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Chapter

Current and Potential Applications 
of Artificial Intelligence in 
Metabolic Bariatric Surgery
Athanasios G. Pantelis

Abstract

Artificial intelligence (AI) is an umbrella term, which refers to different methods 
that simulate the process of human learning. As is the case with medicine in general, 
the field of bariatric metabolic surgery has lately been overwhelmed by evidence 
relevant to the applications of AI in numerous aspects of its clinical practice, includ-
ing prediction of complications, effectiveness for weight loss and remission of 
associated medical problems, improvement of quality of life, intraoperative features, 
and cost-effectiveness. Current studies are highly heterogeneous regarding their 
datasets, as well as their metrics and benchmarking, which has a direct impact on the 
quality of research. For the non-familiar clinician, AI should be deemed as a novel 
statistical tool, which, in contradistinction to traditional statistics, draws their source 
data from real-world databases and registries rather than idealized cohorts of patients 
and is capable of managing vast amounts of data. This way, AI is supposed to support 
decision-making rather than substitute critical thinking or surgical skill development. 
As with any novelty, the clinical usefulness of AI remains to be proven and validated 
against established methods.

Keywords: artificial intelligence, machine learning, deep learning, data mining, 
decision trees, bariatric surgery, metabolic surgery, obesity, diabetes mellitus,  
obesity-related health problems, surgical safety, effectiveness, quality of life

1. Introduction

Artificial intelligence (AI) is an umbrella term that incorporates concepts such 
as supervised and unsupervised machine learning (ML), deep learning (DL), and 
reinforcement learning [1]. In essence, AI is the simulation of human learning by a 
machine (computer). Learning, in turn, is the procedure of acquiring information 
(input), which, after retention and processing, may lead to adjustment of behavior 
under given temporospatial circumstances or optimization of the chances of achiev-
ing specific goals (output). Each type of AI differs from the others in the extent of 
intervention by the operator, i.e., the degree of autonomy of the machine.

AI subtypes have certain integral components: an algorithm, specific datasets 
(training, validation, test), input (predictors), and output (outcomes), as well as 
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performance indices of the algorithm for each dataset (sensitivity, specificity, F1 
score, area under the receiver operator curve—AUROC, area under the precision-
recall curve—AUPRC, and so on). Depending on the degree of autonomy of the AI 
algorithm, the operator (human researcher, data scientist) has variable knowledge 
of and interference to the aforementioned components. For instance, in supervised 
ML, the training data are labeled, and the possible outcomes are known a priori. This 
type of AI is used in cases of classification (in the case of categorical outcomes—i.e., 
disease or no disease, TNM staging for neoplasia, Clavien-Dindo staging for postop-
erative complications, etc.) or regression (in the case of numerical outcomes—i.e. 
weight, height, body mass index, etc.). Examples of supervised ML algorithms are 
decision trees (DT), random forest (RF), k-nearest neighbors (knn), linear and 
logistic regression (LR), support vector machines (SVMs), etc. On the other hand, 
in unsupervised ML, outcomes are unknown; therefore, they are subject to discovery 
with the aid of the AI algorithm itself. Unsupervised ML problems are divided into 
clustering (inherent grouping of data) and association (rules that define the relation-
ship between predictors and outcomes). Besides, reinforcement learning is based on 
continuous training of the algorithm with the method of “trial-and-error” and is 
implemented in the case of highly chaotic systems such as cost analysis, with Markov 
models being typical examples [2].

Deep learning (DL) is the most autonomous subtype of AI. DL utilizes large 
amounts of real-world data (big data) and is structured on the basis of neural net-
works of three or more layers (input layer, output layer, one or more hidden interme-
diate layers). The layered architecture of DL algorithms resembles that of neurons in 
the central nervous system, hence the characterization “neural (or neuronal) net-
works.” Characteristic examples are artificial neural networks (ANN), convolutional 
neural networks (CNNs), long-short term memory networks (LSTMNs), recurrent 
neural networks (RNNs), multilayer perceptrons (MLPs), etc. [2]. Figure 1 is a 

Figure 1. 
Schematic representation of the hierarchy of artificial intelligence algorithms. The more one moves to the top of 
the pyramid, the more autonomous the algorithm becomes and the less intervention is exerted by the researcher. 
AI — artificial intelligence, ML — machine learning, DL — deep learning.
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schematic representation of the different subtypes of AI, with the degree of autonomy 
of each one.

Recently there has been documented an exponential increase of literature inves-
tigating the application of various AI algorithms in healthcare [3]. It is within this 
context that our team recently attempted to trace the applications of artificial intel-
ligence and machine learning in bariatric metabolic surgery (BMS) [4]. Based upon 
this study, this chapter is organized in seven sections, in concordance with the respec-
tive disciplines of BMS for which there have been relevant publications concerning 
applications of AI. The last two sections are devoted to the future perspectives of AI 
in BMS, as well as the methodological limitations and ethical barriers that should be 
considered when applying AI in BMS, in analogy to every biomedical scientific field.

2. AI applications in basic science relevant to bariatric metabolic surgery

Basic science and research are the cornerstones of evolution in medicine. Popular 
basic science applications on which AI may be applied include but are not limited 
to genome-wide sequencing (WGS), whole slide imaging (WSI), and all the omics 
(genomics, transcriptomics, proteomics, metabolomics, but also radiomics and 
multi-omics). Regarding the discipline of BMS in particular, metabolomics is a field 
of increased interest and intensive research, for the purpose of characterizing the 
metabolic milieu of patients living with obesity as well as for studying the long-term 
postoperative interactions between BMS and the metabolism [5–7].

In one of the first attempts to implement AI methods in BMS, Cortón et al. studied 
the gene expression profile in omental adipose tissue procured by women who were 
submitted to bariatric surgery and simultaneously suffered from polycystic ovarian 
syndrome (PCOS) [8]. More specifically, the researchers implemented data mining, a 
method that combines traditional statistics, machine learning and database systems, 
and retrieved abnormal expression of genes that participate in insulin and Wnt 
signaling, oxidative stress, inflammation, immune function, and lipid metabolism. 
Additionally, they conducted hierarchical clustering, a type of unsupervised ML, in 
order to retrieve co-expressed genes in female patients with PCOS and consequently 
detect specific patterns of gene expression.

More recently, Chaim et al. calculated beta cell function through assessment of NO 
production by means of electro-sensor complex (ESC) data and statistical network, 
a set of DL algorithms [9]. Subjects consisted of patients living with obesity who 
were candidates for MBS. In another study, Macartney-Coxson et al. used genome-
wide DNA methylation data and compared traditional statistics with combinatorial 
algorithms in the identification of methylation loci [10]. Study samples included 
subcutaneous and omental adipose tissue that had been harvested from obese 
individuals, before and after BMS. Besides, Candi et al. performed a metabolomics 
analysis of visceral adipose tissue harvested from individuals who had undergone bar-
iatric surgery and identified three kinds of metabolotypes: healthy controls (normal 
weight), healthy obese, and pathological obese [11]. Consequently, they implemented 
RF analysis, an unbiased supervised classification technique, in order to differentiate 
among the three groups, but also retrieve the most important predictive metabolites 
for each category, with lipids playing a cardinal role with this respect. In another 
metabolomics-oriented study, Narath et al. used an untargeted approach that yielded 
177 features [12]. Consequently, they processed the data with RF in order to detect 
short- and long-term metabolic changes following Roux-en-Y gastric bypass (RYGB). 
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The most important finding was that short-term changes in metabolites (1–3 weeks 
postoperatively) do not necessarily match long-term effects (up to 1 year).

Future research should focus on reconciling metabolic surgery, metabolomics, 
and deep learning. So far, application of DL in metabolomics has manifested several 
methodological limitations, including high computational cost, lack of external vali-
dation, non-calculation of isotopic peaks during sample analysis with spectroscopy, 
overfitting secondary to low sample size, reduced predictive ability upon application 
to asymmetrical datasets, poor applicability of outcomes from experimental animal 
models to human metabolomics, etc. [13]. On the other hand, the exponentially 
increasing numbers of patients who undergo BMS offer an excellent substrate for 
obtaining biological fluids (whole blood, plasma, serum, feces, urine) and tissues 
(gastric, adipose, liver) for further metabolomic analysis. The implementation of 
ML, and most importantly DL, could potentially assist in unraveling the roles of 
the myriads of metabolites through untargeted metabolomic analyses, distinguish 
between causes and effects, and gain clinical usefulness both for prediction and 
diagnosis. With this regard, one may distinguish the emerging role of data analysists 
as key members of the multidisciplinary BMS team.

3.  AI and surgical safety: predicting and preventing complications 
following bariatric metabolic surgery

Bariatric operations have a favorable safety profile, with an overall morbidity 
less than 5% and mortality less than 0.5%, as it has been documented over time 
by different investigators, based on data from large databases and comprehensive 
meta-analyses [14–20]. Most importantly, this holds true even for special popula-
tions, such as patients suffering from diabetes [21] or at the extremes of age [22, 
23]. Even during the COVID-19 pandemic, not only has bariatric surgery proven 
its endurable safety, but it may also have a protective effect for one of the most 
vulnerable population groups against the adverse sequelae of SARS-CoV-2 [24, 25], 
as shown in a series of publications by the GENEVA collaborative group regarding 
7704 patients from 42 countries [26–30]. Due to the fact that complications and 
deaths following BMS are rare events, their evaluation from a statistical perspec-
tive is challenging. Thanks to artificial intelligence algorithms, it is now possible to 
incorporate and analyze data from big databases and cohorts of patients, with the 
advantage of yielding reliable results from imbalanced datasets, as well as having 
access to real-word conditions rather than idealized simulations, as is the case with 
randomized controlled trials. Besides, the concept of implementing AI algorithms 
in order to quantify and predict postoperative outcomes, with the intention to 
enhance clinical practice and improve decision-making, is gaining popularity 
within surgical literature [31–33].

Cao et al. pioneered research in prediction of serious complications after BMS 
by implementing machine learning [34], as well as deep learning methods [35], 
in a Scandinavian bariatric database (SOReg) comprising more than 40,000 bar-
iatric patients. In their extensive analyses, they compared multiple machine and 
deep learning algorithms (as well as combinations of algorithms, aka ensembles), 
respectively, and they found that the latter had better predictive accuracy, along 
with the fact that ensemble algorithms had better performance than baseline ones. 
Additionally, in order to overcome the obstacle of imbalanced data secondary to the 
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low occurrence of complications, they applied the synthetic minority oversampling 
technique (SMOTE). SMOTE is a method of artificially augmenting underrepre-
sented groups (such as patients with postoperative complications) and thus yield 
data eligible for classification. In a similar manner, Razzaghi et al. developed predic-
tive models for bariatric surgery risks with imbalanced data by applying SMOTE 
on different classification algorithms, such as RF, bagging, and AdaBoost [36]. As 
a source of data, they utilized the Premier Healthcare Database, which gathers data 
from more than 700 hospitals across the United States. Again, their work showcased 
that ensemble classification was superior to isolated ML algorithms. Charles-Nelson 
followed a different strategy: in order to document the 30-day readmission rate, 
which is a reflection of short- and intermediate-term complications, they applied 
Formal Concept Analysis (FCA), a data mining technique, in a cohort of 196,323 
bariatric patients according to the main principal diagnoses code at readmission [37]. 
Their most important finding was heterogeneity of severity of complications across 
different bariatric procedures.

There are two studies regarding prediction of complications after specific opera-
tions. Wise et al. applied a DL algorithm (ANN) on a cohort of 101,721 patients from 
the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program 
(MBSAQIP) who had undergone laparoscopic sleeve gastrectomy (LSG), in order to 
predict 30-day postoperative morbidity [38]. As compared with logistic regression, 
the ANN algorithm was more accurate in predicting postoperative complications, 
based upon easily obtainable demographic and clinical factors. Similarly, Sheikhtaheri 
et al. applied Clinical Decision Support System (CDSS) to predict morbidity after 
one-anastomosis gastric bypass (OAGB) across five hospitals over a 4-year period 
[39]. The predictive performance of the model at the 10-day, 1-month, and 3-months 
intervals was favorable.

Regarding specific complications, Dang et al. developed the BariClot tool, a 
forward regression predictive model, in order to stratify individuals undergoing BMS 
according to their 30-day risk for venous thromboembolic (VTE) events [40]. Their 
data were retrieved from the MBSAQIP and included patients who had undergone 
either RYGB or LSG. As compared with established predictive tools for VTE, such 
as the Michigan Bariatric Surgery Collaborative or the Caprini score, BariClot dem-
onstrated enhanced predictive accuracy, as documented by the relevant AUROCs 
(0.5817 vs. 0.5533 vs. 0.6023, respectively). Moreover, Nudel et al. developed and 
validated three different machine/deep learning models (ANN, X-Gradient Boosting, 
logistic regression) in order to predict not only VTE, but also leaks after BMS, again 
based on a MBSAQIP cohort of 436,807 patients [41]. AI models outperformed tradi-
tional LR in detecting both leak and VTE in a statistically significant manner.

Finally, AI has also been implemented for predicting long-term morbidity after 
BMS, including the development of gallbladder disease and formation of gallstones 
[42], nutritional deficiencies [43], nonalcoholic fatty liver disease (NAFLD) [44], 
and fractures [45]. The implemented AI algorithms were ANN [42], SVM [44], and 
Bayesian networks [43, 45].

4. AI as a tool for predicting effectiveness of bariatric surgery

Undoubtedly, the main and utmost priority of any bariatric operation is weight 
loss. It has been long established that any bariatric intervention is more effective and 



Bariatric Surgery - Past and Present

6

durable in maintaining weight loss than optimal conservative treatment and lifestyle 
modifications [46–53]. Data that support this statement stem from both observational 
and randomized controlled studies. Although the latter are prospective in nature and 
thus can establish causality, they may be accompanied by publication bias. On the 
contrary, observational studies contain raw data as they are collected according to 
healthcare providers’ registrations and patient testimonials. As such, they can serve 
as an invaluable source of prediction, provided they undergo appropriate analysis 
with AI tools. Nevertheless, despite the accumulated experience and evidence with 
bariatric surgery and its effectiveness, to date there is no accurate tool for weight loss 
prediction, and most clinical models tend to overestimate the bariatric outcome of the 
most commonly performed procedures [54].

In one of the first relevant attempts, Lee et al. developed a predictive model back 
in 2007 with the use of a data mining technology through LR and ANN [55]. They 
found that ANN yields a better predictive accuracy for weight reduction at 2 years 
as compared with traditional methods, with the best predictors of successful weight 
loss being OAGB (vs. LAGB), high preoperative triglyceride level, and low glycated 
hemoglobin (HbA1c) level. Similarly, Giraud-Carrier et al. developed a predictive 
model with the use of a data-mining-based software available online [56]. The data 
mining process included problem formulation (prediction of the type of bariatric 
procedure and quality of its outcome); domain and data understanding (71,849 
patients with >350,000 visits across 125 centers); data preparation and preprocess-
ing (aka determination of input or predictors, i.e., physician ID, gender, age, ethnic-
ity, employment status, smoking behavior, state of origin, BMI prior to surgery, 
surgery performed, and BMI at 12 months postoperatively); model building (multi-
nomial logistic regression and decision tree C4.5); prediction of surgical procedure; 
prediction of success (classification into poor, fair, good, very good, and excellent 
if BMI reduction at 12 months was ≤5, 5–10, 10–15, 15–20, and >20, respectively). 
Although these studies were performed at an era when experience on bariatric sur-
gery was more limited, the armamentarium of procedures was significantly differ-
ent, benchmarking was inadequate, and definition of weight loss was not according 
to current standards (%TWL or %EBMIL or %EBMIL), the study designs showed a 
dynamic potential. More recent attempts have implemented different methodology 
(i.e., a rule-based semantic approach, [57]) or different input data (i.e., preopera-
tive patient liking for sweet beverages, [58]) in order to predict bariatric surgery 
outcomes in general.

Other studies have focused on specific bariatric operations. For instance, Piaggi et 
al. found that ANN models could successfully predict weight loss in women treated 
with laparoscopic adjustable gastric banding (LAGB), although this method tends to 
be abandoned nowadays [59]. On the other hand, Celik et al. in a very recent study 
applied neural network Bayesian regularization, a DL algorithm, in patients who 
had undergone LSG and predicted excess and total weight loss (%EWL and %TWL, 
respectively) based on gastric remnant volumes (antrum and body were deemed as 
different compartments) [60]. Regarding RYGB, Wise ES et al. implemented an ANN 
model to predict excess weight loss by means of % reduction in BMI loss (%EBMIL) 
at 3 months and 1 year postoperatively [61]. On a more advanced level, Choudhury 
et al. implemented a Markov model so as to predict which modality of weight loss 
was more effective for patients with end-stage renal disease awaiting renal transplant 
[62]. Not surprisingly, RYGB was found to be more effective than aggressive diet and 
exercise with this regard.
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5.  AI as a tool for diagnosing and predicting resolution of  
obesity-associated medical problems after bariatric metabolic surgery

Apart from weight loss, MBS is associated with the alleviation of the long-term 
effects of associated medical problems (or comorbidity, as they were collectively 
referred to until recently), namely type 2 diabetes mellitus (T2DM), hypertension 
(HTN), nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepa-
titis (NASH), obstructive sleep apnea (OSA), dyslipidemia, end-stage renal disease 
(ESRD), depression, etc. Most importantly, some of these health problems have 
been recognized as dedicated indications for MBS, irrespective of BMI [63]. The 
rationale of this is supported by high-quality evidence on the superiority of surgical 
management vs. intensive medical therapy [64, 65]. Regarding T2DM in particular, 
the evidence is solid and stems from cohorts with long-term perspective surveillance 
[66–69], to the point that they have substantially contributed to the establishment of 
the concept of metabolic surgery in clinical practice [70, 71].

The advent of AI has introduced novel methods of predicting long-term remis-
sion of obesity-associated medical problems based on real-world data. In a recent 
comprehensive relevant study, Cao et al. compared three different AI models 
(Gaussian Bayesian Network – GBN, CNN, and traditional linear regression) in 
predicting 5-year remission of T2DM, dyslipidemia, HTN, OSA, and depression 
from data extracted from the large SOReg database concerning 6542 patients [72]. 
Among the examined algorithms, GBN showed excellent performance in predicting 
long-term remission of T2DM (AUC 0.942) and dyslipidemia (AUC 0.917), good 
performance for HTN (AUC 0.891) and OSA (AUC 0.843), and fair performance in 
predicting depression (AUC 0.750). On the other hand, van Loon et al. devised the 
Metabolic Health Index (MHI) to objectively quantify metabolic health, in analogy 
to BMI as an index for quantifying weight, and consequently developed an ordinal 
logistic regression model in order to quantify severity of comorbidity in a 6-grade 
scale [73]. As a scaffold, they used 4778 data records from 1595 patients and high-
yield predictors included age, estimated glomerular filtration rate (eGFR), HbA1c, 
triglycerides, and potassium.

Regarding specific conditions, T2DM has been the most studied obesity-associated 
health problem with regard to AI algorithms so far. Lee et al. ran a series of multi-cen-
tric studies with the aim to investigate the effectiveness of BMS in T2DM resolution, 
as well as to predict short- and long-term T2DM remission after BMS [74–76]. Their 
analysis was performed by means of back propagation neural networks (BPN), a type 
of ANN, and important predictors of T2DM remission included younger patient age, 
shorter T2DM duration, higher weight, wider waist, higher C-peptide levels, and 
bypass operation (vs. restrictive one). A few years later, another group investigated 
the role of the advanced-Diabetes Remission (ad-DiaRem) score in improving the 
prediction of T2DM remission following RYGB [77, 78]. DiaRem is a valid predic-
tion score for T2DM remission that relies on variables such as age, HbA1c, treatment 
with insulin, treatment with oral hypoglycemics other than metformin and classifies 
patients into five subgroups according to their probability of remission [79–81]. 
Ad-DiaRem has two additional parameters (diabetes duration and number of glucose-
lowering agents). The group of Aron-Wisnewsky, Debédat et al. analyzed Ad-DiaRem 
with the use of machine learning and devised a 1-year algorithm with enhanced 
predictive accuracy as compared with the original score, which yielded a corrected 
classification for 8% of those misclassified with DiaRem [77]. The same team used 
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ML methods to extend the predictive accuracy to 5 years post-RYGB, with the correct 
re-classification rate reaching 33% [78]. Consequently, AI can be implemented not 
only as a novel method, but also in order to improve established clinical tools.

At a more advanced level, Aminian et al. utilized ML in order to predict long-term 
end-organ complications owing to T2DM (in particular all cause-mortality, coronary 
artery events, heart failure, and nephropathy) in patients who did or did not undergo 
metabolic surgery [82]. A total of 2287 T2DM patients who had undergone metabolic 
operations were matched with 11,435 non-surgical diabetic patients. Analysis was 
performed by means of multivariable regression and random forest and data were 
uploaded by patients through user-friendly web-based and smartphone applications 
in an Individualized Diabetes Complications (IDC) risk score environment for clinical 
use. This is one of the most useful applications of ML in clinical practice so far. In 
another sophisticated study, Pedersen et al. combined clinical data (treatment with 
insulin, use of insulin-sensitizing agents, baseline HbA1c levels, and baseline serum 
insulin levels) with eight single-nucleotide polymorphisms (SNPs) and processed the 
data with ANN [83]. The addition of the SNPs significantly improved the predictive 
ability of the algorithm.

Nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) 
constitutes another entity of particular interest in the context of obesity. NAFLD/
NASH represents the most common chronic liver disease worldwide nowadays, 
for the treatment of which BMS seems to play a pivotal role as it seems to offer sus-
tainable resolution [84–86]. Back in 2013, Sowa et al. examined several ML algo-
rithms (among which LR, knn, SVM, decision trees, RF) to determine noninvasive 
assessment of fibrosis in NAFLD based on serum parameters (transaminases, 
hyaluronic acid, and cell death markers) and compared their combined effect 
with the gold standard of liver biopsy, which was performed intraoperatively dur-
ing BMS [87]. The combination of these parameters with RF had a better diagnos-
tic accuracy than each single parameter. More recently, Uehara et al. constructed 
a noninvasive algorithm for predicting NASH in a Japanese population of patients 
living with morbid obesity [88]. The most important predictors (alanine amino-
transferase—ALT, C-reactive protein—CRP, homeostasis model assessment insulin 
resistance—HOMA-IR, and albumin) were selected by means of rule extraction 
technology.

6.  AI as a means of improving quality of life assessment following 
bariatric metabolic surgery

Quality of life (QoL) after BMS is a parameter with increasing interest in literature 
because it is perhaps more patient-related and less of a technicality, as compared with 
safety, effectiveness, and resolution of associated health problems. There are several 
scores for evaluating QoL after BMS and their applicability has been implemented 
after various procedures [89–92]. In the realm of AI, the group of Cao et al. has 
conducted two studies based on the SOReg with the use of CNN, Gaussian Bayesian 
Network (BN), and LR for predicting 5-year health-related QoL after BMS [72, 93]. 
GBN showed better predictive accuracy as compared with the other methods. In 
another publication, BN was implemented for a network meta-analysis of studies 
referring to QoL after BMS [94]. The analysis involved 26,629 patients in total and 11 
different procedures.
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7. AI for evaluating intraoperative aspects of bariatric metabolic surgery

One of the advantages of laparoscopic surgery (and video-assisted surgery in 
general) is the continuous recording of the procedure. In the digital era, these record-
ings can be transformed into captions, which subsequently may be stored, trans-
ferred, processed, etc. Another usage that has recently been highlighted is technical 
skill assessment. In comparison to crude measures of surgical performance, such as 
operative time, postoperative outcomes, and complications, video-assisted opera-
tive evaluation offers better opportunities for constructive feedback and progres-
sive improvement of technique. The rating may be performed by human peers and 
supervisors, but lately ML has shown promising results in objective assessment of 
surgical skills [95].

In the field of BMS specifically, Twinanda et al. have pioneered AI techniques in 
laparoscopic videos with two discrete applications: retrieval of a specific fraction of 
the video (i.e., suturing of an anastomosis) and prediction of remaining time. In the 
former example, the researchers used Fisher kernel encoding, a precursor of deep 
learning techniques for managing large-scale object categorization, and applied it on 
49 bypass and seven LSG videos [96]. In the latter case, remaining operative time in 
170 RYGB videos was predicted by RSDNet, a DL-based algorithm that depends only 
on visual data for training rather than manual annotations [97]. Other pioneers in 
computer vision analysis of operative steps are Hashimoto et al., who implemented 
DNN to analyze LSG videos [98]. In this case, laparoscopic videos were segmented 
into seven steps: port placement, liver retraction, liver biopsy, gastrocolic ligament 
dissection, stapling of the stomach along the greater curvature, bagging specimen, 
and final inspection of the staple line. AI could extract quantitative data from video 
with an accuracy of >85%, a feature that allows quantification of operative capacity 
and objective evaluation for the purposes of both training and self-development. 
Similarly, Derathé et al. utilized annotated spatial and procedural data and processed 
them with SVM in order to predict surgical exposure [99].

In a totally different approach, Heremans et al. implemented ANN-based 
automated detection of food intake after neuromodulation by analyzing heart rate 
variability in electrocardiograms [100]. This is another example of intraoperative 
application of AI in a different kind of surgery for weight loss (neuromodulation).

8. Cost analysis of bariatric metabolic surgery with the use of AI

We are living in an era that cost-effectiveness is paramount in medicine for every 
intervention, either conservative or surgical. It has been estimated that the cost of 
BMS is approximately 14,000 euros and 3600 euros annually ever after. In com-
parison, the cost for the non-surgical treatment of T2DM is about 12,200 euros per 
annum [101].

Cost analyses are considered dynamic systems that are affected by various, often 
non-predicable parameters. Many cost analyses studies are based on Markov models. 
Markov models are stochastic models designed for systems that change over time 
(i.e., dynamic ones) and change their parameters randomly. Using decision analysis 
with the implementation of a Markov process, Borisenko et al. calculated that the 
annual savings for a cohort of bariatric patients from the SOReg was 66 million euros, 
whereas over a lifetime bariatric surgery produced savings of 9332 euros [102, 103]. 
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Similarly, Faria et al. compared different bariatric interventions and calculated that 
RYGB saves an average of 13,244 euros per patient as compared with best medical 
management [104].

9.  AI: hope or hype? methodological, ethical, medicolegal issues,  
and patient perspectives

AI is a relatively novel clinical tool, as such the healthcare provider should be 
cautious before adopting its methods and incorporating them into clinical routine. 
The following limitations are uniform across medicine, not BMS alone, and prompt 
the implementation of a solid frame in the context of which AI may yield its most 
beneficial aspects in clinical practice. Extensive analysis of AI limitations is beyond 
the scope of this chapter; therefore, we will attempt to outline the most important 
aspects of them.

One of the advantages of AI is the management of large amounts of data, but at 
the same time this is a prerequisite to obtain reliable outcomes. As such, data quantity 
is one issue. Data quality is another, and this can be achieved only when source data 
(i.e., registries or electronic health records—EHRs) are comprehensive and inclu-
sive. In other words, all patients should have access to health services irrespective of 
socioeconomic status, and health services on their part should promote continuity of 
care instead of segmentation. The third important component is model interpreta-
tion, especially when it comes to deep learning, given that sometimes the relations 
between inputs (predictors) and outcomes are not obvious. Next, model generaliz-
ability and interoperability are paramount for implementing AI algorithms across 
different health systems and contexts, and these can be ensured only when the three 
former methodological requirements are met. Finally, AI researchers must ensure 
model security, i.e., avoid “contamination” of data. This is a potential issue even after 
meticulous training of data [105]. To address these potential sources of bias, several 
strategies have been proposed. Among them, oversampling minority groups in 
training datasets, creating flags for certain high-risk groups, and formulating baseline 
predictions at presentation of illness (i.e., in the case of BMS, before surgery) are the 
most feasible ones [106].

The usage of AI as a decision-making tool may also have medicolegal sequelae. 
In this case, one should take into consideration all the parameters, i.e., agreement 
between AI recommendation and standard of care, accuracy of AI prediction, 
physician action (acceptance or rejection of the AI decision), and patient outcome. 
Different combinations may lead to different legal outcomes, i.e., no injury of the 
patient and no liability of the surgeon, injury but no liability, or both injury and 
liability [107]. Consequently, on the one hand, healthcare providers should know how 
to interpret AI algorithm outcomes and recruit their clinical judgment above all; on 
the other hand, they should have an active role in shaping their liability issue through 
their professional societies and legislation-forming organizations.

Is the role of the surgeon threatened by the advent of AI? Are surgeons transforming 
from leaders to simple operators of what a machine has decided for a patient? Definitely 
not. AI should be deemed as a tool that is intended to assist surgeons in their daily 
workflow and ease their work with the intent to help them focus on what is important, 
i.e., physician-patient relationship. Additionally, AI offers a real opportunity for 
individualized interventions and precision medicine, not only at the time of operations, 
must (even most importantly) during the postoperative period and follow-up.
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What impact does AI make on patients themselves? According to a recently 
published survey, it depends on the context. Fifty-five percent of participants were 
very or somewhat comfortable with AI making chest X-ray diagnosis, but the respec-
tive percentage for making cancer diagnosis dropped to 31.2% [108]. Consequently, 
the role of the surgeon remains central to continuum of healthcare provision, while 
discussing all diagnostic and therapeutic options with the patient is indispensable.

As it has been stressed out by Bellini et al., AI has contributed to substantial 
progress in decision-making, quality of care, and precision medicine, but several legal 
and ethical issues need to be addressed before its widespread application in clinical 
practice [109].

10. Conclusions

AI is gaining more and more ground to clinical practice, as it has been documented 
not only by our research [4], but also that of other investigators within the same 
context [109]. The clinician is not required to understand how AI algorithms work but 
should be cautious when interpreting AI-based outcomes and decision by evaluating 
its source data and metrics. For reasons of simplicity, AI should be considered a novel 
statistical tool with the advantage of yielding data from large, real-world registries of 
patients rather than restricted cohorts as the ones used in the context of randomized 
trials. Given the specialized nature of processing these data, specialists such as data 
scientists could assume new roles in the multidisciplinary team of managing bariatric 
patients.
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