
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

20

Reliability Prediction and Sensitivity Analysis of
Web Services Composition

Duhang Zhong, Zhichang Qi and Xishan Xu
School of Computer Science, National University of Defense Technology

P.R.China

1. Introduction

Web services are emerging as a major technology for deploying automated interactions
between distributed and heterogeneous applications. It aims at the transparent integration
of Web applications, based on XML-related standards (F.Curbera et al., 2002). Until now,
many research efforts have been made in the field of Web services composition. Moreover,
many composition languages have recently emerged, including BPEL, BPML or ebXML,
these languages focus on tracking and executing collaborative business processes by
business applications.
An important issue for business process built in this way is how to assess the degree of
trustworthiness, especially their performance and dependability characteristics. In this
paper we focus on reliability aspects, and propose an approach to predict the reliability of
web services composition.
Stochastic Petri Nets (SPNs) can be used to specify the problem in a concise fashion and the
underlying Markov chain can then be generated automatically. In this paper, we propose
the usage of CSPN model, an extension of stochastic Petri nets as a solution to the problems
of predicting the reliability of web service composition. The choice of Petri nets was
motivated by the following reasons: (a) Petri nets are a graphic notation with formal
semantics, (b) the state of a Petri net can be modelled explicitly, (c) the availability of many
analysis techniques for Petri nets.
The remainder of this paper is organized as follows. Section 2 provides general information
about BPEL and stochastic Petri net. In Section 3 we describe our reliability prediction
model and propose an approach to transform BPEL process into CSPN model. Section 4
discusses the result of this mapping on an example BPEL process models. Next, Section 5
discusses the sensitivity analysis of the reliability prediction model. Finally, we discuss the
related works and conclude this paper.

2. Background

2.1 BPEL

BPEL, also known as BPEL4WS, build on IBM’s WSFL (Web Services Flow Language) and

Microsoft’s XLANG (Web Services for Business Process Design). It combines the features of

a block structured process language (XLANG) with those of a graph-based process language

(WSFL). BPEL is intended to describe a business process in two different ways: executable

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
hw

eb
.c

om

www.intechopen.com

Petri Net: Theory and Applications

460

and abstract processes. An abstract process is a business protocol specifying the message

exchange behaviour between different parties without revealing the internal behaviour of

any of them. An executable process specifies the execution order between a number of

constituent activities, the partners involved, the message exchanged between these partners,

and the fault and exception handling mechanisms (Axel Martens, 2005).

A composite service in BPEL is described in terms of a process. Each element in the process

is called an activity. BPEL provides two kinds of activities: primitive activities and

structured activities. Primitive activities perform simple operations such as receive (waiting

for a message from an external partner), reply (reply a message to a partner), invoke (invoke

a partner), assign (copying a value from one place to another), throw (generating a fault),

terminate (stopping the entire process instance), wait (wait for a certain time), empty (do

nothing).
To enable the representation of complex structures, a structured activity is used to define the
order on the primitive activities. It can be nested with other structured activities. The set of
structured activities includes: sequence (collection of activities to be performed
sequentially), flow (specifying one or more activities to be performed concurrently), while
(while loop), switch (selects one control path from a set of choices), pick (blocking and
waiting for a suitable message). The most important structured activity is a scope. A scope is
a means of explicitly packaging activities together such that they can share common fault
handling and compensation routines. It consists of a set of optional fault handlers
(exceptions can be handled during the execution of its enclosing scope), a single optional
compensation handler (inverse some effects which happened during the execution of
activities), and the primary activity of the scope which defines its behaviour. (Sebastian
Hinz et al., 2005)
The sequence, flow, switch, pick and while constructs provide a means of expressing
structured flow dependencies. In addition to these constructs, BPEL provides another
construct known as control links which, together with the associated notions of join
condition and transition condition, support the definition of precedence, synchronization
and conditional dependencies on top of those captured by the structured activity constructs.
A control link between activities A and B indicates that B cannot start before A has either
completed or has been skipped. Moreover, B can only be executed if its associated join
condition evaluates to true, otherwise B is skipped. An activity X propagates a positive
value along an outgoing link L if and only if X was executed (as opposed to being skipped)
and the transition condition associated to L evaluates to true. Transition conditions are
Boolean expressions over the process variables. The process by which positive and negative
values are propagated along control links, causing activities to be executed or skipped, is
called dead path elimination.

2.2 Stochastic Petri nets
Petri Nets (PNs) is a modeling formalism used for the analysis of a wide range of systems
coming from different domains (e.g., distributed computing, telecommunication, control
systems, workflow management) and characterized by situations of concurrency,
synchronization, causality and conflict (Simona Bernardi, 2003). A PN is basically
characterized by places, transitions and weighted arcs defining its structure and it is
graphically represented by a directed bipartite graph in which places are drawn as circles,
transitions are drawn as bars, input and output arcs are drawn as arrows and inhibitor arcs
are drawn as circle headed arrows.

www.intechopen.com

Reliability Prediction and Sensitivity Analysis of Web Services Composition

461

In the original definition of PNs do not include time concepts; temporal specification in PN
models was introduced with different approaches, mostly by associating a delay to
transitions. In particular, in Stochastic Petri Nets (SPNs) transitions firing delays are
exponentially distributed random variables.
Generalized Stochastic Petri Nets (GSPNs) (Marsan A et al., 1995) are an extension of SPNs
proposed by M. Molloy in which stochastic timing is mixed with deterministic null delays.
In a GSPN model, there are two types of transitions: immediate transitions and timed
transitions. Immediate transitions are fired in zero time and used to model logical actions or
activities that require a negligible time; while timed transitions are characterized by
exponentially distributed firing delays.

Definition 2.1 A GSPN model is a 6-tuple
0

(, , , , ,)P T F W M λ , where P is a finite set of places.

T is a finite set of transitions partitioned into two subsets: IT (immediate) and DT (timed)

transitions, where transitions Dt T∈ are associated with rate λ . (*) (*)F P T T P⊆ U is a set of

arcs. 0 01 02 0{ , ,..., }kM m m m= is an initial marking. :W T R→ is a function defined on the set

of transitions. Timed transitions are associated with priority zero, whereas all other priority
levels are reserved for immediate transitions. The immediate transitions are drawn as thin
bars, while the timed transitions are drawn as rectangles.
SRNs are an extension of GSPNs (Gianfranco Ciardo et al., 1992), i.e., they include all the
features of GSPNs and many more such as guards, timed transition priorities, variable
cardinality arcs, halting conditions, and reward rates etc. None of these extensions enhance
the modelling power since every SRN model can be converted to a continuous-time Markov
chain(CTMC) and CTMCs are isomorphic to GSPNs(although SRNs allow calculation of
some reward-based measures which are not possible through GSPNs). Thus any system that
can be modelled by a SRN can also be modelled by a GSPN. However, SRNs and GSPNs
differ in the conciseness of model specification. SRNs permit a much more concise
description of system dependability than GSPNs do.

3. Reliability prediction using CSPN models

3.1 The CSPN model

A basic principle of the SOC paradigms is that each service composition can iteself become a
service that can be recursively used in other services’ composition. So we distinguish two
kinds of service (Vincenzo, 2005):
• Atomic services don’t require the services of any other resources to perform their tasks.

They include, for example, the services offered by basic processing and communication
resources but also the services offered by self-contained software components strictly
tied to a particular computing platform.

• A composite service is realized as a composition of other dynamically selected services
that it requires to perform its tasks.

From the reliability prediction viewpoint , the basic difference between these two service
types is that the atomic service provider can publish complete reliability information that’s
directly useful in a service composition’s reliability analysis, whereas a composite service
provider is only aware of reliability information concerning the part of service
implemention under its direct control. The provider must combine this information with the
reliability of the other dynamically selected services to get overall service reliability. Hence,
to support a service composition’s reliability prediction, composite service must provide
their service-usage profile, a description of the generated pattern of external service requests

www.intechopen.com

Petri Net: Theory and Applications

462

As pointed out by Jens Happe (Jens Happe&Viktoria Firus, 2005), most of the reliability
prediction models are based on Markov models. A Markov model can be seen as a finite
state machine, whose transitions are annotated with a probability of taking the transition
from its source states. These models can be appropriate when dealing with sequential
systems. However, as soon as a concurrent or parallel software system (e.g. web service
composition) has to be analyzed, different influences come into play, which can hardly be
expresses by finite state machines or the corresponding Markov model.
To represent the service-usage profile of web services composition, we propose the
Composite Service Process Net model(CSPN) based on the Stochastic Petri Net. In the CSPN
model, the basic activity is represented by timed transition, the structure is represented by
the immediate transitions and firing rules.
Definition 3.1 A CSPN model is a 4-tuple (, , ,)N s tΣ= Ω ,where:

• N is a GSPN or SRN;

• Ω is the set of external services’ operation;
• s represents the starting place of process, a token in the place indicates the service is

ready to start.
• t represents the finished place of process, a token in the place indicates the service is

terminated.
In the CSPN model, we can distinguish two types of transitions: operation transition
represents the invoke of external services; while internal transitions represent the internal
activity.

3.2 Transformation of BPEL process into CSPN model
The transformation details of primitive and structured activities into CSPN can be
illustrated by these examples in Fig.1. Each primitive activity is represented by one
transition. A sequence of activities is represented by the sequential concatenation of one
Petri net pattern for each of the activities. A flow activity provides parallel execution and
synchronization of activities, two immediate transitions are used to split the control flow
into concurrent threads and join them at the end. A switch activity supports conditional
routing between activities; the probability of each branch is represented by the weight of
immediate transition. BPEL's while activity supports iterative performance of a specified
iterative activity. The iterative activity is performed until the given Boolean while conditions
no longer holds true. A pick activity exhibits the conditional behaviour where decision
making is triggered by external events or system timeout. It has a set of branches in the form
of an event associated with it, and exactly one of the branches is selected upon the
occurrence of the event associated with it.
Control links are non-structural constructs used to express control dependencies between
activities. Each activity within a flow can be source and/or target of several links. Fig 2
depicts the mapping of a linked activity X. The activity X has two incoming and two
outcoming links. Each link is transformed into two places lst("link status true") and lsf("link
status false") reflecting the Boolean value of that link. Before the activity X can be executed,
all incoming links have to be evaluated with respect to the join condition. In Fig 2, the
subnet enclosed in the box labelled specifies the mapping of incoming links to activity X,
Here the join condition "AND" is defined. In general, each join condition over n links could
be expressed by immediate transitions. The subnet enclosed in the box labelled specifies
the mapping of outgoing links from activity X, once it is complete; it is ready to evaluate
transition conditions to determine the link status for each of the outgoing links.

www.intechopen.com

Reliability Prediction and Sensitivity Analysis of Web Services Composition

463

started

completed

activity

Primitive activity

activityA

activityB

started

completed

Sequence

started

completed

activityA activityB activityC

Flow

started

completed

activityA activityBactivityC

Switch

started

completed

activity

While

started

completed

activityA activityB activityC

Pick

Fig 1. Transformation of BPEL into CSPN

If the join condition evaluates to true, the activity X can start as normal. Otherwise, a fault
called join failure occurs. A join failure can be handled in two different ways, as determined
by the suppressJoinFailure attribute associated with activity X. If this attribute is set to "yes",
the join failure will be suppressed, as modelled by transition "sjf"("suppress join failure"). In
this case, the activity will not be activated and the status of all outgoing links will be set to
FALSE. If the activity lies on a path of an alternative branch that was not chosen, all
outgoing links have to be set to false too. In that case, the activity will not be activated.
Instead, it will get a token on the place negLink("propagate negative link values"). The
negLink pattern sets all outgoing links to FALSE and propagates the negLink token towards
the embedded activities. This is known as dead path elimination.

www.intechopen.com

Petri Net: Theory and Applications

464

3.3 Computing the reliability prediction
In the next step, we annotate the CSPN model with the dependability attributes, and derive
the reliability prediction of web service composition. There are three kinds of dependability
attributes to be annotated:
• For every timed transition which represents the execution of a primitive activity, we

annotate the execution time of the activity, which is assumed to be exponentially
distributed with mean.

• For every immediate transition which represents the control structure relationship (eg.
switch or while), we annotate to describe the weight assigned to the firing of enabled
immediate transition t.

In this paper, the reliability measure of a web service we use is the probability of its ability
to successfully carry out its own task when it is invoked. To associate the failure behaviour
with the activities, we extend the CSPN model transformed from BPEL in section 3.2. For
each transition representing the execution of an activity offered by a web service, two
immediate transitions added to represent the events that results produced by the activity are
correct and incorrect respectively, and have weights (the reliability of the web service) and
. This process is depicted as Fig. 3, Place "Fail" represents the failure of the BPEL composite
web service.

l s t l s f l s t l s f

l s t l s f

j c t j c f

s j f

n e g l i n k

l i n k 1 l i n k 2

l s t l s f

in

X
L

out

X L

X

< f l o w >

 < l i n k n a m e = " l i n k 1 " / >

 < l i n k n a m e = " l i n k 2 " / >

 < l i n k n a m e = " l i n k 3 " / >

 < l i n k n a m e = " l i n k 4 " / >

 . . .

 < a c t i v i t y X s u p p r e s s J o i n F a i l u r e = " y e s " >

 < t a r g e t s >

 < j o i n C o n d i t i o n >

 l i n k 1 A N D l i n k 2

 < / j o i n C o n d i t i o n >

 < t a r g e t l i n k N a m e = " l i n k 1 " / >

 < t a r g e t l i n k N a m e = " l i n k 2 " / >

 < / t a r g e t s >
 < s o u r c e s >

 < s o u r c e l i n k N a m e = " " / >

 < t r a n s i t i o n C o n d i t i o n >

 P (. . .)
 < / t r a n s i t i o n C o n d i t i o n >

 < s o u r c e l i n k N a m e = " " / >

 < t r a n s i t i o n C o n d i t i o n >

 N O T P (. . .)

 < / t r a n s i t i o n C o n d i t i o n >
 < / s o u r c e s >

 < . a c t i v i t y X >

Fig. 2. Transformation of linked activity

www.intechopen.com

Reliability Prediction and Sensitivity Analysis of Web Services Composition

465

started

completed

activity

started

completed

activity

Failsuccess

Fig. 3. Associate the failure behavior

The last step is to solve the stochastic Petri net model and compute the reliability prediction

of web service composition. In this paper, we use the Stochastic Petri Net Package (SPNP)

(C.Hirel et al., 2000) to computation of the reliability measures. SPNP is a versatile

modelling tool for stochastic Petri net model; it allows the specification of SPN models, the

computation of steady-state, transient, cumulative, time-averaged, and up-to-absorption

measures and sensitivities of these measures. The most powerful feature of SPNP is the

ability to assign reward rates at the net level and subsequently compute the desired

measures of the system being modelled. Here we assign reward rate 1 to all markings in

which there is no token in place "Fail"; all other markings are assigned a reward rate equal

to zero. And the reliability of BPEL composite web service is the expected reward rate in

steady state.

4. Examples

The following example shows how the structure of a BPEL process model is transformed

into a stochastic Petri nets model. Fig.4 is the schematic illustration of the example taken

from the section on structured activities of the BPEL 1.1 specification (BEA et al., 2003).

This example considers a simple loan approval web service that provides a port where

customers can send their requests for loans. Customers of the services send their loan

requests, including personal information and amount being requested. Using this

information, the loan service runs a simple process that results in either a “loan approved”

message or a “loan rejected” message. The approval decision can be reached in two different

ways, depending on the amount requested and the risk associated with the requester. For

low amounts (less than $10,000) and low-risk individuals, approval is automatic. For high

amounts or medium and high-risk individuals, approval is to be studied in greater detail.

The corresponding stochastic Petri nets model is depicted as Figure 5.

In this example, the following parameters must be assigned a value before the SRN model

can be evaluated:

• the reliability of each partner
• the probability weights of the immediate transitions

• the execution time of each primitive activity
We assume the values given in Table 1. Using the SPNP 6.0, we compute the reliability

prediction for the loan approval process as 0.948 94.8%Rel= =

www.intechopen.com

Petri Net: Theory and Applications

466

customer

<<receive>>
 receive

||Entry/approve(request)

<<reply>>
 reply

||Entry/approve():=approvalinfo

[request/amount>=10000]

[request/amount<10000]

[riskAssessment/risk='low']

[riskAssessment/risk!='low']

assessor

approver

 <<invoke>>
invokeAssessor

 <<invoke>>
 invokeApprover

<<assign>>

||Entry/riskAssessment:=check(request)

||Entry/approveInfo:='yes'

||Entry/approveInfo:=approve(request)

Fig. 4. Loan approval process

Reliability Value

0.98

0.99

0.99

Probability Value

0.4

0.6

0.3

0.7

Execution
time

Value

4

4

1

10

15

replyT

assignT

receiveT

_invoke AssessorT

_invoke Approver
T

CustomerR

AssessorR

ApproverR

{ 10000}pr amounts <=

{ 10000}pr amounts >

{ }pr risk low=

{ }pr risk high=

Table 1. The parameters of loan approval process

www.intechopen.com

Reliability Prediction and Sensitivity Analysis of Web Services Composition

467

receive AssignAssess Approval Reply

Failed

start

completed

Fig. 5. The SPN model of loanapproval process

5. Sensitivity analysis

In this section, we illustrate some sensitivity analyses that can be performed for our
reliability prediction technique: (1) as a function of the component service’s reliability and
(2) as a function of the usage profile. These analyses are exemplified using the loan approval
process example.

5.1 System reliability as a function of component services’ reliability
This analysis consists in varying the system reliability as a function of the component
services’ reliabilities with the purpose of identifying the component service that have the
greatest impact on the reliability of the composite service. The method consists of varying
the reliability of one component service at a time and fixing the others to 1. The probability
distribution of the usage profile is same as section 4. Fig 6 shows the graphs of the reliability

www.intechopen.com

Petri Net: Theory and Applications

468

of the composite service as a function of the component services’ reliabilities. Note that the
component service Approver has a large impact on the composite service’s reliability, as the
composite service invokes Approver more frequently than Assessor.

0

0.2

0.4

0.6

0.8

1

0.5 0.6 0.7 0.8 0.9 1

Assessor

Approver

Fig. 6. Reliability as a function of component services’ reliabilities

5.2 System reliability as a function of usage profile
This analysis consists in varying the system reliability as a function of the usage profile, as
depicted in the graphs of Fig 7. The reliabilities of component services are same as section 4.
If we vary the probabilities of low amounts and low risk from 0.3 to 0.9, the result is shown
in Fig 7. Note that the usage profile does not have much impact on the system reliability, as
the reliabilities between the component service Approver and Assessor are very close in this
simple example.

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pr{amount

s<10000}

Pr{risk=lo

w}

Fig. 7. Reliability as a function of service-usage profile

6. Related works

Approaches to the reliability analysis of service- and component-based system have been
already presented. According to the classification proposed by Goseva Popstojanova
(Goseva Popstojanova, 2001), they can be divided into two main categories: state-based
approaches and path-based approaches. For the sake of brevity, we provide here a brief
view of the approaches of greatest interest to the scope of this work.
State-based models (R.C.Cheung, 1980) use a control flow graph to represent the system
architecture. In such models it is assumed that the transfer of control among the components

www.intechopen.com

Reliability Prediction and Sensitivity Analysis of Web Services Composition

469

can be modelled as a Markov chain, with further behaviour of the system dependent only
on the current state. The architecture of software has been modelled as a discrete time
Markov Chain (DTMC), continuous time Markov Chain (CTMC), or a semi-Markov process
(SMP). These can be further classified into absorbing and irreducible. The former represents
applications that operate on demand which software runs that correspond to terminating
execution can be clearly identified. The latter is well suited for continuously operating
software applications, such that in real time control systems, where it is either difficult to
determine what constitutes a run or there maybe very large number of such runs if it is
assumed that each cycle consists a run.
Path-based models (S.M.Yacoub et al., 1999) compute the reliability of the system by
enumerating possible execution paths of the program. The model used in their approach is
the component dependency graph (CDG), this reliability analysis technique is specific for
component based software whose analysis is strictly based on execution scenarios. A
scenario is a set of component interactions triggered by specific input stimulus, and it is
related to the concept of operations and run-types used in operational profiles (D.Musa,
1993).
Vincenzo Grassi present an approach to the reliability prediction of an assembly of services,
that allows to take into account in an explicit and composition way the reliability
characteristics of both the resources and interaction infrastructures used in the assembly
(Vincenzo Grassi, 2005). What distinguishes their approach is the exploitation of a “unified “
service model that helps in modelling and analyzing different architectural alternatives,
where the characteristic of both “high level” services and “low level” services are explicitly
taken into consideration. Moreover, this work also point out the importance of considering
the impact on reliability of service sharing.
Apostolos focused on the development of a principled methodology for the dependability
analysis of composite Web Services (Apostolos Zarras et al., 2004). The first step involves a
UML representation for the architecture specification of composite web services. The
proposed representation is built upon BPEL and introduces necessary extensions to support
the dependability analysis. The automated mapping of this extended UML models to
traditional dependability analysis models such as Block Diagrams, Fault Trees and Markov
models is the core of the methodology.

7. Conclusion

In this paper, we introduce an approach to predict the reliability of Web services
composition. We present the transformation algorithms from BPEL, which is the de facto
industry standard of Web services composition specification, to CSPN models. Using the
model, we can compute the reliability prediction of the web service composition. The major
contribution of this paper is a reliability prediction technique that takes into account the
structure of BPEL specification and the concurrent nature of service composition. For future
work, we will transform all control-flow constructs of BPEL (including link, scope,
faultHandler etc) into Petri nets. And we will use our CSPN model to give a more precise
estimation of the reliability and performance of web service composition.

8. References

Axel Martens (2005), Analyzing Web Service based Business Processes. In Proc. of FASE'05,
Edinburgh, Scotland.

www.intechopen.com

Petri Net: Theory and Applications

470

Apostolos Zarras, Panos Vassiliadis, and Valerie Issarny(2004), Model-Driven Dependability
Analysis of Web Services, In Proceedings of the International Conference on Distributed
Objects and Applications (DOA),LNCS3291.

BEA, IBM, Microsoft, SAP AG, and Siebel Systems (2003), Business process execution
language for web services (version 1.1). ftp://www6.software.ibm.com/software/
developer/library/ws-bpel.pdf.

C. Hirel, B. Tuffin, and K. S. Trivedi (2000), SPNP: Stochastic Petri Nets. Version 6.0, in
Computer performance evaluation: Modelling tools and techniques, 11th
International Conference; TOOLS 2000, Schaumburg, Il., USA, B. Haverkort, H.
Bohnenkamp, C. Smith(eds.), LNCS 1786.

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana(2002),
Unraveling the web services web: An introduction to SOAP, WSDL, and UDDI,
IEEE Internet Computing, 6(2). pp86–93.

Gianfranco Ciardo, Jogesh K. Muppala and Krishor S. Trivedi (1992), “Analyzing
Concurrent and Fault-Tolerant Software using Stochastic Reward Nets”, Journal of
Parallel and Distributed Computing, Vol. 15, pp. 255-269.

H.M.W. Verbeek and W.M.P. van der Aalst(2005), Analyzing BPEL Processes using Petri
Nets, In Proceedings of the Second International Workshop on Applications of Petri Nets to
Coordination, Workflow and Business Process Management, Florida International
University, Miami, Florida, USA, pp.59-78.

JD.Musa (1993), Opeartional profiles in software reliability engineering, In IEEE Software
10(2).

Jens Happe, Viktoria Firus (2005), Using Stochastic Petri Nets to Predict Quality of Services
Attributes of Component-Based Software Architectures, the Tenth International
Workshop on Component-Oriented Programming, Glasgow, Scotland.

K.Goseva-Popstojanova, A.P. Mathur, K.S.Trivedi(2001), Comparison of architecture-based
software reliability models, In Proc. Of the 12th Int. Symposium on Software Reliability
Engineering (ISSRE 2001).

Marsan A, Balbo G, Conte G, Donatelli S, Franceschinis G (1995), Modelling with
Generalized Stochastic Petri Nets, Wiley, Chichester, England.

R.C.Cheung (1980), A User-Oriented Software Reliability Model, In IEEE) Transactions on
Software Engineering, volume 6(2), PP 118-125.

R.H. Reussner, H.W.Schmidit, I.H.Poernomo (2003), Reliability prediction for component-
based software architectures., Journal of Systems and Software, no.66,pp241-252.

Sebastian Hinz, Karsten Schmidt, and Christian Stahl (2005), Transforming BPEL to Petri
Nets, In Proc. 3rd Int. Conf. on Business Process Management (BPM 2005), LNCS 3649,
Nancy, France, pp. 220-235.

S.M.Yacoub,B.Cubic, and H.H.Ammar (1999), Scenario-Based Reliability Analysis of
Component-Based Software, In Proc. of the 10th ISSRE, Boca Raton, FL, USA.

Simona Bernardi (2003), Building Stochastic Petri Net models for the verification of complex
software systems, PHD Paper, Torino.

Vincenzo Grassi(2005), Architecture-Based reliability Prediction for Service-Oriented
Computing, Architecting Dependable Systems III, LNCS 3549,pp.279-299.

W-L,Wang, Y.Wu, M-H Chen(1999), An Architecture-based software reliability model, Proc.
IEEE Pacific Rim Int. Symposium on Dependable Computing, Hong Kong China.

Zhangxi Tan, Chuang Lin, Hao Yin, Ye Hong, and Guangxi Zhu(2004), Approximate
Performance Analysis of web Services Flow Using Stochastic Petri Net, In GCC
2004, LNCS 3251,pp.193-200.

www.intechopen.com

Petri Net, Theory and Applications

Edited by Vedran Kordic

ISBN 978-3-902613-12-7

Hard cover, 534 pages

Publisher I-Tech Education and Publishing

Published online 01, February, 2008

Published in print edition February, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Although many other models of concurrent and distributed systems have been de- veloped since the

introduction in 1964 Petri nets are still an essential model for concurrent systems with respect to both the

theory and the applications. The main attraction of Petri nets is the way in which the basic aspects of

concurrent systems are captured both conceptually and mathematically. The intuitively appealing graphical

notation makes Petri nets the model of choice in many applications. The natural way in which Petri nets allow

one to formally capture many of the basic notions and issues of concurrent systems has contributed greatly to

the development of a rich theory of concurrent systems based on Petri nets. This book brings together

reputable researchers from all over the world in order to provide a comprehensive coverage of advanced and

modern topics not yet reflected by other books. The book consists of 23 chapters written by 53 authors from

12 different countries.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Duhang Zhong, Zhichang Qi and Xishan Xu (2008). Reliability Prediction and Sensitivity Analysis of Web

Services Composition, Petri Net, Theory and Applications, Vedran Kordic (Ed.), ISBN: 978-3-902613-12-7,

InTech, Available from:

http://www.intechopen.com/books/petri_net_theory_and_applications/reliability_prediction_and_sensitivity_ana

lysis_of_web_services_composition

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

