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Chapter

Corrosion Wear of Pipelines
and Equipment in Complex
Stress-Strain State
Vladimir A. Pukhliy

Abstract

An analytical approach is described to determine the resource of structural
elements of hydropower, the nuclear industry, etc., under difficult stress conditions
when exposed to a corrosive environment with certain parameters (degree of
chemical activity, temperature, humidity, flow rate, etc.). The initial-boundary
problem for structural elements (bimetallic pipelines, centrifugal pumps) is con-
sidered with a decrease in the thickness of the element due to the influence of a
corrosive environment. In this case, the effect of a corrosive medium on an element
is described by a differential equation with certain initial conditions. Equations
describing the stress-strain state of an element are added to this equation. As the
first object, the corrosion wear of bimetallic pipelines of nuclear energy is consid-
ered. The solution to the problem is to integrate the ordinary differential equation.
The criterion for terminating the step-by-step process in time is the condition
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≤ σT½ �, where σT is the yield strength of the material of the structural

element. As the second object, the corrosion wear of the working blades of centrif-
ugal pumps is considered. The stress-strain state of the blade is described by a
system of partial differential equations of the 12th order, to the solution of which
the method of integral relations by Dorodnitsyn is applied. At the next stage, the
system of ordinary differential equations is integrated by the modified method of
successive approximations developed by Professor V.A. Pukhliy. At each stage, the
corrosion equation is attached to the solution of this problem. For bimetallic pipe-
lines, a specific example of calculation according to the described algorithm has
been implemented.

Keywords: general corrosion, pipelines of hydropower and nuclear energy,
corrosion cracking, two-layer shells, initial-boundary value problem, centrifugal
pumps, modified method of successive approximation

1. Introduction

In a number of industries, in particular in the chemical industry, axial and radial
turbomachines (compressors, superchargers, gas turbine installations, pumps)
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operate under aggressive environments, as a result of which rotor blades and disks
are subject to corrosion wear.

Pipelines of hydropower are subject to corrosion wear, as a result of which their
service life is significantly reduced. The problem of corrosion is especially acute in
nuclear energy. Pipelines are made of low-alloy pearlite-grade carbon steel with
stainless steel cladding on the inner surface. We also note that all parts and assem-
blies of the main circulation pumps in contact with the coolant, industrial cooling
water, and locking water are made of special steels that are resistant to corrosion.

The coolant of the first circuit of a nuclear reactor is not just pure water, but
water with boric acid dissolved in it (H3BO3), which contributes to significant
corrosion of metal in pipelines. Steam generators of nuclear plants are made of pipes
clad with anticorrosive austenitic surfacing.

It should be emphasized that the influence of the stress-strain state on the rate of
corrosion and erosion wear also becomes important. For example, a strain of 1%
increases the rate of corrosion of silicon iron in a 0.01% solution of sulfuric acid by
53% compared with undeformed metal [1].

Stress corrosion cracking of metals was previously studied. This phenomenon
takes place at certain critical (threshold) values of tension determined by the acting
stresses and potential energy. Stresses less than critical have an effect on general
corrosion without causing cracking.

The impellers of radial and axial turbomachines subjected to corrosion are usu-
ally thin-walled plates and shells. The problem of the durability of the elements of
the impellers of turbomachines is the problem of the durability of plates and shells
of a variable thickness over time, under the influence of an aggressive environment
that has certain parameters (degree of chemical activity, temperature, flow rate,
etc.), and the stress-strain state.

One of the first works in this direction was an article by Kornishin [2], in which
a joint solution of the corrosion equation is considered, which is a linear dependence
of the corrosion rate on stress and equations describing the stress-strain state of a
shell of variable thickness. The system of joint equations describing the behavior of
the shell in a corrosive medium is then solved in finite differences according to a
two-layer explicit scheme with a time step.

To date, there are a number of semi-empirical models that approximate corro-
sion wear taking into account the stress state. In Table 1, a number of models used
in the calculations are given [3].

Table 1 indicates: h is the depth of the wear layer; t is the time; σ and ε are stress
and strain; T is the temperature; k, α, β, and γ are constants; and φ (t) are some
functions.

The issues of corrosion wear of centrifugal fan elements were investigated in a
number of works by Pukhliy and Semenenko [1, 4, 5].

2. Corrosion cracking of bimetallic pipelines

Bimetallic structures are widely used in modern technology, in particular, in the
manufacture of bimetallic elements in nuclear energy. These are, first of all, bime-
tallic pipelines, bends, etc. These elements are characterized by high strength, heat
resistance, and corrosion resistance.

The structural elements of nuclear power units operate under complex loading
conditions, in particular, under conditions of exposure to aggressive environments.
In this regard, the determination of the time to destruction of structural elements
(resource) is the most important in the study of corrosion wear of elements that are
in a complex stress-strain state [6–8].
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In the present paper, an analytical approach to determining the resource of
structural elements of nuclear power units based on the theory of bimetallic shells,
taking into account the stress-strain state and corrosion wear of the elements, is
presented.

Consider a cylindrical bimetallic shell when exposed to a corrosive environment
[4]. Such tasks are very important in relation to the design of pipelines of nuclear
power plants (corrosion cracking).

The rate of change of thickness at a given point in the shell is taken in the form:

dh

dt
¼ F t,T, σð Þ, 0≤ t≤ tk, h>0: (1)

with the initial condition:

h x, y, 0ð Þ ¼ h0 x, yð Þ, (2)

where x, y are the normal coordinates of the middle surface of the shell; T is the
temperature; and σ is the function connecting the rate of change of the shell
thickness with the stress state at a surface point.

Note that F is a known function whose form is determined from experiment and
tk is the final point in time.

We study the effect of the stress state on general corrosion under the assumption
that the corrosion rate is a linear function of the stress intensity.

The equations of corrosion wear are written as follows:

dh

dt
¼ �αφ tð Þ 1þ kσij

� �

, 0≤ t≤ tk, h>0: (3)

Here σij is the stress intensity on the surface of the bimetallic shell; α and k are
finite coefficients; and φ tð Þ is a dimensionless function of time. As a rule, in most
practical cases φ tð Þ it is a constant or monotonically decreasing function.

It is necessary to add the equations of the theory of bimetallic shells to Eq. (1) or
(3). As a result, we obtain an unrelated problem of the theory of shells, in view of

Corrosion equation wear The law of the effect of stress on corrosion rate

dh
dt ¼ φ tð Þ 1þ kσð Þ

dh
dt

dh
dt ¼ φ tð Þcασ=RT

dh
dt

dh
dt ¼ α þ β σ � σ0ð Þ ε

dh
dt

dh
dt ¼ α � βe�γσ

dh
dt

Table 1.
Corrosion wear models.
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which it is possible to apply a finite-difference approximation in time to the solution
of Eq. (3).

Thus, the algorithm for solving the initial-boundary-value problem is reduced
to the joint solution of Eq. (3) under the initial conditions in Eq. (2) and the
system of equations for bimetallic shells, in the general case of variable thickness
under the corresponding boundary conditions. Moreover, at each time step from
Eq. (3), we obtain numerical values of the thickness of the structural element,
which are then used to construct spline functions [9]. Then the system of equations
of bimetallic shells is solved, from the solution of which the values of σij are
determined.

The criterion for terminating the step-by-step process is the following condition:
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≤ σT½ �,

where σT is the yield strength of the material of the structural element.
The resource of structural elements of nuclear power units as a whole is

determined by the summation of time steps.
We obtain the equilibrium equation of the bimetallic shell on the basis of the

Lagrange variational principle:

δΠ ¼ δΠ1 þ δΠ2 ¼ 0: (4)

Here δΠ1 is a variation of the potential energy of shell deformation; δΠ2 is a
variation of the potential of external forces, equal to the variations of the work of
external forces, taken with the opposite sign.

We write an expression for the variation of potential energy:

δΠ1 ¼
ð

a2

a1

ð

b2

b1

δa0A1A2dα1dα2 ¼
ð

a2

a1

ð

b2

b1

δa0dS1dS2, (5)

where a0 is the potential energy of deformation of a unit surface of the shell.
Integration extends to the entire surface of the junction (Figure 1): from α1 ¼ a1

to α1 ¼ a2 and from α2 ¼ b1 to α2 ¼ b2.

δa0 ¼
ð

δ1

0

σ
1ð Þ
1 � δε 1ð Þ

1 þ σ
1ð Þ
2 δε

1ð Þ
2 þ τ

1ð Þ
12 δγ

1ð Þ
12

h i

1� z

R1

� �

1� z

R2

� �

dz

þ
ð

0

�δ2

σ
2ð Þ
1 δε

2ð Þ
1 þ σ

2ð Þ
2 � δε 2ð Þ

2 þ τ
2ð Þ
12 δγ

2ð Þ
12

h i

1� z

R1

� �

1� z

R2

� �

dz

In the analysis, the following assumptions are used (Figure 1).
The curvilinear coordinate system coincides with the lines of the main curva-

tures. This coordinate system is a Gaussian coordinate system, it is orthogonal.
The position of the point that does not belong to the junction surface determines

the coordinates of the z-distance normal to the point from the junction surface (+ if
it is directed along the internal normal to the junction surface).
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The movement of u and v in are the direction of the tangents to α1 and α2 and w
in the direction of the normal to the junction surface.

Deformations of the junction surface are determined by relative elongations ε1
and ε2 in both the α1 and α2 directions, and by a shift γ12�a change in the angle
between the tangents to the lines α1 and α2 (before deformation π=2, after π

2 � γ12).
Eq. (5) can be represented as follows:

δΠ1 ¼
ð

a2

a1

ð

b2

b1

N1δε1 þN2δε2 �M1δχ1 �M2δχ2 þ Tδγ12 �Hδχ12ð ÞA1A2dα1dα2 (6)

Denote by:
p1, p2, p3 the projection of external surface forces, referred to the unit of the

junction surface, on the direction of the tangents to the lines of curvature α1 and α2
and normal to the junction surface;

Nα1
1 ,T

α1
1 ,Q

α1
1 ,M

α1
1 the normal, shear, shear forces, and bending moment for the

sectionα1 ¼ const;
Nα2

2 ,Tα2
2 ,Qα2

2 ,Mα2
2 the same for sectionα2 ¼ const.

Then the variation of the potential of external forces is equal to:

δΠ2 ¼ �
ð

a2

a1

ð

b2

b1

p1δuþ p2δvþ p3δw
� �

A1A2dα1dα2 �
ð

b2

b1

Nα1
1 δu

�

þ Tα1
1 δv�Mα1

1 δv1

þQα1
1 δw

�

A2dα2 �
ð

a2

a1

Nα2
2 δvþ Tα1

2 δu�Mα2
2 δv2 þQα2

2 δw
� �

A1dα1: (7)

Substituting Eqs. (6) and (7) in Eq. (4) we obtain:

Figure 1.
System of curvilinear coordinates on an undeformed junction surface.
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δΠ ¼�
ð

a2

a1

ð

b2

b1

∂N1A2

∂α1
�N2

∂A2

∂α1
þ ∂T2A1

∂α2
þ T1

∂A1

∂α2
� A1A2

R1
Q1 þ A1A2p1

� �	

δuþ

þ ∂N2A1

∂α2
�N1

∂A1

∂α2
þ T2

∂A2

∂α1
� A1A2

R2
Q2 þ A1A2p2

� �

δvþ

þ ∂Q1A2

∂α1
þ ∂Q2A1

∂α2
þ A1A2

N1

R1
þN2

R2

� �

þ A1A2p3

� �

δw




dα1dα2þ

þ
ð

b2

b1

N1 �Nα1
1

� �

δuþ T1 �
H1

R2
� Tα2

1

� �

δv

	

� M1 �Mα1
1

� �

δ
1

A1

∂w

∂α1
þ u

R1

� �

þ

þ Q1 þ
1

A2

∂H1

∂α2
� Qα1

1

� �

δw




A2dα2 þ
ð

a2

a1

T2 �
H2

R1
� Tα2

2

� �

δu

	

þ N2 �Nα2
2

� �

δv�

� M2 �Mα2
2

� �

δ
1

A2

∂w

∂α2
þ v

R2

� �

þ Q2 þ
1

A1

∂H2

∂α1
� Qα2

2

� �

δw




� H1 þH2½ � δwf gb1,a1�

� H1 þH2½ � δwf gb2,a2 þ H1 þH2½ � δwf gb2,a2 þ H1 þH2½ � δwf gb1,a2 :
(8)

Here Q1 and Q2 are the transverse forces arising in the shell:

Q1 ¼
1

A1A2

∂M1A2

∂α1
�M2

∂A2

∂α1
þH1

∂A2

∂α2
þ ∂H2A1

∂α2

� �

; (9)

Q2 ¼
1

A1A2

∂M2A1

∂α2
�M1

∂A1

∂α2
þH2

∂A2

∂α1
þ ∂H1A2

∂α1

� �

: (10)

The last four terms in Eq. (8) is the work of concentrated forces along the edges
of the shell α1 ¼ const, α2 ¼ const.

From Eq. (8), we obtain the equilibrium equation and boundary conditions.

2.1 Equilibrium equations

In the mechanics of a solid deformable body, equilibrium equations can be
obtained by making up for the main vector and the main moment of all the forces
acting on the element for the infinitely small element extracted from the shell under
the influence of external and internal forces (Figure 2). Here, the equilibrium
equations and boundary conditions are obtained from the variational Lagrange
principle in Eq. (4).

Note that in the case of dynamics, it is necessary to apply the variational
Hamilton-Ostrogradsky principle.

So, from the first integral of expression in Eq. (8), the first three equations of
equilibrium follow:

1

A1A2

∂N1A2

∂α1
�N2

∂A2

∂α1
þ ∂T2A1

∂α2
þ T1

∂A1

∂α2

� �

�Q 1

R1
þ p1 ¼ 0;

1

A1A2

∂T1A2

∂α1
�N1

∂A1

∂α2
þ ∂N2A1

∂α2
þ T2

∂A2

∂α1

� �

�Q 2

R2
þ p2 ¼ 0;

1

A1A2

∂Q 1A2

∂α1
þ ∂Q 2A1

∂α2

� �

�N1

R1
þN2

R2
þ p3 ¼ 0:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

(11)
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From the expressions in Eqs. (9)–(10), two more equations follow:

1

A1A2

∂M1A2

∂α1
�M2

∂A2

∂α1
þ ∂H2A1

∂α2
þH1

∂A1

∂α2

� �

� Q1 ¼ 0;

1

A1A2

∂M2A1

∂α2
�M1

∂A1

∂α2
þ ∂H1A2

∂α1
þH2

∂A2

∂α1

� �

� Q2 ¼ 0:

(12)

The sixth equation is an identity expressing the equality of the moments of all
forces acting on the element to zero relative to the axis normal to the surface of the
element junction:

T1 � T2 �
H1

R1
þH2

R2
¼ 0:

This equation was used to obtain Eq. (11).

2.2 Border conditions

The second and third integrals of expression in Eq. (8) give boundary conditions
for the edges α1 ¼ const and α2 ¼ const, that is, for lines of principal curvatures.

Figure 2.
Internal forces acting on the edge of the element.
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We emphasize that if one of the lines of the main curvatures is closed, then the
displacements along this line will be periodic functions.

2.3 Axisymmetric deformation of a cylindrical shell

We introduce the following notation (Figure 3): R is the radius of the surface of
the junction of a cylindrical bimetallic shell; l is the shell length; δ1 and δ2 are the
thickness of the inner and outer layers; х is the distance from the left edge of the
cylinder to the current section; σ1 and σ2 are normal stresses; τ13 and is shear stress.

M1 ¼
ð

δ1

0

σ
1ð Þ
1 zdzþ

ð

0

�δ2

σ
2ð Þ
1 zdz;N1 ¼

ð

δ1

0

σ
1ð Þ
1 dzþ

ð

0

�δ2

σ
2ð Þ
1 dz;

M2 ¼
ð

δ1

0

σ
1ð Þ
2 zdzþ

ð

0

�δ2

σ
2ð Þ
2 zdz;N2 ¼

ð

δ1

0

σ
1ð Þ
2 zdzþ

ð

0

�δ2

σ
2ð Þ
2 zdz;

Q1 ¼
ð

δ1

0

τ
1ð Þ
13 1� z

R

 �

dzþ
ð

0

�δ2

τ
2ð Þ
13 1� z

R

 �

dz:

Relative deformations of a surface located at a distance z from the junction
surface (Figure 4):

ε1z ¼ ε1 � zχ1; χ1 ¼ w00; ε2z ¼ ε2 � zχ2; χ2 ¼
w

R2 :

Normal stresses according to Hooke’s law:

σ
1ð Þ
1 ¼ E1

1� μ21
ε1 þ μ1ε2 � z χ1 þ μ1χ2ð Þ � 1þ μ1ð Þβ1T
� �

; σ 1ð Þ
2

¼ E1

1� μ21
ε2 þ μ1ε1 � z χ2 þ μ1χ1ð Þ � 1þ μ1ð Þβ1T
� �

; 0≤ z≤ δ1ð Þ

Figure 3.
Element of cylindrical shell.
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σ
2ð Þ
1 ¼ E2

1� μ22
ε1 þ μ2ε2 � z χ1 þ μ2χ2ð Þ � 1þ μ2ð Þβ2T
� �

; σ 2ð Þ
2

¼ E2

1� μ22
ε2 þ μ2ε1 � z χ2 þ μ2χ1ð Þ � 1þ μ2ð Þβ2T
� �

: �δ2 ≤ z≤0ð Þ

Power factors:

M1 ¼ c1ε1 þ c2ε2 �D1χ1 �D2χ2 � g;N1 ¼ B1ε1 þ B2ε2 � c2χ2 � f ;

M2 ¼ c2ε1 þ c1ε2 �D2χ1 �D1χ2 � g;N2 ¼ B2ε1 þ B1ε2 � c2χ1 � c1χ2 � f :

Here:

B1 ¼
E1δ1

1� μ21
þ E2δ2

1� μ22
; c1 ¼

1

2

E1σ
2
1

1� μ22
� 1

2

E2δ
2
2

1� μ22
;D1 ¼

1

3

E1δ
3
1

1� μ21
þ 1

3

E2δ
3
2

1� μ22
;

f ¼ E1δ1m

1� μ1
þ E2δ2m

1� μ2
; g ¼ 1

2

E1δ
2
1n1

1� μ1
þ 1

2

E2δ
2
2n2

1� μ2
;

m1 ¼
1

δ1

ð

δ1

0

β1tdz;m2 ¼
1

δ2

ð

0

�δ2

β2tdz; n1 ¼
2

δ21

ð

δ1

0

β1tzdz; n2 ¼
2

δ22

ð

0

�δ2

β2tzdz:

Equations of an infinitesimal element:

N1 1þ w0ð Þ½ �0 þ px ¼ 0;

Q 0
1 þ

M2

R2 þ N1w
0½ �0 þN2

R
þ pz ¼ 0;

M0
1 �Q1 ¼ 0:

9

>

>

>

>

=

>

>

>

>

;

Figure 4.
Deformation of surface junction shell.
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The problem of axisymmetric deformation of an elastic bimetallic cylindrical
shell for any relations between thicknesses, different mechanical characteristics of
the material of the layers, and arbitrary heating along the thickness and axial
direction is described by the equation:

wIV þ 2aw00 þ b2w ¼ θ xð Þ: (13)

a ¼ 1

R

c2B1 � c1B2 � 1=2B1RN1

D1B1 � c21
; b2 ¼ 1

R2

B2
1 � B2

2

D1B1 � c21
;

θ xð Þ ¼ B1

D1B1 � c21

c1
B1

N1 þ fð Þ00 þ 1

R

B2

B1
N1 þ 1� B1

B2

� �

f

� �

� g00 � pz

	 


:

Consider the case:

c1 ¼ c2 ¼ 0; μ1 ¼ μ2 ¼ μ;E1δ
2
1 ¼ E2δ

2
2:

Then the force factors are written as follows:

M1 ¼ �D w00 þ 1þ μð Þn½ �;N1 ¼ B ε1 � μ
w

R
� 1þ μð Þm

h i

;

M2 ¼ �D μw00 þ 1þ μð Þn½ �;N2 ¼ μN1 �
B

R
1� μ2
� �

wþmRð Þ:

Here

B ¼ δ
ffiffiffiffiffiffiffiffiffiffi

E1E2

p

1� μ2
;D ¼ 1

3

E1E2δ
3

1� μ2ð Þ
ffiffiffiffiffi

E1

p
þ

ffiffiffiffiffi

E2

p� �2 ;

m ¼ m1 þm2

ffiffiffiffiffiffiffiffiffiffiffiffi

E2=E1

p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi

E2=E1

p ; n ¼ 3

2

n1 þ n2
δ

;

k4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� μ2ð ÞB
4DR2

4

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 1� μ2ð Þ4
p

ffiffiffiffiffiffiffiffi

2Rδ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffi

E1

p
þ

ffiffiffiffiffi

E2

pp

ffiffiffiffiffiffiffiffiffiffi

E1E2
3
p :

In this case, instead of Eq. (13), we obtain the following equation:

wIV � RN1

D
w00 þ 4k4w ¼ 4k4B

1� μ2ð ÞB μN1 þ pzR
� �

� 4k4Rm� 1þ μð Þn00: (14)

The boundary conditions for bimetallic shells coincide with similar conditions
for homogeneous shells.

So, for a hard-pressed edge we get:

w ¼ ∂w

∂n
¼ 0

For the free edge we have:

M1 ¼ Q1 ¼ 0

2.4 Infinitely long cylindrical shell (piping)

We write the solution of the homogeneous Eq. (13) in the following form:
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w ¼ k1chαx cos βxþ k2shαx sin βxþ k3shαx cos βxþ k4chαx sin βx, (15)

k1, … k4 are arbitrary constants; α ¼
ffiffiffiffiffiffiffi

b�a
2

q

; β ¼
ffiffiffiffiffiffiffi

bþa
2

q

.

For an infinitely long shell in solution in Eq. (15),shαx andch αxð Þwe express it in
terms of exponential functions. As x ! ∞, terms containing exp. αx ! ∞ and
integration constants ! 0.

Then:

w ¼ k1A1 αx, βxð Þ þ T2A2 αx, βxð Þ þw0:

Here

A1 ¼ A1 αx, βxð Þ ¼ e�αx sin βx;A2 ¼ A2 αx, βxð Þ ¼ e�αx cos βx:

Example 1. Consider a bimetallic cylindrical shell under the influence of internal
pressure q and a corrosive medium (Figure 5).

In this case, the stress intensity is constant for all points of the shell and is equal
to [5]:

σi ¼
qR2

a

R2
c � R2

a

� Q

R2
c � R2

b

;Q ¼ q

1
E1
� 1

E2

 �

R2
b�R2

a

Rc�R2
a

E�1
1 R2

c � R2
b

� ��1 þ E�1
2 R2

b � R2
a

� ��1 ; (16)

Given Eq. (16), Eq. (3) takes the form:

dh

dt
¼ �αφ tð Þ 1þ kA

h

� �

; (17)

A ¼ q Rc � Rað Þ R2
a

R2
c � R2

a

�
1
E1
� 1

E2

 �

R2
b�R2

a

R2
c�R2

a

 �

1
E1 R2

c�R2
bð Þ þ

1
E2 R2

b�R2
að Þ
� 1

R2
c � R2

b

8

<

:

9

=

;

with the initial condition:

h 0ð Þ ¼ h0, h0 ¼ Rc � Ra: (18)

The initial thickness h0 is taken constant for all points of the two-layer shell.

Figure 5.
Geometry and loads acting on an element of two-layer shell: 1—outer layer; 2—inner layer; qa—internal
pressure.
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Eq. (17) with the initial condition Eq. (18) is integrated in quadratures:

h ¼ h0 � kP ln
h0kA

hþ kA
� α

ð

τ

0

φ tð Þdt, h>0: (19)

In case φ � 1, expression in Eq. (19) takes the form:

h ¼ h0 � αt� kP ln
h0 þ kA

hþ kA
, h>0: (20)

We note that Eq. (20) differs from linear equation h ¼ h0 � αt by the presence
of an additional term that takes into account the effect of the stress state of the two-
layer shell on the corrosion rate.

Let us determine the durability of a steel two-layer cylindrical shell with
Rc = 80.0 cm; h0 ¼ Rc � Ra ¼ 0:8 cm; h1 ¼ Rc � Rb ¼ 0:5 cm; h2 ¼ Rb � Ra ¼ 0, 3cm;

q = 10 kg/cm2; and [σT] = 2200 kg/cm2; E1 ¼ E2 ¼ 2 � 106 kg/cm2.

Corrosion rate, dh
dt

�

�

�

�

σi
¼ α ¼ 0:03 cm/year [2]; dh

dt

�

�

�

�

σi¼ σT½ � ¼ α1 ¼ 0:05cm/year [2],

where [σТ] is the allowable value of stress intensity at the end of the service life.
Given Eq. (3) we get:

k ¼ α1=α� 1

σТ½ � :

The final value of the thickness of the shell hT is found from the conditions of
achievement σij ¼ σT½ �:

hT ¼ A

σT½ � ¼ 0:315 cm:

Substituting the values of the coefficients in Eq. (3), we find the durability
T = 11.6 years. In conventional calculations, the durability is calculated by the

formula: T ¼ h0�hT
α1

, where T = 9.7 years.

In conclusion, it should be noted that in the general case it is necessary to solve
the unrelated problem of the theory of shells [10, 11], when at each step of integra-
tion over time it is necessary to solve the problem of the stress-strain state of a
bimetallic shell by a variable thickness, for which it is necessary to use methods of
integrating partial equations derivatives [12, 13].

3. The durability of the rotor blades of centrifugal pumps when exposed
to corrosion wear

The impellers of centrifugal pumps subjected to corrosion are usually thin-
walled plates and shells. The problem of the durability of the elements of the
impellers of centrifugal pumps is the problem of the durability of the plates and
shells of a variable thickness over time, under the influence of an aggressive envi-
ronment with certain parameters (degree of chemical activity, temperature, flow
rate, etc.), and the stress-strain state.

Figure 6 shows the layout of a centrifugal pump. Consider the durability of the
working blades of centrifugal pumps, which are a trapezoidal shell of variable
stiffness (Figure 7). The blade is subject to the combined action of centrifugal load
and corrosion wear.
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The rate of change of thickness at a given point of the blade is taken in the form
of a functional relationship:

dh

dt
¼ F t,T, σð Þ (21)

with the initial condition:

h x, y, 0ð Þ ¼ h0 x, yð Þ, (22)

Figure 6.
Scheme of centrifugal pump: 1—confuser; 2—impeller; 3—diffuser.

Figure 7.
Geometry and coordinate system of centrifugal pump blade.
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where x, y are the coordinates of the middle surface of the scapula; T is the
temperature; and σ is the function connecting the rate of change of thickness
with the stress state at a surface point. Function F should be determined from
experiment.

Assuming that the rate of change in corrosion wear is a linear function of stress
intensity, we write Eq. (21) in the form:

dh

dt
¼ φ tð Þ 1þ kσij

� �

: (23)

Eq. (23) must be supplemented with shell theory equations of variable thickness.
Omitting the intermediate calculations, we present a system of partial differen-

tial equations of the type Margherra [14] with respect to the normal deflection w
and the stress function F of the eighth order, describing the stress state of the blade
of variable thickness, taking into account the temperature effect:

D∇
4wþ 2

∂D

∂x

∂

∂x
∇

2wþ 2
∂D

∂y

∂

∂y
∇

2wþ ∇
2D∇

2w� 1� νð ÞL D,Wð Þ � h∇2
kF

¼ q� ∇
2MT;

1

B
∇

4F þ 2
∂

∂x

1

B

� �

∂

∂x
∇

2F þ 2
∂

∂y

1

B

� �

∂

∂y
∇

2F þ ∇
2 1

B

� �

∇
2F

� 1þ νð ÞL F,
1

B

� �

þ 1� ν2ð Þ
h

∇
2
kw

¼ � 1� νð Þ 1
h
∇

2 NT

B

� �

: (24)

Here T = T(x, y, z) is the temperature field of a general form; α is the coefficient

of linear expansion of the material of the blade. ∇2 and ∇4 harmonic and

biharmonic operators; and ∇
2
k metaharmonic operator:

∇
2
k ¼ k11

∂
2

∂x2 þ k22
∂
2

∂y2; L(D, w) and L F, 1
B

� �

are second-order linear differential

operators.
Power factors due to temperature exposure are recorded as:

NT ¼ αE

1� ν

ð

h=2

�h=2

T x, y, zð Þ dz;MT ¼ αE

1� ν

ð

h=2

�h=2

T x, y, zð Þ zdz: (25)

We introduce the dimensionless coordinate system:

ξ ¼ x=l; η ¼ y=b1; m ¼ l=b1 (26)

and dimensionless unknown functions

w ¼ w=h0; F ¼ F

E ∗ h20
: (27)

Here h0 is the characteristic thickness of the scapula and E ∗ is the modulus of
elasticity of the material of the blade at a temperature of T = 20°C.

The boundary conditions at the edges of the blade adjacent to the disks η1 ¼
k1mξþ 1 and η2 ¼ α k1mξþ 1ð Þ are considered as follows:
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w ¼ w,n ¼ F ¼ F,n ¼ 0: (28)

The boundary conditions at the inlet and outlet edges of the blade correspond to
the free edge. In this case we have:

Nξ ¼ Nξη ¼ Mξ ¼ 0;Qξ �
∂Mξη

∂η
¼ 0: (29)

The important issue is to specify the function of changing the blade thickness h =
h (x, y) in the process of erosion-corrosion wear.

In our studies, the function of changing the blade thickness was set in the form
of cubic splines [9].

In the general case, the blade thickness can be represented as two-dimensional
spline interpolations:

h ξi, ηið Þ ¼ h0
X

3

α¼0

X

3

β¼0

A
ijð Þ
αβ ξ� ξið Þα η� η j

 �β

i ¼ 0, 1, … , n; j ¼ 0, 1, … ,mð Þ: (30)

This function on each element of the surface of the scapula

ξi, ξiþ1; ηj, ηjþ1

h i

is a bicubic polynomial, continuous, and has continuous partial derivatives up to

and including ∂
4h ξ, ηð Þ
∂ξ2∂η2

, that is h ξ, ηð Þ∈ c2,2.

We represent the system of Eq. (24) in a dimensionless form:

L11 wð Þ þ L12 F
� �

¼ L1;

L21 wð Þ þ L22 F
� �

¼ L2,

)

(31)

where Lik i, k ¼ 1, 2ð Þ are dimensionless differential operators of the theory
of shells, referred to the lines of curvature of the surface; Lm m ¼ 1, 2ð Þ are
components of a given surface and temperature load.

The analytical solution of the systemof Eq. (31)with boundary conditions in Eq. (28)
is based on the application of the method of integral relations by Dorodnitsyn [13].

In accordance with the method, we write the initial system of Eq. (31) in
divergent form:

∂X

∂ξ
þ ∂Y

∂η
þ L ¼ 0, (32)

where X ¼ Xif g ¼ w, z1, z2, z3, F, z4, z5, z6
� �

;

Y ¼ B0X þ B1
∂X

∂η
þ B2

∂
2X

∂η2
þ B3

∂
3X

∂η3
;L ¼ BX þ b:

Through z1, … , z6 marked:

z1 ¼ w,1; z2 ¼ w,11; z3 ¼ w,111; z4 ¼ F,1; z5 ¼ F,11; z6 ¼ F,111:

In Eq. (32) Br ¼ bmn,sf g and B ¼ bmnf g;(s = 0, 1, 2, 3; m, n = 1, 2, ..., 8) are
transformation matrices.
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Following the method of integral relations of Dorodnitsyn [13], we look for a
solution to the system of Eq. (32) in the form of an expansion:

Xi ξ, ηð Þ ¼

P

n

j¼1
Xij ξð ÞP j ξ, ηð Þ i ¼ 3, 6, 7, 8ð Þ

P

n

j¼1
Xij ξð ÞP j,2 ξ, ηð Þ i ¼ 1, 2ð Þ

P

n

j¼1
Xij ξð ÞP j,22 ξ, ηð Þ i ¼ 4, 5ð Þ

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(33)

As approximating and weighting functions, we choose the Jacobi system of
orthogonal polynomials [15, 16] and their derivatives:

P j ξ, ηð Þ ¼ P1 ξ, ηð Þ
X

n

j¼1

η� 1þ αð Þr
2

� � j�1

;

P1 ξ, ηð Þ ¼ η4 � 2 1þ αð Þrη3 þ 1þ 4αþ α2
� �

r2η2 � 2α 1þ αð Þr3ηþ α2r4:

Herer ¼ 1þ k1mξ is the equation of the inclined side of the scapula.
Note that polynomials P j ξ, ηð Þ are orthogonal on the interval [η1, η2] and

forming a system of linearly independent functions, they satisfy the boundary
conditions at the oblique edges of the blade in Eq. (28).

We also emphasize that their derivatives Pj,2 ξ, ηð Þ and P j,22 ξ, ηð Þ also have the
property of orthogonality.

Restricting ourselves to the two-term approximation and also choosing power
polynomials P j ξ, ηð Þ and their derivatives as weight functions, after applying the
procedure of the method of integral relations to the original system of Eq. (32),
we obtain a system of ordinary differential equations of order 8n with variable
coefficients:

dXm

dξ
¼

X

s

ν¼1

Bν,mXν þ fm, m ¼ 1, 2, … , s (34)

It should be noted that in the general case there is no exact solution of such
equations in mathematics, with the exception of individual special cases, for exam-
ple, the Bessel equation.

Here, the modified method of successive approximations developed by Profes-
sor Pukhliy and published by him in the Academic Press [12, 17] is applied to the
solution of the boundary-value problem.

Later, the method was extended to the solution of initial-boundary value prob-
lems [4], and to accelerate the convergence of the solution, the method of telescopic
shift of the power series of K. Lanczos [18] was used. For this, we used the possi-
bility of representing any power series in terms of shifted Chebyshev polynomials
[15, 16]. For the first time, such an approach was presented in the works of V.A.
Pukhliy [19, 20].

In accordance with the method, variable coefficients Bν,m and free terms fm can
be represented through shifted Chebyshev polynomials:

fm ¼
X

q

r¼0

fm,r dr � r!ð Þ�1
X

r

k¼0

akT
∗

k ξð Þ, Bν,m ¼
X

q

r¼0

bν,m,rd
�1
r

X

r

k¼0

akT
∗

k ξð Þ (35)
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Here q is the degree of the interpolation polynomial and ak are coefficients of
expansion of ξr in a series of Chebyshev polynomials T ∗

k ξð Þ. In expressions of

Eq. (35), dr ¼ 1 for r = 0 and dr ¼ 22r�1 for the remaining r.
The general solution of the system of Eq. (34) has the form [10, 19, 20]:

Xm ¼
X

s

μ¼1

Cμ d�1
0 a0T

∗

0 ξð Þ δþ
X

∞

n¼1

Xm,μ,n

" #

þ
X

q

j¼0

tm,j,0 d jþ1 jþ 1ð Þ!
� ��1

X

jþ1

k¼0

akT
∗

k ξð Þ

þ
X

∞

n¼2

Xm,n,

(36)

where tm,j,0 ¼ fm,r for j = r; μ is the number of the fundamental function; and Cμ

are integration constants. In solution in Eq. (36), δ = 1 if m = μ and δ = 0 for the
remaining μ.

The first approximation Xm,μ,1 is obtained by substituting the zeroth approxi-

mation: d�1
0 a0T

∗

0 ξð Þ δ into the right-hand side of system dXm

dξ ¼
P

s

ν¼1
Bν,mXν.

Subsequent approximations are carried out according to the formulas:

Xm,μ,n ¼
X

β

j¼1

tm,μ,n,j dnþj�1 nþ j� 1ð Þ!
� ��1

X

nþj�1

k¼0

akT
∗

k ξð Þ;

Xm,n ¼
X

β

j¼1

tm,n,j dnþj�1 nþ j� 1ð Þ!
� ��1

X

nþj�1

k¼0

akT
∗

k ξð Þ, where β ¼ n qþ 3ð Þ Þ–2

(37)

The systems of fundamental functions in Eq. (37) are uniformly converging
series, and the coefficients tm,μ,n,j and tm,n,j are determined through the coefficients
of the previous approximation using recurrence formulas:

tm,μ,n,j ¼
X

s

ν¼1

X

q

r¼0

bν,m,rtν,μ,n�1,j�r nþ j� 1ð Þ�1
Y

r

γ¼0

nþ j� 1� γð Þ,

tm,n,j ¼
X

s

ν¼1

X

q

r¼0

bν,m,rtν,n�1,j�r nþ jð Þ�1
Y

r

γ¼0

nþ j� γð Þ:

The constants Cμ included in the general solution in Eq. (36) are found from the
boundary conditions along the inlet and outlet edges of the blade in Eq. (29).

Thus, the problem reduces to the joint solution of Eq. (23) and the system of
Eq. (24) under initial conditions in Eq. (22) and boundary conditions in Eqs. (28)
and (29). Moreover, at each time step, from Eq. (23) we obtain the numerical values
of the thickness, which are used to construct spline functions in Eq. (30). Then the
system of Eq. (24) is solved, from the solution of which the values σij are obtained.

The criterion for terminating the step-by-step process is the condition:

σij ≤ σT½ �,

where σT is the yield strength of the material.
The durability of the impeller element of centrifugal pumps is obtained by

summing the steps in time.
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4. Conclusions

The theory of corrosion wear of structural elements of hydropower and nuclear
energy in the form of plates and shells is developed taking into account the stress
state and corrosion wear.

Numerous factors affecting the speed of the corrosion wear process (degree of
aggressiveness of the media, temperature, humidity, etc.) are taken into account in
a generalized way by drawing up a differential equation for the rate of change of the
thickness of the impeller element.

The criterion for the ultimate state of structural elements is the achievement by
the structural element of the yield strength of the material σT.

An algorithm has been developed for solving the problem of corrosion wear of
bimetallic pipelines of nuclear energy, taking into account the stress-strain state of
the elements.

An algorithm has been developed for the analytical solution of the problem of
corrosion wear of rotor blades of centrifugal pumps based on a combination of the
method of integral relations and the modified method of successive approximations
in displaced Chebyshev polynomials.
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