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Model Checking of Time Petri Nets 

Hanifa Boucheneb and Rachid Hadjidj 
Department of Computer Engineering, École Polytechnique de Montréal 

Canada 

1. Introduction 

To model time constraints of real time systems various time extensions are proposed, in the 
literature, for Petri nets. Among these extensions, time Petri nets model (TPN model) is 
considered to be a good compromise between modeling power and verification complexity. 
Time Petri nets are a simple yet powerful formalism useful to model and verify concurrent 
systems with time constraints (real time systems). In time Petri nets, a firing interval is 
associated with each transition specifying the minimum and maximum times it must be 
maintained enabled, before its firing. Its firing takes no time but may lead to another 
marking. Time Petri nets are then able to model time constraints even if the exact delays or 
durations of events are not known. So, time Petri nets are appropriate to specify time 
constraints of real time systems which are often specified by giving worst case boundaries. 
This chapter reviews the well known techniques, proposed in the literature, to model 
check real time systems described by means of time Petri nets.  
Model checking are very attractive and automatic verification techniques of systems (Clarke 
et al., 1999). They are applied by representing the behavior of a system as a finite state 
transition system (state space), specifying properties of interest in a temporal logic (LTL, CTL, 
CTL*, MITL, TCTL) and finally exploring the state space to determine whether they hold or 
not. To use model checking techniques with timed models, an extra effort is required to 
abstract their generally infinite state spaces. Abstraction techniques aim to construct by 
removing some irrelevant details, a finite contraction of the state space of the model, which 
preserves properties of interest. For best performances, the contraction should also be the 
smallest possible and computed with minor resources too (time and space). Several 
abstractions, which preserve different kinds of properties, have been proposed in the 
literature for time Petri nets. The preserved properties can be verified using standard model 
checking techniques on the abstractions (Alur & Dill, 1990); (Penczek & Polrola, 2004); 
(Tripakis & Yovine, 2001). 
This chapter has 6 sections, including introduction and conclusion sections. Section 2 
introduces the time Petri nets model and its semantics. Section 3 presents the syntaxes and 
semantics of temporal logics LTL, CTL, CTL* and TCTL. Section 4 is devoted to the TPN state 
space abstractions. In this section, abstractions proposed in the literature are presented, 
compared and discussed from state characterization, agglomeration criteria, preserved 
properties, size and computing time points of view. Section 5 considers a subclass of TCTL 
temporal logics and proposes an efficient on-the-fly model checking. 

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria
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2. Time Petri nets 

2.1 Definition of the TPN  

A TPN is a Petri net with time intervals attached to its transitions. Formally, a TPN is a tuple 

ℵ = (P, T, Pre, Post, m0, Is) where  

• P and T are finite sets of places and transitions such that P ∩ T =∅,  
• Pre and Post are the backward and the forward incidence functions: P×T → Ν1,  

• m0 is the initial marking: P → N,  

• Is2: T → Q+ × (Q+ ∪ {∞}) associates with each transition t an interval called the static 
firing interval of t.  

Let Int be an interval, ↓Int  and ↑Int denote respectively its lower and upper bounds.  

Let M be the set of all markings of a TPN, m ∈ M a marking. 
A transition t is said to be enabled in m, iff all tokens required for its firing are present in m, 

i.e.: ∀p∈ P, m(p)≥ Pre(p,t). We denote by En(m) the set of all transitions enabled in m.  

Two transitions t and t’ of En(m) are in conflict for m   iff  (∃p ∈ P, m(p)< Pre(p,t) + Pre(p,t’)). 
If m results from firing some transition t from another marking, New(m,t) denotes the set 
of all transitions newly enabled in m, i.e.:  

New(m,t) = {t’ ∈ En(m) | t’ = t ∨ (∃p ∈ P, m(p)-Post(p,t) < Pre(p,t’))}. 

Note that only one instance of each transition is supposed to be active at the same time. A 
transition which remains enabled after firing one of its instance is considered newly 
enabled. 

2.2 The semantics of the TPN  

There are two known definitions of the TPN state. The first one, based on clocks, associates 
with each transition t of the model a clock to measure the time elapsed since t became 
enabled most recently (Yoneda & Ryuba, 1998); (Boucheneb & Hadjidj, 2004). The TPN clock 
state is a pair s=(m,v), where m is a marking and v is a clock valuation function, v: En(m) → 
R+. The initial clock state of the TPN is s0 = (m0,v0), where m0 is the initial marking and v0(t) = 
0, for all t in En(m0). The TPN state evolves either by time progression or by firing 
transitions. When a transition t becomes enabled, its clock is initialized to zero. The value of 
this clock increases synchronously with time until t is fired or disabled by the firing of 
another transition. t can fire, if the value of its clock is inside its static firing interval Is(t). It 
must be fired immediately, without any additional delay, when the clock reaches↑Is(t). Its 

firing takes no time but may lead to another marking. Formally, let θ∈R+ be a nonnegative 
reel number, t a transition of T, s=(m,v) and s’=(m’,v’) two clock states of a TPN.  

We write 'ss ⎯→⎯θ  iff state s' is reachable from state s after a time progression of θ time 

units, i.e.: m=m’, ∀t∈En(m), v(t)+θ ≤↑Is(t) and∀t∈En(m), v’(t)=v(t)+θ. s’ is also denoted s+θ. 

We write 'ss
t⎯→⎯  iff state s' is immediately reachable from state s by firing transition t, i.e.: 

∀p∈P, m’(p)=m(p)-Pre(p,t)+Post(p,t), t∈En(m), v(t)≥↓Is(t) and ∀t’∈En(m’), v(t’)= if 

t’∈New(m’,t) then 0 else v(t’). 

                                                 
1 N is the set of nonnegative integers. 
2 Q+ is the set of nonnegative rational numbers.  
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The second characterization, based on intervals, defines the TPN state as a marking and a 
function which associates with each enabled transition a firing interval (Berthomieu & 
Vernadat, 2003). The TPN interval state is a couple s=(m,I), where m is a marking and I: 
En(m) → Q+ × (Q+ ∪{∞})  is an interval function. The initial interval state of the TPN is s0 = 
(m0, I0), where m0 is the initial marking and I0(t) = Is(t), for all t in En(m0). When a transition t 
becomes enabled, its firing interval is set to its static firing interval Is(t). The lower and 
upper bounds of this interval decrease synchronously with time, until t is fired or disabled 
by another firing. t can fire, if the lower bound of its firing interval reaches 0, but must be 
fired, without any additional delay, if the upper bound of its firing interval reaches 0. Its 

firing takes no time but may lead to another marking. Formally, let θ∈ R+ be a nonnegative 
reel number, t a transition of T, s=(m,I) and s=(m’,I’) two interval states of a TPN.  

We write 'ss ⎯→⎯θ
 iff state s' is reachable from state s after a time progression of θ time 

units, i.e.: m=m’ and ∀t∈En(m), θ≤↑I(t) ∧ I’(t)=[max(0,↓I(t)- θ),↑I(t)- θ].  s’ is also denoted s+θ. 

We write 'ss
t⎯→⎯  iff state s' is immediately reachable from state s by firing transition t, i.e.: 

∀p∈P, m’(p)=m(p)-Pre(p,t)+Post(p,t), t∈En(m), ↓I(t)=0, and ∀t’∈En(m’), I(t’)= if t’∈New(m’,t) 
then Is(t’) else I(t’). 
The semantics of the TPN can be defined using either the clock state or interval state 

characterization. In both cases, the TPN state space is defined as a structure ),,( 0sS → , where 

s0 is the initial clock or interval state of the model, and S = {s| ss ⎯→⎯*
0 } is the set of 

reachable states ( ⎯→⎯*
 is the reflexive and transitive closure of the relation → defined 

above).  

Let s and s' be two TPN states, θ∈R+ and t∈T. As a shorthand, we write 'ss
t⎯→⎯θ

iff 

"s sθ⎯⎯→ and " 'ts s⎯⎯→  for some state s“. We write 'ss
t

a  iff ∃θ∈R+, 'ss
t⎯→⎯θ

.  

An execution path in the TPN state space, starting from a state s∈S, is a maximal 

sequence 0 0 1 10 1 .....
t t

s s
θ θρ = ⎯⎯→ ⎯⎯→ , such that s0=s. We denote by π(s) the set of all 

execution paths starting from state s.  π(s0) is therefore the sets of all execution paths of the 

TPN.  The total elapsed time during an execution path ρ, denoted time(ρ), is the sum
0 ii
θ

≥∑ .  

An infinite execution path is diverging if time(ρ)=∞, otherwise  it is said to be zeno. A TPN 
model is said to be non zeno if all its execution paths are not zeno. Zenoness is a 
pathological situation which suggests that infinity of actions may take place in a finite 
amount of time. 

The TPN state space defines the branching semantics of the TPN model, whereas π(s0) defines 
its linear semantics. The graph of its execution paths, called concrete state space, is the structure 

(Σ,a,s0) where s0 is the initial state of the model, ∑ = }|{
*

0 sss a is the set of reachable concrete 

states of the TPN model, and  a
*

is the reflexive and transitive closure  of a. 

3. Temporal logics for time Petri nets 

Properties of timed systems are usually specified using temporal logics (Penczek & Polrola, 

2004). We consider here CTL* (computation tree logic star) and a subclass of TCTL (timed 
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computation tree logic). Since our goal is to reason about temporal properties of time Petri 

nets, an atomic proposition is a proposition on a marking.  

Let M be the set of reachable markings of a TPN model and PV the set of propositions on M, 

i.e., {φ | φ: M → {true, false} }. 

3.1 CTL
* 
and its semantics 

CTL* is a temporal logic which allows to specify both linear and branching properties. The 

syntax of CTL* is given by the following grammar: 

ppppppsp

ppssss

UX

false

ϕϕϕϕϕϕϕϕ

ϕϕϕϕϕφϕ

||||

|||||

∧¬≡

∃∀∧¬≡
 

In the grammar, φ∈ PV stands for an atomic proposition. ϕs and ϕp define respectively  

formulas that express properties of states  and execution paths. ∀ ("for all paths") and ∃ 
("there exists a path") are path quantifiers,  whereas U ("until") and X ("next") are temporal 

operators (path operators). The sublogics CTL and LTL are defined as follows: 

• In CTL formulas, every occurrence of a path operator is immediately preceded by a 

path quantifier: ϕϕϕϕϕϕϕϕϕφϕ XXUUfalse ∃∀∃∀∧¬≡ ||)(|)(||||  

• In LTL, formulas are supposed to be in the form ∀ϕp where state subformulas of ϕp are 

propositions: ϕϕϕϕϕϕφϕ XUfalse ||||| ∧¬≡  

 To ease CTL* formulas writing, some abbreviations are used: F ϕ = (true U ϕ), ∃ ϕ = ¬ ∀ ¬ ϕ 
and G ϕ = ¬ F ¬ϕ. 

CTL* formulas are interpreted on states and execution paths of a model M =(S,V), where 

S=(S, →,  s0) is a transition system and V: S → 2PV  is a valuation function which associates 
with each state the subset of atomic propositions it satisfies. 

Let s∈S be a state of S, π(s) the set of all execution paths starting from s, and  

....3210 221100 ssss
ttt ⎯⎯ →⎯⎯⎯ →⎯⎯⎯ →⎯= θθθρ  an execution path with ρi its suffix starting 

from si. The formal semantics of CTL* is given by the satisfaction relation ⊨ defined as 

follows (the expression M, s ⊨ ϕ  is read: "s satisfies property ϕ in the model M "): 

• M,  s ⊭ false, 

• M,  s ⊨ φ   iff  φ ∈ V(s),  

• M,  x ⊨ ¬ϕ   iff  M,  x ⊭ ϕ  for  x ∈{s,  ρ }, 

• M,  x ⊨ ϕ  ∧  ψ   iff  M,  x ⊨ ϕ     and    M,  x ⊨  ψ  for  x ∈{s,  ρ }, 

• M,  s ⊨ ∀ϕ     iff  ∀ρ∈π(s),  M, ρ ⊨ ϕ, 

• M,  s ⊨ ∃ϕ     iff  ∃ρ∈π(s),  M, ρ ⊨ ϕ, 

• M, ρ ⊨ ϕ    iff  M, s0 ⊨ ϕ,   for a state formula ϕ, 

• M, ρ ⊨ X ϕ    iff  M, ρ1 ⊨ ϕ, 

• M, ρ ⊨  ϕ U ψ   iff  ∃j≥0, M, ρj ⊨ ψ and ∀0≤i<j, M, ρi ⊨ ϕ. 

We say that M satisfies ϕ, written M ⊨ ϕ,  iff  M, s0 ⊨ ϕ.  For instance M, s0 ⊨ ∀(ϕ U ψ),  iff for 

any execution path starting from s0, ϕ is  true in s0 and the following  states,  until a state that 

satisfies ψ is reached. 
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To be able to specify explicitly time constraints of some important real-time properties such 

as, for example, the bounded response property, timed versions have been proposed for 

these logics (MITL, TCTL).  Among these logics, we consider here a subclass of TCTL logic 

for an on-the-fly model checking.  

3.2 TCTL and its semantics 

TCTL is a timed extension of CTL (computation tree logic) where a time interval is 

associated with each temporal operator. The syntax of TCTL formulas is defined by the 

following grammar (in the grammar, φ ∈ PR and index I is an interval of Q+× (Q+∪{∞}): 

ϕ ≡  false | φ | ¬ϕ | ϕ∧ϕ | ∀(ϕ UI ϕ) | ∃(ϕ UI ϕ) 

TCTL formulas are also interpreted on states and execution paths of a model M =(S,V). To 

interpret a TCTL formula on an execution path, we introduce the notion of dense execution 

path. Let s∈S be a state of S, π(s) the set of all execution paths starting from s, 

and
0 0 1 10 1 .....
t t

s s
θ θρ = ⎯⎯→ ⎯⎯→  an execution path of s. The dense path of the execution path 

ρ is the mapping SR →+:ρ̂ defined by: δρ += isr)(ˆ  s.t. ∑ −
= += 1

0

i

j jr δθ
, i≥0 and 0≤δ≤θi. 

The formal semantics of TCTL is given by the satisfaction relation = defined as follows: 

• M,  s ⊭ false,  

• M,  s ⊨ φ   iff  φ ∈ V(s),  

• M,  s ⊨ ¬ϕ   iff  M,  s ⊭ ϕ , 

• M,  s ⊨ ϕ  ∧  ψ   iff  M,  s ⊨ ϕ     and    M,  s ⊨  ψ , 

• M, s ⊨ ∀(ϕ UI ψ)  iff∀ρ∈π(s), ∃r∈ I, M, )(ˆ rρ ⊨ ψ and ∀0≤r’<r, M, )'(ˆ rρ ⊨ ϕ. 

• M,s⊨ ∃(ϕ UI ψ)   iff ∃ρ∈π(s), ∃r∈ I, M, )(ˆ rρ ⊨ ψ and∀0≤r’<r, M, )'(ˆ rρ ⊨ ϕ. 

The TPN model is said to satisfy a TCTL formula ϕ iff M, s0 ⊨ ϕ. When interval I is omitted, 

its value is [0, ∞] by default. Our timed temporal logic, we call TCTLTPN, is defined as 

follows: 

TCTLTPN  ≡ ∀(ϕm UI ϕm) | ∃(ϕm UI ϕm) | ϕm ⇝Ir ϕm | ∃GI ϕm | ∀GI ϕm | ∃FI ϕm | ∀FI ϕm 

ϕm ::=  ϕm ∧ ϕm | ϕm ∨ ϕm | ¬ ϕm | φ  |  false 
 

φ is a proposition on markings (i.e., φ ∈ PR). I is a time interval. Ir is a time interval which 

starts from 0. Formula φ1⇝Ir φ2  is a shorthand for TCTL formula ∀G(φ1 ⇒∀FIr φ2) which 

expresses a bounded response property. 

Several efficient model checking techniques were developed in the literature for LTL, CTL, 
CTL*, MITL and TCTL, using timed Büchi automata, fix point techniques, or hesitant 

alternating automata (Penczek & Polrola, 2004); (Tripakis et al., 2005); (Tripakis et al., 2001); 

(Visser & Barringer, 2000). To apply these techniques to time Petri nets, we must construct a 

finite abstraction for its generally infinite state space which preserves properties of interest.  
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4. TPN state space abstractions 

Abstraction techniques aim to construct by removing some irrelevant details, a finite 
contraction of the state space of the model, which preserves properties of interest (markings, 
linear or branching properties). The preserved properties are then verified on the 
contraction using the classical model checking techniques. The challenge is to construct, 
with less resources (time and space), a much coarser abstraction preserving properties of 
interest. 

4.1 Abstract state space 

An abstract state space of the TPN model is defined as a structure AS=(A,⇒, α0) where 

(Boucheneb & Hadjidj, 2006): 

• A is a cover of S or Σ3. Each element α of A, called abstract state, is an agglomeration of 
some states sharing the same marking.  

• α0 is  the initial abstract state class of AS, such that s0 ∈ α0,   and 

• ⇒ ⊆ A × T × A is the successor relation that satisfies condition EE, i.e.:  

i. ','',   , )',,( sssst
t

aαααα ∈∃∈∃⇒∈∀  and 

ii. )'    ''( ,', s.t.     , )',,( αααααα ⇒∧∈∈∃∈∈∀∈∀
t

sAsAsts a   

The first part of condition EE prevents the connection of two abstract states with no 

connected states. The second one ensures that all sequences of transitions in the state space 

are represented in the abstraction. 

Note that there are some differences between condition EE presented here and those given 

in (Berthomieu & Vernadat, 2003) and (Penczek & Polrola, 2004): 

• EE in (Berthomieu & Vernadat, 2003): 

]'    )','',[(     ,)',,( αααααα ⇒⇔∈∃∈∃××∈∀
tt

ssssATAt a  

• EE in (Penczek & Polrola, 2004): 

]'    )','',[(   ,)',,( αααααα ⇒⇒∈∃∈∃××∈∀
tt

ssssATAt a  

Theses conditions impose to connect each two abstract states α and α' whenever some state 

of the first one has a successor in the second one. However, TPN abstractions proposed in 

the literature do not obey this rule, while they are still valid. As an example, consider the 

TPN with its Strong State Class Graph SSCG4 shown in figure 1. Inequalities associated with 

each abstract state characterize the clock domains of all states agglomerated in the abstract 

state. The abstract state α3 has a state which has a successor by t0 in α5, but no transition by 

t0 exists from α3 to α5. In fact, the transition from α3 to α1 by t0 ensures that some state in α3 

has as successor by t0 the unique state of α1. However, there is no transition from α3 to α5 by 

t0, while the unique state of α1 belongs also to α5. This situation contradicts conditions EE 

given in (Berthomieu & Vernadat 2003) and (Penczek & Polrola, 2004). 

                                                 
3 A cover of a set X is a collection of sets whose union contains X. 
4 The SSCG is a TPN abstraction proposed in (Berthomieu & Vernadat, 2003). 
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α0:  p0+p2+3p3  
       t0=0 

α1: p0+p1+p2+2p3  
      t0=t1=0 

α2: p0+2p1+p2+p3  
      0≤t0≤0∧ 1≤t1 

α3: p0+p2+3p3   
      1≤t0≤2 

α4: p0+3p1+p2   
      1≤t1  

α5: p0+p1+p2+2p3   
      0≤t0≤2 ∧ t1=0 

α6:  p0+2p1+p2+p3  
       t0=t1=0 

α7: p0+2p1+p2+p3   
      t0=0 ∧  0≤t1<1 

α8: p0+p1+p2+2p3   
      1≤t0≤2 ∧ t1=0 

α7: p0+p1+p2+2p3   
      0<t0≤2 ∧ t1=0 

α7: p0+p2+3p3    
      t0=2 

α7: p0+p2+3p3 
      1<t0≤2 

Fig. 1. A TPN model and its SSCG. 

The relation ⇒ may satisfy other additional conditions such as (see figure 2): 

     EA:  ',,''   , )',,( sssst
t

aαααα ∈∃∈∀⇒∈∀ , 

AE: ','',   , )',,( sssst
t

aαααα ∈∃∈∀⇒∈∀  

t1 t0

[1,∞]

p3

p0 p1 p2

[1,2]
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Fig. 2. Conditions EE, EA and AE. 

A state class space which satisfies condition AE is called an atomic state class graph. An 
abstract state which satisfies condition AE for each outgoing edge is said to be atomic 
The theorem below establishes a relation between conditions AE, EA and properties of the 

model preserved in the abstraction. 

 

Theorem (Boucheneb & Hadjidj, 2006): Let AS=(A,⇒,α0) be an abstraction of a TPN. Then: 

1. If (AS satisfies  condition EA and α0= {s0}) then AS preserves LTL properties of the TPN, 
2. If AS satisfies condition AE then it preserves CTL* properties of the TPN. 

4.2 Abstract states  

We can find, in the literature, several state space abstractions for the TPN model: the state 

class graph SCG (Berthomieu & Vernadat, 2003), the zone based graph ZBG (Gardey & 

Roux, 2003), the geometric region graph GRG (Yoneda & Ryuba, 1998), the strong state class 

graph SSCG (Berthomieu & Vernadat, 2003) and the atomic state class graphs ASCGs 

(Boucheneb & Hadjidj, 2006); (Berthomieu & Vernadat, 2003); (Yoneda & Ryuba, 1998). 

These abstractions may differ mainly in the characterization of abstract states (interval states 

(Berthomieu & Vernadat, 2003), clock states (Boucheneb & Hadjidj, 2006) or firing dates 

(Yoneda & Ryuba, 1998), the agglomeration criteria of states, the kind of properties they 

preserve and their size.  

In all these abstractions except the GRG, abstract states are defined as a couple α=(m,f), 
where m is a marking and f is a conjunction of atomic constraints of the form x-yp c,  - x p c  

or x p c, where c ∈ Q∪{-∞,∞}, p ∈ {=, ≤, ≥, <, >}, and x, y are time variables. Each transition 

enabled in m is represented in f by a time variable, with the same name, representing either 

its delay or its clock (Var(f)=En(m)). All time variables are either clocks (clock abstract states) 

or delays (interval abstract states). Time variables are clocks in the SSCG, ZBG and ASCGs 

(clock state abstractions) but they are delays in the SCG (an interval state abstraction). 

Abstract states of the SCG, SSCG, ZBG and ASCGs are respectively called state classes, 

strong state classes, state zones and atomic state classes.   

Abstract states of the GRG are triples (m,f,η), where m is the marking obtained by firing 

from the initial marking m0 the sequence of transitions η and f is a set of atomic constraints 

on firing dates of transitions in m and their parents (transitions of η  which made transitions 

of En(m) enabled). This definition needs more time variables and constraints. It is therefore 

less interesting than those used in other abstractions. In addition, the relation of equivalence 

used in GRG involves large graphs and may induce infinite abstractions for some time Petri 

www.intechopen.com



Model Checking of Time Petri Nets 

 

187 

nets with unbounded firing intervals (Berthomieu & Vernadat, 2003). Two abstract states are 

equivalent if they have the same marking, their enabled transitions have the same parents, 

and these parents could be fired at the same dates. For all these reasons, we do not consider 

here the abstract state definition of the GRG.  

Though the same domain may be expressed by different conjunctions of atomic constraints, 

equivalent formulas have a unique form, called canonical form. Canonical forms make 

operations needed to compute and compare abstract states more simple. Let f be a 

conjunction of atomic constraints. The canonical form of f is: 

)(
}){)((,

yxSupyxf f
yx

f
ofVaryx

−−= −

∪∈
∧ p  

where Var(f) is the set of time variables of f, o represents the value zero, Supf (x-y) is the 

supremum of x-y in the domain of f, yx
f
−p is either ≤ or <, depending respectively on 

whether x-y reaches its supremum in the domain of f or not. Dom(f) denotes the domain of f. 
By convention, we suppose that Is(o)=[0,0].  
The canonical form of f is usually represented by a DBM B (Daws et al., 1996) of order 

|Var(f)|+1, defined by: 

)),(( B},{)((, x y
yx

ff yxSupofVaryx
−−=∪∈∀ p  

An element of a DBM is called a bound. Operations like +, -, <, ≤, ≥, =, and min on bounds of 

DBMs are defined as usual: },,,,{,),(),,( 2211 ≥=<≤∈∀∈∀ ppp Bcc   

• 1 1 2 2( , ) ( , )c cp p p iff ( 1 2 1 2 1 2(  )c c c c∧ = ⇒p p pp );    (”<” is less than operator “≤”). 

• 1 1 2 2 1 2 1 2( , ) ( , ) ( ,min( , ))c c c c+ = +p p p p ;     

• 1 1 2 2 1 2 1 2( , ) ( , ) ( , min( , ))c c c c− = −p p p p ; 

• 1 1 1 1( , ) ( , ))c c− = −p p  

• 1 1 2 2 1 1 2 2 1 1 2 2min(( , ), ( , )) ( , ) ( , )  ( , )  ( , )c c if c c then c else c= ≤p p p p p p  

The computation of canonical forms is based on the shortest path Floyd-Warshall's algorithm 
and is considered as the most costly operation (cubic in the number of variables in f) 
(Berhmann et al., 2002). In (Boucheneb & Mullins, 2003) and (Boucheneb & Hadjidj, 2006), 
authors have shown how to compute, in O(n2), for respectively the SCG and the SSCG, the 
canonical form of each successor abstract state, n being the number of variables in the 
abstract state. An abstract state is said in canonical form iff its formula is in canonical form. 
The convexity of abstract states is an important criterion to maintain their computation 

simple. The simplicity of the method is particularly guaranteed by the usage of DBMs. This 

data structure adapts well to all computation aspects involved in constructing abstractions, 

but fails to efficiently represent non convex domains (DBMs are not closed under set-union). 

To avoid this limitation, Clock Difference Diagrams (CDDs) (Larsen et al., 1999) seems to be a 

better alternative. CDDs allow to represent in a very concise way the union of convex 

domains. They are also closed under set-union, intersection and complementation. 

However, due to the lack of a known simple computing canonical form, CDDs fail to 

compete with DBMs when it comes to computing successors and predecessors of abstract 
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states. A detailed description of CDDs can be found in (Berhmann et al., 2002) and (Larsen et 

al., 1999), where the authors use this data structure to represent computed state zones in the 

list PASSED of the reachability algorithm, implemented in the tool UPPAAL. Yet, they still 

use DBMs to compute successors of abstract states. Note that abstract states within the list 

PASSED are handled using only two basic operations which are well supported by CDDs 

(set-union and inclusion). 

4.3 Abstractions preserving linear properties 

An abstraction is said to preserve linear properties if it has exactly the same firing sequences 

as its concrete state space. In abstractions preserving linear properties, we distinguish, in 

general, three levels of abstraction (see figure 3). In the first level, states reachable by time 

progression may be either represented (ZBG) or abstracted (SCG, GRG, SSCG). In the 

second level, states reachable by the same firing sequence independently of their firing times 

are agglomerated in the same node. In the third level, the agglomerated states are then 

considered modulo some relation of equivalence (firing domain of the SCG (Berthomieu & 

Vernadat, 2003), the approximations of the ZBG (Gardey & Roux, 2003) and the SSCG 

(Berthomieu & Vernadat, 2003)). These abstractions, except the GRG, are finite for all 

bounded time Petri nets. Indeed, for some bounded TPNs with unbounded static firing 

intervals, the GRG may be infinite. However, in (Pradubsuwun et al., 2005), authors used 

the approximation of timed automata to ensure the convergence of the construction of the 

GRG for bounded TPNs with unbounded static firing intervals.  

 

 
Fig. 3. Different levels of abstraction 

4.3.1 Basic operations on abstract states  

Let α be an abstract state and t a transition of T. We define the basic operations on α, used to 
construct abstractions preserving linear properties:  

• }s',|'{),( ⎯→⎯∈∃= t
def

ssstsucc αα is the set of all states reachable from α by firing 

immediately transition t. 

t

t2
t3

t1 
t1 

t2 

t2 

t2

t3
t1
t1

t1

t1

t1

t2

t2

a) The first level

b) the second and third levels 

θs1 s2 
ts1 s2 

s’1 

s2 

t 
s1 s2 s’1 

θ t θs1 s2 s’1 
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• }s',,|'{ ⎯→⎯∈∃∈∃= + θθαα sRss
defr

contains α and all states reachable from α via some 

time progression. 
Let us now show how to compute successor abstract states for clock abstract states and for 
interval abstract states.  

Let α=(m,f) be a clock abstract state in canonical form, and t a transition of T:  

succ(α,t)≠∅ iff t∈En(m) and ttIsf ≤↓∧ )(  is consistent. This means that there is at least a 

state in  α such that t is firable from it (its clock reaches its static firing interval).   

If succ(α,t)≠∅  then succ(α,t) = (m’,f’) is computed in four steps:  

1. ∀p∈P, m’(p)=m(p)-Pre(p,t)+Post(p,t). 

2. Initialize f’ with ttIsf ≤↓∧ )( . This step eliminates from f states from which t 

is not immediately firable. 
3. Put f’ in canonical form and eliminate t and all transitions conflicting with t in 

m.  

4. Add constraints 0'
)',('

=∧
∈

t
tmNewt

and put f’ in canonical form (clocks of newly 

enabled transitions are set to 0). 

• )',( fm=α
r

 is computed in three steps:  

1. Initialize f’ with f; 
2. Replace all constraints t – o ≤ c with t – o ≤↑Is(t). Clocks increase with time 

until reaching upper bounds of the static firing intervals of their transitions or 
their transitions are fired or disabled.   

3. Put f’ in canonical form. 

Let α=(m,f) be an interval abstract state in canonical form, and t a transition of T:   

• succ(α,t)≠∅ iff t∈En(m) and 0=∧ tf  is consistent. This means that there is at least a 

state in  α such that t is firable from it (its delays is equal to 0).   

If succ(α,t)≠∅  then succ(α,t) = (m’,f’) is computed in four steps:  

1. ∀p∈P, m’(p)=m(p)-Pre(p,t)+Post(p,t). 

2. Initialize f’ with 0  =∧ tf . This step eliminates from f states from which t is 

not immediately firable. 
3. Put f’ in canonical form and eliminate t and all transitions conflicting with t in 

m.  

4. Add constraints )'(')'(
)',('

tIsttIs
tmNewt

≤↑≤↓∧
∈

and put f’ in canonical form. The 

firing interval of each newly enabled transition is set to its static firing interval. 

• )',( fm=α
r

 is computed in three steps:  

1. Initialize f’ with f; 
2. Replace each constraint o – t ≤ c with o – t ≤ 0. Delays decrease with time until 

reaching 0 or their transitions are fired or disabled. 
3. Put f’ in canonical form. 

4.3.2 Approximation of clock abstract states  

Let α=(m,f) be a clock abstract state in canonical form and En=∞(m)={t |t∈En(m)∧ ↑Is(t)=∞} 
the set of unbounded transitions enabled in m. 
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The SSCG approximation of α denoted approxSSCG(α) produces a partition of α: {(m, fe) | (e ⊆ 
En=∞(m) ∨ e=∅},  where fe is a consistent formula characterizing states of (m, f) in which all 

transitions of e have not yet reached their minimal delays, while those of  En=∞(m)-e have 

reached or over-passed their minimal delays. fe is computed in three steps: 

1. Initialize fe with: ))'('())((
)('

tIsttIstf
emEntet

≥↓∧<↓∧ ∧∧
−∈∈ ∞=

; 

2. Put fe in canonical form and eliminate all variables in En=∞(m)-e;  

3. Add the constraint ')'(
)('

ttIs
emEnt

≤↓∧
−∈ ∞=

. 

Steps (2) and (3) extend fe with possibly non reachable states when replacing the domain of 

each variable t' in En=∞(m)-e by [↓Is(t'),∞]. Nevertheless, these states correspond all to the 

same interval state (Berthomieu & Vernadat, 2003). Therefore, this operation preserves 

linear properties of the abstract state α. 

Let k be the greatest finite bound appearing in the static firing intervals of the considered 

TPN. The ZBG approximation of α, proposed in (Gardey & Roux, 2003), denoted approxk(α), 
is the abstract state (m,f’) where f’ is the canonical form of the formula computed from f as 

follows:  For each t ∈ En=∞(m), x ∈ En(m)∪{o}, 
1. Replace constraint x – t p c with x – t  ≤ – k,  if c  <- k; 
2. Remove constraint t – x p c if k < c. 
Step (1) replaces by k the lower bound of t - x which exceeds k (x – t p c <- k is equivalent to k 
< - c p  t - x).  Step (2) is equivalent to replace by ∞ the upper bound of t – x which exceeds k. 

This operation extends f with possibly non reachable states but the added states do not alter 

linear properties of the abstract state α (Gardey & Roux, 2003).  In (Boucheneb et al., 2006), 

authors proposed two other approximations for the ZBG, denoted respectively approxkx and 

approxkx’ which lead to much compact graphs. They showed that α, approxkx(α) and 

approxkx’(α) have the same firing domain and then the same firing sequences.  

approxkx(α) is the abstract state (m,f’) where f’ is the canonical form of the formula computed 

from f as follows: For each t ∈ En=∞(m), x ∈ En(m)∪{o}, 
1. Replace constraint x – t p c with x – t  ≤ – ↓Is(t),  if c  ≤-↓Is(t); 

2. Remove constraint t – x p c,  if ↓Is(t) p c. 

approxkx’(α) is the abstract state (m,f’) where f’ is the canonical form of the formula computed 

from f as follows: For t, t’ ∈ En(m), 
1. Replace the constraint o – t p c with o – t  ≤ 0, if  t ∈ En=∞(m) ; 

2. Remove constraint t’ – t p c’  if t∈En=∞(m) or the constraint o– tp c  is s.t. c’–↓Is(t’) ≥c. 
approxkx’ has been integrated recently in the tool Romeo5 in replacement of the one proposed 
in (Gardey & Roux, 2003). This approximation is referred in the sequel as approxZBG. 

4.3.3 Construction of abstractions preserving linear properties  

An abstraction preserving linear properties is generated progressively by computing the 

successors of the initial abstract states and those of each newly computed abstract state, until 

no more new abstract states are generated. All computed abstract states are considered 

                                                 
5 http://romeo.rts-software.org 
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modulo some relation of equivalence. In table 1, we give the formal definition of the SCG, 

ZBG and SSCG from which the construction algorithms can be derived.  
 

AS SCG ZBG SSCG 

Initial 
abstract state 

(m0,f0) 
)()(

)(
0 tIsttIsf

mEnt

≤↑≤↓= ∧
∈

 
)),(( 00 fmapproxZBG  

0
)(

0 == ∧
∈

tf
mEnt

 
)),(( 00 fmapproxSSCG  

0
)(

0 == ∧
∈

tf
mEnt

 

(α,t,α’) ∈ 
⇒AS 

≠),( tsucc α
r ∅  ∧  

),(' tsucc αα
r

=  

≠),( tsucc α ∅   ∧  

)),((' tsuccapproxZBG αα =  

≠),( tsucc α
r ∅  ∧  

)),((' tsuccapproxSSCG αα
r

∈  

A }|{
*

0 ααα
SCG⇒  }  )(|{

*

0 ααα
ZBGZBGapprox ⇒

r  }|{
*

0 ααα
SSCG⇒  

Table 1. Definition of SCG, ZBG and SSCG. 

4.3.4 Interval state abstractions versus clock state abstractions 
Clock based abstractions are less interesting than the SCG when only linear properties are of 
interest. They are in general larger, and their computation takes more time. The origin of 
these differences stems from the relationship between the two characterizations of states 
which can be stated as follows: Let (m,v) be a clock state. Its corresponding interval state is 
(m,I) s.t. ∀t ∈ En(m), I(t) = [max(0,↓Is(t)-v(t)), ↑Is(t)-v(t)]. Note that for any real value u ≥ 
↓Is(t), if ↑Is(t) =∞, ↑Is(t) - u = ∞ and max(0, ↓Is(t)-u)=0. This means that many clock states 
may map to the same interval state. In such a case, all these states will obviously exhibit the 
same future behaviour. The same remark extends also to interval abstract states and clock 
abstract states. As an example, consider the model shown in figure 4.a. The repetitive firing 
of transition t0, from the initial abstract state, generates 2 strong state classes sc1 and sc2 

(figure 4.c) which map to the state class c1 (figure 4.b). Moreover, the number of strong state 
classes which map to c1 depends and increases with the value of ↑Is(t1). For example, 
for↑Is(t1)= 9, we obtain 5 strong state classes which  correspond to the state class c1. 
Moreover, abstractions based on clocks do not enjoy naturally the finiteness property for 
bounded TPNs with unbounded intervals as it is the case for abstractions based on intervals. 
The finiteness is enforced using an approximation operation on clock abstract states, which 
may involve some overhead computation. Another point which contributes to generate 
coarser abstractions concerns states reachable by time progression. We obtain coarser 
abstractions when we add to each abstract state all states reachable from it by time 
progression (relaxing abstract states). Indeed, two different abstract states may have the 
same relaxed abstract state. As an example, the two SCG state classes α1=(m, 2 ≤ t ≤ 3) and 
α2=(m, 1 ≤ t ≤ 3) are s.t. α1 ≠ α2 and ).30,(21 ≤≤== tmαα

rr
 To achieve more contractions, we 

define a relaxed version to the SCG, named relaxed state class graph (RSCG), as a structure 
(A,⇒RSCG, 0α

r
) where: 

1. α0=(m0,f0) where m0 is the initial marking and )()(
)(

0 tIsttIsf
mEnt

≤↑≤↓= ∧
∈

. 

2. ∀α, α’, t, (α,t,α’) ∈⇒RSCG  iff   ≠),( tsucc α ∅   and  ),(' tsucc αα = .  

3. A = { α | 0α ⇒RSCG α}. 

However, abstractions based on intervals are not appropriate for constructing abstractions 
preserving branching properties (ASCGs). Indeed, this construction, based on splitting 
abstract states, is not possible on state classes (the union of intervals is irreversible) whereas 
it is possible on clock abstract states. Together, the mentioned remarks suggest that the 
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interval characterization of states is more appropriate to construct abstractions preserving 
linear properties but is not appropriate to construct abstractions preserving branching 
properties. 
We have implemented and tested several abstractions. We report in table 2 sizes 
(nodes/edges) and computing times of the RSCG, SCG, SSCG and ZBG we obtained for the 
producer consumer model (figure 5) and the level crossing model (figure 6). The level 
crossing model T(n) is obtained by putting in parallel one copy of the controller model, n 
copies of the train model (with m = n) and one copy of the barrier model. Trains and the 
barrier are synchronized with the controller on transitions with the same names. The 
producer consumer model P(n) is the parallel composition of n-1 copies of the model in 
figure 6.b with one copy of the model in figure 6.a while merging all places named P1 in one 
single place.  The obtained results confirm that the RSCG is in general smaller and faster to 
compute too.   
 

 
Fig. 4. Example showing the abstracting power of the interval state abstraction.  
 

 

Fig. 5. The crossing level model 

[2,3] [0,2] 

p0 
p1 

t0 t1 

t0 [0,2] 

t0 [0,2] b) SCG state classes of t0
+

c) SSCG classes of t0+ 

a) A TPN model 

t0 [0,2] 

t0 [0,2] 

t0 [0,2] 

c0 = (p0+p1, 0 ≤ t0 ≤ 2 ∧  2 ≤ t1 ≤ 3)  
 
 

 c1 = (p0+p1,  0 ≤ t0 ≤ 2 ∧ 0 ≤ t1 ≤ 3) 

sc0 = (p0+p1,  t0 = t1 = 0)  
 
 

sc1 = (p0+p1,  t0 = 0 ∧ 0 ≤ t1 ≤ 2) 
 
 
 

sc2 = (p0+p1,  t0 = 0 ∧ 0 ≤ t1 ≤ 3) 
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Fig. 6. The producer consumer model 
 

TPN RSCG SCG SSCG ZBG  (approxkx’)
ZBG 

(approxkx) 

P(2) 
cpu(s) 

593 / 1922 
0.01 

748 / 2460 
0.02 

7963 / 42566
0.73 

593  / 1922 
0.14 

2941 / 9952 
0.31 

P(3) 
cpu(s) 

3240 / 15200 
0.12 

4604 / 21891 
0.30 

122191 / 
1111887 

37.86 

3240 / 15200 
0.20 

100060 /  
385673 
210.22 

P(4) 
cpu(s) 

9267 / 54977 
0.73 

14086 / 83375 
1.76 

? 6 
9504 / 56038 

1.05 
? 

P(5) 
cpu(s) 

20877 / 145037
2.01 

31657 / 217423
5.67 

? 
20877 / 145037

13.06 
? 

T(2) 
cpu(s) 

113 / 198 
0 

123 / 218 
0 

141 / 254 
0 

114 / 200 
0 

147 / 266 
0 

T(3) 
cpu(s) 

2816 / 6941 
0.07 

3101 / 7754 
0.09 

5051 / 13019
0.5 

2817 / 6944 
0.18 

5891 / 15383 
0.54 

T(4) 
cpu(s) 

122289 / 391240
5.74 

134501 / 436896
6.33 

? 
122290 / 391244

9.40 
? 

Table 2. Comparison of abstractions preserving linear properties 

4.4 Abstractions preserving branching properties 

Abstractions preserving branching properties (CTL* properties) are built using a partition 

refinement technique in two steps (Paige & Tarjan, 1987). An abstraction, which does not 

necessarily preserve branching properties, is first built then refined in order to restore the 

condition AE (the resulting graph is atomic). 

4.4.1 Refinement process 

Let AS = (A, ⇒, α0) be an abstract state space of a TPN model, α=(m,f), α’=(m’,f’) two abstract 

states of A, t a transition of T s.t. (α, t, α’)∈⇒ and }s',''|{),,'( a
tdef

ssstpred αααα ∈∃∈= . To 

verify the atomicity of α for the edge (α, t, α'), it suffices to verify that α is equal or included 

                                                 
6 The computation has not completed after an hour of time, or aborted due to a lack of 
memory.   
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in ),,'( αα tpred . In case α is not atomic, it is partitioned into a set of convex subclasses so as 

to isolate the predecessors of α' by t in α, from those which are not.   

Pred(α', t, α)=(m,f") is computed in five steps:  
1. Initialize f" to   0''

),'('

=∧ ∧
∈

tf
tmNewt

, 

2. Put f” in canonical form and eliminate by substitution all transitions in New(m', t), 

3. Add constraints: ↓Is(t) ≤ t, )'('
)'('

tIst
mEnt

≤↑∧
∈

 and θ ≥  0, 

4. Replace each variable t by t + θ ,  put f” in canonical form then eliminate θ, 
5. Add all constraints of f and put f” in canonical form. 
Knowing that the firing of transition t sets the clock of each newly enabled transition to zero,  
step (1) extracts from α' the subset of states where the clocks of newly enabled transitions 
are equal to zero. Step (3) adds the firing constraints of transition t. Step (4) goes back in 
time (each clock is decreased by θ  time units). Finally, step (5) adds all constraints of class α. 

Since the domain of the difference is not necessarily convex, we construct a partition of α - 
Pred(α', t, α) such that all its parts are convex. Let α = (m, f) and α' = (m, f') be two abstract 

states such that α’⊆ α. A partition of the complement of α' in α, denoted Comp(α, α’), is 
computed as follows:  
 

Algorithm Comp(α = (m, f), α' = (m, f')) 
{       Part:=∅;  

X:= f; 
For each  atomic constraint g of f' 

 {  if (X ⋀ ¬ g) is consistent then    Part := Part ∪ {(m,X ⋀ ¬ g); 

X:= (X ⋀ f); 
          } 
          Return Part; 

} 
 

The refinement proceeds according to the following algorithm: After its splitting, α is 

replaced by its partition. Each subclass inherits all connections of α in accordance with 
condition EE. The refinement step is repeated until condition AE is established. The 
refinement process generates a finite graph iff the intermediate abstraction is finite 
(Berthomieu & Vernadat, 2003).  
 

Algorithm Refine(AS) 

{ Repeat  {     For each α ∈ A  such that  α is not atomic  for some transition 'αα ⇒
t

  

     {  α":=Pred(α', t, α); 
  Part: = Comp( α,  α"); 
  Part:= Part ∪ {α"}; 

   Replace α by Part in AS; 
    }  

               } while (AS is not atomic) 
} 
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4.4.2 Intermediate abstractions 
The intermediate abstractions used in (Yoneda & Ryuba, 1998) (GRG) and (Berthomieu & 
Vernadat, 2003) (SSCG) preserve linear properties. However, these abstractions are in 
general large graphs with a high degree of state redundancy (the same state may appear in 
several abstract states). Experimental results showed that this redundancy induces the 
refinement procedure to waste time and space computing redundant abstract states. For 
instance, if an abstract state is included into another one, refining both abstract states may 
result in identical atomic abstract states. If both abstract states are replaced by the most 
including one, no pertinent information will be lost while refinement steps get reduced. To 
reduce state redundancy in abstraction preserving linear properties, we proposed to group 
together abstract states whenever one of them includes all the others (Boucheneb & Hadjidj, 
2006) or their union is convex (Boucheneb & Hadjidj, 2004). When a set of abstract states are 
grouped, they are replaced by a new abstract state representing their union. All transitions 
between these abstract states become loops for their union. Ingoing and outgoing transitions 
of the grouped abstract states become respectively ingoing and outgoing of their union. If 
one of the grouped abstract states contains the initial abstract state, their union becomes the 
initial abstract state. The contraction may be performed either during or at the end of the 
construction. With these abstractions, we obtain an important reduction in refinement times 
and memory usage, resulting in graphs closer in size to the optimal (see table 3). Despite the 
simplicity of the used models, they allowed to illustrate some interesting features related to 
the computation pattern followed by the refinement procedure, depending on which 
abstraction is refined (see figure 7). If an inclusion or convex-combination abstraction is 
used, the refinement follows a linear pattern (i.e., the size of the graph grows linearly in time 
during its construction). When an abstraction preserving linear properties is refined, the size 
of the computed graph starts first to grow up to a peek size then decreases until an atomic 
state class space is obtained. In certain cases, the peek size grows out of control, leading to a 
state explosion. 
The inclusion test is performed as follows:  Let α=(m,f) and α’=(m,f') be two abstract states 
sharing the same marking and B, B’ their DBMs in canonical form. (m,f) is included in (m,f’) 
iff: ∀ x, y ∈ En(m) ∪ {o}, Bx y ≤ B’x y.  
For the convex-combination, before explaining how to perform the grouping of abstract 
states, we first define what a convex-hull is. Let α=(m,f), α’=(m,f') be two abstract states 
sharing the same marking (see figure 8): 

• The convex-hull of α and α’, denoted )',(ˆ ααα , is the abstract state α”=(m,f”) where: 

)(" ''
}{)(,

yxSupyxf ff
yx
ff

omEnyx

−−= ∨
−
∨

∪∈
∧ p  

• Let α”=(m,f”) be the convex-hull of α and α’. α”=(m,f”) is the canonical form of the 

union of α and α’  iff  (Dom(f”) - Dom(f)) ⊆ Dom(f’). 
The convex-combination test of two abstract states involves three operations: convex-hull, 
complement of a domain and a test of inclusion. Moreover, abstract states which may not 
combine two by two may combine three by three or more. Figure 9 illustrates some 
situations involving the convex combination of abstract states with two enabled transitions 

only. In case a), abstract states α and α' are combined into the abstract state α". Case b) 
shows two abstract states whose union is not convex and therefore cannot be grouped by 

convex combination. Case c) illustrates a situation where three abstract states α, α' and α" 

cannot combine when taken two by two, but combine well in α" if taken all together. Cases 
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d) and e) show other situations, where the grouping two by two is not possible, but becomes 
possible for other grouping.  
 

 
 

 
 

 
Fig. 7. A TPN model and the refinement patterns of its SSCG and CSCG7  

                                                 
7 CSCG is a contraction by inclusion of the SSCG. 

||
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TPN Refining SSCG Refining CSCG Refining CCSCG Optimal 

P(2) 
cpu(s) 

2615/ 28263 
8.42 

2444 / 26358 
1.15 

2411 /26138 
1.01 

2334 / 25046 
9.41 

P(3) 
cpu(s) 

? 
31197 / 485960 

40.18 
30828 / 480987 

35.62 
28319 / 430875 

3887.30 

P(4) 
cpu(s) 

? 
151384 / 2887295 

358.06 
151384 / 2887295 

358.06 
? 

T(2) 
195 / 849 

0.02 
192 / 844 

0.02 
188 / 814 

0.01 
185 / 786 

0.03 

T(3) 
6983 / 50044 

5.00 
6966 / 49802 

2.11 
6918 / 49025 

1.49 
6905 / 48749 

60.88 

T(4) ? 
356940 / 3447624 

288.21 
356930 / 3447548 

317.29 
? 

Table 3.  Refining SSCG, CSCG and CCSCG.  

 

Fig. 8. Convex-hull of two abstract states 

 

Fig. 9.  Grouping abstract states by convex-combination. 
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To achieve a high degree of contraction, we need to test all possible combinations of abstract 

states sharing the same marking and having states in common. But this operation is 

computationally very expensive. Experimental results have shown that performing the test 

on abstract states two by two, results in very satisfactory contractions, in relatively short 

computing times too. Furthermore, when two abstract states are such that one is included 

into the other, their convex combination is simply the most including abstract state. So, 

before performing the convex combination test, we check first for inclusion in O(n2), where n 

is the number of transitions enabled in the shared marking of the two abstract states. 

All CTL* model checking techniques can be applied directly on the atomic state class graphs 

to determine linear and branching properties of time Petri nets. All states within the same 

atomic abstract state have the same CTL* properties and are then considered as an 

indivisible unit.   

5. Model checking timed properties of time Petri nets 

To verify some timed properties, in (Toussaint, J. et al., 1997), authors used observers to 

express them in the form of TPNs and reduce them to reachability properties. However, 

properties on markings are quite difficult to express with observers. Other techniques define 

translation procedures from the TPN model into timed automata (Cassez & Roux, 2006);  

(Lime & Roux, 2003), in order to make use of available model checking techniques and 

tools (Penczek & Polrola, 2004); (Tripakis et al., 2005). Model checking is then performed 

on the resulting timed automata, with results interpreted back on the original TPN model. 

The translation into timed automata may be either structural (each transition is translated 

into a timed automata using the same pattern) (Cassez & Roux, 2006) or semantic (the 

state class graph of the TPN is first constructed and then translated into a timed 

automaton) (Lime & Roux, 2003). Such translations show that CTL*, TCTL, LTL, MITL 

model checking are decidable for bounded TPNs and that developed algorithms on timed 

automata may be extended to TPNs. Though effective, these techniques face the difficulty 

to interpret back and forth properties between the two models. In (Virbitskaite & Pokozy, 

1999), authors proposed a method to model check TCTL properties of TPN. The method is 

based on the region graph method and is similar to the one proposed in (Alur & Dill, 

1990) for timed automata. However, the region graph is known to be a theoretical method 

which is not applicable in practice because of its lack of efficiency.  

To achieve the same goal, it is possible to adapt to the TPN, the method proposed in 

(Penczek & Polrola, 2004) and (Tripakis et al., 2005) for timed automata. The verification of a 

TCTL formula proceeds by adding a transition named ts8 to the TPN, translating the TCTL 

formula into some CTL formula, constructing an abstraction which preserves CTL properties 

of the completed TPN and then applying a CTL model checking technique. The 

transformation of TCTL formulas into CTL ones needs to extend CTL with atomic 

propositions of the form ts∈ I, and a particular next operator Xts defined by: for each formula 

ψ and each state s' of the TPN, s' satisfies Xts ψ  iff the state resulting by firing ts satisfies ψ. 

                                                 
8 This transition is used to deal with time constraints of the property to be verified. Its firing 

interval is [0,∞]. 
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For example, the formula ϕ = ∀(ϕ1  UI ϕ1) is translated into the formula ϕ' = Xts (∀ (ϕ1' U (ϕ2' 

∧ ts ∈ I)). The verification of ϕ' is performed using the classical CTL model checking 

technique by constructing an abstraction which preserves ϕ'. However, this method needs to 

compute the whole abstraction of the model before it is analyzed and then runs up against 

the state explosion problem. To attenuate the state explosion problem, on-the-fly model 

checking methods may be a good alternative, as they allow to verify a property during the 

construction of an abstraction preserving linear properties. The construction of the graph is 

stopped as soon as the truth value of the property is obtained. On-the-fly methods have 

proven to be very effective to model-check a subclass of TCTL on zone graphs of timed 

automata. So, they can be straightforward adapted to clock based abstractions of time Petri 

nets. However, TPN abstractions based on intervals are in general smaller and faster to 

compute than TPN abstractions based on clocks. So, applying on-the-fly methods on TPN 

abstractions based on intervals should give better performances.  In this sense, in (Hadjidj & 

Boucheneb, 2006), we proposed, using the state class method (SCG), a forward on-the-fly 

model checking technique for a subclass of TCTL properties. The verification proceeds by 

augmenting the TPN model under analysis with a special TPN, called Alarm shown in figure 

10, to allow the capture of relevant time events (reaching, over passing a time interval). A 

forward on-the-fly exploration combined with an abstraction by inclusion is then applied on 

the resulting TPN. In the sequel, we give algorithms to model check TCTLTPN properties. 
Note that all following developments apply similarly to both the SCG and the RSCG. The 
SCG will be considered for explanations. 

Let ℵ  be a TPN model and ϕ=φ1 ⇝[0,b] φ2. Model checking ϕ on ℵ  could be performed by 

analyzing each execution path of the TPN SCG, until the truth value of ϕ is established. The 

SCG is progressively constructed, depth first, while looking for the satisfaction of property 
φ1. If φ1 is satisfied at an abstract state α, φ2 is looked for in each execution paths which starts 

from α (i.e., ∀ρ∈ π(α)). For each execution path ρ ∈π(α), φ2 is required to be satisfied at a 

state class α' such that the time separating α and α' is within the time interval [0,b]. If this is 

the case the verification of ϕ is restarted again from α', and so forth, until all state classes are 

explored. Otherwise, the exploration is stopped, and ϕ is declared invalid. 
 

 

 Fig. 10. The Alarm TPN 
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Fig. 11. cyclic TPN model 

Some attention is required when dealing with transitions ta and tb. If transition ta can be fired 

at exactly the same time as another transition t, and t is fired before ta, ϕ might be declared 

wrongly false if the resulting state class satisfies φ2. A similar situation might arise for 
transition tb if it is fired before a transition t which can be fired at exactly the same time.  To 
deal with these two special situations, we assign a high firing priority to transition ta, so that it 
is fired before any other transition which can be fired at exactly the same time. At the 
contrary, we assign a low firing priority to tb so that it is fired after any other transition which 
can be fired at exactly the same time. To cope with this priority concepts, we need to change 
the way we decide if a transition is firable or not, and the way the successor of a state class 
α=(m,f), by a transition t, is computed (i.e., operation succ). succAC(α,t) replaces succ(α,t) to 
check whether a transition is firable or not and compute successor state classes.  What 
changes is the way the firing condition fc is computed:  

1. If (t≠ta  and ta∈En(m))    then  attffc <=∧= 0   

2. If (t=tb  and tb∈En(m))   then  0tffc ∧=∧=  (
{ }

'
)('

ttb
tmEnt b

<∧
−∈

) 

3. If (t=ta or (ta∉En(m) and t≠tb))  then 0=∧= tffc . 
In case ta is enabled while we want to fire a different transition t (case 1), we need to make 
sure that t is fired ahead of time of ta. In case tb is enabled and is the one we want to fire 
(case 2), we need to make sure that tb is the only transition that can be fired. The remaining 
cases are handled exactly as before. 

SuccAC(α,t)≠∅  iff  fc is consistent.  If succAC(α,t)≠∅  then succAC(α,t) = (m’,f’) is computed in 

four steps:  

1. ∀p∈P, m’(p)=m(p)-Pre(p,t)+Post(p,t). 
2. Initialize f’ with fc. This step eliminates from f states from which t is not immediately 

firable. 
3. Put f’ in canonical form and eliminate t and all transitions conflicting with t for m.  

4. Add constraints )'(')'(
)',('

tIsttIs
tmNewt

≤↑≤↓∧
∈

and put f’ in canonical form. The firing 

interval of each newly enabled transition is set to its static firing interval. 
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The verification of ϕ proceeds as follows: During the generation of the SCG of ℵ||Alarm, if 
φ1 is satisfied in a state class α=(m,f), transition ta is enabled in α to capture the event 

corresponding to the beginning of time interval Ir. ta is enabled  by changing  the marking m 
in α such that place Pa would contain one token,  and replacing f with f ∧ ta=a. These two 
actions correspond to artificially putting a token in place Pa of Alarm. Since a=0 and 
transition ta has the highest priority, it is fired before all others. When ta is fired (which 

means that time has come to start looking for φ2, tb gets enabled in the resulting state class 
α=(m,f’) to capture the event corresponding to the end of interval Ir. If tb is fired during the 

exploration, ϕ is declared invalid and the exploration stops. If before firing tb, φ2 is satisfied 

in a state class α”=(m”,f”) transition tb is disabled in α” by changing the marking m” such 
that place Pb would contain zero tokens, and eliminating variable tb from f”. These two 

actions correspond to artificially removing the token in place Pb. After α” is modified, ϕ is 

checked again starting from α”. Note that in this technique, the fact of knowing a state class 
and the transition that led to it, is sufficient to know which action to take9. This means that 
there is no need to keep track of execution paths during the exploration, and hence, the 
exploration strategy of the SCG (depth first, breadth first,..) is irrelevant. This in turn solves 
the problem of dealing with cycles and infinite execution paths for bounded TPN models. 

Let α=(m,f) be a state class and t the transition that led to it. The different cases that might 

arise during the exploration are given in what follows: 

1. The case where ta, tb ∉ En(m) and t∉ {ta,tb} corresponds to a situation where we are 

looking for φ. In case φ1 is satisfied in α, we enable ta in α, 
2. The case where tb∈ En(m) corresponds to a situation where we are looking for φ2. If φ2 is 

satisfied in α then we disable tb and get in a situation where we are looking for φ1 (i.e., 
(1)). 

3. The case where t=tb corresponds to a situation where interval Ir has expired while we 

are looking for φ2.  In this case, we stop the exploration and declare ϕ invalid. 
Another problem may arise for zeno TPNs. Indeed, if the model is zeno and has a zeno 

execution path such that all its state classes satisfy φ1 but its time is less that b.  In this case, tb 
will never get fired to signal the end of interval Ir, and the verification would conclude that 
the property is valid while it is not. To correct this problem, one solution consists in 
detecting zeno cycles during the verification, but not any zeno cycle. The zeno cycles of 
interest are only those which arise when transition ta or tb is enabled.  
 
Algorithm modelCheck(ϕ)    
{  continue:=true;  /*global variable */ 
   valid:=true;     /*global variable */ 
   COMPUTED:= ∅; 
   α0 := (m0,f0); 

                                                 
9 For uniformity reasons, we assume a fictitious transition tε as the transition which led to 

the initial state class. 
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   α0':= checkStateClassϕ(α0,tε); 
   WAIT={α0’}; 
   while (continue ) 
  {   remove α=(m,f) from  WAIT; 
      for (t ∈ En(m) s.t. succAC( α

r
,t)≠∅)  provided continue 

     {     α':=succAC( α
r

,t); 
           If (ϕ≠∃(φ1 U φ2) and  (ta∈En(m) or  tb∈En(m)) and ↓Is(t) =0) then   Connect α to α’; 
           α'':=checkStateClassϕ(α',t); 

           if (continue ∧ α''≠∅  ∧  ∄αp ∈ COMPUTED s.t. α''⊆ αp) then 
          {    for(αp ∈ COMPUTED s.t. αp ⊆ α'')     remove αp from COMPUTED and from WAIT; 
              add α'' to COMPUTED and to WAIT; 
          } 
     } 
  } 
 If (ϕ≠∃(φ1 U φ2) and COMPUTED has a cycle s.t. ta or tb is enabled in all its state classes) then        

valid := false;  
  Return valid; 
} 
 

The on-the-fly TCTLTPN model checking of formula ϕ is based on the following exploration 

algorithm modelCheck(ϕ). This algorithm uses two lists: WAIT and COMPUTED, to manage 

state classes, and calls a polymorphic satisfaction function checkStateClassϕ to check the 

validity of formula ϕ. COMPUTED contains all computed state classes, while WAIT contains 
state classes of COMPUTED which are not yet explored. The algorithm generates state 
classes by firing transitions. The initial state class is supposed to result from the firing of a 

fictive transition tε. Each time a state class α is generated as the result of firing a transition t, 
α and t are supplied to checkStateClassϕ  to perform actions and take decisions. In general, 

checkStateClassϕ enables or disables transitions ta and tb in α. It also takes decisions, and 
record them in two global boolean variables continue and valid, to guide the exploration 

process. Finally, it returns either α after modification or ∅ in case α needs to be no more 
explored (i.e., ignored). The exploration continues only if continue is true. valid is used to 

record the truth value of ϕ. After checkStateClassϕ is called, the state class α' it returns is 
inserted in the list WAIT only if it is not included in a previously computed state class. 

Otherwise, α' is inserted in the list WAIT, while all state classes of the list COMPUTED 

which are included into α' are deleted from both COMPUTED and WAIT. This strategy, 
used also in the tool UPPAAL (Behrmann et al., 2002), attenuates considerably the state 

explosion problem. So instead of exploring both α and α', exploring α' is sufficient. 

Operation checkStateClassϕ takes as parameters: a state class, and the transition that led to it. 

Three different implementations of checkStateClassϕ are required for the three principal forms 

of ϕ, i.e., φ1⇝Ir φ2, ∀ (φ1 UI φ2) and ∃(φ1 UI φ2), with I=[a,b] and Ir=[0,b] (bound b can be either 
finite or infinite). All of these implementations handle four mutually exclusive cases 
corresponding to four types of state classes that can be encountered on an execution path.  

The first implementation corresponds to property ϕ=φ1⇝Ir φ2. The first case it handles 
corresponds to a state class not reached by the firing ta nor tb, and neither of them is enabled 
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in it. The remaining cases correspond respectively to: a state class where transition tb is 
enabled and a state class reached by the firing of transition tb. 
 

Algorithm  checkStateClassφ1⇝Ir φ2(α=(m,f),t) 

{   if ( ta,tb ∉ En(m) ∧  t∉ {ta,tb}) then 
           if( φ1(m) )   then    enable ta in  α;  
   if( tb∈ En(m) ∧ φ 2(m))     then     disable tb in  α; 
   if ( t=tb)      then   {    valid=false ; continue=false; } 
  Return α; 
} 
 

The second implementation corresponds to property ϕ=∀ (φ1 UI φ2). In it first case, this 
implementation looks for the initial state class only. The remaining cases are similar to those 
of the first implementation, but different actions are taken for each one of them. Intuitively 

the verification of property ϕ=∀ (φ1 UI φ2)  checks if proposition φ1 is true in the initial state 
class and all state classes following it, until ta fires. From the moment ta is fired, the verifier 

checks for the satisfaction of either φ1 or φ2, until φ2 is true or tb is fired. If φ2 becomes true in 

a state class α, α is no more explored. In case tb is fired, the exploration is stopped and the 
property is declared invalid. 
 

Algorithm  checkStateClass∀ (φ1 UI φ2) (α=(m,f),t) 
{  if(t=tε) then 
   {   if  (φ1(m))  then     enable ta in  α; 
        else     if(¬ φ2(m) ∨ a>0) then  {    valid=false;  continue=false; } 
                   else {   valid=true;  continue=false;  } 
   } 
  if ( ta∈ En(m) ∧ ¬ φ1(m))  then  {   valid=false;  continue=false; } 
 if (tb ∈ En(m)) then 
       if ( ¬ φ2(m)) then  
       {         if ( ¬ φ 1(m)) then  {    valid=false; continue=false; } 
       } else   Return ∅;    
  if ( t=tb)   then   {  valid=false; continue=false; } 
 Return α; 
} 
 

The implementation of checkStateClass∃ (φ1 UI φ2) corresponds to property ϕ=∃ (φ1 UI φ2). It 
handles four similar cases as the previous implementation, but different actions are taken. 
For instance, this implementation initializes variable valid to false as soon as the initial state 

class is entered, and stops the exploration of a state class α if it does not comply with the 

semantics of ϕ. It also aborts the exploration as soon as a satisfactory execution path is 
found. 
To illustrate our verification approach, we consider the simple TPN model shown in figure 

11, we call cyclic. The TCTLTPN property we verify is ϕ= φ1⇝[0,3] φ2, with proposition φ1(m)= 
(m(P0)=0) and proposition φ2(m)= (m(P1)=1).  For simplicity reasons, we selected a cyclic TPN 

model with a single execution path, for which property ϕ is trivially valid. 
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The verification process of ϕ starts first by constructing the TPN model cyclic||Alarm, such 
that a=0 and b=3, then runs according to the following steps: 

1. Compute the initial state class of cyclic||Alarm: α0= (P0, 1≤ t0 ≤ 2). 

2. Check if φ1 is valid in α0: φ1 is not valid in α0. 

3. Fire t2 from α0 and put the result in α1: α1= (P1, 2≤ t1 ≤ 3). 

4. Check if φ1  is valid in α1:  φ1 is valid in α1. 

5. Enable ta in α1: α1 becomes ((P1+Pa, 2≤ t1 ≤ 3 ∧ ta=0). 

6. Fire ta from α1 and put result in α2:  α2 = (P1+Pb, 2≤ t1 ≤ 3 ∧ tb=3). 

7. Check if φ2 is satisfied in α2: φ 2 is not satisfied in α2. 

8. Fire t1 from α2 and put the result in α3: α3= (P0+Pb, 1≤ t0 ≤ 2 ∧ 0≤ tb≤ 1). 

9. Check if φ 2 is satisfied in α3: φ 2 is satisfied in α3. 

10. Disables tb in α3: α3 becomes (P0, 1≤ t0 ≤ 2). 

11. Declare   ϕ valid since α3 has already been explored (α3=α0). 

We have implemented and tested this approach on the level classical model. The properties 

we considered are: 

12. The gate is never open  whenever a train is crossing: )(
1

1 i
ni

onopenG ∨
≤≤

∧¬∀=ϕ .  

13. If a train approaches, the gate closes in less than 2 time units: ϕ2 = coming ⇝ [0,2] closed. 
14. The level crossing model is deadlock free: ϕ3=∀G (En(m)≠∅). 
Table 3 reports results obtained for model checking the selected properties using our 
approach, applied on the SCG. Each result is given in terms of the final size of the list 
COMPUTED and the total number of explored state classes, followed by the exploration 
time.  The second column recalls the size and computing time of the ASCGs. All properties 
have been successfully tested valid.  
 

TPN ASCG ϕ1 ϕ2 ϕ3 

T(2) 
cpu(s) 

188 / 814 
0.01 

38 / 116 
0 

41 / 91 
0 

38 / 116 
0 

T(3) 
cpu(s) 

6918 / 49025 
1.49 

173 / 790 
0 

182 / 646 
0.01 

173 / 790 
0.01 

T(4) 
cpu(s) 

356930 / 3447548 
317.29 

1176 / 7162 
0.12 

1194 / 6073 
0.1 

1176 / 7162 
0.12 

T(5) 
cpu(s) 

? 
10973 / 81370 

2.37 
11008 / 71152 

2.04 
10973/81370 

2.30 

T(6) 
cpu(s) 

? 
128116/1103250 

110.81 
128184/986939    

100.92 
128116/1103250 

111.18 

Table 4. Comparison of ASCGs with our on-the-fly method 

6. Conclusion 

In this chapter, we presented and discussed model checking techniques of time Petri nets. 
We pointed out some strategies which allow to make model checking techniques more 
efficient. For model checking LTL properties, we proposed a contraction for the state class 
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graph (SCG), called RSCG, which is both smaller and faster to compute than other 
abstractions. For CTL* model checking, we showed that refining abstractions contracted by 
inclusion or convex-combination allow to improve significantly the refinement process. For 
all tested models, the refinement follows a linear pattern when an inclusion or convex-
combination abstraction is used. When an abstraction preserving linear properties is refined, 
the size of the computed graph starts first to grow up to a peek size then decreases until an 
atomic state class space is obtained.  Finally, to attenuate the state explosion problem of 
model checking techniques, we considered a subclass of TCTL and proposed an on-the-fly 
method for the RSCG and SCG. On-the-fly methods have proven to be very effective to 
model-check a subclass of TCTL of timed automata. 
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one to formally capture many of the basic notions and issues of concurrent systems has contributed greatly to

the development of a rich theory of concurrent systems based on Petri nets. This book brings together

reputable researchers from all over the world in order to provide a comprehensive coverage of advanced and

modern topics not yet reflected by other books. The book consists of 23 chapters written by 53 authors from

12 different countries.
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