged squares. The square end-effector 21CC  can make an exact straight line 

translation along z -axis which shows better properties both in mechanical structure and in 

kinematics than those of Peaucellier-Lipkin eight-link linkage. However, because of the 

limited workspace and the uneconomic mechanism architecture, the restrictions of Sarrus 

linkage shown in Fig. 12 compared with the one shown in Fig. 11 are obvious. 
 

 

Fig. 12  the Structure of Sarrus Linkage 

 

 
 

Fig. 13 Configuration of the Spatial Seven-Link Mechanism 
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As mentioned in step 6, in order to keep the twists of the chain to be equivalent to the twist 

basis, the rank of the twists of each kinematic chain synthesized through equation (34) 

should equal the dimension of its twist basis. Therefore, if one or more such twists are 

added to each kinematic chain, the free motions of the end-effector will not be changed. As 

an example, the mechanism shown in Fig. 13  is the derivative form of that in Fig. 10 by 

adding one twist 
1G

$  to the kinematic chain FED . Where 

( )$ 0 1 0 0
T

G G G
z x= −  

 

The two kinematic chains of the end-effector CD  are now changed to be ABC  and DFEG1 . 

The twists of them two are: 

1 1 1

2 2 2 2

$ $ $ $

$ $ $ $ $

CA B

GF E D

FF F

ABC

FF F F

FEGD

⎧ = ⎡ ⎤⎪ ⎣ ⎦
⎨

= ⎡ ⎤⎪ ⎣ ⎦⎩
 

 

It is not difficult to find that the terminal constraints of kinematic chains ABC  and DFEG1  

are still expressed by equation (36). And therefore, the free motion of the end-effector CD  is 

still a straight line translation along z -axis shown in Fig. 13. As a result, the free motions of 

the end-effector will not be changed if one or more revolute joints whose Plücker 

coordinates have the form of equation (44) are added in the second kinematic chain. 

Similarly, the free motions of the end-effector will not be changed either if one or more 

revolute joints whose Plücker coordinates have the form of equation (41) are added to the 

first kinematic chain. 
 

 
Left: Front Suspension                                        Right: Rear Suspension 

Fig. 14 a Front Suspension and a Rear Suspension 
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For engineering applications, the end-effector CD  in Fig. 11 or Fig. 13 can be utilized as the 

guiding equipment of a mechanism that requires a precise linear translation, such as the 

independent suspension of automobile. Because the end-effector of the rigid guidance 

mechanism can make an exact straight line translation, the front and rear suspensions made 

up of such a mechanism shown in Fig. 14 allow the orientation and position parameters of 

the wheels such as kingpin, caster, camber, and axes distance and wheel track to be 

constant. These merits not only enhance the ride and handling of the vehicles, but also 

reduce the wearing of the tires during jounce and rebound. 

5. Conclusion 

This chapter focuses on the mobility analysis and synthesis of spatial parallel manipulators. 

It focuses on developing an analytical methodology to investigate the instantaneous DOF of 

the end-effector of a parallel manipulator and the instantaneous controllability of the end-

effector from the viewpoint of the possible actuation schemes for the parallel manipulator. 

Via comparing the differences and essential mobility of a set of underactuated, over 

actuated and equally actuated manipulators, this chapter demonstrates that the 

underactuated, over actuated and fully actuated manipulators are all substantially equally 

actuated mechanisms. This work is significantly important for a designer to contrive his or 

her manipulators with underactuated or over actuated structures. Based on the analytical 

model of the DOF of a spatial parallel manipulator, this chapter also investigates a general 

process to synthesize the manipulators with specified mobility. The outstanding 

characteristics of the synthesis method are that the whole process is also analytical and each 

step can be programmed at a computer. Because of the restrictions of the traditional general 

mobility formulas for spatial mechanisms, a lot of mechanisms that might not be 

synthesized directly with the general mobility formulas could be synthesized with this 

analytical theory of degrees of freedom for spatial mechanisms. 
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