
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter
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Growth Monitoring
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Abstract

Synthetic aperture radars (SARs) propagate and measure the scattering of 
energy at microwave frequencies. These wavelengths are sensitive to the dielec-
tric properties and structural characteristics of targets, and less affected by 
weather conditions than sensors that operate in optical wavelengths. Given these 
advantages, SARs are appealing for use in operational crop growth monitoring. 
Engineering advancements in SAR technologies, new processing algorithms, and 
the availability of open-access SAR data, have led to the recent acceleration in the 
uptake of this technology to map and monitor Earth systems. The exploitation of 
SAR is now demonstrated in a wide range of operational land applications, includ-
ing the mapping and monitoring of agricultural ecosystems. This chapter provides 
an overview of—(1) recent advancements in SAR systems; (2) a summary of SAR 
information sources, followed by the applications in crop monitoring including crop 
classification, crop parameter estimation, and change detection; and (3) summary 
and perspectives for future application development.

Keywords: synthetic aperture radar (SAR), crop growth monitoring, crop parameter 
estimation, change detection, classification

1. Introduction

Agricultural ecosystems are highly dynamic and usually display apparent 
seasonal phenological patterns that are strongly dependent on local management 
practices. The timely and frequent determination of indicators of crop development 
and productivity, including phenological stage and biophysical parameters such as 
leaf (or plant) area index and above-ground biomass, is critical for supporting land 
management decision making in near-real-time. Synthetic aperture radars (SARs) 
are active systems that provide their own source of energy to illuminate ground tar-
gets in the microwave domain. Because the Earth’s atmosphere is largely transparent 
to microwaves, SAR sensors can be operated day or night and under almost at all 
weather conditions to acquire high-resolution earth observation data. Given that 
many regions of the world experience frequent cloud cover, SAR has become 
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an essential remote sensing tool for the operational monitoring of  agricultural 
 production systems around the world.

Radar backscattering is highly sensitive to the structural (roughness, ori-
entation, and spatial distribution of scattering components) and the dielectric 
properties of targets. The backscattering intensity is also strongly related to the 
transmitted microwave frequency, incident angle and the transmitted and received 
polarizations. Several microwave scattering models have been developed to relate 
backscattering to target properties and radar acquisition parameters. Examples of 
theoretical microwave models include the Integral Equation Model (IEM) and the 
MIMICS (Michigan Microwave Canopy Scattering) model [1–3]. Semi-empirical 
models maintain some theoretical basis but use empirical data to simplify the 
mathematical relationships between scattering and target properties as well as 
sensor parameters. Examples of this approach to modeling include the Water Cloud 
Model (WCM) used to characterize SAR response from vegetation and soil [4], as 
well as the Oh [5] and Dubois [6] models that relate soil properties to radar back-
scattering. Two simplified scenarios, based on which radar backscattering models 
have been developed, are shown in Figure 1. The first simplifies vegetation canopy 
as a layer of scattering elements uniformly distributed above the soil surface, and 
radar backscattering from the soil is modeled by a two-way attenuation through the 
canopy (left). The second takes into consideration of canopy geometric structure, 
and models three backscattering components, surface scattering from plant or 
soil, double-bounce scattering from plant and soil (plant-soil and soil-plant), and 
multiple scattering by the plant-soil mix (volume scattering) (right).

Radar backscattering models have been used for estimation of crop parameters 
such as Leaf Area Index (LAI), canopy water content, and biomass [7–10], and 
soil parameters such as soil moisture and surface roughness [11, 12], using SAR 
data acquired at different incident angles, frequencies, and/or polarizations. Fully 
polarimetric (or quad-pol) SAR systems measure the complete complex scattering 
from a target. Microwaves are transmitted and received in two orthogonal polariza-
tions and the phase is preserved during processing. With the complete scattering 
matrix, quad-pol data can be analyzed to provide polarimetric features and the 
signal can be decomposed using coherent (e.g., Pauli and Cameron) or incoherent 
(e.g., Freeman-Durden and Cloude-Pottier) techniques [13, 14]. Variables derived 
through polarimetric decomposition can be used both in classification [15, 16] and 
parameter estimation, such as crop phenology or soil moisture [17, 18]. Time-series 
SAR data have also been used for the detection of crop seeding and harvest using 
change detection approaches [19–21].

A few satellite SAR constellations have been launched during the past few years, 
and more small satellite SAR constellations will be continuously developed in near 
future. The increasing availability of a large amount of SAR data, in companion 

Figure 1. 
Simplified scenarios for modeling radar backscattering from vegetation canopy. Left: vegetation as a water 
cloud, and backscattering is modeled by a two-way attenuation through a canopy with a path length H/cos(ϴ). 
Right: vegetation as a 3-D scattering medium inducing three scattering mechanisms, surface scattering, double-
bounce, and volume scattering.
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with big data analytics, provides an unprecedented opportunity for effective and 
operational monitoring of agricultural ecosystems. However, the effective use of 
SAR data requires a full understanding of how the information it provides relates 
to agricultural targets. The objectives of this article are to summarize the path of 
SAR system development and to review the information sources of SAR data, the 
applications in agricultural ecosystem monitoring with a focus on crop classifica-
tion, crop parameter estimation, and change detection using dense time-series data.

2. Advances in synthetic aperture radar (SAR)

Early studies in radar remote sensing applications in agriculture relied exten-
sively on ground-based microwave scatterometers [22–27]. The portability of 
scatterometers allows them to be rapidly deployed to agricultural test sites to collect 
temporally dense data at different frequencies, polarizations, and incidence angles. 
Experiments using scatterometers have been critical for developing an understand-
ing of how microwaves interact with soils and crops, and the development and 
testing of microwave models [28]. However, despite the important contributions of 
such research, scatterometer data are geographically limited to smaller test plots.

The deployment of SAR on aircraft and satellite platforms provides data at 
field and sub-field scales over much broader geographic extents. Airborne SAR 
campaigns, such as the NASA/JPL AIRSAR and UAVSAR, Canadian Convair-580 
C/X SAR, and German DLR E-SAR/F-SAR, have served as theoretical testbeds to 
develop applications pre-launch of space-based SARs. Space-based SAR observa-
tions from the Shuttle Imaging Radar (SIR) missions, in particular the SIR-C/X 
SAR missions in 1994, provided imaging opportunities from a space platform and 
delivered data in different frequencies and polarizations.

Systematic acquisitions from SAR satellites began with the launch of ESA’s ERS-1 
satellite in 1991. Several other space agencies followed, launching SAR satellites 
operating at different frequencies, and with different capacities to select imaging 
modes at a variety of spatial resolutions, swath widths, polarization, and incident 
angles (Table 1). RADARSAT-2, for example, supports the acquisition of data at 
single, dual, or quad polarization, at different spatial resolutions, and various 
incident angles. However, while the capability of each of these space-based systems 
was extensive, they demanded large and heavy payloads. For example, the mass 
of the Canadian C-band RADARSAT-1 and -2 satellites, and the ESA Sentinel-1A 
and 1B satellites each exceeded two tons at launch. More recently, technological 
developments that include standard electronic components and semiconductor 
materials (GaN) [29, 30] make it possible to produce compact SAR sensors in a 
shorter amount of time, and at a relatively low cost. These advancements have led 
to commercial investments in microsatellite constellations of space-borne SARs. For 
instance, PredaSAR plans to launch a constellation of 48 satellites equipped with a 
large swath C-band or a high-power X-band sensor. The Japanese QPS Institute is 
developing an X-band constellation that will eventually comprise 36 micro-satel-
lites. These SAR sensors are typically small (<500 kg), but are more limited in the 
diversity of imaging modes, typically operating in only single or dual polarizations.

For reference, a non-exclusive list of SAR systems that are of interest to agricul-
tural applications is given in Table 1. Over the past 15 years or so, the general trend of 
governments and space agencies has been to focus on larger wide-swath SARs whose 
data are free and open (or partially open) to the public. In comparison, the com-
mercial SAR satellite ecosystems have focused on constellations of smaller satellites 
providing, for a fee, access to data at finer spatial and temporal resolutions. Data from 
such constellations may provide the near-continuous monitoring of land surfaces.
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Platform Country/

organization

SAR system Frequency Mode Active 

years

Note

Airborne Canada Convair-580 X, C Polarimetric 1986–present

USA/NASA AirSAR C, L, P Polarimetric 1988–2004

USA/NASA UAVSAR Ka, L, P Polarimetric 2007–present

German/

DLR

E-SAR/F-SAR X, C, S, L, P Polarimetric 1988–present

USA.JPL SIR-C/X C, X Polarimetric 1994

Large 

satellites

ESA ERS-1/2 C VV 1991–2011

ESA ASAR C Various 2002–2012

Japan/

NASDA

JERS-1/2 L HH 1992–1998

Canada RADARSAT-1 C HH 1995–2013

Canada RADARSAT-2 C Various 2007–present

Canada RCM C Various 2019–present 3 satellites

German TerraSAR-X X Single or 

dual

2007

Argentina SAOCOM L Polarimetric 2018–present 2 satellites

ESA Sentinel-1 X Single or 

dual

2014–present 4

Italy COSMO-

SkyMed

X Various 2007–2010 COSMO: 4

2019–present CSG: 2

Japan/JAXA ALOS-

PALSAR

L Various 2006–

present

4

USA/India NISAR L, S Polarimetric 2023–present

Micro-

satellites

Finland ICEYE-X X VV 2018–present 18

Japan/

Synspective

StriX X VV 2020–

present

30

Japan/QPS QPS-SAR X Circular 2019–present 36

USA Capella X HH 2018–present 36

USA PredarSAR C, X — 48

USA Umbra-SAR X — 2021–present 12

Abbreviations/websites: DLR: German Aerospace Center, ESA: European Space Agency, JAXA: Japan Aerospace 
Exploration Agency, JPL: Jet Propulsion Laboratory, NASA: National Aeronautics and Space Administration 
(USA), NASDA: National Space Development Agency of Japan, PredSAR: www.predasar.com, QPS: Institute for 
Q-shu Pioneers of Space, Inc.; https://i-qps.net/, Synspective: https://synspective.com/, AIRSAR: Airborne Synthetic 
Aperture Radar, ALOS-PALSAR: Phased Array type L-band Synthetic Aperture Radar; https://www.eorc.jaxa.jp/
ALOS/en/about/palsar.htm, ASAR: Advanced Synthetic Aperture Radar, Capella: https://www.capellaspace.com/, 
Convair-580: https://open.canada.ca/data/en/dataset/838aa171-efa0-4951-9fad-37f9d99346ec?=undefined&w
bdisable=true, COSMO-SkyMed: Constellation of Small Satellites for Mediterranean basin Observation; https://
earth.esa.int/web/eoportal/satellite-missions/c-missions/cosmo-skymed, ERS-1/2: European Remote-Sensing Satellite, 
E-SAR/F-SAR: https://www.dlr.de/hr/en/desktopdefault.aspx/tabid-2326/3776_read-5691, ICEYE: https://www.
iceye.com, JERS-1/2: Japanese Earth Resources Satellite, NISAR: NASA-ISRO Synthetic Aperture Radar; https://
nisar.jpl.nasa.gov, PredarSAR: https://www.predasar.com/, RCM: Radarsat Constellation Mission, SAOCOM: 
https://saocom.veng.com.ar/en/, Sentinel-1: https://sentinel.esa.int/web/sentinel/missions/sentinel-1, SIR-C/X: 
Shuttle Imaging Radar, StriX: https://synspective.com/satellite/satellite-strix/, TerraSAR: https://www.dlr.de/
content/en/articles/missions-projects/terrasar-x/terrasar-x-earth-observation-satellite.html, UAVSAR: Uninhabited 
Aerial Vehicle Synthetic Aperture Radar; https://uavsar.jpl.nasa.gov, Umbra-SAR: https://umbra.space/.

Table 1. 
List of SAR systems.
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3. SAR applications to crop growth monitoring

3.1 Sources of information

3.1.1 Multi-temporal acquisitions

Crop growth dynamics are characterized by structural or moisture changes, 
which can be captured by time-series SAR data for the detection and mapping of 
phenological development stages [17, 31–34]. Because different crops have different 
growth dynamics, time-series SAR is also useful for crop classification [35–38]. 
Time-series optical and SAR data have been used to derive phenological metrics for 
phenology-based crop classification [35, 39, 40]. Using a dense stack of Sentinel-1 
SAR data, Bargiel [35] proposed a crop classification scheme using phenologi-
cal sequence patterns (PSP), which outperformed the Random Forest and the 
Maximum Likelihood classifiers for cereal crops. Phenology-based classifiers can be 
more generic than conventional classifiers, and may be more resilient to differences 
in management practices and growth conditions because they take crop-specific 
growth dynamics into consideration [35, 39].

3.1.2 Polarizations and polarimetric decomposition

Important target information is also revealed by different SAR polarizations. 
Polarizations that interact more strongly with plant volume will likely be more 
useful for crop parameter estimation and for discriminating different crops. For 
example, VV performs well in characterizing vertical vegetation structure, and VH 
is sensitive to multiple scattering events in the canopy [41], and thus their use in 
combination provides better classification capabilities in most cases. HH polariza-
tion is found to be inferior in many cases for these specific applications [28, 42]; 
however, it is more sensitive to the structural variation of rice, and thus useful for 
mapping this crop [43].

SAR backscatter intensity and other polarimetric parameters can be derived 
from fully polarimetric SAR using coherent or incoherent target decomposition 
methods, as summarized in Cloude and Pottier [13], Touzi et al. [14], and Lee and 
Pottier [44]. Simple or canonical targets—such as dipoles, diplanes, or cylinders—
show higher coherence than distributed targets—such as rough soil surfaces or 
vegetation—where random scattering occurs. Criteria to determine coherent and 
incoherent targets are provided by Touzi and Charbonneau [45], using the maxi-
mum symmetric component derived from the Cameron decomposition. Coherent 
target decomposition is applied to express the complex scattering matrix as linear 
combinations of a set of simpler and independent bases, each representing certain 
physical scattering mechanisms. Examples include the Pauli decomposition, the 
Krogager decomposition, and the Cameron decomposition. Incoherent decomposi-
tion methods are used when a pixel contains distributed targets, and express the 
second-order statistics of coherency or covariance matrices with a combination of 
simpler components. Examples include the Freeman-Durden, Huynen, and Cloude-
Pottier decompositions. For satellite SAR sensors, the power and pulse repetition 
required to operate a fully polarimetric system limits swath widths, and thus hybrid 
architectures, such as compact polarimetric systems, have been proposed [46]. 
Compact polarimetry offers a partial solution by transmitting a single circularly 
polarized wave and receiving two orthogonal waves coherently [46–48]. Methods 
for compact polarimetric data decomposition have also been developed and sum-
marized in Charbonneau et al. [47], Cloude et al. [49], and Ponnurangam and 
Rao [50].
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3.1.3 Frequencies

The distribution and orientation of plant components and their sizes relative to 
SAR wavelengths vary over the growing season and from crop to crop. Microwave 
scattering occurs when the SAR wavelength is similar to or smaller than the size 
of canopy components. SAR frequency also influences the penetration depth 
of microwave radiation into crop canopies. Lower frequencies (e.g., L-band) 
penetrate deeper into the canopy than higher frequencies (e.g., C-/X-band). The 
optimal depth of penetration, and the matching of wavelength to the size of plant 
components, vary from crop to crop and throughout the crop development cycle. 
As a result, the selection of a single best frequency for SAR is challenging. Higher 
frequency SAR is better for classifying low biomass canopies, while lower frequency 
SAR is more useful for identifying high biomass vegetation [42]. The integration of 
data at different frequencies brings enriched information for crop classification and 
has thus been widely recommended [42, 51–57]. However, implementing a multi-
frequency approach is challenging due to limitations in the availability of data from 
sensors at different frequencies, especially for operational applications. Temporal 
signatures created by different frequencies have also been exploited for crop area 
mapping using dense time series of SAR data. Kraatz et al. [58] used the temporal 
coefficient of variation of the VH polarization from both Sentinel-1 C-Band and 
PALSAR L-band data, and an optimal threshold, to discriminate crops from non-
crops in western Canada. A higher mapping accuracy was achieved using C-band 
data (84%) than L-band data (74%), though performance varied among differ-
ent cover types. Here, L-band performed poorly for soybean and some non-crop 
types (urban, grassland, and pasture), while C-band was relatively poor for corn, 
urban, and pasture. A time series of data from both frequencies would likely have 
improved these accuracies.

3.1.4 Incident angles

The variation of radar backscattering with incident angle is another important 
consideration for mapping agricultural landscapes with SAR. This is reflected 
in vegetation backscattering models, such as the MIMICS model [3] and the 
Karam-Fung model [59]. These models, developed for forest and adapted for crops 
[43, 60], require incident angle as an explicit parameter. For example, Prevot 
et al. [61] showed that using a simple parametrization of the angular effect of 
soil roughness in the Water Cloud Model [4], the vegetation water content can be 
estimated satisfactorily from C- and X-band SAR data acquired at two different 
incident angles, for example, 20° and 40°. Various studies have demonstrated the 
impacts of incident angle on land cover classification. Poirier et al. [62] studied 
the impacts of incident angle on classification performance by acquiring C-band 
data near-coincident at two different angles (30° and 53°) with the Convair-580 
airborne system. Results showed that SAR data collected at the larger incident 
angle interacted more with the upper canopy, delivering an improved classifica-
tion. Kothapalli Venkata et al. [63] conducted a study to assess the separation of 
corn from other land cover types (wheat, fallow, water, and urban) using multi-
incident angles (28°, 42°, and 52°) C-band hybrid polarimetric data acquired over 
3 days by RISAT. The study showed that corn can be discriminated from other crop 
types using volume and double-bounce scattering at both 28° and 42°, and using 
odd bounce and volume scattering combinations at 52°. Xu et al. [64] acquired 
RADARSAT-2 data at three different incident angles and showed that multi-angle 
SAR improved the classification accuracy of some land cover types (though it 
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should be noted that the images were acquired at different times during 1 month, 
confounding the effects of the time of acquisition and change in incident angle). 
In summary, SAR data acquired at different incident angles contribute to target 
information extraction.

3.2 Crop type classifications

The classification of land covers and crop types is one of the earliest applications 
of SAR in agriculture. In the broadest sense, crop classification from SAR involves 
the implementation of automated techniques to sort image data into one of a finite 
number of crop classes based on their backscatter characteristics. Crop classifica-
tion is an important agricultural application because it can be used to derive the 
area seeded to individual crops, and to predict or forecast food production if crop 
growth conditions are incorporated. Obtaining this information requires detailed, 
routine, and frequent mapping of croplands with sufficiently high accuracy. SAR 
has been shown to be particularly useful for the operational monitoring of crop 
dynamics in agricultural ecosystems.

3.2.1 Classification algorithms

A broad array of approaches for classifying satellite images have been developed 
in the past few decades. Until recently, the Maximum Likelihood (ML) classi-
fier was the most widely used method for the supervised classification of remote 
sensing data [65–67], mostly due to its simplicity in implementation. While this 
approach has been widely applied in different studies for satellite image classifica-
tion of agricultural regions [68–71], limitations associated with the ML approach 
mean that alternative supervised classification techniques are more preferable. 
Of these new methods, artificial neural networks (ANN) [72–75], support vector 
machines (SVM) [76–79], Decision Trees (DT) and ensembles of classification trees 
such as Random Forest (RF) [80–84] have all shown great promise.

A detailed comparison of classification methods is beyond the scope of this 
article, and indeed, would only provide limited insight into the best classification 
approaches for SAR-based crop type mapping. This is because the success of crop 
classification procedures is as much—if not more—dependent on the quality of the 
ground (in situ) observations used for training and validating the classification, 
than the actual algorithm chosen to do the classification. Instead, we direct readers 
to a comprehensive synthesis of this body of work provided by Khatami et al. [85], 
who conducted a statistical meta-analysis of research on land-cover classification. 
This study was conducted to provide coherent guidance on the relative perfor-
mance of different classification processes for generating land cover products and 
showed that the highest mapping accuracies were provided by implementations 
of SVMs, ANNs, and RF. While it is important to note that these results are not 
necessarily predictive of the relative performance of any specific classifier in any 
specific application (due to the unique features of that application), they do pro-
vide an insight into how each classification algorithm may perform under various 
 circumstances [85].

In addition to the general classifiers presented above, two other classification 
schemes have been developed specifically for SAR data. These are classifications 
based on the Cloude-Pottier decomposition and classification based on the com-
plex Wishart distribution. The Cloude-Pottier decomposition [15] produces three 
parameters—entropy (H), anisotropy (A), and the alpha angle (α). Entropy is 
a metric of the degree of randomness of scattering from within the resolution 
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cell, anisotropy is an indicator of the presence of secondary or tertiary scattering 
mechanisms, and the alpha angle represents the dominant scattering mechanism. 
A classification scheme was developed to divide the H-α space into eight possible 
scattering zones, from which land cover classifications can be performed. The 
advantage of this classification scheme is the improved understanding of SAR signal 
scattering mechanisms where there is less a priori knowledge about the scene. This 
approach has been used in supervised and unsupervised classification algorithms 
for land cover classification [86–90].

SAR data are typically multi-look processed for speckle noise reduction. The 
covariance matrix of the multi-look processed SAR data follows a multivariate com-
plex Wishart distribution. With this condition, Lee et al. [91] proposed a classifica-
tion scheme using Bayes maximum likelihood or minimum distance (MD) classifier. 
In practice, each class is characterized by an elementary covariance matrix derived 
from training samples, and each pixel is classified according to the Bayes likelihood 
with the elementary covariance matrices under a given a priori probability and the 
complex Wishart distribution. The algorithm can be generalized to classify multi-
frequency polarimetric SAR data or SAR data with only polarization intensity, and 
can therefore be applied to a wider range of situations [87, 88].

3.2.2 Integration of optical and SAR data

The coordination of Earth Observations (EO) data for agricultural monitor-
ing necessitates the articulation of spatially explicit EO data requirements, 
including where [92], when [93], how frequently [94], over which spectral 
range, and at what spatial resolution these data are needed [95]. Because crop-
ping systems are often diverse and complex, and the types of crops grown and 
the timing of their growth vary from region to region, the best choice of sensors 
to be used, the optimal number of images required, and the timing of image 
acquisitions are usually geographically specific. Where SAR has been used in 
operational national-scale crop mapping programs, it has usually been inte-
grated with optical remote sensing data. Both optical and SAR provide unique 
and valuable information relating to plant growth and type, primarily due to 
their different wavelengths. Optical imagery acquired in the near-infrared and 
shortwave-infrared is sensitive to canopy biochemistry such as composition and 
concentration of pigments, water content, biomass, and leaf internal structure, 
while SAR imagery is sensitive to plant structure. SAR observations are also 
critical for filling gaps in the optical image record brought about by the presence 
of clouds during key growth stages.

The integration of optical and SAR data can be as simple as combining data from 
different sources into raster stacks for classification, sometimes applying mathe-
matical transformations to fuse and enhance features or reduce data dimensionality 
[96–99]. In some cases, SAR data are not used directly in the classification process 
but are first transformed into higher-level data products. This has included the 
derivation of phenological metrics from SAR time series (e.g., Torbick et al. [100] 
and the use of SAR-based texture [101].

One of the most well-known applications of SAR in national-scale crop mapping 
comes from Canada. Since 2010, Agriculture and Agri-Food Canada—Canada’s 
Ministry of Agriculture—has integrated C-band SAR (RADARSAT, Sentinel-1) 
with optical data streams (Landsat-5, -7 and -8, SPOT, DMC, RapidEye, and 
Resourcesat-1) to generate its Annual Space-Based Crop Inventory for Canada 
[102]. Figure 2 shows the mapping result for 2020, which covers the agricultural 
land and includes all crops and a few other land cover types.
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Results from research and operations suggest that optical and SAR satellite data 
are both required to best characterize the key crop growing (phenological) stages 
required for high-accuracy crop mapping at a national scale [39, 56, 80, 103–106]. 
The addition of dual-pol SAR has been shown to increase accuracies over the use 
of optical data alone by as much as 16% [42, 104]. Nonetheless, the decision to 
use optical and/or SAR is usually determined by the trade-off among a number 
of factors, including—(a) the heterogeneous and dynamic intrinsic nature of the 
agro-ecosystem being studied; (b) the geographical extent to be mapped; (c) the 
minimum mapping unit required to resolve individual fields and other meaning-
ful ecological units (e.g., wetlands, woodlots, etc.); (d) differences in crop cycles; 
(e) differences in cropping practices and calendars within the same class; (f) the 
spectral similarity with other land cover classes; (g) the engineering constraints of 
the remote sensing systems (i.e., swath size; spatial, temporal, spectral and radio-
metric resolutions; cloud coverage for optical systems), and (h) data availability 
(i.e., open, fee-based).

3.3 Crop parameter estimation and growth condition monitoring

Microwave scattering, represented by both intensity and phase characteristics, 
changes with variations in the structure of crop canopies and canopy water content. 
Canopy structure and water content vary as crops develop and are thus indicative 
of crop development and productivity. Figure 3 shows seasonal variation of radar 
backscattering intensity of annual crops over a growing season in an agricultural 
region in northern Ontario, Canada, using dual-polarization C-band SAR data 
acquired by Sentinel-1 in 2019. Both VV and VH polarizations of annual crops 
show obvious seasonal variation patterns characteristic to crop development cycle, 
whereas that of forest targets (the two dotted lines) remain at a relatively stable 
and higher level throughout the season. This clearly shows a positive correlation 
between radar backscattering intensity and crop live biomass, based on which dif-
ferent crop parameters can be estimated from SAR data.

The potential of SAR for supporting crop growth monitoring through the 
quantitative estimation of crop parameters—such as Leaf (or Plant) Area Index 

Figure 2. 
National scale crop type mapping in Canada, 2020. The map is produced by Agriculture, Geomatics and Earth 
Observation Division, Science & Technology Branch, Agriculture, and Agri-Food Canada.
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(LAI or PAI), plant height and density, fresh and dry biomass, and plant water con-
tent—depends on SAR sensor characteristics (frequency, polarization, and incident 
angle), crop type, and growth stage [107, 108].

The characteristics of a SAR determine the depth to which a pulse of micro-
wave energy can penetrate a plant canopy and, in turn, influence the ability to 
determine canopy conditions from SAR observations. Because of this, the optimal 
choice of SAR frequency will vary over time, depending on canopy type and 
growth stage, and thus the use of multiple SAR frequencies for crop mapping, 
where available, is recommended. SAR scattering is also polarization-dependent 
[44, 109, 110]. Overall, the best polarization for crop characterization has been 
the linear cross polarization (either HV or VH) [110, 111]. This is mainly due 
to re-polarization that occurs during multiple scattering within targets with 
complex structures, such as crop canopies consisting of randomly oriented and 
distributed stems and leaves [112]. Using RADARSAT-2 SAR data, Liao et al. [113] 
studied the sensitivity of C-band SAR polarimetric parameters for the estimation 
of crop height and fractional vegetation cover. They found that cross polariza-
tion or combinations of dual polarizations (HH-VV or HV-VV) were strongly 
correlated with crop height and fractional cover of broadleaf crops, such as corn, 
with degraded performance toward the later growing stages. For narrow-leaf 
crops, such as wheat, the sensitivity of SAR parameters to crop height and cover 
fraction was relatively low or inconsistent. Wali et al. [114] assessed Sentinel-1 
C-band SAR VV and VH backscatter for estimating biophysical parameters of 
rice, including plant height, green vegetation cover, LAI, and total dry biomass. 
The results of this study showed that both VH and VV were strongly and linearly 
correlated with biophysical parameters until backscatter saturated during the 
mid-reproductive stage (60 days after transplanting), and the beginning of the 
reproductive stage for VV (though VH showed stronger correlations in most 
cases). Chauhan et al. [115] were able to obtain better estimates of vegetation 
parameters by accounting for soil backscatter effects. Other studies include those 
by Xie et al. [110], who demonstrated the capability of RADARSAT-2 polarimetric 
SAR variables for crop height estimation, and Hosseini et al. [116], who used 
WCM and SVM to estimate LAI using RADARSAT-2 SAR intensity collected 
over multiple international sites (Argentina, Canada, Germany, India, Poland, 
Ukraine, and the U.S).

Polarimetric SAR allows the complete scattering characteristics of crop 
canopies to be determined, and parameters derived from these complex data 
can improve estimates of crop conditions. Many recent examples of this come 

Figure 3. 
Seasonal profiles of radar backscattering intensity for annual crops in northern Ontario, Canada, using 
C-band SAR data acquired by Sentinel-1 in 2019. The two dotted lines represent two forest patches.
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from studies over agricultural regions in Canada. Using C-band RADARSAT-2 
polarimetric data, Wiseman et al. [117] extracted and evaluated 21 polarimetric 
parameters to estimate dry biomass for canola, corn, soybean, and spring wheat 
crops. This study found that most SAR parameters were significantly correlated 
with dry biomass accumulation, while several proved to be good indicators 
of changes in crop structure and phenology. For instance, four SAR responses 
(linear HV and circular LR backscatter, volume scattering, and pedestal height) 
increased during canola ripening. However, as canola flowered, the importance 
of these parameters declined. Homayouni et al. [118] used the ratio of volume-
to-surface scattering derived from C-band RADARSAT-2 polarimetric data to 
monitor the growth of canola, corn, spring wheat, and soybeans fields in western 
Canada. They found that this ratio was strongly correlated with optical vegeta-
tion indices (e.g., the normalized difference vegetation index NDVI, and the Soil 
Adjusted Vegetation Index SAVI). Using time-series RADARSAT-2 polarimetric 
data, and RapidEye optical imagery, Jiao et al. [119] applied a semi-empirical 
Canopy Structure Dynamics Model, Growing Degree Days, and SAR parameters 
calibrated to optical NDVI to derive daily estimates of canola crop condition over 
an entire growing season. Correlations (R values) of 0.63–0.84 were reported 
when SAR parameters were related to optical NDVI, with results varying among 
three  growing seasons.

A growing literature focusing on SAR-based vegetation indices demonstrates 
the potential of such techniques. Kim and van Zyl [120] proposed a radar vegeta-
tion index (RVI) based on the SAR backscatter intensities at VV, HH, and VH 
polarizations, which has since been simplified to accommodate data obtained from 
dual-polarized systems [121, 122]. Using Sentinel-1 observations, Periasamy [123] 
proposed a Dual Polarization SAR Vegetation index (DPSVI) by exploiting the 
data distribution of VV and VH backscatter coefficients in two-dimensional space. 
Such radar indices show strong potential for the better discrimination of bare soil 
from vegetation, as well as for crop structural parameter estimation. Other SAR-
based vegetation indices include the SAR simple difference (SSD) index, applied to 
estimate rice yield in China, and based on the difference in Sentinel-1 VH backscat-
ter between the end of the rice tillering stage and the end of grain filling stage [124]. 
Results of the study showed a strong exponential relationship between the SSDVH 
and rice yield.

Other applications of SAR for crop parameter estimation and growth condition 
monitoring include its use in radiative models. Attema and Ulaby [4] developed 
a Water Cloud Model (WCM) to simulate SAR backscatter from the crop-soil 
system as an incoherent sum of contributions from plants and background soil 
after a two-way attenuation by canopies. Through time, the model has been 
modified to reflect different approaches to the interaction and parameterization 
of soil and vegetation contributions. For example, various studies have used LAI, 
canopy water content, and biomass to characterize the vegetation component in 
the WCM [7, 8, 10, 116].

3.4 Change detection

In the context of this article, the objective of change detection using remote 
sensing data is to identify and characterize changes in agricultural land cover and/
or use (e.g., conversions from one crop class to another) or changes in condition 
within a land cover and/or use (e.g., modifications within a crop class) over a speci-
fied period of time. These changes can be described as—(a) binary change/non-
change (e.g., harvest); (b) from-to trajectories (e.g., forest to cropland conversion); 
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(c) causes of change (e.g., fire, flooding); and (d) continuous variable change (e.g., 
reduced productivity within a class due to insect infestation or drought) [125]. 
Understanding the types of change sought is critical for selecting suitable remote 
sensing data sources, determining processing methods, and developing and imple-
menting robust and effective change detection algorithms.

For agricultural resource management, it is important to detect intra-annual 
landscape changes, such as changes in crop phenology [17, 20, 33], field operations 
[19, 21], and field conditions [126, 127]. This type of monitoring requires dense 
remote sensing time series that usually cannot be fulfilled using optical data alone 
due to the presence of the cloud. As a result, spatially and temporally compre-
hensive and consistent coverages from operational wide-swath SAR satellites will 
continue to be a critical source of free and open SAR data for national-scale change 
detection. As new SAR missions are launched and existing missions expand, 
multi-frequency SAR is expected to play an increasingly important role in moni-
toring and measuring change on agricultural landscapes. The application of SAR 
for within-season change detection will require well-calibrated data from multiple 
satellites within a constellation, if satellites from different constellations are used 
together.

Change detection using SAR backscatter—as opposed to its indirect detec-
tion from SAR-derived value-added products such as crop type maps or modeled 
biophysical parameters—belong to one of two broad types. These are Incoherent 
Change Detection (ICD) and Coherent Change Detection (CCD) [128]. ICD 
methods identify changes in mean backscatter intensity without considering SAR 
phase information. Here, the difference can be calculated as a ratio, a log ratio 
(LR), a mean ratio (MR), the normalized compression distance [129], or using 
pointwise approaches based on graph theory [130], convolutional neural networks 
[131], or the generalized likelihood ratio test (GLRT) [132]. In comparison, CCD 
methods identify change based on the complex conjugate correlation coefficient 
of the two images, thus taking into consideration of both backscatter intensity 
and phase. If dense stacks of time-series SAR images are available, changes can be 
inferred from these methods. For example, Shang et al. [21] used CCD to detect 
crop seeding and harvest using time-series Sentinel-1 SAR. The study integrated 
time-series coherence and VH backscatter intensity to detect changes at the begin-
ning and at the end of a growing season, with the assumption that coherence is 
comparatively higher before crops emerge and after crop harvest. Figure 4 shows 
the example for mapping crop seeding dates, and details of the approach are given 
in Shang et al. [21].

Figure 4. 
Estimation of crop seeding dates through change detection using C-band SAR data acquired by Sentinel-1. Left: 
detection of annual crop fields using a simple threshold of seasonal variation amplitude of VH; right: mapping 
of crop seeding dates.
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4. Summary and perspective

Timely and continuous observations from satellite systems are critical for 
providing the data and information required by decision-makers to manage agricul-
tural lands. High-quality satellite observations can be obtained from SAR sensors; 
however, they must be collected at a spatial resolution that allows sufficient detail 
to be resolved, and at times, during the growing season, that coincides with the key 
growth stages of crops being assessed. The most accurate detailed national crop 
mapping generally occurs when moderate-resolution spectrally rich time series are 
acquired that contain no gaps.

Because of its near all-weather capacity, SAR technology has been shown to 
be particularly useful in agricultural monitoring, especially in regions with fre-
quent cloud cover. The agricultural applications summarized in this article cover 
examples of information extraction for crops. Despite the gains made over the 
past 15 years in methods for crop monitoring from SAR, some challenges remain. 
A major challenge is the separation of backscattering signals from soils and 
crops, where it is difficult to differentiate the geometrical and dielectric proper-
ties of these two targets. While theoretical and semi-empirical models have been 
developed to simulate backscattering signals, model inversion for solving surface 
parameters with high accuracy remains a challenge. Much attention has been 
focused on the integration of SAR and optical remote sensing for improving target 
parameter retrieval accuracies. With temporally dense imaging capabilities of cur-
rent and future satellite SAR systems, changes in agricultural land should be more 
accurately detected. Methods for change detection based on SAR and optical time 
series show large future potential.

Future opportunities for the use of SAR in agricultural monitoring will come 
from the adoption of new and improved satellite missions that, in combination or 
isolation, will allow a better characterization of crop-specific growth cycles at the 
field level. Of particular interest is the integration of SAR imagery acquired at mul-
tiple frequencies, especially if these multi-frequency data sets are collected in wide 
swaths, with consistent coverages, and under open data policies. However, this will 
not be without a challenge. The ability of national mapping agencies to incorporate 
this information in a timely and efficient manner will require significant investment 
in information technology infrastructure to facilitate the processing of significantly 
greater volumes of data.
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