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Abstract

Molecular docking is recognized a part of computer-aided drug design that is 
mostly used in medicinal chemistry. It has proven to be an effective, quick, and 
low-cost technique in both scientific and corporate contexts. It helps in rationalizing 
the ligands activity towards a target to perform structure-based drug design (SBDD). 
Docking assists the revealing of novel compound of therapeutic interest, forecast-
ing ligand-protein interaction at a molecular basis and delineating structure activity 
relationships (SARs). Molecular docking acts as a boon to identify promising agents 
in emergence of diseases which endangering the human health. In this chapter, we 
engrossed on the techniques, types, opportunities, challenges and success stories of 
molecular docking in drug development.

Keywords: molecular docking, drug discovery, ligand-protein interaction, SAR, 
molecular recognition, drug design

1. Introduction

Medicinal chemistry relates to the design and production of compounds that can be 
used in medicine for the prevention, treatment or cure of human and animal diseases. 
Medicinal chemistry includes the study of existing drugs for their biological properties 
and structure activity relationships (SARs) [1, 2]. The discovery and development of 
a new drug with desired therapeutic activity is a long, tedious and expensive process. 
The industry statistics suggest that up to 10,000 compounds are synthesized and 
tested, up to 100 compounds are assessed for safety and only 10 compounds are tested 
clinically in humans for every drug that is approved for medical use. Today it takes 
approximately ten years and requires high cost to bring a new drug in market. In spite 
of the tremendous costs involved the payoff is also high and improvement made in 
preventing and controlling human disease. Even when the new drugs come in the 
market its success is not assured [3, 4]. Many centuries ago, human beings started 
using chemicals to treat the diseases. Hippocrates recommended the use of metallic 
salts such as copper and zinc, iron sulphate and cadmium oxide as drugs. In 1500 A.D., 
Carpensis employed mercuric compounds to treat syphilis. Urea was the first organic 
compounds to be synthesized in laboratory by Wohler in 1852. Between eighteenth 
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and nineteenth century, several organic compounds were synthesized which included 
drugs such as salicylic acid (Kolbe), antipyrine (Knorr), aspirin (Dresser), barbital 
(Emil Fischer and Mering), prontosil, the first sulpha drug (G. Domagk), chlor-
promazine (Charpentier), phenyl magnesium bromide (Victor Grignard), polyethers 
(Charles J. Pedersen) and others [5]. Except, the therapeutic utility of these agents, 
nothing more was known about their mechanism of action and it was only believed 
that they were effective because of their physicochemical parameters like partition 
coefficient, hydrogen bonding, van der Waal’s forces, dipole-dipole interactions 
and anionic bonds, etc. [6, 7]. Earlier to the chemical era, it was the natural prod-
ucts mostly from plant sources, which were used in therapeutics. Later, progress in 
knowledge of chemistry helped to isolate and identify the active ingredients in plants. 
Some of the outstanding achievements of such phytochemical approach include the 
discoveries such as digitalis glycosides from foxglove plant by William Withering in 
1785; the opium alkaloids like morphine and codeine from poppy plant by Serturner 
in 1806; anti-malarial such as quinine, quinidine, cinchonine from cinchona bark by 
Pelletier and Dumas in 1823; belladonna alkaloids like atropine and scopolamine by 
Mein in 1833; rauwolfia alkaloids (reserpine and deserpidine) by Muller et al. in 1952, 
etc. In addition, many important natural products like antibiotics, steroids and peptide 
hormones, vitamins, enzymes, prostaglandins and pheromones were discovered in 
the concurrent period [8, 9]. The synthesis of compounds is followed by screening 
of its pharmacological actions. The observation of interest and repeatable biological 
activity in such screening had always opened the pathways for additional chemical 
research to prepare their analogs so as to obtain significant newer medicinal products. 
A small change in structure frequently leads a profound change in the pharmacological 
effect. This logic has prompted to synthesize derivatives of natural compounds and the 
structural analogues of biologically interesting substances with the “lead” (prototype) 
compound [10]. Many of the currently used antispasmodics [11–14] (dicyclomine, 
cyclopentolate, clidinium bromide, mebeverine, metoclopramide, tropicamide), anti-
biotics [15–20] (penicillins, cloxacillin, amoxacillin, ampicillin, cefadroxil, cefaclor, 
cefixime, cefepime), sulphonamides [21–25] (sulphacetamide, sulphadiazine, sul-
phasalazine, sulphamethoxazole), anthelmintics [26–28] (albendazole, mebedazole, 
pyrantel pamoate, piperazine, diethylcarbamazine citrate, praziquantel, niclosamide), 
antimycobacterials [29–31] (clofazimine, dapsone, ethambutol, isoniazid, benzo-
thiazole, sulphonamide, rifampin), analgesics [32–35] (aspirin, diclofenac sodium, 
ibuprofen, indomethacin, ketoprofen, naproxen, piroxicam), anticonvulsants [36–40] 
(phenytoin, ethosuximide, carbamazepine, sodium valproate, riluzole), antitumours 
[41–46] (amsacrine, azacitidine, chlorambucil, cyclosporine, fluorouracil), diuretics 
[47–51] (acetazolamide, chlorothiazide, furosemide, triamterene, spironolactone), 
antimalarials [52–56] (chloroquine, primaquine, amodiaquine, proguanil, pyri-
methamine), antifungals [57–60] (griseofulvin, nystatin, miconazole, tolnaftate, 
clotrimazole), antihistaminics [61–65] (chlorpheniramine maleate, promethazine, 
astemizole, cetirizine hydro-chloride, fexofenadine) have been obtained by synthetic 
or semi-synthetic approach. In recent years, the molecular studies are more directed to 
discover new targets for better treatment of the disease. In addition, newer screening 
methods of assays, studying the effect of drug on the cell lines, availability of purified 
or recombinant enzymes and improved understanding about the nature and properties 
of receptor systems immensely boosted the drug research. It is well recognized that 
a medicinal chemist had been a key person in the discovery of a new drug. He syn-
thesizes a new drug, isolates and characterizes natural products and in association of 
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pharmacologist establishes a rational SAR. Moreover, SAR had proved to be vital and 
fundamental to drug discovery [66].

1.1 Discovery of drugs of the future

Traditionally, new medications have been discovered by screening a large number 
of synthetic chemical compounds or natural items for desired effects. Although this 
method of developing novel pharmacological agents has proven to be successful in 
the past, it is not optimal for a variety of reasons. The most significant disadvantage 
of the screening approach is the demand for a proper screening procedure. Another 
problem with the screening process is that because of its random nature, it is inher-
ently repetitious and time consuming just to find a chemical with the desired activity 
[67, 68]. Drugs can be created particularly to interact with the target molecule in 
such a way that the disease is disrupted after the disease process is understood at the 
molecular level and the target molecule (s) is defined. Because of the large quantity of 
data that must be gathered in order to produce medications using this method, here is 
where computer-aided drug design will have the most influence [69, 70].

In discussing various techniques of finding new drugs described in Figure 1, it is 
important to remember that drug discovery is both a cumulative and a reiterative pro-
cess. Drugs developed mechanistically will likely to be screened and later modified in 
order to produce the best candidate design [71]. The use of stiff constructs for structure 
and targets is common in the early stages of using molecular modelling to create medi-
cations. In medication design, the flexibility of molecular information, both in single 
molecules and in molecules interacting with each other, is a crucial and difficult subject.

Since, the discovery of morphine in 1806 lot many important drugs came for 
remedy of humans, important results in drug discovery during last three centuries is 
shown in Table 1.

Figure 1. 
Lead optimization cycle.
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Year Drug Biological action Year Drug Biological action

1806 Morphine Hypnotic agent 1990 Ondansetron Antiemetic agent 
(5-HT3 blocker)

1875 Salicylic acid Anti-inflammatory 
agent

1991 Sumatriptan Anti-migraine agent 
(5-HT1 blocker)

1884 Cocaine Stimulant, local 
anaesthetic agent

1993 Risperidon Antipsychotic agent 
(D2/5-HT2 blocker)

1888 Phenacetin Analgesic and 
antipyretic agent

1994 Famciclovir Anti-herpes (DNA 
polymerase inhibitor)

1899 Acetylsalicylic acid Analgesic and 
antipyretic agent

1995 Losartan Antihypertensive 
agent (A II antagonist)

1903 Barbiturates Sedatives 1995 Dorzolamide Glaucoma (carbonic 
anhydrase inhibit.)

1909 Arsphenamine Antisyphilitic agent 1996 Nevirapin HIV reverse 
transcriptase inhibitor

1921 Procaine Local anaesthetic agent 1996 Indinavir, 
Ritonavir,

HIV protease 
inhibitors

1922 Insulin Antidiabetic agent 1997 Saquinavir HIV protease inhibitor

1928 Estrone Female sex hormone 1997 Finasteride Hair loss

1928 Penicillin Antibiotic agent 1998 Sibutramine Adipositas (lipase 
inhibitor)

1935 Sulphachrysoidine Bacteriostatic agent 1998 Orlistat Adipositas (lipase 
inhibitor)

1944 Streptomycin Antibiotic agent 1999 Sildenafil Erectile dysfunction

1945 Chloroquine Antimalarial agent 2000 Celecoxib, 
Rofecoxib

Anti-arthritis agents 
(COX-2 inhibitors)

1952 Chlorpromazine Neuroleptic agent 2001 Amprenavir HIV protease inhibitor

1956 Tolbutamide Oral antidiabetic agent 2002 Cyclosporine A Thrombosis (synthetic 
LMWH)

1960 Chlordiazepoxide Tranquillizer 2002 Imantinib CML (specific 
ABL-TK inhibitor)

1962 Verapamil Calcium channel blocker 2005 Telmesetan Potassium pump 
inhibitor

1963 Propranolol Antihypertensive agent 
(beta-blocker)

2007 Oseltamavir Antiviral

1964 Furosemide Diuretic agent 2008 Saxgliptin Antidiabetic (DPP-4 
inhibitor)

1971 l-dopa Anti-Parkinson agent 2010 Fingolimod Multiple sclerosis

1975 Nifedipine Calcium channel blocker 2012 Avanafil Erective dysfunction

1976 Cimetidine Anti-ulcers agent (H2 
blocker)

2013 Riociguat Hypertension

1981 Captopril Antihypertensive agent 
(ACE inhibitor)

2014 Dapagliflozin Type II diabetes

1981 Ranitidine Anti-ulcers agent (H2 
blocker)

2015 Ivabradin Heart failure

1983 Cyclosporine A Immunosuppressant 2016 Rucaparib Ovarian cancer
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1.2 Computer-aided drug design

Drug research and discovery is a time-consuming and costly procedure. In order 
to get a medicine to market, it takes an average of 10–15 years and $500–800 million 
dollars [72]. This is why, in order to speed up the process, computer-assisted drug design 
(CADD) technologies have become popular in the pharmaceutical business. CADD, as 
shown in Figure 2, assists scientists in focusing on the most promising compounds in 
order to reduce the amount of time and money spent on synthetic and biological testing.

In reality, the availability of experimentally defined 3D (three-dimensional) struc-
tures of target proteins usually determines which CADD techniques are used. If the 
structure of a protein is unknown, ligand-based drug design methods such as quan-
titative structure activity relationship (QSAR) and pharmacophore analysis can be 
used. If the target structures are known, structure-based techniques such as molecu-
lar docking can be utilised to create novel active molecules with improved potency 
using the target 3D structures. The accuracy of prediction is anticipated to improve 
as more structures become accessible. In the absence of the receptor 3D information, 
lead identification and optimization depend on available pharmacologically relevant 
agents and their bioactivities [73, 74]. The computational approaches include QSAR, 
pharmacophore modelling and database mining. QSAR can be taken as an example to 

Year Drug Biological action Year Drug Biological action

1984 Enalapril Antihypertensive agent 
(ACE inhibitor)

2017 Plecanatide Chronic constipation

1985 Mefloquine Antimalarial agent 2018 Annovera Contraceptive

1986 Fluoxetine Antidepressant (5-HT 
transporter)

2019 Ubrogepant Migrain

1987 Artemisinin Antimalarial agent 2021 Pafolacianine Cancer

1988 Omeprazole Anti-ulcer agent (H/K-
ATPase inhibitor)

2022 Pafolacianine Insomnia

Table 1. 
Important results in drug discovery.

Figure 2. 
Computer-aided drug design.
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illustrate the workflow. A mathematical relationship between structural features and 
target properties of a group of compounds is described by QSAR. Over the last few 
decades, many various 2D (two-dimensional) and 3D QSAR techniques have been 
developed [75]. Chemical descriptors and mathematical procedures used to build the 
association between the goal attributes and the descriptors are two key differences 
between these strategies.

Many graph theoretic indices-based 2D QSAR algorithms have been thoroughly 
researched. Although the physical significance of these indices is unknown, they 
do indicate various characteristics of molecular structures. It’s been used to predict 
biological activity in analytical chemistry, toxicology analysis, and other fields. To 
overcome the shortcomings of 2D QSAR techniques, such as their inability to dif-
ferentiate stereoisomers, 3D QSAR approaches have been developed. Molecular shape 
analysis (MSA), distance geometry, and Voronoi procedures are examples of 3D 
methodologies. The most well-known example of 3D QSAR is comparative molecular 
field analysis (CoMFA). By elegantly merging the power of molecular graphics and 
the partial least square (PLS) technique, it has been widely employed in medicinal 
chemistry and toxicity studies. The linear relationship between a target property and 
molecular descriptors is frequently assumed in QSAR approaches. However, the rapid 
development of structural and biological data has put this assumption to the test. To this 
goal, a number of nonlinear QSAR algorithms have been presented, the majority of 
which are based on artificial neural network (ANN) or machine learning techniques 
[76]. Scientists had always concentrated on the development and application of auto-
mated algorithms for QSAR studies, including genetic algorithms (GAs)-partial least 
squares, k-nearest neighbour (k-NN), and support vector machine (SVM). Learning 
approaches have been widely used in cheminformatics and molecular modelling. For 
instance, SVM was found to yield better results compared to multiple linear regres-
sions (MLR) and radial basis functions (RBF).

SBDD (structure-based drug design) has played a significant role in drug develop-
ment and discovery [76]. Understanding receptor–ligand interactions is required 
for this strategy. The target 3D structure can be used to develop new ligands if it is 
known. X-ray crystallography, NMR, and homology modelling are all used to obtain 
structural information. SBDD methods are used to assess complementarities and 
anticipate potential binding modes and affinities between small compounds and their 
macromolecular receptors. SBDD’s success is extensively proven, and computational 
approaches differ greatly in methodology, performance, and speed. Some can provide 
accurate binding modes, while others are better suited to scanning vast datasets 
quickly [77].

2. Molecular docking study

The production, manipulation, or representation of 3D structures of molecules 
and their associated physicochemical properties is referred to as molecular docking. 
It entails a variety of computational strategies for predicting chemical and biological 
properties based on theoretical chemistry methodologies and experimental data. The 
subject is sometimes referred to as “molecular graphics,” “molecular visualisations,” 
“computational chemistry,” or “computational quantum chemistry,” depending on 
the context and rigour. The molecular docking techniques are based on Huckel and 
Mullikan’s conceptions of molecular orbitals and Westheimer et al. classical's mechani-
cal programming.' The foundation of SBDD is 3D molecular structure [78, 79]. 
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Separate data for protein structure and medication data are available, but no correlated 
data is accessible. Docking is the process of fitting two molecules together in compli-
mentary styles in 3D space and designing the molecules rationally, as seen in Figure 3. 
Modeling a drug’s interaction with its receptor is a difficult task. Hydrophobic, disper-
sion or van der Waals, hydrogen bonding, and electrostatic forces all play a role in 
intermolecular interaction. Hydrophobic interactions appear to be the dominant force 
for binding, whereas hydrogen bonding and electrostatic interactions appear to influ-
ence the specificity of the binding [80, 81].

2.1 Theory of docking

The objectives of molecular docking is to forecasting the ligand-receptor complex 
by using computer method. Docking is partitioned into two steps that is sampling 
ligand and scoring function. Sampling algorithms aid to find the energetically most 
favorable conformations of the ligand in the active site of the protein with their bind-
ing mode and further ranked these conformations using a scoring function.

2.1.1 Sampling algorithms

There are a great number of potential binding modes between two molecules due 
to the six degrees of translational and rotational freedom as well as the conformational 
degrees of freedom of both the ligand and protein [82]. Unfortunately, computing all 
of the conceivable conformations would be too expensive. In molecular docking soft-
ware, various sampling techniques have been developed and are frequently utilized. In 
terms of shape features and chemical information, matching algorithms (MAs) based 
on molecular shape map a ligand onto an active site of a protein [83]. Pharmacophores 
represent the protein and the ligand. Each pharmacophore distance within the protein 
and ligand is determined for a match; the distance matrix between the pharmaco-
phore and the associated ligand atoms governs new ligand conformations. During the 
match, chemical parameters such as hydrogen-bond donors and acceptors might be 
considered. Because MAs are fast, they can be used to enrich active chemicals from 
vast libraries. DOCK, FLOG, LibDock and SANDOCK programme provides ligand 
docking MAs [84–86]. The ligand is placed in an active site in a fragmented and 
incremental manner using incremental construction methods (ICMs). By breaking the 
ligands rotatable links, it is separated into many fragments, one of which is chosen to 
dock into the active site first. This anchor is typically the biggest fragment or the piece 

Figure 3. 
Molecular docking process.
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that has a functional purpose or interacts with protein. The remaining pieces can be 
added in stages. The ligand’s flexibility is realized by generating different orientations 
to fit in the active site. DOCK 4.0, FlexX and SLIDE all use the ICM. In supplement to 
ICM, fragment-based approaches such as multiple copy simultaneous search (MCSS) 
and Ligue Universitaire D’ Improvisation (LUDI) are used to create new ligands and 
modify existing ligands to improve their binding to the target protein. At the force field 
of the protein, MCSS creates 1000–5000 copies of a substituent, which are randomly 
put in the binding site of interest and subjected to simultaneous energy minimization 
and/or quenched molecular dynamics. Copies solely interact with proteins; interac-
tions between copies are not included. Based on the interaction energies, a collection 
of energetically favorable binding sites and orientations for the functional group is dis-
covered. Different functional categories are used to map the binding site. The linking 
of those different functional groups can be used to create new molecules that perfectly 
match the binding site [87]. The hydrogen bonds and hydrophobic interactions that 
potentially occur between the ligand and protein are the focus of LUDI. Interaction 
sites, which are discrete positions in space appropriate for establishing hydrogen bonds 
or filling a hydrophobic pocket, are the core notion. Using the rules or scanning the 
database, a set of interaction sites is constructed. After that, the fragment is fitted onto 
the interaction sites and distance criteria are used to evaluate it. The merging of some 
or all of the fitted fragments to a single molecule is the final stage. By randomly chang-
ing a ligand conformation or a population of ligands, stochastic methods seek the 
conformational space. Another well-known class of stochastic approaches is genetic 
algorithm (GA). The GA was inspired by Darwin’s theory of evolution. The ligand’s 
degrees of freedom are represented as binary strings called genes. These genes make 
up the “chromosome,” which indicates the ligand’s position. In GA, there are two types 
of genetic operators: mutation and crossover. Crossover swaps genes between two 
chromosomes, while mutation produces random changes to the genes. A novel ligand 
structure is created when genetic operators impact genes. New structures will be evalu-
ated using a scoring system, and those that survive will be employed in the upcoming 
generation. AutoDock, GOLD, DIVALI, and DARWIN all use GAs [88–91].

2.1.2 Scoring functions

The scoring function’s goal is to distinguish between proper and inappropriate 
poses, or binders and inactive substances, in a very short time. Scoring functions, on 
the other hand, require guessing rather than computing the protein-ligand binding 
affinity and through these functions, numerous assumptions and simplifications are 
used. There are three types of scoring functions: force-field-based, empirical, and 
knowledge-based. Basic force-field-based scoring functions calculate the sum of 
non-bonded (electrostatics and van der Waals) interactions to determine the bind-
ing energy. A Columbic framework is used to determine the electrostatic terms. Due 
to the difficulty of representing the protein’s true environment with point charge 
calculations, a distance-dependent dielectric function is commonly utilized to 
regulate the contribution of charge–charge interactions [92–94]. A Lennard-Jones 
potential function describes the van der Waals terms. The “hardness” of the potential, 
which regulates how close a contact between protein and ligand atoms can be toler-
ated, can be varied by using different parameter sets for the Lennard-Jones potential. 
The processing speed of force-field-based scoring functions is also an issue. To 
address non-bonded interactions, cut-off distance is used. As a result, the accuracy 
of long-range effects involved in binding is reduced. Hydrogen bonds, solvations, 
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and entropy contributions are considered in extensions of force-field-based scoring 
functions. DOCK, GOLD, and AutoDock are examples of software applications that 
provide these features [95]. They differ in their treatment of hydrogen bonding, the 
structure of the energy functions and other aspects. Furthermore, the accuracy of 
estimating binding energies can be improved by using other techniques also including 
linear interaction energy and free-energy perturbation methods (FEP) to refine the 
findings of docking with force-field-based functions. Binding energy is decomposed 
into multiple energy components in empirical scoring functions, including hydrogen 
bonds, ionic interactions, hydrophobic effect, and binding entropy. To arrive at a 
final score, each component is multiplied by a coefficient and then added together. 
Regression analysis fitted to a test set of ligand-protein complexes with known bind-
ing affinities yields coefficients. The energy terms in empirical scoring functions are 
quite simple to evaluate the affinities. Beyond the training set, however, it is unknown 
how well they are suited for ligand-protein complexes. Furthermore, various software 
may treat each term in empirical scoring functions differently, and the amount of 
terms included may differ as well. Examples of empirical scoring functions include 
LUDI, piecewise linear potential (PLP), and ChemScore. The interatomic interaction 
frequencies and/or distances between the ligand and protein are calculated using 
statistical analysis of ligand-protein complex crystal structures. They are founded 
on the notion that the more beneficial an encounter is, the more likely it will occur 
[96, 97]. Pairwise atom-type potentials are created from these frequency distribu-
tions. Within a particular cutoff, the score is derived by prioritizing favorable contacts 
and penalizing repulsive interactions between each atom in the ligand and protein. 
Knowledge-based functions are appealing because of their computational simplicity, 
which can be used to screen enormous compound datasets. They can also represent 
some unusual interactions, such as sulphur-aromatic or cation- that are frequently 
overlooked in empirical approaches. However, some interactions are underrepre-
sented in the limited training sets of crystal structures, and the bias inherent in the 
selection of proteins for successful structure determination, so the obtained param-
eters may not be suitable for widespread use, particularly with implicating metals or 
halogens. knowledge-based functions such as DrugScore, SMoG, and Bleep that differ 
mostly in training set size, energy function shape, atom type definition, distance 
cutoff, and other characteristics [98–100]. Consensus scoring is a new technique for 
assessing docking conformation that combines numerous different scores. When a 
ligand or possible binder poses well in a number of different scoring schemes, it may 
be accepted. In virtual screening, consensus scoring usually enhances enrichment and 
improves the prediction of bound conformations and poses. However, binding ener-
gies predictions may still be wrong. When terms in distinct scoring functions are sub-
stantially connected, the utility of consensus scoring decreases. DOCK, ChemScore, 
PMF, GOLD, and FlexX scoring functions are all combined in CScore [101–103].

2.2 Docking methodologies

2.2.1 Docking of rigid ligand and rigid receptor

The search space is highly constrained when the ligand and receptor are both 
considered as rigid entities, with only three translational and three rotational degrees 
of freedom. In this scenario, ligand flexibility might be addressed by allowing for a 
degree of atom–atom overlap between the protein and the ligand, or by using a pre-
computed set of ligand conformations. Early versions of DOCK, FLOG, and certain 
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protein-protein docking systems like FTDOCK used a mechanism that kept the ligand 
and receptor stiff during the docking process [104, 105].

DOCK is the world’s initial automated process for docking a molecule into a 
receptor site, and it’s still evolving. The ligand and receptor are represented as sets 
of spheres that can be superimposed using a clique detection approach. The ligand-
receptor complexes are scored using geometrical and chemical MAs, and steric fit, 
chemical complementation, and pharmacophore similarity are all taken into account. 
To account for ligand flexibility, incremental construction approach and exhaustive 
search have been included to the enhanced versions.

The extensive search generates a user-defined number of conformers at random, 
which is a multiple of the ligand’s rotatable bonds. In terms of scoring, DOCK 6.4 now 
includes AMBER derived forcefield scoring with implicit solvent. Also, the molecu-
lar mechanics methodologies such as Poisson–Boltzmann or generalized Born and 
surface area continuum solvation (MM/PBSA and MM/GBSA) methods are used to 
determine the chemisorption which estimate the free energy of the binding of small 
ligands to biological macromolecules [106].

FLOG creates ligand conformations based on distance geometry and calculates 
the sets of distances using a search technique. For some flexibility, up to 25 specified 
conformations of the ligand might be employed to dock. Users can identify critical 
sites that must be associated with ligand atoms using FLOG. If a critical interaction 
is already known before docking, this method is useful. Van der Waals, electrostatics, 
hydrogen bonding, and hydrophobic interactions are all taken into account when 
scoring conformations [107].

2.2.2 Docking of flexible ligand and rigid receptor

As both the ligand and the receptor change conformations to form a minimum 
energy perfect-fit complex in systems that follow the induced fit paradigm, it is critical 
to consider the flexibility of both the ligand and receptor. However, when the recep-
tor is also flexible, the cost is very high. As a result, the most typical technique is to 
consider the ligand as flexible while keeping the receptor stiff during docking, which 
is likewise a trade-off between accuracy and computational time. Almost all docking 
applications, such as AutoDock and FlexX, have embraced this concept [108–110]. 
To mimic ligand flexibility while keeping the receptor stiff, AutoDock 3.0 uses Monte 
Carlo simulated annealing, evolutionary, genetic, and Lamarckian genetic algorithm 
(LGA) approaches. The AMBER force field, which includes van der Waals, hydrogen 
bonding, electrostatic interactions, conformational entropy, and desolvation compo-
nents, is used to calculate the scoring function. An empirical scaling factor derived 
from experimental data is used to weight each term. By enabling side-chains to shift, 
AutoDock 4.0 can model receptor flexibility. In this version of AutoDock, you may 
also test the interaction of protein-protein docking [111–114]. The latest version of 
AutoDock Vina for molecular docking and virtual screening was recently published. 
By redocking the 190 receptor-ligand complexes that had been utilised as a training set 
for the AutoDock 4, AutoDock Vina demonstrated a two-order exponential increase 
in speed as well as a considerable improvement in binding mode prediction accuracy 
[115]. FlexX samples ligand conformations using an incremental building approach. 
By matching hydrogen bond pairings and metal and aromatic ring interactions 
between the ligand and protein, the base fragment is docked into the active site. The 
remaining components are then built up incrementally in line with a set of preset rotat-
able torsion angles to complete the structure. Electrostatic interactions, directional 
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hydrogen bonds, rotational entropy, and aromatic and lipophilic interactions are all 
included in the present edition. The relationships between functional groups are also 
considered when group types and geometry are assigned [116].

2.2.3 Docking of flexible ligand and flexible receptor

In flexible docking, the docking of the ligand and receptor is difficult task due to 
protein intrinsic mobility and ligand binding affinity. MD simulations might theoreti-
cally model all degrees of freedom in the ligand-receptor combination. However, 
MD has the previously discussed issue of insufficient sampling. Another stumbling 
block is the method’s high computing cost, which prevents it from being employed in 
large-scale chemical database screening [117]. Several theoretical models, including 
conformer selection and conformational induction, have been presented to illustrate 
the flexible ligand-protein binding process in addition to the historic induced fit. 
Conformer selection refers to a process in which a ligand selects a favourable con-
formation from a variety of protein conformations, while conformational induction 
describes a process in which the ligand induces the protein to adopt a conformation 
that it would not adopt spontaneously in its unbound state. This conformational 
change is sometimes compared to a partial refolding of the protein [118]. The most 
basic is “soft-docking,” which lowers the van der Waals repulsion energy term in 
the scoring function to allow for some atom-to-atom overlap between the receptor 
and the ligand. This strategy could be lacking in versatility. Nonetheless, it has the 
advantage of computational efficiency because the receptor coordinates are fixed, and 
the van der Waals parameters are readily adjusted. To deal with side chain flexibility, 
AutoDock 4 uses a simultaneous sampling technique. Users can select multiple side 
chains of the receptor and sample them simultaneously with a ligand using the 
same methods. During sampling, other parts of the receptor are handled strictly 
using a grid energy map. Grid energy maps were established to hold receptor energy 
information and facilitate ligand-receptor interaction energy calculations [119]. 
Another approach to dealing with protein flexibility is to use an ensemble of protein 
conformations, which corresponds to conformer selection theory. Instead of docking 
into a single rigid protein conformation, a ligand is docked into a set of hard protein 
conformations and the results are merged using the method of choice. This method 
was first used in DOCK, which constructs an ensemble’s average potential energy grid 
and has since been extended in a variety of programmes. Discrete protein conforma-
tions are sampled in a combinatorial approach during the gradual building of a ligand. 
Based on a comparison of the ligand and each alternative, the highest scoring protein 
structure is chosen (Table 2).

Because there are so many degrees of freedom and little knowledge of the effect 
of solvent on the binding relationship, modelling the intermolecular interactions in a 
ligand-protein complex is difficult. The docking of a ligand to a binding site attempts 
to emulate the natural course of interaction between the ligand and its receptor by 
taking the shortest path possible. Although there are straightforward ways for dock-
ing rigid ligands with rigid receptors and flexible ligands with rigid receptors, dock-
ing conformationally flexible ligands and receptors is more difficult. The interaction 
of macromolecular receptors and tiny drug molecules is a crucial stage in regulatory 
systems, drug pharmacology, hazardous side effects, and other processes.

The structure of protein-ligand or protein-protein binding sites is exploited in 
SBDD, however the site is not always known at the outset. Even if the site is identified, 
researchers may want to look for other potential binding sites that could lead to distinct 
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biological effects or a new class of drugs. In lead optimization, it’s also critical to know 
how well known binders or docking hits fulfil or violate the receptor’s complementarity. 
One component of molecular modelling is molecular mechanics, which refers to the use 
of classical/Newtonian mechanics to describe the physical basis of the models. In most 
molecular models, atoms (the nucleus and electrons combined) are described as point 
charges with a mass. Spring-like interactions (representing chemical bonds) and Van 
der Waals forces describe the interactions between nearby atoms. The Lennard-Jones 
potential is often used to characterise Van der Waals forces. Coulomb’s law is used to 
calculate electrostatic interactions. Atoms are given coordinates in Cartesian space or 
internal coordinates, and in dynamical simulations, they can also be given velocities. 
The atomic velocities are proportional to the system’s temperature (a macroscopic 
quantity). A potential function is a mathematical expression that is related to the 
system’s internal energy (U), which is equal to the sum of potential and kinetic energies 
(a thermodynamic quantity). Energy reduction techniques (e.g., steepest descent and 
conjugate gradient) are used to reduce potential energy, whereas molecular dynamics 
methods are used to predict the behaviour of a system with time propagation [120–130].

As previously stated, molecular docking’s role in drug design has been divided 
into two paradigms: one focused on the structure-activity problem, which attempts 
to rationalise in the absence of detailed 3D structural information about the receptor, 
and the other focused on understanding the interaction seen in the receptor-ligand 
complex, which uses the known 3D structure of the therapeutic target to design novel 
drugs. A binding relationship between a small molecule ligand and an enzyme protein 
can cause the enzyme to be activated or inhibited. Ligand binding may cause agonism 
or antagonism if the protein is a receptor. The most common application of docking is 
in the field of medication design. The most medications are tiny organic compounds 
and docking may be applied as follows,

• Hit identification: Docking paired with a scoring algorithm can be used to swiftly screen 
vast databases of prospective medications using hit identification. To find compounds 
that are likely to bind to a protein target of interest in silico (virtual screening).

• Lead optimization: Docking can be used to anticipate whether and where a ligand 
binds to a protein in terms of relative orientation (also referred to as the binding 
mode or pose). This knowledge could be used to create more potent and selective 
analogues.

• Bioremediation: Protein ligand docking can be used to predict which contami-
nants enzymes can digest.

Molecular docking not only contributes to the design of potent compounds but 
also assist various steps in development of new drugs from laboratory to clinic. Few 
examples of contribution of molecular modeling are design of thimidylate synthetase 
inhibitors as anticancer agents, HIV protease inhibitors as antiviral agents, neutrophil 
elastase inhibitors as agents for emphysema, carbonic anhydrase inhibitors as antiglu-
coma agents and in discovery of novel sweeteners-taste receptor models [131–133]

In addition to the existing large number of docking programs, there are also many 
molecular mechanics programs applicable to these problems. Of course, there are 
some programs that are very widely used. Nevertheless it seems that the programs are 
not that easy to use and require some understanding of the underlying computational 
principles. Some of the software system are listed below [134–139].
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Drug design 

targets

Molecules Outcome (brand 

name of drugs and 

category)

Method employed Research 

group

Thrombin 

inhibition

  

Napsagatran

Napsagatran: 

Direct thrombin 

inhibitor

Iterative cycles 

of modelling, 

synthesis and 

crystallography 

to optimise 

hydrophobic sites.

Hoffman-La 

Roache, Ltd.

Thrombin 

inhibition

[d-Phe-Pro-Arg-Pro-(Gly)4-Asn- Gly-

Asp-Phe-Glu-Glu-Ile-Pro- Glu-Glu-

Tyr-Leu] Bivalirudin

Bivalirudin: 

Thrombin inhibitor 

in cardiovascular 

events

Based on 3D model 

of thrombin, 

bifunctional 

peptide inhibitors 

were designed.

Biogen, Inc.

Neuramini-dase 

inhibition

 

Desipramine

Desipramine: 

Treatment of 

irritable bowel 

syndrome, 

depression, 

vulvodynia, 

dysautonomia and 

effective against 

influenza A and B 

viruses

Use of primary 

amine probe from 

GRID for the 

neuraminidase 

binding site.

Monash 

University/G 

laxo 

Wellcome 

Lab.

Purine 

nucleoside 

phosphorrylase 

inhibition

  

BCX-34 (Peldesine)

BCX-34: In 

HIV-infected 

patients and as an 

anticancer agent.

Modelling, 

synthesis and 

crystallography to 

screen synthetic 

candidates.

Biocryst 

pharmaceuti 

cals, Inc.

Thymidylate 

synthase 

inhibition

 

Thymitaq

Thymitaq, 

Nolatrexed: 

Treatment of 

leukaemia

Modelling, 

synthesis and 

crystallography to 

screen synthetic 

candidates. GRID 

program.

Agouron 

Pharmaceuti 

cals, Inc.

Carbonic 

anhydrase 

inhibition

 

Dorzolamide

Dorzolamide: 

Inhibitor 

of carbonic 

anhydrase, 

inhibiting. 

Commonly used to 

treat glaucoma.

Multiple crystal 

structure 

determination 

combined 

with ab initio 

conformational 

analysis.

Merck 

Research Lab.

Human 

rhinovirus-14 

inhibition

  

WIN 54954

WIN 54954: 

Made it past 

phase I clinical 

trial as a new 

broad-spectrum 

antipicornavirus 

drug, as a potential 

treatment of 

common cold.

Multiple crystal 

structure analysis 

and Volume map 

analysis

Sterling 

Winthrop 

Lab.
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AutoDock: To generate a set of potential conformations, AutoDock use Monte Carlo 
simulated annealing and the LGA energy minimization is employed as a local search 
strategy and LGA is used as a global optimizer. The AMBER force field model is used 
in conjunction with free energy scoring functions and a wide set of protein-ligand 
complexes with known protein-ligand constants to analyse possible orientations. 
AutoDock’s web pages are more informative than its competitors’, and its free academic 
licence makes it a nice place to start if you’re new to molecular docking software.

DOCK: DOCK is one of the most well-known and widely used ligand-protein 
docking tools. The initial version employed hard ligands; flexibility was later added by 
building the ligand in the binding pocket incrementally. DOCK, as previously stated, 
is a fragment-based technique that uses complimentary shape and chemistry meth-
odologies to generate various ligand orientations. Three distinct scoring systems can 
be used to score these orientations; however, none of them include explicit hydrogen-
bonding terms, solvation/desolvation words, or hydrophobicity parameters, limiting 
their usefulness. DOCK appears to handle polar binding sites well and is beneficial for 
quick docking, but it isn’t the most precise programme available.

FlexX: FlexX is a fragment-based approach that uses hard proteins and flex-
ible ligands. It creates conformers using the MIMUMBA torsion angle database. 
MIMUMBA is a database of intermolecular interaction patterns that uses interaction 
geometry to precisely define them. The Boehm function is used for scoring (with 
slight adjustments for docking). FlexX is used to emphasise the significance of 
scoring functions. Despite the fact that FlexX and DOCK are both fragment-based 
approaches, they give very distinct outputs. FlexX behaves in an entirely different 
way than DOCK, which works well with polar binding sites. It has a slightly lower hit 
rate than DOCK, but it produces superior Root Mean Square Distance estimates for 
compounds with accurately predicted binding modes. FlexE, a FlexX extension with 
flexible receptors, has been demonstrated to yield better outcomes with substantially 
shorter run times.

Gold: Because of its strong outcomes in independent tests, gold has gained a lot 
of new users in recent years. It has a good overall hit rate, although it struggles a little 
when dealing with hydrophobic binding pockets. To offer docking of a flexible ligand 
and a protein with flexible hydroxyl groups, Gold use a GA. Aside from that, the 
protein is considered stiff. When the binding pocket contains amino acids that create 
hydrogen bonds with the ligand, this makes it a favourable choice. Gold employs 

Drug design 

targets

Molecules Outcome (brand 

name of drugs and 

category)

Method employed Research 

group

Aldose reductase 

inhibition

 

Tolrestat

Tolrestat: It was 

approved for 

marketed in 

several countries as 

antidiabetic agent. 

It was discontinued 

by Wyeth in 1997 

because of the 

risk of severe liver 

toxicity and death.

Extended Huckel 

molecular orbital 

calculations, QSAR 

methodology

Ayerst 

Laboratories 

Research, 

Inc.

Table 2. 
The successful application of computer assisted drug design approach to biological targets.
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a scoring system based on favourable conformations discovered in the Cambridge 
Structural Database as well as empirical evidence on weak chemical interactions. The 
current focus of GOLD development is on enhancing the computational algorithm 
and introducing parallel processing capability.

3. Toxicity prediction and prediction adverse drug reaction

Any chemical’s harmful or adverse effects are called as toxicity. Toxicity, such as 
carcinogenicity or genotoxicity, can be quantitative (e.g., lethal dose to 50% LD50 of 
tested individuals) or qualitative (e.g., toxic or nontoxic). In studies of toxicity the use 
of acute-exposure (single dose) or multiple-exposure (multiple dose) to determine 
detrimental effects of chemicals on humans, animals, plants, or the environment 
(multiple doses). Chemical toxicity is determine through several factors like the 
mode of exposure (oral, cutaneous or inhalation), dose, exposure frequency (single 
or multiple), exposure duration, qualities of chemical, biological properties (age, 
gender) and absorption, distribution, metabolism, excretion (ADME). Generally, 
animal models have been used for long time for toxicity testing. Nowadays advance-
ments in high throughput screening, in vitro toxicity testing are easily achievable. 
Computational toxicology is one of the best toxicity assessment tool that establish, 
analyses, models, simulates, visualize or prediction of chemical toxicity. The simula-
tion tools like algorithms, softwares, data, etc., which are projected in vitro toxicity 
experiments in order to avoid the animal models and cost effective toxicity testing 
which expands toxicity prediction and safety evaluation. Moreover, additional 
computational tools have the distinct benefits of being able to predict toxicity of 
substances even before they are created (Figure 4) [140].

Softwares (generating molecular descriptors):

• Simulation tools (systems biology and molecular dynamics)

• Modelling methods (toxicity prediction models)

• Statistical tools (generating prediction analysis)

Figure 4. 
In silico toxicology tools, steps to generate prediction models, and categories of prediction models [140].
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• Expert system (include pre-built models in web serves or standalone application 
for predicting toxicity)

• Visualization tools

By and large, modeling approaches comprise five major steps while developing 
prediction models.

3.1 Why exploration of toxicity prediction is important?

Optimization of molecule is important during initial drug development for good 
efficacy as well as for pharmacokinetics (PKs) and toxicological properties predic-
tion. Appropriate balance of target potency, selectivity, suitable ADME, and safe 
preclinical properties all together leads to the choice and clinical development of a 
potential new drug moiety. In clinical phase I trial the characteristic compound have 
to undergo years of preclinical testing and acquire only 8% chance of getting to the 
market. The failure of development of new drug cause by its toxicity. Therefore, 
executing toxicity analysis to be done in the early phase of the development process 
which gives significant potential to make value.

The major reasons that impede pharmaceutical companies to conduct earlier 
screening for toxicity like the big amount of compounds required for in vivo studies, 
the deficiency of in vitro assay predictions through high throughput along with inabil-
ity of in vitro and animal models to proper prediction of toxicity in humans. The devel-
opment of computational tools or in silico tools for prediction of toxicity are required 
to avoid above mentioned hurdles. These tools are structure based or using modeling 
techniques on human data, which provides approaches for removing the toxic effect 
in humans before the physical appearance of compound. The importance of computa-
tional tools arises from their applicability early in development stage. During the last 
few years, computational toxicology prediction system tremendously increased their 
forecasting ability but still unable to achieve the significant achievement because of 
deficit of big datasets contain toxicological effects like hepatotoxicity, teratogenicity, 
etc. The development of low throughput data with generations and coordinated efforts 
and set up on big historical background of experience and trained with small addi-
tional efforts may save a big investment and avoid use of animals (Table 3) [141].

• QSAR, expert systems, grouping and read-across techniques are used in struc-
ture activity modelling.

• Chemoinformatics: generating molecular descriptors for toxicity prediction 
using computational tools such as quantum chemical methods and molecular 
dynamics simulations;

• Databases and biological data that contain relationships between chemicals and 
toxicity endpoints, databases for storing data about chemicals, toxicity, and 
chemical properties;

• Data mining and analysis: calculating molecular descriptors, generating a predic-

tion model, and evaluating the model;

Studies in laboratory animals have traditionally been used to determine the 
possible risks of chemicals, with modifications in clinical pathology and histology 
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compared to untreated controls defining an adverse effect. In recent decades, there 
has been a greater degree of agreement in the definition of adversity in experimental 
animals caused by chemically produced effects, as well as in the assessment of human 
relevance. More recently, a paradigm change in toxicity testing has been proposed, 
largely as a result of animal welfare concerns, but also as a result of the development 
of new technologies. In vitro methods, toxicogenomic technologies, and computa-
tional tools are already available to provide mechanistic insight into the toxicological 
mode of action (MOA) of deleterious effects found in laboratory animals. Tox21c 

In Silico methods Description Software/databases

Quantitative structure-
activity relationship models

Use of molecular descriptors to predict 
chemical toxicity

OECD QSAR

TopKat

Derek Nexus

VEGA

METEOR

vLife-QSARpro

Structural alerts and rule-
based models

Chemical structures that indicate or 
associate to toxicity

OECD QSAR

Toxtree

OCES

Derek Nexus

HazardExpert

Meteor

CASE

PASS

cat-SAR

Read-across Predicting unknown toxicity of a 
chemical using similar chemicals with 
known toxicity from the same chemical 
category

OECD QSAR

Toxmatch

ToxTree

AMBIT

AmbitDiscovery

AIM

DSSTox

ChemIDplus

Dose–response and time–
response models

Relation between doses (or time) and 
the incidence of a defined biological 
effect.

CEBS

PubChem

ToxRefDB

PK and pharmacodynamics 
(PD) models

PK models calculate concentration at a 
given time. PD models calculate effect at 
a given concentration

WinNonlin

Kinetica

ADAPT

Table 3. 
In silico tools used for predicting toxicity endpoints of chemicals/drugs.
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(toxicity testing in the twenty first century) is an idea that intends to forecast in vivo 
toxicity using a bottom-up strategy, starting with an understanding of MOA based on 
in vitro data and eventually predicting detrimental effects in humans [142].

Data sets and metrics used for drug side effect prediction:

• Important data sets for drug side effect prediction

• Metrics for drug side effect prediction

• Literature survey

 ○ Docking-based approaches

 ○ Network-based approaches

 ○ Machine learning-based approaches

Figure 5 depicts the categorization as well as the numerous approaches within 
each of the categories. The next sections discuss each of these categories and describe 
some of the most important efforts in the field of drug side effect prediction that have 
been done in each of these categories.

• Docking-based approaches: The preferred orientation of one molecule with 
another to form a stable compound is referred to as docking. Docking is one of 
the most used strategies for designing drugs based on structural data. The ability 
of targets to bind to one another is a critical property that impacts the efficiency 
of biochemical processes. When a medicine attaches to a certain protein, it can 
produce side effects. Drug side effect prediction using docking-based techniques 

Figure 5. 
Classification of drug side effect prediction approaches [143].
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identifies possible drug binding sites. Many adverse effects are thought to be 
caused by an unexpected interaction of a medication molecule with a specific 
protein [144]. Side effects occur when a medication molecule is overregulated or 
communicates with a protein in an unexpected way. A molecular docking-based 
method for finding these target proteins has been presented INVDOCK. Various 
side effect–protein relationships were discovered during the method’s evaluation. 
Various publications supporting the indicated side effect–protein relationships 
were discovered by searching the PubMed data collection.

• Network-based approaches: Drugs, targets, and side effects are viewed as nodes 
in a graph by networks. Edges are used to represent nodes. This graph-based 
visualization is used in network-based approaches to side effect prediction to 
identify pharmacological side effects. Side effects are induced by a variety of 
circumstances, including incorrect dose, binding to non-targets, and insufficient 
metabolization among others. To gain a better understanding of the factors that 
influence a disease, the actions of pharmaceuticals and their accompanying side 
effects, chemical substances, and associated targets are seen as a network.

• Machine learning-based approaches: Machine learning encompasses a variety of 
strategies and algorithms for gaining access to data and using it to learn about 
a certain area. Based on the training data, the various machine learning clas-
sifiers divide the observations into different classes. Machine learning-based 
approaches, on the other hand, use a variety of classifiers to solve the prediction 
problem. To improve prediction efficiency, the employment of SVM, naive 
Bayes, RF, and other methods has been recommended. In addition, as compared 
to other methods, machine learning-based methods take up less computing time. 
As a result, they can be used in post-market drug screening.

• Miscellaneous approaches: Miscellaneous approaches also provide valuable inter-
action prediction strategies. The SCCA-based method is also efficient in terms 
of computing time. Diverse scoring systems are used to quantify the chance of 
medicinal compounds interacting with their protein targets in various techniques 
to predict pharmacological side effects. The scoring approaches are effective in 

terms of computational complexity.

4. Polypharmacology and drug repositioning

Polypharmacology, a new paradigm in drug discovery that focuses on multi-target 
medicines (MTDs), has applications in drug repurposing, the process of finding new 
uses for already-approved pharmaceuticals, off-target toxicology prediction, and 
rational MTD design. In this situation, computational approaches have shown great 
promise in predicting polypharmacology and assisting with pharmaceutical repur-
posing [145].

The goal of polypharmacology is to identify a small ligands with off-target 
activities. Polypharmacology and chemogenomics have a high level of interaction. 
Chemogenomics is the study of the relationship between targets and their ligands 
in terms of structure and activity. The information about a target’s ligands and its 
distance from other targets in biological space can be used to aid in the evaluation of 
new compounds for one or more novel targets. Both approaches can be employed in 
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the early stages of development to screen out compounds and reduce the probability 
of failure due to significant adverse effects. When used on known medications, 
polypharmacological approaches can lead to a compound’s repurposing for a new 
indication. Drug repurposing is suitable for marketed medications or development 
candidates that have failed in clinical trials due to lack of efficacy but have a strong 
safety profile and PK features [146]. Because prior clinical trial studies provide valu-
able data on drug PKs/PDs and toxicity profiles, repurposing previously approved 
pharmaceuticals saves time and money in drug development when compared to 
generating novel drugs from scratch. Sildenafil (Viagra®), a medicine that was 
originally created to treat hypertension but is now marketed to treat penile erection 
dysfunction, is a well-known example of drug repositioning [147].

Most pharmaceutical corporations and specialized service providers are increas-
ing their medication repurposing activities in response to the present productivity 
problem and the need to minimize attrition rates in drug development. Because large 
pharmaceutical corporations, in particular, have a large pool of unsuccessful drug 
candidates, dedicated divisions have been formed and collaboration agreements have 
been negotiated. As a result of the endeavour, there has been a rise in the development 
and application of in silico approaches in this field. Due to computational constraints, 
in silico approaches for polypharmacology analysis and medication repurposing have 
primarily relied on 2D representations of small compounds. First, 3D approaches 
have already been outlined, but further research will allow for the discovery of target-
target correlations that are not conceivable in the 2D world. This, together with recent 
breakthroughs in 3D tool computational throughput, suggests that these methods will 
be able to be used on the same scale as 2D tools in the near future [148]. Because of its 
potential applications and recent successes, polypharmacology has inspired a lot of 
interest in drug discovery [149]. Polypharmacology is exemplified by kinase inhibitors. 
Imatinib, for example, was developed to target the BCR-ABL protein and was licenced 
by the Food and Drug Administration to treat chronic myelogenous leukaemia [150].

High-throughput virtual screening (HTVS) is a simple tool for detecting hits in 
a single-target drug discovery project, but it is insufficient when several targets are 
investigated at the same time. In order to address polypharmacology, a multi-target 
approach must be developed. In order to identify the “magic shotgun” that can target 
numerous receptors at the same time, inverse docking techniques must be used. This 
enables the bioactivity and secondary effects of a potential new drug to be predicted, 
as well as the repositioning of existing treatments. Polypharmacology of known drugs 
and novel compounds is predicted in silico using structure-based and ligand-based 
approaches, as well as the rational design of MTDs.

In silico approaches have advanced as a valuable strategy in early drug develop-
ment, and as additional target structures, structural bioactivity data, and therefore 
enhanced chemoinformatic tools become accessible, their influence will certainly 
grow. Because medications with a certain polypharmacologic profile will allow for 
better treatment of certain diseases, one of the most important computational chal-
lenges ahead is the application and development of algorithms for identifying suitable 
molecules (Figure 6).

Polypharmacology can be predicted using computational methods. Statistical data 
analysis and bioinformatics, ligand-based, and structure-based approaches can be 
used singly or in combination to take use of each approach’s unique characteristics 
and strengths. The figure’s lower half depicts three separate proteins (A–C) interact-
ing with the same ligand, emphasising that the ligand’s final pharmacological effect is 
the product of synergistic effects emerging from interactions with all targets.
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Structure-based approaches, ligand-based methods, and systems biology methods 
are the three categories of methodologies that can be used to anticipate unknown 
targets for small compounds.

• Structure-based methods: Inverse docking, binding site similarities, inverse 
pharmacophore modelling, molecular dynamics simulations, and fragment-
based multi-target drug design are examples of structure-based techniques. 
Currently, the Protein Data Bank (PDB) has substantially includes 3D protein 
structures that refined by protein crystallography, nuclear magnetic reso-
nance spectroscopy, and electron microscopy. Due to the availability of such 
structural data, inverse docking algorithms have been developed, with the 
primary goal of docking a small molecule into binding sites of many targets 
for hit identification. INVDOCK, TarFisDock, and idTarget are some of the 
modified scoring functions that have been developed specifically for target 
ranking in recent years. Binding site similarity-based search, in addition to 
inverse docking, is commonly employed for target prediction. It’s based on the 
idea that structurally comparable proteins have similar chemical functions, 
thus they’ll probably bind to structurally similar substances. Combining the 
GRID Molecular Interaction Fields with pharmacophoric characteristics, the 
Fingerprints for Ligands and Proteins (FLAP) algorithm was recently devel-
oped. Drug repurposing and hit identification can both benefit from binding 
site similarity technologies. It can also be employed in the lead optimization 
process by comparing binding locations. Advanced pharmacophore approaches 
have recently been developed to connect structure-based pharmacophore mod-
els of targets with small molecule pharmacophoric features to small molecule 
pharmacophoric features. Fragments are smaller, simpler chemical entities 
than drug/lead-like compounds, and they have a higher promiscuous nature. 
Fragment-based techniques boost the likelihood of obtaining hits and aid in 
the discovery of novel compounds because a small number of pieces can cover 
a large chemical search area. As a result, they can be utilised for hit detection, 
lead generation, and lead optimization.

Figure 6. 
Polypharmacology can be predicted using computational methods [148].
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• Ligand-based methods: The characteristics and activities of compounds are used 
to anticipate unknown targets utilising ligand-based techniques. This is based on 
the notion that structurally similar molecules attach to similar targets. The simi-
larity ensemble approach (SEA) is a similarity-based method for determining 
the likelihood of a molecule binding to a target based on topological similarities 
between the ligands. Recently smooth surface triangulator (SMART) algorithm, 
pair-wise kernel method (PKM), Gaussian interaction profile, Laplacian regu-
larized least squares (LapRLS), kernel regression, kernelized Bayesian matrix 
factorization with twin kernels (KBMF2K), and bipartite local method have been 
developed.

• Systems biology methods: With the development of high-throughput techniques 
yielding massive amounts of data in domains like genomics and proteomics, 
understanding diseases, especially complex ones, has never been more detailed. 
The term “Network Pharmacology” was coined to propose that combining 
chemogenomics data with network biology might aid in the development of new 
ways to target disease-causing networks rather than specific genes or targets. The 
database, which contains over millions of drug-induced gene expression pat-
terns, can be utilised to find new polypharmacology medicines.

The concept that comparable drugs bind to similar targets still underpins the 
majority of polypharmacology research. The development of precise and robust scoring 
algorithms that can rank targets rather than tiny molecules is a big challenge. Novel 
approaches to rational design of multi-targeting small molecules are now being investi-
gated. Apart from traditional structure- and ligand-based approaches, there has been an 
upsurge in interest in system biology and bioinformatics-based methodologies, as well 
as community-wide activities. These approaches have been demonstrated to not only 
anticipate new small molecule targets, but also to aid in the understanding of disease 
dynamics and the molecular interaction pathways that lie beneath. Polypharmacology, 
which can predict both on-target and off-target therapeutic effects, could help in illness 
targeting. As a result, the rational polypharmacological drug design (PDD) holds a lot 
of promise and possibility for drug discovery in the future. However, in order to reach 
such ambitious aims and, eventually, translate information into successful patient 
therapy, we must overcome a number of flaws and roadblocks [151].

The field of computational polypharmacology has progressed to the point where 
concrete hypotheses may be formulated using prediction results to guide wet-lab 
research. The field of computational polypharmacology has advanced to the point 
where concrete hypotheses may be established and used to guide wet lab research 
utilizing prediction results. Furthermore, the majority of contemporary approaches 
are implemented as web servers or standalone applications. As community efforts 
become more essential, it will be necessary to create portable programming librar-
ies that community developers can use to alter existing toolkits or create new ones. 
More cell-free, cell-based, and animal models are needed in experimental assays to 
examine the impact of drugs on various targets or functions at the same time.

5. Opportunities and challenges

There are six components to the CADD challenges. Chemical and biological space 
are the two major categories. The term “chemical space” refers to the large number 
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of possibilities for discovering hit substances. Third is methodologies challenges, in 
which for designing and optimizing drug candidate’s computational methods could 
be used. Last one is the proper training of newcomers like investigators of CADD for 
multidisciplinary work (Figure 7) [152–155].

The topic of drug repurposing is gaining impetus toward novel therapeutic mol-
ecule development, aided by an ever-increasing number of innovative computational 
techniques and enormous sequencing databases. Antibiotic resistance among key 
clinical pathogens is a grim prospect, as per infection-related death rate continues to 
rise despite a slowing rate of new antibiotic discovery.

6. Applications and limitations

CADD is useful in the treatment of neurodegenerative disorders particularly tar-
geting Amyloid-β in case of Alzheimer’s disease. For nearly two decades, in pharma-
ceutical research docking calculations have been used. Virtual screening using protein 
templates differs from virtual screening approaches based on molecular similarity 
and ligands beneficial for de novo identification of active complex. Three important 
factors in CADD pays close attention include: (1) As per target structure, screening a 
large number of molecules, which can then be assessed using both experimental and 
computational techniques; (2) as per affinity, criteria on toxicity and PK study, guid-
ing the optimization of lead compounds and (3) based on the structure, supporting 
in the design of novel compounds to recover functions of drug. For modelling of drug 
the CADD approach is extremely helpful. Computed chemistry and bioinformatics, 
as well as combinatorial chemistry, are used to handle the many issues connected 

Figure 7. 
In silico methods showing outstanding challenges during drug discovery and design.
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with the drug discovery pipeline in less time and expense. As per Figure 8, general 
advantages of CADD are found to be cost effective, with higher efficiency, speed and 
accuracy in results [156–159].

FDA approved drugs like human immunodeficiency virus (HIV)-1-inhibiting 
drugs identified by SBDD available on the market. Other example is thymidylate 
synthase inhibitor, raltitrexed, by protein modelling, inhibitor of HIV protease, 
amprenavir is discovered. Computer assisted techniques are hypothetical and results 
must be confirmed in real-world systems, and pharmacological activities discovered 
through CADD in lead compounds have failed. Most of the methods of CADD 
methods like QSAR, molecular dynamics, molecular docking, etc. have their specific 

Figure 8. 
Advantages of CADD.

Figure 9. 
Limitations of CADD.
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restrictions. Limitations are found to be multi-domain protein issues that means 
protein flexibility which is the most problematic challenge, assessment of multi-drug 
effects, in some cases lack of quality datasets observed (Figure 9).

One failure example of SBDD is RPX00023 which was reported as an antidepres-
sant activity as an agonist of the 5-HT1A receptor. However, it was found to be an 
inhibitors of 5-HT1A receptor [160–164].
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