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Chapter

The Roles of Piezoelectric 
Ultrasonic Motors in Industry 4.0 
Era: Opportunities & Challenges
Sahil P. Wankhede and Tian-Bing Xu

Abstract

Piezoelectric Ultrasonic motors (USM) are based on the principle of converse 
piezoelectric effect i.e., vibrations occur when an electrical field is applied to piezo-
electric materials. USMs have been studied several decades for their advantages over 
traditional electromagnetic motors. Despite having many advantages, they have 
several challenges too. Recently many researchers have started focusing on Industry 
4.0 or Fourth Industrial revolution phase of the industry which mostly emphasis 
on digitization & interconnection of the entities throughout the life cycle of the 
product in an industrial network to get the best possible output. Industry 4.0 utilizes 
various advanced tools for carrying out the nexus between the entities & bringing 
up them on digital platform. The studies of the role of USMs in Industry 4.0 scenario 
has never been done till now & this article fills that gap by analyzing the piezo-
electric ultrasonic motors in depth & breadth in the background of Industry 4.0. 
This article delivers the novel working principle, illustrates examples for effective 
utilization of USMs, so that it can buttress the growth of Industry 4.0 Era & on the 
other hand it also analyses the key Industry 4.0 enabling technologies to improve the 
performance of the USMs.

Keywords: piezoelectric ultrasonic motors, industry 4.0

1. Introduction

Increasing functionalities and weights/sizes reductions are critical issues for 
future aircrafts, space exploration vehicles, space instrumentations and indus-
trial application etc. One challenge is the miniaturization of motors, wherein the 
efficiency of commonly used electromagnetic coil-based motors is dramatically 
reduced when their size less than centimeters scales. On the other hands, the rapid 
developments on piezoelectric ultrasonic motors (USMs) may fill the technical gap. 
Piezoelectric ultrasonic motors have been used in various technological fields from 
past decade in the gadgets, which we are using in our daily life i.e., a mobile phone 
to most advanced applications in aerospace. Recent advanced sciences & tech-
nologies developments on complex & tech-savvy products like satellites, mobile 
phones, camera lens, spaceships, automotive, robotics, biomedical instruments, 
manufacturing, etc., makes our life more convenient. These new products have 
raised new demands on modern motors like micro scale, light weight, high torque, 
no electromagnetic interference, low noise etc., which cannot be met by traditional 
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motors. To make bridge for this gap, many scientists developed specialized motors, 
such as electrostatic motors, USMs, bionic motors, photo-thermal motors, shape 
memory alloy motors, microwave motors, etc. Among them, USMs have more 
advantages [1].

Although the first concept of USMs was invented in 1948, when just after the 
World War II, USMs have been used for practical applications in 1980s. It works on 
the principle of converse piezo electric effect i.e., vibrations occur when an electri-
cal field is applied to some piezoelectric structures. Similar to traditional electro-
magnetic motors this kind of motors comprises of stator & rotor, however, the 
difference is that a USM consists of piezoelectric structure, which is bonded to sta-
tor instead of coil and magnet pairs to make simpler and compact in size. In USMs, 
the piezoelectric structure is first vibrated in ultrasonic frequency band (>20 kHz), 
which in turn vibrates the stator when a driving voltage is applied in matched 
frequency. Thus, the frictional contact force between the stator & rotor or slider 
leads to the mechanical movement & torque. USMs can obtain high torque/weight 
ratio (torque density) in comparison with traditional electromagnetic motors 
because they are compact in structure & flexible in design. They are capable to drive 
the payloads directly without connecting to gear or gear train mechanism for some 
special applications. Most important that USMs quickly response commends in less 
than a few microseconds due to the advantages of piezoelectric materials and small 
inertia of rotors. Furthermore, they have capability of self-locking, high holding 
torque, precision motion control which can be utilized for application areas requir-
ing high degree of precise motion for, e.g., medical operations & manufacturing or 
inspection of intricate products. In addition, USMs have zero electromagnetic inter-
ference which is one of the prominent applications in magnetic resonance imaging 
(MRI). USMs can also be operated in extreme temperature conditions which makes 
them first choice to use in aerospace application for e.g., space mission. Apart from 
above, they are silent during their operating cycle which makes them suitable for 
low noise applications [1].

Although USMs has many advantages, there are still several challenges remain-
ing to achieve them in key areas like new design, motion control, piezoelectric 
material, friction & wear, thermal performance, modeling & optimization and 
advanced manufacturing technologies [2]. These challenges needed to be addressed 
in order to make USMs to be broadly utilized with its full potential in modern day 
industrial settings & diverse field of applications.

Fourth Industrial revolution or Industry 4.0 is the current phase of the industry 
wherein its emphasis on the digitization & interconnection of the products & 
services throughout the product life cycle i.e., from the birth of the product to the 
end of the life of product/services. Industry 4.0 relies mainly on various technologi-
cal tools, which include but not limited to Big Data & AI analytics, Augmented 
reality (AR) Additive Manufacturing, Cyber Security, Industrial Internet of Things 
(IIoT), Autonomous Robots, Digital Twins, Horizontal & Vertical integrations 
& Cloud computing for carrying out the process of digitization & interconnec-
tion. Therefore, in this article, we not only take advantage of Industry 4.0 tools to 
improve the performance of the USMs but also promote the applications of USMs 
that can make them best fit into Industry 4.0 settings.

This chapter is divided into five sections. In the first section, we will introduce 
the history of development of USMs, types of USMs, structure & operating mecha-
nism of USMs, and piezoelectric materials used. In the second section, the reviews 
of various articles, especially the publications in the last 5 years on ultrasonic 
motors from eclectic sources i.e., conference proceedings, journals, US patents & 
doctoral thesis. It analyses them & gives a brief bibliographic summary compris-
ing of publication year, journal of publication, country of origin of research. The 



3

The Roles of Piezoelectric Ultrasonic Motors in Industry 4.0 Era: Opportunities & Challenges
DOI: http://dx.doi.org/10.5772/intechopen.100560

classification of USM technologies in different categories, which include mainly 
new design, motion control, piezoelectric material, friction & wear, thermal 
performance, modeling & optimization & provide comprehensive summary of the 
articles describing achievements, challenges & opportunities, will be presented in 
the third section. The fourth Section of this chapter will briefly introduce industry 
4.0 & key enabling technologies, i.e., Big Data & Artificial Intelligence analytics, 
Augmented Reality, Additive manufacturing, Industrial internet of things (IIoT), 
Digital Twins & simulation. In the Fifth section, it will be addressed that the 
approaches to improve the overall performance of piezoelectric motors by effec-
tive utilizing key enabling technologies offered in Industry 4.0 settings. It further 
elaborates on the various types & applications of piezoelectric motors that can be 
utilized effectively to foster Industry 4.0 expectations.

2. Piezoelectric ultrasonic motors

Development of Piezoelectric USMs has been in progress since 1980. 
Piezoelectric motors worked on the principle of reverse piezoelectric effect i.e., 
electrical energy applied to piezoelectric substrate is converted into mechanical 
actuation or motion in this case it refers to vibration. These motors are known as 
“Ultrasonic Motors” since the frequency of vibration of the piezoelectric element 
inside the motor is in the range of ultrasonic frequency band i.e., greater than 
20 kHz. The chronology of events in the development of ultrasonic motors is  
summarized in Table 1 [1].

2.1 Classification

Ultrasonic Motors do not have a uniform methodology for classification because 
of the design flexibility & structural diversity [1]. For application point of view, 
USMs can be classified as rotary and linear type motors; from vibration shape, 
USMs can be classified as rod shape, π-shape, ring shape, and cylinder shape, from 
vibration characteristics, USMs can be classified as standing wave and propagating 
wave types; etc. More details of classification are done by viewing angle as illus-
trated in Table 2 [1]. Classification is also done based upon the vibration type i.e., 
Longitudinal Vibration, Longitudinal Bending Vibration, Longitudinal-torsional 
vibration, Bending Vibrations & In-Plane vibrations [1].

2.2 Operating mechanism of USM

The most common USMs is the Traveling Wave Ultrasonic Motors (TRUMs) 
because of their simple constructions and broad applications. One typical TRUM 
is mainly composed with a stator, rotor, shell, bearing, spring, friction linear, PZT, 
base, etc. Piezoelectric ceramic is affixed to stator while rotor is affixed by friction 
liner [1]. Friction liner is bonded to a rotor, which contacts with stator through axial 
pressure. The traveling wave is formed by superposition of two mode responses 
with equal amplitude and phase difference π/2 both in time and space. If pre-pres-
sure is applied to the rotor, then the vibration with micro amplitude of points on 
stator surface will be transformed to rotary motion of the rotor through frictional 
force. A structural diagram of TRUM is shown in Figure 1 and the working prin-
ciple of traveling wave, which is formed inside of the USM leading to the motion 
of the rotor, is presented in Figure 2. For successful development of the traveling 
wave, it is necessary that the two resonant modes with an identical frequency and 
mode shapes (standing waves) in an elastic body have π/2 phase difference both in 
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Viewing Angle Type

Wave propagation method Traveling Wave, Standing Wave

Movement Output way Rotational, Linear

Contact State between the stator & rotor Contact, Non-contact

Excitation conditions of stator by piezoelectric 
components

Resonant, Non-Resonant

Number of degrees of freedom of the rotor Single degree of freedom, multi-degree of 
freedom

Displacement of operating mode in direction Out plane, In-plane

Geometric shape of stators Disks, Ring, Bar & Shell

Rotary directions Unidirectional, Bidirectional

Table 2. 
The classification of UTM methodologies [1].

space and time [1] & quarter wavelength difference i.e., λ/4 [2]. Consider a point P 
on the stator the traveling process of point P is illustrated in Figure 2a–d. At time 
t = 0 point P is at initial position as shown in Figure 2a, at t = T/4, Figure 2b the 
wave propagates right the wave peak reaches point P further at t = T/2, Figure 2c 
wave & Point P moves λ/4 forward then at t = 3 T/4 Figure 2d wave valley reaches 
point P & at t = T point P reaches initial position [1].

Year Name of Scientist/

organization

Chronology of Events in the development of USM

1948 Williams and Brown First patent of “piezo motor” was applied.

1965 Lavrinenko Patent invention was granted for using piezoelectric plate to drive 
rotor.

1973 Barth from IBM Two piezoelectric actuators to produce longitudinal vibration of horns 
was used. The rotor is driven by the contact friction between the rotor 
surface and end of the horns.

1975 Vishnevsky The edge of a rectangular piezoelectric composite stator was pressed 
by the spring, which excited a longitudinal vibration mode to drive 
the rotor

1981 Lithuanian Vasiliev An ultrasonic motor with the ability of driving larger loads of 
gramophone wheel. It became the first practical application of 
piezoelectric actuator.

1982 Sashida A standing wave USM was designed. Piezoelectric ultrasonic motor 
met the performance requirements for actual applications for the first 
time.

1983 Sashida Traveling wave USM was designed.

1985 Kumada A longitudinal-torsional hybrid ultrasonic motor driven by single 
phase signal.

1987 Ishc from Panasonic, 
Inc

A ring type traveling wave ultrasonic motor based on Sashida’s 
traveling wave motor.

1987 Canon Co.Ltd The ring-type ultrasonic motor in the zoom lens of EOS camera was 
used first time in Engineering application

1995 Zhao, Chunsheng A disk-type traveling wave ultrasonic motor

Table 1. 
Summary of the development of ultrasonic motors [1].
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In order to achieve traveling wave, selection of right piezoelectric materials  
is required. Most commonly used piezoelectric materials are Barium Titanate 
BaTiO3, Lead Zirconate-lead titanate (PZT), relaxor ferroelectrics of 
Pb(MgxNb1-xO3)-PbTiO3(PMN-PT) and Pb(ZnxNb1-x)O3-PbTiO3(PZN-PT)  
single crystals [1].

3. Review on piezoelectric ultrasonic motors

This section provides a brief summary of the articles published since last 5 years 
since 2015 [2–298]. The articles are taken from eclectic resources like conference 

Figure 1. 
Structural diagram of TRUM [1].

Figure 2. 
Traveling wave mechanism of TRUM [1].
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Figure 3. 
Summary of number of publications in each research areas of USM in the years of 2015–2020.

Figure 4. 
Summary of number publications per year on USM from 2015 to 2020.

proceedings, high impact journals, patents & masters, Ph.D. thesis from reputed 
universities. After reviewing the articles, we found that most of the articles on ultra-
sonic motors found were stressing upon research areas like new design, modeling & 
optimization, motion control, friction & wear, piezoelectric materials used in USM, 
thermal performance, applications of USM & review papers. [2] We carried out 
statistical analysis for the research articles published on USM during this period. We 
plotted graph for number of publications with research areas (Figure 3), with year 
of publication (Figure 4), by country of research (Figure 5) & journal publication 
(Figure 6). From Figure 3 one can see that majority of the articles published on USM 
stressed upon new design & modeling & optimization. Figure 4 shows that gradual 
increase in the trend of number of publications. Figure 5 indicates that countries 
like China & Japan are the leaders in doing research on USM. Figure 6 shows journal 
“Ultrasonics” & “Sensors & Actuators A: Physical are the favorite among researchers 
& publishers for publishing articles on USM. In the following section, we are going 
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to briefly discuss the achievements, challenges, & opportunities about those publica-
tions made in the areas identified above.

3.1 New design

In this section, we summarize the novel ideas proposed by the researchers for 
designing & developing ultrasonic motors as well as optimizing their designs in 
order to improve their efficiency & performance. The major objectives are to make 
UTMs with small size, high torque, and high-power density. Among them, minia-
turization of the motor is the key challenge to achieve.

3.1.1 New developments for miniaturization

Since 2015 various research articles emphasized upon miniaturization, micro 
USM, scaling to sub millimeter range. Tomoaki Mashimo et al., a research group at 
Japan, develop serial of micro ultrasonic motor (μ-UTMs) with volume scale of a few 
cubic millimeters to submillimeter [3–10]. Those μ-UTMs include rotary and linear 

Figure 5. 
Summary of USM publication numbers of author’s country and region distribution.

Figure 6. 
Summary of USM publication numbers in the top ten journals.
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types for different applications. Don L. DeVoe et al. developed one of the smallest 
bulk PZT TRUMs capable of bidirectional motion with PZT stator of diameter 4.12 
mmand 323 mN preload force. The motor stator was fabricated using micro powder 
blasting of homogeneous PZT sheet. It achieved a maximum speed of 30 rpm & stall 
torque of 501 mN-mm [11]. Yingxiang Liu et al. carried out an overall weight of 8.5 g 
longitudinal–bending hybrid linear USM, whichis able to achieve 487 mm/s no-load 
speed, the maximum output force of 2.3 N, and & weight of the prototype obtained, 
and respectively [12]. Qiquan Quan et al. developed U shaped piezoelectric ultra-
sonic motor that mainly focused on miniaturization and high-power density [13]. 
Fulin Wang et al. developed a miniature spherical ultrasonic motor using wire 
stators for directional adjustment of a vascular endoscopic camera [14]. Ho et al., 
proposed a miniaturized simple shear vibration piezoelectric screw-driven structure 
USM to drive the high precision linear motor [15]. Zhou et al., developed a novel a 
radius of 2 mm three-dimensional contact model of piezoelectric TRUM utilizing 
MEMS fabrication technology [16].

3.1.2 New developments for high power densities

In addition to miniaturization some researchers focused on high torque and 
power density aspects of piezo motors, Mizuno et al., developed a hybrid torsional/
bending (T/B) modes USM to provide high driving force, large driving distance, 
and low weight, resulting into high torque density and high-power density [17]. It 
is constructured with rod-shaped transducer operating in torsional/bending (T/B) 
modes and excited two elliptical motions on its bilateral ends to drive the rotor 
orthogonally pressed onto the transducer. Chang et al., developed a ring-shaped 
traveling wave ultrasonic motor with a suspension stator for improving output 
power density [17]. The maximum stator vibration amplitude of 4.25 μm, which 
is nearly 4.7 times of that without suspension, with speed of 62 rpm and a stall 
torque of 49.5 mNm was observed, under a driving signal of 30 Vpp when the mass 
block was 0.30 g. Fan et al. developed a miniaturized ultrasonic motor with a high 
thrust–weight ratio by using the first order bending vibration mode (B1 mode) and 
second order bending vibration mode (B2 mode) to realize bidirectional movement 
through a single-phase driving signal [19]. Li et al., constructed screw-type USM 
with a three-wavelength exciting mode to achieve a high-output thrust [20].

In order to meet the requirement of large thrust & maximum output few research 
articles on the ultrasonic motors were based upon typical shapes, such as U-shape, 
V-shape, L-shaped, and Π-type. For instance, the structure of the linear ultrasonic 
motor with a laminated stator, which was made of two identically single U-shaped 
stators, was proposed by Sun et al., [36]. The testing results showed that the maxi-
mum output force of the laminated motors increases by 40% than that of single layer 
U-shaped motor, while the maximum velocity increased by 38%. Yao et al. proposed 
a novel large thrust-weight ratio V-shaped linear USM with a flexible joint operated 
in the coupled longitudinal-bending mode. The motor had a compact size and a 
simple structure with a large thrust-weight ratio (0.75 N/g) [37]. Furthermore, they 
also proposed a novel large thrust L-shaped linear USM utilizing the antisymmetric 
and symmetric modes of the L-shaped stator operating in a single resonance mode 
to realize the bidirectional motion of the slider [38]. In order to meet the demand 
of a linear ultrasonic motor with large thrust in narrow space, a novel Π-type linear 
ultrasonic motor with double driving feet was constructed [39]. The motor had 
structural stability and high dynamic performance, such as a no-load speed of 
273 mm/s and 238 mm/s in two directions, corresponding to a maximal thrust of 
80 N and 110 N. Wang et al., constructed a V-type motor having two driving feet and 
a simple structure, which torque applied to the motor was converted into a normal 
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preload between the driving feet and the mover to avoid the use of a large preloading 
mechanism [40]. The maximum no-load velocities of the motor moving to the right 
and left are 85.2 mm/s and 76 mm/s, respectively, and the maximum output force 
is 1.96 N.

Light weight, high torque & desired output performance are some of the 
important features required in USMs. Niu et al., developed a light arch shaped, 
four legged linear & hollow USMs, which a light arc-shaped USM with the first-
order longitudinal vibration mode and the second order bending vibration mode 
were superimposed in the stator plane, in order to meet the requirements [45]. 
The output torque of the USM under the single-stator configuration reached up to 
2.6 × 10−2 N·m, and the double-stator which was 1.5 times greater than that under of 
single stator configuration.

To realize applications involving low speed and high torque in the high-perfor-
mance actuator industry, especially in the aerospace field, a novel 70H (Hollow) 
TRUM with an outer diameter of 70 mm and an aperture ratio of 53% (the ratio 
between the aperture and outer diameter) with a mass of 210 g was developed 
[46]. The TRUM, The torque density of 11.43 N·m/kg, maximum no-load speed of 
50 rpm, and the maximum stall torque 2.4 N·m were achieved.

The influence of the vibration mode of the stator and the structural dimensions of 
the metal elastomer and piezoelectric ceramic ring on the effective electromechani-
cal coupling coefficient (EMCC) was analyzed by Niu et al. [47]. The efficiency of 
a hollow USM was improved by optimizing the stator’s effective electromechanical 
coupling coefficient. In addition, a four-legged linear ultrasonic motor with a new 
structure which is the in-plane first-order longitudinal vibration mode and the out-of-
plane anti-symmetric vibration mode superimposed to produce linear motion [48]. 
The USM consists of a stator and four groups of eight piezoelectric ceramic sheets. 
The experimental results for a prototype 600 × 160 mm showed the maximum trans-
lational speed could reach 135 mm/s and the maximum thrust of 3.6 N with a 200 V 
driving voltage. The USM had the advantages of simple structure and high output 
efficiency, which made it suitable for precision systems and industrial applications.

Izuhara et al. proposed a linear piezoelectric motor using a hollow rectangular 
stator that can translate a load placed inside it by a direct drive [49]. This stator 
structure enabled a quick response and high resolution by few components for 
controlling autofocus and zoom mechanisms in imaging devices.

3.1.3  Multiple degrees of freedom piezoelectric ultrasonic motor 
(multi-DOF-USM)

Shi et al., constructed a new type of multiple-degree-of-freedom (Multi-DOF) 
compact structure USM to achieve high output torque [33]. It consisted of a ring 
type composite stator with four driving feet uniformly arranged in the inner 
circumference of the ring stator. The stator employs two orthogonal axial bend-
ing modes and a radial bending mode, by exciting two of them simultaneously, to 
generate elliptic trajectories on driving feet tips and to push sphere rotor around 
x, y and z axis respectively. Su et al. improved the performance of a non-resonant 
piezoelectric motor, which is a symmetric piezoelectric linear motor driven by 
three-phase square-triangular waves signal and four-phase sine waves signal of 
peak to peak value 100 V at 100 Hz with 50 V offset [34]. The speeds of prototype 
reached 733 μm/s and 667 μm/s and the maximum thrust is 8.34 N and 6.31 N 
respectively. Similarly, a non-resonant linear ultrasonic motor utilizing longitudinal 
traveling waves was proposed by Liang Wang et al. [35]. The stator system was 
modeled by utilizing the transfer matrix method (TMM). The motor prototype 
achieved a maximum mean velocity of 115 mm/s and a maximum load of 0.25 N.
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Li et al. proposed electromagnetic-piezoelectric hybrid driven three-degree-
of-Freedom USM which is hybrid driven electromagnetic filed and electrical field 
[41]. In one of their design, a novel ball-type spherical multi-DOF USM, composed 
of three built-in stators and a hollow spherical rotor was developed and tested for 
the design of a compact multi-degree-of-freedom (multi-DOF) piezoelectric driven 
actuator [42]. The rotational speeds of X-axis, Y-axis and Z-axis can reach 29 r/min, 
17 r/min and 16 r/min, respectively, when the frequency matches, which verifies 
the feasibility and rationality of the multi-DOF movement of the motor. They 
also proposed a multi-DOF spherical USM with built-in traveling wave stators, 
in which each traveling wave stator could be controlled independently and the 
spatial arrangement of the support structures [42]. The maximum speed achieved 
45.6 rad/min with output torque of 1.265 Nm when an excitation voltage of 400 V 
with the preload of 100 N. The motor had the advantages of large output force and 
adjustable preload.

Kazokaitis et al., developed a novel design of a multi-DOF USM, which is 
combined the magnetic sphere type rotor and two oppositely placed ring-shaped 
piezoelectric actuators into one mechanism [44]. Such a structure increases impact 
force and allows rotation of the sphere with higher torque useful for attitude control 
systems used in small satellites.

3.1.4 Preload effect study

Contact mechanism between the stator & rotor is one of the important factors 
responsible for the efficient performance of the USMs. The studies of contact sur-
face, contact mechanism, preloading method of USMs has been one of the promi-
nent topics in the USM research field. Zhang et al., proposed a solution to reduce 
the radial sliding by optimizing the stator comb-teeth of a TRUM [50]. They further 
developed a 3D finite element model for longitudinal torsional USM by ADINA in 
order to study the mechanical simulation and contact analyses [51]. A novel hollow 
type USM, which the preload was applied from the bottom of the stator through a 
wave spring, was proposed, [52] It could not only enhance the anti-overload ability 
but also extended the working life of the motor.

Wang et al., analyzed the characteristics of a TRUM with considering the 
structural stiffness of the preload structure [53]. It demonstrated that the pre-
pressure on the rotor was not a constant value because of the structural stiffness 
of the preload structure. In addition, it explained the driving mechanism of the 
TRUM under unsteady pre-pressure and deduced a dynamic model considering the 
stiffness of the preload structure.

In addition, contact force analysis by Hertz contact theory popped up in few 
research articles. Dong et al., carried out design and performance analysis of a 
TRUM with double vibrators [54]. The analytical model of double-vibrator motor 
was established based on elliptical distribution rule of surface point velocity, linear 
superposition of motions and contact force analysis under Hertz contact theory. Pan 
et al., focused on the coupling relationship between the flywheel vibration and the 
gimbal rotation through the variable stiffness of the bearing [54].

3.1.5 Multivibrators

Some research articles emphasized on novel idea of constructing USMs by using 
multivibrators. Yang et al. illustrated that TRUM with double vibrators can improve 
the output performance effectively [56]. Inheriting the concept of two traveling 
waves propagating in the stator and rotor, a dual traveling wave rotary ultrasonic 
motor (DTRUM) energized only in the stator was proposed. The experimental 
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results showed that the performance of dual traveling wave TRUM was superior 
to the TRUM with single traveling wave. The no load speed was 60 rpm and the 
stalling torque was 0.85 Nm. They further presented, an optimal design of a double-
vibrator USM using combination methods of finite element method, sensitivity 
analysis and adaptive genetic algorithm [57]. The measured results showed that 
this method was effective for the optimal design of ultrasonic motors. Lu et al. 
proposed a new idea for constructing the motor with the stator containing several 
vibrators fabricated by bonding piezoelectric ceramics (PZTs) to a metal base [58]. 
The longitudinal and bending modes were excited in the vibrators by two alternat-
ing current (AC) voltages with a 90° phase difference were applied. The bending 
vibrations of the vibrators were stacked to form the torsional vibration of the stator, 
ultimately generating longitudinal-torsional composite vibration. Mohammed & 
Zakariyya proposed an idea on the development of a new type of a linear USM with 
double cantilever vibrators [59]. The resonance frequencies of the vibrators were 
21.33 kHz, and this was also the frequency in which the two vibrators were driven to 
determine the output parameter such as driving force and velocity.

Multi-vibration mode USMs and sandwich type USMs were designed & ana-
lyzed in some of the research articles. Zhou et al., developed a novel multi-mode 
differential USM with two sandwich-type transducers, which utilized the diverse 
combination of four vibration modes: symmetrical and anti-symmetrical first 
longitudinal modes, symmetrical and antisymmetric second bending modes, which 
it could realize three-step speed regulation with different speed-thrust force charac-
teristics by switching the operation mode [65]. They also presented a novel 2-DOF 
planar linear USM which the stator of the motor was divided as two transducers and 
two isosceles triangular beams [66]. The operating principle of the USM and the 
formation of the elliptical trajectory of the driving foot were analyzed, and the vari-
able mode excitation method was illustrated. This motor can gain a maximum speed 
of 211.3 mm/s with thrust force of 3.15 N under an exciting voltage of 400 VP − P. A 
new sandwich type ultrasonic motor using combination of the first symmetrical 
and anti-symmetrical longitudinal modes was presented by them [67]. The working 
principle of the motor and the elliptical trajectory formation of the driving foot 
were analyzed. A new linear USM using hybrid mode of the first symmetric and 
anti-symmetric longitudinal modes was described [68]. The stator was constructed 
by two Langevin transducers in combination with two isosceles triangular beams. 
Zhou et al., constructed a rotary USM with rotationally symmetrical structure, 
which the stator consists of four connected sandwich-type transducers and eight 
driving feet [69]. With the driving frequency of 50.93 kHz and voltage 300 VP-P, the 
motor gave a maximal no-load speed of 157.9 r/min and a maximal output torque of 
11.76 mNm.

Lu et al., proposed a single-modal linear motor based on multi vibration modes 
which contained two kinds of PZT ceramics [70]. The linear motor works by 
exciting the transverse vibration mode of the PZT ceramic on the upper surface of 
stator elastomer and the shear vibration mode of PZT ceramics at two ends simul-
taneously. The no-load velocity and the maximum output force reach 169.4 mm/s 
and 1.1 N, respectively. Mizuno et al., developed a high-torque sandwich-type 
MDOF-Spherical USM using a new annular vibrating stator with a strong excitation 
structure [70]. The maximum torques of rotation around the X(Y)-axis and Z-axis 
were measured as 1.48 N·m and 2.05 N·m respectively. Moreover, the values for 
torque per unit weight of the stator were obtained as 0.87 N·m/kg for the X(Y)-axis 
and 1.20 N·m/kg for the Z-axis, separately. Ma et al., developed a compact motor in 
which the stator composed of two piezoelectric plates attached to a T-shaped steel 
body [72]. Two orthogonal bending modes were excited by driving one piezoelec-
tric plate and the reversed motion of the rotor could be obtained by driving the 
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piezoelectric plate on the opposite side. Maximum power of 2.3 mW and efficiency 
of 9% with a load of 0.8 mN m at a rotation speed of 27 rpm were obtained for a 
prototype stator with a size of 15 mm × 2.44 mm × 2 mm, operated at 44.8 kHz.

Ceponis et al., presented a numerical and experimental investigations of a 
multimodal TRUM, which is driven by four electric signals with phase difference of 
π/2., being able to generate up to 115 RPM rotation speed at constant preload force 
[81]. They further proposed a new flat cross-shaped USM, which operation prin-
ciple based on the first in-plane bending mode of the cross-shaped stators driven 
by four harmonic signals with phase difference of π/2 [82]. The advantages of the 
motor were high rotation speed, simple and scalable design, and the small space 
required for motor mounting wherein it can be directly mounted on the printed 
circuit board. Prototype achieved a maximum rotation speed of 972.62 RPM at 
200 Vp-p when the preload force of 22.65 mN was applied.

Tanoue et al., designed a novel ultrasonic linear motor equipped with a quadru-
ped stator that used the first longitudinal mode and the first and second bending 
modes [85]. A maximum driving speed of 148 mm/s and a maximum thrust of 294 
mN were achieved for a device with a total length of 20 mm and a weight of 5 g. 
One more linear USM that drives a slider rod inside the quadruped stator to realize a 
compact linear motion system was proposed by them [86]. Maximum no-load speed 
of 258 mm s-1 and maximum thrust of 490 mN were obtained with total length 
of the stator transducer of 20 mm and its weight of 4.9 g. Cheon et al., proposed a 
new type of ultrasonic rotary motor that could replace existing ultrasonic motors 
for driving camera zoom lenses and investigated experimentally [87]. Peng et al., 
presented a new kind of the rotary USM with a longitudinal vibration model of the 
Langevin transducer acting as the stator, while the rotor consisted of a shaft and 
spiral fins, the spiral fins working as an elastic coupling component by which it 
cannot change its direction because the spiral fins’ incline direction was fixed [88]. 
This motor can be used when one directional motion was required. Romlay et al., 
proposed an improved stator design of TWUSM using the comb-teeth structure 
which was expected to increase the overall efficiency [89]. Le et al., proposed a 
novel design methodology to optimize actuator configuration for linear USMs by 
considering the dynamic behavior of the stator in its operating environment, where 
it interacts mechanically with the moving stage and other peripheral components 
[90]. This helped to evaluate the actuator output performance parameters for 
design optimization. Pan et al., developed a novel low-friction type piezoelectric 
rotary motor based on centrifugal force with high speed, high power, and high effi-
ciency output, novel low-friction type piezoelectric rotary motor [91]. Yang et al., 
proposed a dual-rotor hybrid USM with four side panels without using the torsional 
piezoelectric ceramics, which was indirectly excited by four uniformly distributed 
side panels along the circumference of stator cylinder [92]. The stalling torque 
of the prototype is 8 mNm and the no-load speed is 140 r/min was obtained at 
44.7 kHz for a prototype with the size 27.2 mm x 27.2 mm x 70 mm, while the outer 
diameter of the stator cylinder was 20 mm. The experimental results indicate that 
the motor could operate in the first longitudinal and the second torsional coupled 
vibration modes transformed from the first longitudinal and the first bending 
vibration modes of four side panels.

Jiu et al., proposed a modal independent USM with dual stator based on opti-
mizing the location of a rotor and two stators which excited at the same mode [93]. 
Modal test showed the disparity between the modal frequencies of the stators was 
0.78%. The rotary speed of the USM is 75 revolutions per minute (clockwise) and 
65.8 revolutions per minute (anti-clockwise) with the maximum torque of 8.4 N.
mm at the voltage of 400 Vp-p. Li et al., proposed a traveling wave ultrasonic motor 
with a metal/polymer-matrix material compound stator which the stator was 
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composed of a metal ring and polymer-matrix teeth [94]. The main merits of the 
proposed ultrasonic motor were low cost, light weight, high processing efficiency 
and long life. Sanikhani proposed a new linear ultrasonic motor based on the 
orthogonal vibration modes of an elliptical shaped [94]. Based on the experimental 
results, the prototype has a no-load speed of 40 mm/s and maximum thrust force of 
1.55 N under excitation voltage of 70 Vp and preload of 12 N. Sun et al., developed 
a novel cylindrical ultrasonic motor easy to be fixed [96]. Two orthogonal B03 
bending vibration modes of the stator were generated with temporal shift of 90 to 
produce elliptical movement on the driving surface. The weight of the proposed sta-
tor and motor was only 2.56 and 4.1 g, respectively & it achieved a maximum speed 
of 170 r/min under working frequency of 31.6 kHz [96].

In order to reduce the driving voltage and gain better output characteristics of 
piezoelectric actuators, an eight-zonal piezoelectric tube-type threaded ultrasonic 
motor based on two second order bending modes was analyzed by Chu et al. [97]. 
The USM could output a stall force of about 5.0 N and a linear velocity of 4.9 mm/s 
with no load at the driving voltage of 40 Vpp. This USM with a compact structure 
and screw drive mechanism showed fine velocity controllability and had great appli-
cation in micro-positioning systems. Borodinas et al., described a USM that used 
the radial mode of excitation of the double ring’s stator [98]. The main goal of the 
proposed design was to increase motor performance using d33 ceramic polarization 
working in the radial mode. The motor could be driven by a simple harmonic signal 
and used for standard piezoceramic rings [98]. An ultrasonic linear motor with dual 
piezoelectric (PZT) actuators which a traveling wave motion was generated on the 
stator by a double-sided excitation of the stator of the USM, was developed by Yang 
et al. [99]. The simulation results showed the differences to the characteristics that 
are achieved by adjusting the critical parameters, such as the PZT boned positions, 
the excitation frequency and the preload, in order to derive the best design [99]. 
Aoyagi et al., analyzed an application of noncontact transportation utilizing the 
near-field acoustic levitation phenomenon, which is a rotary-type noncontact-
synchronous ultrasonic motor using acoustic viscous force [100]. Xu et al., proposed 
a novel rotary ultrasonic motor with two longitudinal transducers [101]. Only first 
order longitudinal vibration mode was used in the ultrasonic motor, which avoided 
the frequency degeneration of modal coupling ultrasonic motors. Mechanical 
performances showed that the motor can obtain rotary speed of 350 r/min and the 
maximum torque is 186 N·mm under the voltage of 300 Vp − p. Wu et al., fabricated 
& investigated a ring-shaped alumina/PZT vibrator to form a traveling-wave USM. 
The rotation speed of the alumina/PZT motor was larger than that of the stainless-
steel/PZT motor, meanwhile, it exhibited superior maximal-torque-to-voltage and 
maximal-output-power-to voltage ratios [102].

Stable operation is one of the most crucial requirements for resonators in vibra-
tory gyroscopes and ultrasonic motors, but eigenvalue splitting can deteriorate 
operation stability. Wang et al., proposed the estimation and elimination of eigen-
value splitting and vibration instability of resonators arranged in a fashion of ring-
shaped periodic structures [103]. To simplify the driving power of the inertia drive 
USM, a low-frequency USM driven by a 50 Hz sine wave was proposed. Wang et al., 
proposed a standing-wave trapezoidal ultrasonic linear motor, which consisted of a 
trapezoidal piezoceramic plate with slanted sidewalls and a clip fastener to achieve 
bidirectional linear motion [105]. A trapezoidal piezoceramic plate sized 22 x 8 x 
1.5 mm3 and provided a travel distance of 10.10 mm and an output force of 12.151 g 
at a driving voltage of 10 V was useful for compact products.

Patents were filed on by various inventors. For instance, 1) YANG et al., 
files a patent which described a multi-spoke-type ultrasonic motor, to increase 
output performance of the ultrasonic motor, prolong service life, and reduce 
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manufacturing costs; [106] 2) Rosenkranz et al., for U -shaped piezo motors; 
[107] 3) YANG et al., for ultrasonic linear actuation device includes a mover and a 
plurality of stator sets; [108].

Shi et al., proposed a deep-sea linear ultrasonic motor, which took in-plane 
expansion mode as the working mode [109]. The influences of static seal and 
the pressures of water on the performance of the ultrasonic motor were studied. 
Performance of prototype whose velocity was measured at 214 mm/s while the water 
pressure was 8 MPa and the voltage signal with a frequency of 72 kHz and a voltage 
magnitude of 200 V. Nakajima et al., proposed a MDOF-USM consisting of a spheri-
cal stator and a rotor of various shapes [110]. Chen et al., presented a hollow, linear, 
nut-type USM based on two degenerate, 3rd-order bending modes in the section 
plane of cylinders [111]. The motor with four PZT plates reached an upward speed of 
0.95 mm/s when the load force was 3 g, and the maximum thrust force was 0.35 N.

3.1.6 Improvements on linear USMs

Linear USMs are one of the most commonly used USMs among all because of 
the less complex design & effective driving method. Zheng et al. proposed a novel 
single-phase standing wave linear ultrasonic motor, which was made of a single PZT 
ceramic square plate with a circular hole in the center [60]. The driving mechanism 
of the motor was based on the combining the in plane expanding and bending 
modes to generate bidirectional linear motion [60]. They also proposed a miniature, 
ring-shaped, linear piezoelectric ultrasonic motor based on multimodal coupling 
operating in a single, in-plane mode [61]. This motor can produce a maximum 
driving force of 2.7 N, a no-load moving speed of 56 mm/s, and a high positioning 
resolution of 0.1 μm in open-loop control. It had advantages of simple structure, 
controllable micrometer-scale displacement, and large bidirectional working stroke 
indicated that the proposed linear motor had great potential for industrial applica-
tions for precise actuations [61]. Further a novel ring-shaped linear ultrasonic 
motor operating in orthogonal mode was proposed by them [62]. The motor was 
fabricated using a self-made high-performance PSN-PMS-PZT ceramic with the 
optimal composition, which had a high vibration velocity of 0.86 m/s. It exhibited 
a faster moving speed of 248 mm/s, a relatively large driving force of 2.6 N, and a 
high positioning precision of 0.2 m in open-loop control, indicating that the pro-
posed linear motor based on self-made PSN-PMS-PZT ceramic had a great potential 
application for precise actuations [62].

Bai et al., proposed a two-way self-moving linear USM, which composed of a 
diamond-shaped metal elastic body, a piezoelectric ceramic piece and a parallel 
guide rail [63]. By exciting the piezoelectric ceramic sheets on both sides of the 
elastic body, the first order bending vibration mode was excited to realize the 
bidirectional movement of the motor. Under the excitation of 200Vpp, the forward 
and reverse frequency of the ultrasonic motor is 18.18KHz and 18.07KHz, and the 
forward and reverse no-load speed was 43.76 mm/s and 43.14 mm/s, respectfully. 
Takemura et al., developed a prototype of linear ultrasonic motor with an embed-
ded preload mechanism [64]. The motor was driven bidirectionally by selective 
excitation of the second and third resonant vibration modes of the stator. The maxi-
mum velocity, thrust and power of the motor are 62.5 mm/s, 0.12 N and 1.01 mW 
respectively [63].

3.1.7 Energy harvesting type USMs

Wang et al., proposed an energy harvesting type ultrasonic motor in which two 
PZT rings were adopted in the new motor, one was bonded on the bottom surface 
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of the stator metal body to generate the traveling wave in the stator, and the other 
one was bonded on the outside top surface of the stator metal body to harvest and 
convert into the vibration-induced energy of the stator into electric energy [83]. 
They further developed a novel multifunctional composite device by using one 
single PZT ring, in which a piezoelectric actuator, a sensor and an energy harvester 
are embedded [84]. The piezoelectric ceramic ring was polarized into three regions 
to produce the actuating, sensing and energy harvesting functions.

3.1.8 Comprehensive approaches

Liu’s research group made a remarkable contribution in the development of 
novel ultrasonic motors in last 5 years [21–32]. their research manly focused on 
bonded type structure, USM with nanometer resolutions, symmetric & asym-
metric structure, multi degree of freedom motors & hybrid excitation. Some of his 
work from year 2015 to 2020 are described below: 1) A cylindrical traveling wave 
ultrasonic motor using bonded-type composite beam was proposed, a new exciting 
mode for L-B (longitudinal-bending) hybrid vibrations using bonded-type was 
adopted, which requires only two pieces of PZT ceramic plates and a single metal 
beam; [21] 2) A crossbeam ultrasonic motor with miniature size was developed, 
which used a bonded PZT ceramics to excite two first bending vibration modes that 
are orthogonal in space. The symmetrical crossbeam assured that two vibrations 
have the same resonance frequency, which solved the problem of mode frequen-
cies degeneracy; [22] 3) A new-type linear ultrasonic motor which combined two 
orthogonal bending vibration modes & eight pieces of PZT ceramic plates and a 
metal beam that includes two cone-shaped horns and a cylindrical driving foot was 
developed & the maximal velocity of the achieved by this motor was 735 mm/s and 
the maximal thrust 1.1 N; [23] 4) A ultrasonic motors having three degree of free-
dom using four piezoelectric ceramic plates in bonded-type structure was proposed. 
It took advantage of a longitudinal mode and two bending modes, different hybrids 
of which can realize three-DOF actuation [24]. Because of symmetric structure 
the resonance frequencies of the two bending modes were identical; 5) A novel 
single-mode linear piezoelectric ultrasonic motor based on asymmetric structure 
was proposed [25]. The motor adopts the combination of the first longitudinal 
vibration and the asymmetric mechanical structure to produce the oblique move-
ment on the driving foot which resulted in linear output motion under the friction 
coupling between the driving foot and the runner; 6) A two-degrees-of-freedom 
ultrasonic motor, which could generate linear motions with two DOF by using only 
one longitudinal–bending hybrid sandwich transducer, was proposed [26]. The 
results indicate that the maximum no-load velocities of the motor in horizontal 
and vertical directions are 572 and 543 mm/s under the preload of 100 N and the 
voltage of 300Vp − p respectively. The maximum output forces in horizontal and 
vertical directions are 24 and 22 N when the preload was 200 N; 7) A cantilever 
ultrasonic motor with nanometer resolution was designed, fabricated and tested, 
& it achieved an output speed of 344.35 mm/s when the frequency and voltage 
were 22.7 kHz and 200 Vp-p respectively [27]. The maximum output force was 8 N 
under the voltage and preload of 100 Vp-p and 50 N & high displacement resolu-
tion of 48 nm under the resonant working state was achieved; [8] a novel spherical 
stator multi-DOF ultrasonic motor using in-plane non-axisymmetric mode was 
proposed [28]. The mechanical output characteristics around X, Y and Z axes were 
measured under different excitations, pre-tightening forces and loading condi-
tions. The no-load rotary velocities of the prototype were 200 r/min, 198 r/min 
and 250 r/min and the maximum load torques were 10.8 Nm, 11.0 Nm and 12.3 Nm 
around X, Y and Z axes, respectively was achieved; [28] 9) a novel rotary stack 
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having advantages of high precision, high stiffness, high dynamic range, and simple 
structure, which was not only suitable for generating the precise rotary motion, but 
also for exciting high-frequency rotary vibration was proposed this was required in 
the applications of micro–nano manipulations; [29] 10) A novel bending-bending 
piezoelectric actuator driven by a single-phase signal was proposed, in which the 
two-dimensional 8-shaped trajectory of the driving tip moved the runner [30]. 
This prototype could rotate a pulley (22 mm in diameter) at the maximum speed 
of 1373 rpm forward and 1350 rpm backward under a preload of 9 N, respectively; 
11) A new method to reduce the volume of the traveling wave USM with ring-shape 
stator and improve its output speed, torque density, efficiency, and power density 
[31]. The USM obtained an output speed of 53.86 rpm under a preload of 0.69 N 
when the frequency and voltage were 24.86 kHz and 250 Vp-p, the maximum stall 
torque was tested as about 0.11 Nm. under the preload of 3.14 N. 12) A sandwich-
type multi-degree-of-freedom (MDOF) ultrasonic motor with hybrid excitation 
was proposed [32]. The prototype achieves no-load speeds of 109.8 r/min, 107.9 r/
min, and 290.8 r/min in the YOZ, XOZ, and XOY driving modes, respectively. The 
proposed motor employs only four pieces of lead zirconate titanate ceramics to 
achieve the MDOF rotations of a spherical rotor.

USMs are known for their precise motion & position control. Fen, et al., devel-
oped a novel integral terminal sliding-mode-based adaptive integral backstepping 
control (ITSMAIBC) to accommodate the impacts of inherent friction, hysteresis 
nonlinearity, model uncertainties and retain high tracking precision [73]. Chen 
et al., presented a new butterfly-shaped linear piezoelectric motor for linear 
motion [74]. In the closed loop condition the positioning accuracy of plus or minus 
<0.5 μm was experimentally obtained for the stage propelled by the piezoelectric 
motor. Xu et al., presented a novel standing wave ultrasonic stepping motor 
operated in radial vibration mode [75]. Metal blades of the stator and grooves of 
the rotor were designed for precise positioning. In order to improve the torque, the 
rotor was pushed by blades of the stator directly without any friction material.

Sarhan et al., proposed a tubular USM operating in single phase, with rectan-
gular plate having in plane out of plane vibration [79]. The maximum speed and 
torque of the tubular USM motor was 59 rpm and 0.28 mNm at 80 Vpp of applied 
voltage. It can be used where accurate control and high resolution at low speed is 
required. [They further proposed a motor working with coupled in-plane and out-
of-plane vibration modes of rectangular plate provided a large contact area between 
stator and rotor of motor which can reduce wear and enhance motor lifetime [80]. 
Overall dimension of prototype was 49x14 x2 mm, working frequency of motor 
was 49.6 kHz, no-load speed and stall force of motor are 122 rpm and 0.32 mN m at 
50 V, respectively.

Mustafa et al., proposed extremum seeking control (ESC) as an adaptive 
seeking technique with fast convergence and high robustness to optimize the USM 
performance by tracking maximum efficiency states [243]. The application of a 
non-sinusoidal periodic excitation voltage to induce a near-square-wave driving 
tip trajectory in linear ultrasonic motors (LUSMs) was proposed by Le et al. [244]. 
This would reduce lost power in the periodic driving tip motion, thereby, increas-
ing the output force and power of the LUSM. A high-efficiency Pseudo-Full-Bridge 
inverter with the aid of the soft-switching technology, which was accomplished 
by the resonance of the in-series inductance with the snubber capacitance was 
presented by shi et al. [245]. The efficiency of the whole drive increases by a factor 
of 1.25 after replacing the traditional inverter with the proposed one. A method for 
adjusting difference between the longitudinal and bending mode frequencies of the 
laminated composite stator was proposed by Li et al. [246]. The frequency adjust-
ment method was realized by changing the applied magnetic field which affected 
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the effective elastic modulus of the composite stator. The sensitivities of motor per-
formances on the pre-pressure were analyzed and a targeted optimization method 
was discussed by Chen et al. [247]. A simulation model with power dissipation and 
an integrated experimental facility with the preload adjustment device was adopted 
to analyze the laws from multiple perspectives. Peng et al., presented a new kind 
of the rotary ultrasonic motor with a longitudinal vibration model of the Langevin 
transducer acting as the stator, while the rotor consisted of a shaft and spiral fins 
[248]. A high-efficiency compensation method of the dead zone with the aid of 
the adaptive dither for the ultrasonic motor was proposed by Shi et al. [249]. The 
method not only could effectively compensate the dead zone and conveniently con-
trol the velocity, but also superior to the existing phase-difference-based method in 
terms of improving the efficiency of the ultrasonic motor. Zhu, et al., presented a 
novel linear piezoelectric motor suitable for rapid ultra-precision positioning [251]. 
By changing the input signal, the motor could work in the fast-driving mode as well 
as in the precision positioning mode. In the fast-driving mode, the motor achieved 
maximum no-load speed of 181.2 mm/s and maximum thrust of 1.7 N at 200 Vp-p. 
& in precision positioning mode, the motor acted as a flexible hinge piezoelectric 
actuator producing motion in the range of 8 μm. Li et al., proposed a novel dual-
frequency asymmetric excitation method for motors which can operate under 
traditional single-phase asymmetric or two-phase symmetric excitation modes 
[252]. The motor demonstrated acceptable temperature characteristics and operat-
ing stability under the proposed excitation method with calculated optimal fre-
quencies. Zhou et al., presented a novel linear ultrasonic motor with two operation 
modes wherein the stator of the motor was divided into two transducers and two 
isosceles triangular beams [253]. Dong et al., proposed a new equivalent circuit of a 
piezoelectric ring in radial vibration mode considering three types of fundamental 
losses, i.e., dielectric, elastic, and piezoelectric. Prototype achieved a maximum 
torque of 270 Nm [254].

3.2 Piezoelectric materials in USM

Piezoelectric materials used in USM, plays an important role in determining its 
performance. In the following table we tabulated some prominently used material 
& their properties (Table 3).

Wu et al. explored how elliptical shapes and force factors of the polymer-
based vibrators vary as several key structural parameters were changed [229]. 
Subsequently, attempt to improve the maximum torques of the polymer-based 
USMs by adjusting several key dimensions, and the reason for their relatively 
low output torques and power compared to the metal-based USMs were done. 
Further he employed a high-order bending mode in the polymer-based cylindri-
cal ultrasonic motor, because this mode yields a relatively high electromechanical 
coupling factor, which may lead to high output power of the motor. Additionally, 
in contrast with the low-order modes with only vertical nodal lines, the high-order 
mode has both horizontal and vertical nodal lines on the circumferential outer 
surface of the polymer-based vibrator [230]. Similarly Wu et al. also researched on, 
polyphenylene sulfide (PPS)-based bimodal piezoelectric motor. Considering the 
viscoelasticity of PPS, the electromechanical coupling analytical model was estab-
lished to describe the dynamics of the PPS-based motor by using the Kelvin-Voigt 
viscoelastic model. Based on the proposed model, the Taguchi method was adopted 
to match the resonance frequencies of the longitudinal and bending vibration. The 
performance test demonstrates that the PPS-based motor could yield the maximal 
torque of 2 mNm with the stator weight of 5.4 g [232]. Wang et al., fabricated 
a lead zirconate titanate (PZT) thick-film piezoelectric micro stator based on a 
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Sr. No. Material Properties Description Ref.

1 Poly(phenylene 
sulfide) (PPS)

low density, 
low elastic 
modulus, & low 
mechanical loss

It was used to fabricate an 
annular elastomer with teeth 
and was glued a piece of 
piezoelectric-ceramic annular 
disk to the bottom of the 
elastomer to form a vibrator.

[229]

2 Poly phenylene 
sulfide/alumina/PZT
triple-layered

low density, 
low elastic 
modulus, & low 
mechanical loss

A thin alumina disk 
sandwiched between the PPS 
vibrating body and PZT disk 
to compensate the stiffness 
was constructed. The 
maximum output torque and 
power of the triple-layered 
motors were 5 and 13 times 
the values of the double-
layered motors, respectively, 
due to the enhanced force 
factor and electromechanical 
coupling factor.

[232]

3 Lead-free CH doped 
(K0.5 Na0.5)NbO3 
(KNN) ceramics

kp:34.1% (±2%); 
kt:45.3% (±2%); 
Qm:3170 (±2%); 
Rz:8.6 Ω (± 3%); 
and tanδ:0.1%.

Piezoelectric motors 
fabricated using these 
ceramics achieved a velocity 
of 4.5 mm/s, vertical 
velocity of 3.02 mm/s, and 
output power of 2.93 mW 
with a negligible increase 
in temperature and high 
stability while driven.

[234]

4 c-axis crystal-oriented 
(Sr,Ca)2NaNb5O15 
(SCNN) plate

mechanical 
coupling 
coefficient of 
k31 = 7%, a 
mechanical
quality factor of 
Qm = 3200

The mechanical nonlinearity 
behavior was not observed, 
and the temperature 
dependences of the quality 
factor and the equivalent 
stiffness decreased. Motor 
shown the revolution speed 
100 rpm in torque from 
150 μN·m to 900 μN·m, 
the output power 7.5 mW, 
efficiency 3.5% at 657 μN·m 
and 109 rpm.

[240]

5 polyimide (PI) 
composite (1.41 g/
cm3) reinforced with 
carbon fibers (CF)

high elastic 
modulus, wear 
resistance, and 
suitable friction
coefficient.

To reduce the weight without 
decreasing the mechanical 
output performance this 
material was used for 
making Stator. Output 
Stall Torque = 0.22 Nm, 
Wear Resistance 
1.38 × 10−5 mm/N·m, reduce 
the weight over 83.6%

[237]

6 Mn doped 
0.27PIN-0.46PMN-
0.27PT single crystal

lower excitation 
frequency, lower 
driving voltage, 
and less power 
loss. Mechanical 
quality factors 
(Qm ~ 600)

USM using this material in 
single-mode was made. Motor 
speed up to 42.3 cm/s, a 
driving torque of 0.42 N cm, 
and an output power density 
of 0.45 W/cm3, under the 
driving voltage of 21 V was 
obtained. Used for making 
miniaturized and high-power 
motors.

[238]
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high-performance PZT thick film by electrohydrodynamic jet (E-jet) printing in 
order to simplify the manufacturing process and enhanced the performance of the 
piezoelectric stator. The thick-film micro stator produced a traveling wave with 
an amplitude of 345 nm, and the mechanical quality factor was found to be 736 
[236]. Zhao et al., proposed an oblate-type ultrasonic micro-motor with multilayer 
piezoelectric ceramic with chamfered driving tips. The micro-motor works based 
on the standing-wave principle and has a higher rotary speed than the traditional 
standing-wave. The experimental results showed that the rotary speed was around 
2000 r/min at the voltage of 20 Vp − p [242].

3.3 Thermal performance of USM

Performance of Ultrasonic motors in extreme temperature setting is the key 
challenge faced by various researchers. Thus, Nishizawa et al. developed spheri-
cal ultrasonic motor for space application & investigated for the durability to the 
radiant heat from the sun [256]. Drive performance was conducted for estimated 
duration more than 70 mins for higher than +120°C conditions. In order to maintain 
its drive performance, selection of piezoelectric elements & adhesive materials 
were significantly discussed. [256], further spherical USM was investigated in low 
temperature environment of −80°C, & approximately 60 minutes cumulative drive 
time was achieved by applying the same piezoelectric element and the adhesive 
materials utilized for high temperature conditions [257]. Shi et al., presented a 
general optimum frequency tracking scheme for an ultrasonic motor, which no 
longer required the amplitudes of the applied voltages to keep identical [258]. The 
mechanical quality factor of an ultrasonic motor was initially derived to describe 

Sr. No. Material Properties Description Ref.

7 single crystal lead 
magnoniobate titanate 
(PMNT)

excellent 
piezoelectric 
properties and 
temperature 
stability

The criterions of crystal 
orientation for ring type USM 
proposed. Cutting orientation 
for the crystal poled along 
[001]c direction has better 
electromechanical properties 
and process compatibility. 
This orientation improves 
the lateral piezoelectric 
coefficient from ∼90 
pC/N to ∼1201 pC/N and 
electromechanical coupling 
factor to 0.92.

[239]

8 Surface textured 
polyimide composites

High friction 
coefficient and 
high elastic 
modulus

To enhance conversion 
efficiency & tribological 
performance. The surface 
texture is capable of storing 
abrasive debris to protect 
the friction interface. 
Meanwhile, boundary effect 
of texture can increase 
friction coefficient. After 
the combination of the 
advanced PI friction material 
and the surface texture, the 
conversion efficiency of the 
USM increased by 82.8%.

[241]

Table 3. 
The list of piezoelectric materials for USM.
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Applications Description

Magnetic Resonance 
Imaging

To determine the effects of a USM on MR images in the high field MRI scanner 
(3 T) using signal-to-noise ratio (SNR) [268].

Magnetic Resonance 
Imaging

To evaluate the temperature increase caused by a 3.0-T magnetic resonance 
imaging (MRI) system on an ultrasonic motor (USM) used to actuate surgical 
robots in the MRI environment [269].

Magnetic Resonance 
Imaging

To quantify and compensate the geometric distortion of MR images as 
generated by the presence of USMs [270]

Magnetic Resonance 
Imaging

To investigate displacement force and torque applied to an ultrasonic motor at 
various bore locations using the designed apparatus presented in the Materials 
and Methods [271]

Magnetic Resonance 
Imaging

to study the types of image artifacts generated by the USM, provide 
comparison between them, introduce their sources, and provide compensation 
methods [272].

Magnetic Resonance 
Imaging

To demonstrate that image distortion related issues can be partly addressed 
by replacing metallic nonactive motor components from a resonant ultrasonic 
motor for non-metallic equivalents [273].

Magnetic Resonance 
Imaging

A new cable-driven robot for MRI-guided breast biopsy. A compact three 
degree-of-freedom (DOF) semi-automated robot driven by ultrasonic motors 
was designed with non-magnetic materials [274].

Wearable Walking assist 
device

The fundamental study for understanding and quantifying the muscle fatigue 
reduction effect of walking assist system which is applicable to individual 
characteristic using ultrasonic motors [275].

Wearable Walking assist 
device

A hip-joint support ambient walking assistive system consider a timing and 
amplitude of assist for effective and individual-oriented assist was investigated 
[276].

Medical Endoscope A spiral motion hollow micromotor operating in E02-mode traveling wave with 
outer diameter (3.6 mm) and length (3 mm), applied to an endoscope imaging 
system for driving optical lens, and a high quality image has been obtained due 
to its autofocus & autozoom function [277].

Low-frequency 
Sonophoresis system 
of transdermal drug 
delivery.

A new sonophoresis system of transdermal drug delivery, which involves 
the combination of an ultrasonic transducer and a linear ultrasonic 
motor, is designed to control permeability in in vitro LFS (Low frequency 
sonophoresis) [278]

Surgical Instrument 
with Torque Assist

To an ultrasonic surgical instrument including a torque assist feature to facilitate 
connection of the waveguide with an ultrasonic transducer [279].

Humanoid eyeball 
orientation system

A compact ring type 3-DOF USM fabricated to meet the specification of 
requirements for humanoid eyeball orientation system [280].

Underwater Robots A dual-rotor ultrasonic motor with double output shafts, compact size, and 
no electromagnetic interference, characterized, and applied for actuating 
underwater robots [281].

Deep Sea Drones A prototype of deep-sea drone by use of spherical ultrasonic motors for sensing 
marine bottom and make maps of the 4,000 m depth grades [282].

Single-gimbal control 
moment gyroscope

A structure-compacted single-gimbal control moment gyroscope, directly 
driven by an ultrasonic motor obtained wide-range closed-loop speed control 
of the gimbal from 0.2 mrad/s to 1.6 rad/s, which is the base of the high stability 
and high precision of the control moment gyroscope [283].

Continuously variable 
beam expander

An automatic continuously variable beam expander with two hollow ultrasonic 
motors as its actuators was used to expand a laser beam by between threefold 
and fivefold, and nanoscale positioning and high-precision beam shaping was 
achieved [284].

Two-axis Nonmagnetic
Turntable

Non-magnetic technology to carry out research on the pointing accuracy and 
motion control of the turntable [285].
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the loss, which further was also in proportion to the temperature rise. The opti-
mum frequency from the loss reduction viewpoint was then obtained, at which 
frequency the ultrasonic motor maintained the minimum loss and subsequently the 
minimum temperature rise. Sunif et al., presented heat energy modeling method 
for determining and characterizing of a piezoelectric stator profile that applied in 
a piezoceramic ultrasonic motor with the consideration of heat generated [259]. 
A thermal analysis was conducted in order to analyze the heat distribution on the 
stator & results showed different longitudinal deflection with the increment of the 

Applications Description

Morphing carbon fiber 
composite airfoil

A morphing carbon fiber composite airfoil concept with an active trailing edge 
enabled by an innovative structure driven by an electrical actuation system that 
uses linear ultrasonic motors (LUSM) with compliant runners, providing full 
control of multiple degrees of freedom [286].

Bio-Inspired Flapping 
Wing Rotor

To vary the flapping frequency rapidly during a stroke, an ultrasonic motor 
(USM) was used to drive the FWR.(Flapping Wing Rotor) [287].

Blade Free Drone A “Blade-Free drone” is a blimp style drone for safe indoor flying without the 
use of propellers or flapping wings. It uses micro blowers which can eject air 
through ultrasonic vibrations generated by piezoelectric device as an actuator 
[288].

LiDAR Systems A novel design of a compact standing-wave rotary USM based on a coupled 
axial-tangential mode, one power source, and a bulk piezoelectric actuator of a 
tube form was developed for autonomous vehicle [289].

An Optical Image 
Stabilization of Portable 
Digital Camcorders

A sensor-shift optical image stabilization (OIS) using a novel ultrasonic linear 
motors (ULMs) and a fuzzy sliding-mode controller (FSMC) was used to 
compensates the optical path deviation that was caused by user’s hand-tremor 
for avoiding image blurring [290].

Dual piezoelectric beam 
robot

To study the effect of the piezoelectric patches’ positions on the performance of 
the robot [291]

Haptic grippers Two piezometers, walking and traveling-Wave Piezoelectric Motors used as 
Actuator in haptic grippers were compared. Walking quasi-static motor was 
superior at low velocities & traveling wave ultrasonic motors were suitable 
when high velocity is required [292].

Microgripper 3-DOF microgripper driven by Linear Ultrasonic Motors (LUMs), with 
nanometer positional accuracy and an operational space in the millimeter scale 
was presented [293].

Variable Aperture A new type of piezoelectric actuator with a screw-coupled stator and rotor was 
developed to operate an aperture. The actuator and the aperture are integrated 
to control the luminous flux. This actuator is having high resolution, high 
speed, simple structure and compact size [294].

Coiled stator ultrasound 
motor (CS-USM)

The propagation velocity of elastic waves from the simulated the vibration 
displacement mode profile along a straight line acoustic waveguide was 
analyzed via three-dimensional finite element method [295]

Scanning probe 
microscopy

One coordinate piezoelectric stepping motor of the scanning probe microscopy 
(SPM) nanomanipulator, allocated to the positioning was designed [296].

Gravimeter A novel absolute gravimeter based on an ultrasonic motor was proposed in 
order to resolve the limitations related to free-fall absolute gravimeter, such as 
the complex structure and its large site [297].

photoacoustic 
microscopy

A PAM (photoacoustic microscopy) system was designed with a miniature 
ultrasonic actuator to significantly downsize the scanning probe 
(61 mm × 50 mm × 47 mm) [298]

Table 4. 
Listed of the research articles (2015–2020) on the applications of USM.
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temperature. Liu et al. studied the temperature variations of different components 
under different driving voltages for a high-power longitudinal-longitudinal hybrid 
type T shaped ultrasonic motor [260]. Cheng et al. described about hypothesis that 
a temperature gradient transverse to the wave propagating direction could signifi-
cantly increase the working velocity of acoustic streaming-driven motors which 
was then investigated by numerically solving the hydrodynamic equations & it was 
found that the velocity of the rotor only weakly depends on the transverse tempera-
ture gradient, the velocity increased by only ~8.8% for temperature difference of 
40°C between the rotor and the stator [261]. Nakazono et al., studied temperature 
dependence of USM in cryogenic conditions [262]. Ultrasonic transducer compris-
ing of a body & nut made of SUS304 & bolt made of titanium was fabricated & 
evaluated in the temperature range of 45 to 293 K. It was proved that when titanium 
was used for clamping bolt of the transducer, the motor can be driven without the 
regulation of the preload.] Lv et al., developed a novel theoretical model to investi-
gate the temperature field and output characteristics of a standing wave ultrasonic 
motor [263]. The results showed that the developed model can not only predict the 
temperature variation of motor in continuous operation but also evaluate the influ-
ence of surface roughness and various input parameters on output characteristics 
of motor.

We reviewed some literature review papers published on ultrasonic motors. We 
found author Peng et al. reviewed literature & provided summary on precision 
piezoelectric motors over long ranges based on the principle of repeating a series 
of small periodic step motions, named “frequency leveraged motors” [264]. Work 
was classified into three categories by different frequency driving methods, includ-
ing ultrasonic motors, quasi-static motors, and motors combined resonant and 
quasistatic operations. A comprehensive summary of piezoelectric motors, with 
their classification from initial idea to recent progress, was presented by Spanner 
and Koc [265]. This review also includes some of the industrial and commercial 
applications of piezoelectric motors that are presently available in the market 
as actuators. Peled et al., reviewed & provided summary of the design of high 
precision motion solutions based on L1B2 (first longitudinal and second bending 
modes) ultrasonic motors—from the basic motor structure to the complete motion 
solution architecture, including motor drive and control, material considerations 
and performance envelope [266]. Gao et al., presented recent progress in non-
resonance piezoelectric actuators with the working principles and properties of 
actuators and the piezoelectric materials and configurations, fabrication, and 
applications [267].

3.4 Ultrasonic motors applications

The Table 4 illustrates about various research articles published on the ultra-
sonic motor applications.

4. Industry 4.0

Kagermann in 2011 first published the main ideas of Industry 4.0 [299] and built 
the foundation for the Industry 4.0 manifesto published in 2013 by the German 
National Academy of Science and Engineering (acatech) [300, 301]. The concept 
of Industry 4.0 is based on the integration of information and communication 
technologies and industrial technology and is mainly dependent on building a 
Cyber-Physical System (CPS) to realize a digital and intelligent factory, in order to 
promote manufacturing to become more digital, information-led, customized, and 
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green. The purpose of Industry 4.0 is to build a highly flexible production model of 
personalized and digital products and services, with real-time interactions between 
people, products and devices during the production process [302]. Industry 4.0 
is a complex and flexible system involving digital manufacturing technology, 
network communication technology, computer technology, automation technol-
ogy and many other areas [302]. There are many technologies used to implement 
Industry 4.0 like Internet of things, cybersecurity, augmented reality, big data & AI 
Analytics, Autonomous robot, additive manufacturing, Simulation & Digital twin, 
System integration & cloud computing [303]. Among all this we will be considering 
a few of them for improving the performance of the USM & we will also predict, 
how USM can best fit into industry 4.0 scenario.

Digital twin plays a role of a bridge between cyber world & physical world 
[304]. A digital twin of USM can be made to monitor its development from design 
phase to end user. It can be further extended up to recycling & remanufacturing & 
complete cyber physical system can be implemented [305]. Number of components 
used, CAD drawing of mechanical & electrical component, materials & their 
properties can be embedded in the 3D model, this will be the first step in forma-
tion of the digital twin of USM [305]. Results of simulation of the motor in various 
environment to validate its performance & product design can also be embedded in 
the digital twin to enhance it further. Additionally, the environmental performance 
and impact can be simulated at this phase via life cycle assessment (LCA) module 
too, e.g., design for recycling, design for disassembly and design for remanufactur-
ing. The simulation results and disassembly are maintained in the product archive 
for future remanufacturing operations [305]. When the USM will be sold to an end 
user, he or she can update the product status via various Industry 4.0 enablers, e.g., 
mobile apps, smart tags, QR code, websites, and so forth. At this phase, the changes 
of product, e.g., location, ownership, upgrading, repairing and maintenance, can 
be updated and maintained inside the mirrored digital twin [305]. When the USM 
stops service, the users can update the digital status via mobile app or web service. 
He or she can contact a professional collector who has the expertise in this specific 
device. Failed USM can be evaluated, and testing can be applied to the individual 
component. Based on the examination results, the digital twin can be updated, and 
the proper operation can be planned accordingly, e.g., recovery at the component 
level, material level [305]. Developing a holistic digital twin of USM which cap-
tures data from the real world will be highly useful for tackling many challenges 
encountered during the design, modeling & optimization phase of the motor. Thus, 
action can be taken accordingly during the design phase in order to enhance the 
performance of the motor. So that, fully developed digital twin model of USM can 
be further utilized to simulate it for various types of application i.e., space explora-
tion, medical devices, manufacturing industries etc [1].

Large amount of the data is generated during simulation & validation or 
collected from the digital twin of the USM or from the end user. This data can be 
used for analyzing & enhancing the performance of the USM. Further this data 
can be used to create algorithm which can be used for precise motion & drive 
control of the motors thus improving its overall performance. Depending on the 
application, a variety of algorithms can be used such as artificial neural networks 
(ANN) [306, 307]. ML offers great potential for intelligent data analyses and 
is a key technology for autonomous robots, image and signal analysis as well as 
complex controls for sensor-actuator systems [306, 308]. ML techniques can e.g., 
contribute to condition monitoring, predictive maintenance, or process control of 
the motor [306–308]. Consequently, data generated during operation of USM can 
be effectively utilized as important information for various sensors installed in 
Industry 4.0 setup [300].
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Additive manufacturing can play a vital role in designing the complex shapes 
& size of the USM for different application. In AM components are manufactured 
by layer-by-layer deposition of the material [306, 309]. The possibility of mate-
rializing a complex digital model directly into a physical component without the 
need for shaping, maintaining and warehousing tools as well as manual interven-
tion ideally reflects the idea of digital production [306]. AM allows the production 
of geometrically complex, function-optimized and customer-specific products 
at any location equipped with a suitable AM machine and thus contributes to 
the flexibilization and globalization of production processes [306]. Further, 
AM offers potential business for making spare parts [306, 310]. By using AM, 
designer can create physical prototype of the components used in USM using 
different combination of materials to analyze its fit, form & function for desired 
application.

Using IoT (internet of things) and CPSs (cyber physical system) it is pos-
sible to monitor the motors in real time. Interconnection of motors & the data 
obtained while its running during real time makes it possible to react quickly, 
effectively to every instance. Sensors embedded in the motors can give real time 
feedback of the parameters for instance, temperature rise which can be further 
analyzed for improving the design & performance of the motor. These sensors 
can also provide data for the whole life cycle of the motor which can be thus 
utilized by the researchers & manufacturers to incorporate into the motors which 
will ultimately result into overall improvement of the motor thus saving time & 
energy [300].

Augmented reality is the key technology of Industry 4.0 [311]. It enables human 
to access digital information and overlay that information with the physical world 
[312]. Ultrasonic motors are used in various engineering application areas i.e., from 
medical field to aerospace. They are manufactured in various size & shapes [1]. 
Use of augmented reality (AR) will make the USM designer aware of the fit, form 
& function of the motor suitable for different types of application w.r.t volume & 
space availability in real world environment. Thus, by using AR technology they 
can effectively design the USM based upon the requirement.

5. Conclusions

This book chapter gives a brief summarization of the research articles from 
eclectic sources like journal, patents and masters-PhD thesis published in last 
5 years on piezoelectric ultrasonic motors. This article gives us the statistical analy-
sis of number of publications on ultrasonic motors with respect to year of publica-
tion, country of origin & list of top 10 research journal. It divides all the articles into 
different categories and highlights the challenges, opportunities & research carried 
out. It broadly classifies the research article in areas like new design, modeling & 
simulation, friction & wear, piezoelectric materials, thermal performance & USM 
applications. Further it introduces with concept of Industry 4.0 & its key enabling 
technologies. It explains how to apply industry 4.0 technologies like digital twins 
& simulations, big data & machine learning, Industrial internet of things, additive 
manufacturing & augmented reality to improve the design & performance of the 
USM and how USM can best fit in Industry 4.0 era. Ultrasonic motors have tremen-
dous potential for the improvement & Industry 4.0 technologies has tremendous 
potential to improve its design & performance on the other hand USM has many 
advantages & wide application areas which can be best suited for industry 4.0 
settings. Thus, both USM & industry 4.0 if amalgamated together can give us a 
remarkable output in future.
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