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Chapter

Big Data Framework Using 
Spark Architecture for Dose 
Optimization Based on Deep 
Learning in Medical Imaging
Clémence Alla Takam, Aurelle Tchagna Kouanou, 
Odette Samba, Thomas Mih Attia and Daniel Tchiotsop

Abstract

Deep learning and machine learning provide more consistent tools and powerful 
functions for recognition, classification, reconstruction, noise reduction, quan-
tification and segmentation in biomedical image analysis. Some breakthroughs. 
Recently, some applications of deep learning and machine learning for low-dose 
optimization in computed tomography have been developed. Due to reconstruction 
and processing technology, it has become crucial to develop architectures and/or 
methods based on deep learning algorithms to minimize radiation during computed 
tomography scan inspections. This chapter is an extension work done by Alla et al. 
in 2020 and explain that work very well. This chapter introduces the deep learning 
for computed tomography scan low-dose optimization, shows examples described in 
the literature, briefly discusses new methods for computed tomography scan image 
processing, and provides conclusions. We propose a pipeline for low-dose computed 
tomography scan image reconstruction based on the literature. Our proposed pipe-
line relies on deep learning and big data technology using Spark Framework. We will 
discuss with the pipeline proposed in the literature to finally derive the efficiency 
and importance of our pipeline. A big data architecture using computed tomography 
images for low-dose optimization is proposed. The proposed architecture relies on 
deep learning and allows us to develop effective and appropriate methods to process 
dose optimization with computed tomography scan images. The real realization of 
the image denoising pipeline shows us that we can reduce the radiation dose and use 
the pipeline we recommend to improve the quality of the captured image.

Keywords: Deep Learning, Computer Tomography Scan Image,  
Big Data technologies, Low Dose Optimization, Spark Framework

1. Introduction

Machine Learning (ML) technics are widely used in medical imaging in the form 
of many successful optimization, clustering, prediction and classifier algorithms. 
ML is a branch of artificial intelligence (AI) and has been used in a heterogeneity of 
applications. It is used to analyze complex data sets and find similarity, correlation 
and patterns between such data without explicit programming [1]. ML technology 
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is an important part of medical imaging research. Recently, a highly flexible ML 
method called deep learning (DL) has emerged as a disruptive technology to 
improve the performance of existing ML methods and solve previously difficult 
problems [2]. DL comes from the ML and computer vision communities. The key to 
the success of the DL-based method lies in its independence from the explicit imag-
ing model, backup of big data in a specific field, and optimization of image quality 
by learning features in an end-to-end manner [3]. Recently, it has been applied to 
natural language processing, facial recognition, speech recognition, image classifica-
tion, automatic diagnosis and other problems, and has achieved good results [4, 5]. 
Nowadays, DL allows many applications in CT and helps to improve interpretation 
speed, diagnostic accuracy and clinical efficiency. In addition, for research purposes 
and clinical purposes, CT is widely used for detection, diagnosis and image-guided 
treatment [6, 7]. CT is a well-known imaging technique that can observe the inside 
of objects non-invasively [8]. The main problem of CT scans is the optimization and 
minimization of radiation dose during the examination, especially in pediatric skull 
scans. The development and optimization of dosimetry protocols in pediatric skull 
scans is a huge social interest, as well as the medical community worldwide. Indeed, 
because the radiosensitivity is much higher than that of adults, patient-specific 
dosimetry has aroused great interest in pediatric skull applications. This is because 
children have a higher risk of cancer compared with adults receiving the same dose 
[9]. In view of the possible risk of X-ray radiation to pediatric patients, low-dose CT 
has attracted considerable interest in the field of biomedical imaging [10]. However, 
the main problem with low-dose CT is image noise and the quality of the results 
obtained. To overcome this shortcoming, DL with a convolutional neural network 
(CNN) algorithm is used. In fact, one of the goals of various DL and ML algorithms 
is to improve the consistency, quality and/or applicability of diagnostic data inter-
pretation. DL can improve the image quality during low-dose CT skull scans.

This chapter is an extended work done by Alla et al. in 2020 (https://doi.
org/10.1016/j.imu.2020.100335), and explains the work well. In this chapter, we 
mainly focus on the dose optimization in pediatric skull scans using CNN for DL 
and the image processing performed in [4]. We completed the expansion of the 
work in [4], giving more explanations and more papers. The workflow performs the 
following steps: image denoising, image segmentation, CNN, image retrieval, image 
diagnosis and storage. We described the importance of using big data technology 
(Spark framework) to build our proposed architecture through the MapReduce 
method. We will discuss with the pipeline and architecture discussed in the litera-
ture. The implementation of FCNN has been implemented. The rest of the work is 
arranged as follows: Section 2 introduces the latest status of published works in this 
field. In Section 3, theoretically, these works are fully utilized in our paper, and the 
architecture we propose is proposed. Section 4 introduces the implementation of 
our architecture and the different results obtained. Section 5 examines and dis-
cusses the results. Section 6 provides conclusions and future work.

2. State of the art

ML and DL are becoming established disciplines in a wide range of AI fields in 
terms of analyzing and using data-concentrated patterns [11, 12]. The DL model of 
CNN refers to a class of computers that can learn the hierarchical structure of ele-
ments by constructing high-level attributes from low-level attributes, thereby auto-
matically executing the process of element builders [13, 14]. In CT scan images, DL is 
usually used for the purpose of minimizing radiation exposure, noise images and CT 
image reconstruction. CT accurately uses gamma rays, X-rays, ultrasound or other 
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types of beams in conjunction with sensitive detectors to sequentially scan various 
parts of the human body [15]. However, obtaining excellent image quality from CT 
scans requires very high radiation doses to the patient during the examination.

In addition, because the radiosensitivity is much higher than that of adults, 
patient-specific dosimetry has aroused great interest in pediatric skull applications 
[16]. Therefore, in these cases, low-dose CT is essential. In the past few years, low-
dose CT biomedical imaging technology has become the focus of attention to allevi-
ate people’s concerns about exposure to X-ray radiation and the widely used CT scan 
[16]. According to [17], the author reviewed the dosimetry applications in pediatric 
diagnostic methods (including CT and nuclear medicine applications) in 2018.

Based on these challenges, a lot of work was done during the CT examination 
to reduce the radiation dose and maintain the quality of the captured images. In 
[18–20], the author proposed a news method to optimize the dose during CT scans. 
However, sometimes the reduction of radiation leads to a reduction in image qual-
ity. DL can overcome this problem through reconstruction technology and prevent 
useful information from being deleted into the original CT image. Many types of 
research and publications have been conducted in the literature. In order to reduce 
radiation dose, some work is based on traditional methods (protocol optimization), 
while others are based on DL and ML methods. In Ref. [21], the author proposes 
a method for optimizing radiation dose based on the study of the scheme used. 
Dalmazo et al. in [22] investigated the radiation dose of the CT program through 
the phantom and ionization chamber, and conducted the research in the university 
hospital. Their research is based only on equipment surveys. In 2012, Dougeni et 
al. reviewed the patient dose and optimization procedures in CT scans of adults 
and children [23]. They discussed and compared various literary works in CT dose 
optimization, but did not propose their method. Recently, in 2019, Smith-Bindman 
et al. conducted a study in 151 institutions in seven countries and proposed a good 
practical plan from more than 2 million adult CT examinations to optimize the 
dose of radiation during CT scans or other radiological examinations [24]. In 2020, 
Abdukkadir et al. conducted a study to optimize current local practices by investigat-
ing the radiation dose distribution of pediatric head and abdomen CT examinations 
and existing routine scanning procedures at the Kelanta Radiology Department 
in Malaysia [25]. In addition, Cui et al. in [26], proposed a work to optimize the 
dose and image quality of various exposure conditions and phantom diameters in 
pediatric abdominal CT scans. In [27], the authors evaluated the image quality of 
dose-optimized (DO)C spine CT in patients who can pull down their shoulders in 
an emergency to reduce exposure and improve image quality. Chen et al., based on a 
survey in 2017, observed how to improve image quality after CT scan [28]. Nowadays, 
many works based on DL or ML are studying how to reduce the radiation dose during 
CT scan inspection and maintain good resolution and the quality of captured images.

Regarding ML and DL in dose optimization, Kang et al. in 2017, developed an 
algorithm using CNN, which was applied to the window wavelet transform coef-
ficients of low-dose CT images. Their CNN is built with a residual learning architec-
ture, which can speed up network training and improve performance. The execution 
results of their proposed algorithm show that the complex noise patterns are effec-
tively eliminated in the CT images obtained from the reduced X-ray dose, and the 
wavelet domain CNN is effective in reducing the noise of low-dose CT [29]. Jung et 
al. performed a survey in 2017 on the latest applications of DL in CT and magnetic 
resonance imaging (MRI) biomedical image analysis in a range of tasks and target 
organs, with a focus on improving the accuracy and productivity of current diag-
nostic analysis [30]. They introduced some promising applications that have greatly 
changed the current flow of biomedical imaging [30]. However, they did not provide 
any workflow for the described method. Xuy et al. in [31] performed literature on 
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DL method to solve the problem of PET image reconstruction quality. In their work, 
an excellent clinical diagnosis can be obtained when the radiation dose during the 
capture of biomedical images using PET Scan is low [31]. They are based on encoder-
decoder residual deep networks with chain skip connections. Liu et al. evaluated how 
to use DL-based low-dose coronary CT angiography (CCTA) optimization algorithm 
for image noise reduction and image quality (IQ ) improvement [32].

Wurfl et al. proposed a new DL framework for 3-D CT reconstruction in [33]. 
They developed a new type of cone beam back-projection layer, which can effectively 
calculate the forward pass, and their framework can jointly optimize the volume 
and the correction steps in the projection domain. Although the performance is 
encouraging, their methods are limited to post-processing methods. Shan et al. 
launched a transmission path-based convolutional codec (CPCE) network in 2018, 
which performs low-dose CT noise reduction based on transfer learning in 2D and 
3D configurations within the framework of Generative Adversarial Networks (GAN) 
[34]. Tian et al., based on CNN, we combined the two networks to increase the 
width of the network, thereby obtaining more functions. This allows them to design 
a novel network called Batch Renormalized Noise Reduction Network (BRDNet) 
to eliminate a lot of noise on the image [35]. However, the author did not use CT 
images. Lee et al. developed a method using DL and its CNN which can analyze CT 
image tasks, such as object detection and semantic segmentation, or analyze other 
biomedical imaging modes, such as MRI and positron emission tomography (PET) 
scans [36]. However, their method is not based on low-dose CT. Recently, in 2019, Gu 
et al. combined random forest with dictionary learning to reduce CT scan radiation 
while ensuring the new low-dose CT super-resolution reconstruction and CT image 
quality [22]. In the same year, Meineke et al. proved that ML can comprehensively 
detect chest CT examinations with the potential of dose optimization [37]. They 
used 139 CT chest examinations to train and test different neural network layers and 
components, improved and optimized the construction model, and predicted the 
volumetric CT dose index (CTDIvol) based on the scanned patient indicators [37]. 
However, in the previous three works, the author did not provide a framework based 
on big data technology and DL to optimize the dose in children’s cranial CT scans.

According to these cited works, and as far as we know, no author does not provide a 
specific pipeline and big data architecture to use DL, Spark framework and MapReduce 
processing model to manage low-dose and efficient cranial CT scan images. This 
shortcoming is the main interest of this article. In fact, we have performed a pipeline 
that implements a full CNN (FCNN) for processing CT scan images and proposed 
a method to divide biomedical images into image blocks before applying FCNN. 
Therefore, we can use the Spark framework and MapReduce programming, and 
shorten the processing time to our proposed architecture. Our proposed architecture 
allows adjustment of the low dose in the low dose skull CT image for correct diagnosis.

3. Methods

Biomedical image processing is not new. Many software and programming 
methods always divide the image into many blocks for processing. In fact, dividing 
the image into small pieces, processing and merging them is a routine engineering 
work that will be used in any medical imaging pipeline. However, the new concept 
introduced in this article is to perform parallel processing, and for biomedical 
images, parallel processing is not actually completed. Traditionally we divide the 
image into many chucks. Instead of processing each block one by one, we use the 
Spark framework, but process many blocks or all blocks of the image at the same 
time. This section discusses our recommended workflow.
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As the use of CT in modern medicine continues to increase, people are beginning 
to pay attention to increasing the radiation dose from biomedical imaging to the 
community and the associated increase in the estimated risk of radiation-induced 
cancer [38]. The optimization of the scanning method is important, so the neces-
sary clinical information can be collected or captured while minimizing the radia-
tion dose [39]. The proposed general workflow for biomedical image denoising is 
presented in Figure 1.

In Figure 1, the first step includes data collection from various hospitals, medical 
centers, and laboratories. The data include the images of various medical applica-
tions. In this chapter, we used CT image to perform our work. The second step 
consist to choose the denoising techniques to use. We list various techniques and 
we used DL into this chapter. Feature extraction and selection are actually a critical 
step for image denoising using DL. Feature extraction methodologies evaluate the 
preprocessed images in order to extract the most prominent features which repre-
sent different sets of features based on the pixel intensity relationship statistics.

We proposed also in this part the best pipeline for CNN-based low-dose CT 
image diagnosis. Our proposed pipeline relies on four main parts: captured images, 
multiprocessing images, denoising and diagnosis, sharing or storage. Figure 2 
shows us all the parts of our proposed pipeline [4].

3.1 Image denoising theory in CT Scan: overview

Image denoising has always been a basic problem in the field of image processing 
[40]. For researchers, removing noise on the original captured image is still a chal-
lenging problem in digital image processing. Solving image details and eliminating 
random noise as much as possible is the goal of image denoising methods. Many 
noise reduction techniques rely on mathematical methods. The problem of image 
denoising cans mathematically modelled by Eq. (1) [41]:

 = +y x b  (1)

Figure 1. 
Proposed General workflow for biomedical image denoising.
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Figure 3. 
The structure of the CNN denoiser [42].

In Eq. (1), y represented the image noising, x the clean image, and b the noise. 
The noising is modelled by using an additive white Gaussian noise (AWGN) with 
standard deviation. The authors from [40–43], shown that the technics of denoising 
image rely on the transform domain and spatial domain. In this part, we based of 
work done in [44] and present the FCNN architecture used to applied in our work. 
Through mathematical explanation, the parameter update process in the CNN 
architecture is introduced in detail. In this section, we deal with the CNN model for 
image denoising.

The mathematical model of CNN that allows us to predict a clean version from 
noisy images based on the CNN architecture and training process will develop. 
Image noise reduction and noise removal with structure preservation function is 
one of the important tasks integrated in medical diagnostic imaging systems (such 
as X-ray, computer tomography (CT)). When the area considered by the patient is 
exposed under X-ray/CT, X-ray and CT images are formed and the resulting attenu-
ation is captured. The Figure 3 presents the CNN architecture for image denoising 
from [42, 43].

The CNN model usually has three layers: Input layer, hidden layer and output 
layer. Figure 4 shows a set of layers used to reduce image noise in the CNN architec-
ture. All descriptions of this architecture are presented in [4].

CNN method is based on the following idea: the model operates normally based 
on the local understanding of the image. By reusing the same parameters multiple 
times, it uses fewer parameters than a fully connected network.

In the “multi-processing” step in Figure 2, we propose our method based on 
a large number of research results provided by the CT low-dose optimization 
study using Deep CNN [12]. FCNN is composed of multiple layers of neuron-like 

Figure 2. 
Pipeline for low-dose CT image reconstruction. Using the Spark framework will only design  
multi-processing steps.
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computational connections, and has minimal step-by-step processing, thus achiev-
ing significant improvements [12]. In FCNN, each layer is completely connected to 
the upper layer, so there is no need to preserve spatial relationships. However, the 
training of FCNN is computationally demanding and requires a large number of 
data sets that may not be easily available. In order to solve the usually long training 
time problem, a large community of machine learning engineers and programmers 
is committed to research and development of more general and faster software plat-
forms for DL use cases. There are many examples, such as Keras, Pytorch, Torch, 
etc., which provide an exciting experience, a practical interface, and a fast and effi-
cient memory implementation to train and test many deep learning architectures 
[12, 45]. Nowadays, almost every framework includes convolution, deconvolution, 
max pooling, full connection, exit technology and batch normalization, and almost 
all popular optimization methods are implemented. Due to the lack of a powerful 
computer, we propose a DNN-based architecture in this chapter, which uses Spark 
to accelerate and improve CT low-dose image reconstruction. In this chapter, we 
set up a cluster with one master node and two slave nodes to reduce computation 
time. After the FCNN-based CT low-dose image reconstruction step, we can turn to 
the image diagnosis step in Figure 2, where the expert will view the new image and 
make a suitable diagnosis. In addition, low doses can be used to carry on the health 
of the patient. According to our pipeline technic, experts can always make correct 
diagnosis on captured images.

3.2 Suggested FCNN method for CT scan image denoising

The development and training of FCNN is still the subject of research. In the 
process, we use DL for low-dose CT image reconstruction. In the next session, we 
will use the best big data framework (Spark) with MapReduce to design the best 
architecture to build effective and appropriate technics for processing low-dose 
CT scan images. In this part, we will introduce the Spark architecture to handle the 
most important steps of the pipeline described in Figure 1. The main goal of this 
architecture is to see how to process CT images for reconstruction. Apache Spark 
is based on MapReduce for parallel programming and extends the data sharing 
abstraction called Resilient Distributed Data Set (RDD) [4, 5]. Spark’s DL has two 
main advantages: large-scale prediction and hyperparameter adjustment [5]. In 
addition, Spark Framework provides easy-to-use APIs to enable DL in a few lines 
of code in its Spark MLib library. Figure 5 shows us the Apache Spark architecture 
with different layers, and Figure 6 shows us the Spark architecture with FCNN for 
low-dose CT image optimization. In Figure 6, we can see how to use MapReduce 
programming and FCNN with back propagation and forward propagation to train 
the input image. We need to divide the image into a set of image blocks (with 
heavier images). Digital CT scan images are usually too large, thus increasing the 

Figure 4. 
Layers name for CT image denoising.
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complexity of processing. To overcome this complexity, we divide the image into 
many image blocks and process each part of the image independently. By using a 
programming parallel method like MapReduce, we can execute the processing of 
these blocks at the same time, thus saving processing time compared to traditional 
methods. Figure 6 outlines how FCNN reconstructs CT low-dose images into 
Spark. In fact, the Spark architecture allows us to develop effective and appropriate 
techniques to utilize a large number of images. Figure 6 outlines image processing 
in Spark. Training our FCNN model on the Spark framework involves two main 
steps (MapReduce programming), these steps will happen repeatedly and repeated 
until the total initialization error is small enough: Map and Reduce Step [4].

The scenario or concept of Figure 6 allows us to process many CT images at the 
same time and optimize the processing time. Using the Spark framework and using 
the DL architecture, the process of dose optimization in pediatric skull scans is 
complete, easy and fast.

Figure 6. 
FCNN-based spark map reduce pipeline for low-dose CT image reconstruction.

Figure 5. 
Apache spark features.
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4. Results

In this section, we are based on the architecture proposed in Figure 6 and imple-
ment our CT image noise reduction algorithm. Our goal is to use FCNN to learn Eq. 
(1) by minimizing function of equations presented in [4]. We treat the image from 
Kaggle [46] as a clean/real image: 𝑦𝑖. The data set contains information on 37 women 
and 45 men, so a total of 82 patients obtained 4615 CT images. However, due to 
insufficient computer capabilities, we reduced the number of images. Figure 7 shows 
us some noisy and clean images from the dataset. For each pixel, we will generate 
a noisy version by adding Gaussian white noise: 𝑥𝑖 = 𝑦𝑖 + b𝑖 (see Eq. (1)), where b 
where is a CT image, where each pixel is an independent implementation of zero-
mean Gaussian distribution, Has a standard deviation σ = 30.

Indeed, when we reduce the dose during the CT scan, the captured image is 
noisy. Here, we treat the noise as a Gaussian distribution. Since the sizes of CT 
images are different, we will consider random crops with a size of 180 × 180. As 
mentioned in [47], it is very important to initialize the weights in the process of 
training the model. The training loss and training PSNR according to number of 
epochs are also presented in this section. The PSNR is defined in [7, 48] by (2)
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Figure 7. 
Clean and noisy CT images.
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PSNR gives an objective measure of distortion; a higher PSNR (greater than 
30 dB) equals good image quality [7, 48]. Figure 8a and b respectively show the 
training loss and training PSNR according to several periods. We notice that in 
Figure 8, the training loss is close to 0.001, which proves the effectiveness of our 
training model, and the training PSNR is close to 33 dB (Figure 8b). Therefore,  
our DL method can efficiently denoise CT scan images. This effect can be seen  

Figure 9. 
Image noisy and obtained image denoising from our model.

Figure 8. 
(a & b) Results of training model. (a) Training Loss (b) Training PSNR.
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in Figure 9, where we show a noisy and denoised image. To implement this work, 
we use a computer with Ubuntu OS, Spark and work locally in one cluster that we 
built with one node. Table 1 present a summary of our different results.

5. Discussion

Nowadays, new workflows, pipelines, and architectures are always suggested 
in other areas to improve the field of biomedical imaging. This work proposes 
a workflow for CT low-dose image reconstruction relying on FCNN and Spark. 
The uniqueness of our workflow is that it gives the best techniques, methods 
and algorithms that can be used in every design phase. By using the features of 
MapReduce, we can perform parallel processing on the proposed architecture. 
Based on the observations in the previous section, our proposed pipeline and 
architecture have a new concept for low-dose optimization in pediatric skull 
scans. They can be customized and adapted to many other biomedical applica-
tions. In order to effectively understand our proposed architecture, we compared 
this architecture with another architecture suggested in the literature. In [8], the 
author proposed an architecture based on FCNN for CT low-dose optimization. 
However, his proposed architecture is not based on the Spark, so it cannot process 
many bio medical images at the same time. As shown in [8], we propose two main 
training steps: forward propagation, in which low-quality images are passed 
through the network, and the output is obtained by calculating a set of convolu-
tions. Backpropagation, where the derivative of the loss function with respect 
to each network parameter is calculated, and the calculated gradient is used to 
update these values to reduce the loss. Similarly, in [49], the author designed a 
DL architecture for CT reconstruction based on the plug-and-play framework, 
and obtained good results. Nevertheless, the authors did not use DL for low-dose 
reconstruction. They are only used for image noise reduction. As mentioned in 
Section 2, they did not rely on the literature of the Spark framework for CT low-
dose reconstruction using DL.

6. Conclusion

Deep learning has shown encouraging results in clinical studies because they can 
perform major reconstructions during a reduced-dose CT scan while maintaining a 
useful diagnosis. In this article, we outline some important research in the field of 
low-dose CT optimization, and study the problem of low-dose CT reconstruction 
from the perspective of DL. We propose a pipeline for low-dose image reconstruc-
tion using FCNN to Spark framework. To design our pipeline, we conducted a 
literature review to determine the most suitable method for CT low-dose image 

Number of epochs Training Loss PSNR (dB) Training Time (s)

20 0.021 22.6 423

50 0.014 26.7 850

100 0.011 29.8 1621

200 0.003 32.6 3112

Table 1. 
Summary of our Training simulation Model.
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optimization. Therefore, we are able to provide a way to finally obtain the best 
architecture for each stage of the pipeline. To outline our proposed method, we 
built a Spark architecture that uses FCNN for low-dose CT reconstruction. The 
results got prove the efficiency and effectiveness of our proposed method. The 
training data greatly affects the noise reduction performance of the model, which is 
a common problem in discriminative learning methods. In the future, we will build 
our own data set to improve the process of CT scan image noise reduction. We will 
also try to used quantum computing with deep learning for a large dataset in order 
to improve quantitatively the work done in this chapter.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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