
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

9

Model Checking of Time Petri Nets

Hanifa Boucheneb and Rachid Hadjidj
Department of Computer Engineering, École Polytechnique de Montréal

Canada

1. Introduction

To model time constraints of real time systems various time extensions are proposed, in the
literature, for Petri nets. Among these extensions, time Petri nets model (TPN model) is
considered to be a good compromise between modeling power and verification complexity.
Time Petri nets are a simple yet powerful formalism useful to model and verify concurrent
systems with time constraints (real time systems). In time Petri nets, a firing interval is
associated with each transition specifying the minimum and maximum times it must be
maintained enabled, before its firing. Its firing takes no time but may lead to another
marking. Time Petri nets are then able to model time constraints even if the exact delays or
durations of events are not known. So, time Petri nets are appropriate to specify time
constraints of real time systems which are often specified by giving worst case boundaries.
This chapter reviews the well known techniques, proposed in the literature, to model
check real time systems described by means of time Petri nets.
Model checking are very attractive and automatic verification techniques of systems (Clarke
et al., 1999). They are applied by representing the behavior of a system as a finite state
transition system (state space), specifying properties of interest in a temporal logic (LTL, CTL,
CTL*, MITL, TCTL) and finally exploring the state space to determine whether they hold or
not. To use model checking techniques with timed models, an extra effort is required to
abstract their generally infinite state spaces. Abstraction techniques aim to construct by
removing some irrelevant details, a finite contraction of the state space of the model, which
preserves properties of interest. For best performances, the contraction should also be the
smallest possible and computed with minor resources too (time and space). Several
abstractions, which preserve different kinds of properties, have been proposed in the
literature for time Petri nets. The preserved properties can be verified using standard model
checking techniques on the abstractions (Alur & Dill, 1990); (Penczek & Polrola, 2004);
(Tripakis & Yovine, 2001).
This chapter has 6 sections, including introduction and conclusion sections. Section 2
introduces the time Petri nets model and its semantics. Section 3 presents the syntaxes and
semantics of temporal logics LTL, CTL, CTL* and TCTL. Section 4 is devoted to the TPN state
space abstractions. In this section, abstractions proposed in the literature are presented,
compared and discussed from state characterization, agglomeration criteria, preserved
properties, size and computing time points of view. Section 5 considers a subclass of TCTL
temporal logics and proposes an efficient on-the-fly model checking.

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
hw

eb
.c

om

www.intechopen.com

Petri Net: Theory and Applications

180

2. Time Petri nets

2.1 Definition of the TPN

A TPN is a Petri net with time intervals attached to its transitions. Formally, a TPN is a tuple

ℵ = (P, T, Pre, Post, m0, Is) where

• P and T are finite sets of places and transitions such that P ∩ T =∅,
• Pre and Post are the backward and the forward incidence functions: P×T → Ν1,

• m0 is the initial marking: P → N,

• Is2: T → Q+ × (Q+ ∪ {∞}) associates with each transition t an interval called the static
firing interval of t.

Let Int be an interval, ↓Int and ↑Int denote respectively its lower and upper bounds.

Let M be the set of all markings of a TPN, m ∈ M a marking.
A transition t is said to be enabled in m, iff all tokens required for its firing are present in m,

i.e.: ∀p∈ P, m(p)≥ Pre(p,t). We denote by En(m) the set of all transitions enabled in m.

Two transitions t and t’ of En(m) are in conflict for m iff (∃p ∈ P, m(p)< Pre(p,t) + Pre(p,t’)).
If m results from firing some transition t from another marking, New(m,t) denotes the set
of all transitions newly enabled in m, i.e.:

New(m,t) = {t’ ∈ En(m) | t’ = t ∨ (∃p ∈ P, m(p)-Post(p,t) < Pre(p,t’))}.

Note that only one instance of each transition is supposed to be active at the same time. A
transition which remains enabled after firing one of its instance is considered newly
enabled.

2.2 The semantics of the TPN

There are two known definitions of the TPN state. The first one, based on clocks, associates
with each transition t of the model a clock to measure the time elapsed since t became
enabled most recently (Yoneda & Ryuba, 1998); (Boucheneb & Hadjidj, 2004). The TPN clock
state is a pair s=(m,v), where m is a marking and v is a clock valuation function, v: En(m) →
R+. The initial clock state of the TPN is s0 = (m0,v0), where m0 is the initial marking and v0(t) =
0, for all t in En(m0). The TPN state evolves either by time progression or by firing
transitions. When a transition t becomes enabled, its clock is initialized to zero. The value of
this clock increases synchronously with time until t is fired or disabled by the firing of
another transition. t can fire, if the value of its clock is inside its static firing interval Is(t). It
must be fired immediately, without any additional delay, when the clock reaches↑Is(t). Its

firing takes no time but may lead to another marking. Formally, let θ∈R+ be a nonnegative
reel number, t a transition of T, s=(m,v) and s’=(m’,v’) two clock states of a TPN.

We write 'ss ⎯→⎯θ iff state s' is reachable from state s after a time progression of θ time

units, i.e.: m=m’, ∀t∈En(m), v(t)+θ ≤↑Is(t) and∀t∈En(m), v’(t)=v(t)+θ. s’ is also denoted s+θ.

We write 'ss
t⎯→⎯ iff state s' is immediately reachable from state s by firing transition t, i.e.:

∀p∈P, m’(p)=m(p)-Pre(p,t)+Post(p,t), t∈En(m), v(t)≥↓Is(t) and ∀t’∈En(m’), v(t’)= if

t’∈New(m’,t) then 0 else v(t’).

1 N is the set of nonnegative integers.
2 Q+ is the set of nonnegative rational numbers.

www.intechopen.com

Model Checking of Time Petri Nets

181

The second characterization, based on intervals, defines the TPN state as a marking and a
function which associates with each enabled transition a firing interval (Berthomieu &
Vernadat, 2003). The TPN interval state is a couple s=(m,I), where m is a marking and I:
En(m) → Q+ × (Q+ ∪{∞}) is an interval function. The initial interval state of the TPN is s0 =
(m0, I0), where m0 is the initial marking and I0(t) = Is(t), for all t in En(m0). When a transition t
becomes enabled, its firing interval is set to its static firing interval Is(t). The lower and
upper bounds of this interval decrease synchronously with time, until t is fired or disabled
by another firing. t can fire, if the lower bound of its firing interval reaches 0, but must be
fired, without any additional delay, if the upper bound of its firing interval reaches 0. Its

firing takes no time but may lead to another marking. Formally, let θ∈ R+ be a nonnegative
reel number, t a transition of T, s=(m,I) and s=(m’,I’) two interval states of a TPN.

We write 'ss ⎯→⎯θ
 iff state s' is reachable from state s after a time progression of θ time

units, i.e.: m=m’ and ∀t∈En(m), θ≤↑I(t) ∧ I’(t)=[max(0,↓I(t)- θ),↑I(t)- θ]. s’ is also denoted s+θ.

We write 'ss
t⎯→⎯ iff state s' is immediately reachable from state s by firing transition t, i.e.:

∀p∈P, m’(p)=m(p)-Pre(p,t)+Post(p,t), t∈En(m), ↓I(t)=0, and ∀t’∈En(m’), I(t’)= if t’∈New(m’,t)
then Is(t’) else I(t’).
The semantics of the TPN can be defined using either the clock state or interval state

characterization. In both cases, the TPN state space is defined as a structure),,(0sS → , where

s0 is the initial clock or interval state of the model, and S = {s| ss ⎯→⎯*
0 } is the set of

reachable states (⎯→⎯*
 is the reflexive and transitive closure of the relation → defined

above).

Let s and s' be two TPN states, θ∈R+ and t∈T. As a shorthand, we write 'ss
t⎯→⎯θ

iff

"s sθ⎯⎯→ and " 'ts s⎯⎯→ for some state s“. We write 'ss
t

a iff ∃θ∈R+, 'ss
t⎯→⎯θ

.

An execution path in the TPN state space, starting from a state s∈S, is a maximal

sequence 0 0 1 10 1
t t

s s
θ θρ = ⎯⎯→ ⎯⎯→ , such that s0=s. We denote by π(s) the set of all

execution paths starting from state s. π(s0) is therefore the sets of all execution paths of the

TPN. The total elapsed time during an execution path ρ, denoted time(ρ), is the sum
0 ii
θ

≥∑ .

An infinite execution path is diverging if time(ρ)=∞, otherwise it is said to be zeno. A TPN
model is said to be non zeno if all its execution paths are not zeno. Zenoness is a
pathological situation which suggests that infinity of actions may take place in a finite
amount of time.

The TPN state space defines the branching semantics of the TPN model, whereas π(s0) defines
its linear semantics. The graph of its execution paths, called concrete state space, is the structure

(Σ,a,s0) where s0 is the initial state of the model, ∑ = }|{
*

0 sss a is the set of reachable concrete

states of the TPN model, and a
*

is the reflexive and transitive closure of a.

3. Temporal logics for time Petri nets

Properties of timed systems are usually specified using temporal logics (Penczek & Polrola,

2004). We consider here CTL* (computation tree logic star) and a subclass of TCTL (timed

www.intechopen.com

Petri Net: Theory and Applications

182

computation tree logic). Since our goal is to reason about temporal properties of time Petri

nets, an atomic proposition is a proposition on a marking.

Let M be the set of reachable markings of a TPN model and PV the set of propositions on M,

i.e., {φ | φ: M → {true, false} }.

3.1 CTL
*
and its semantics

CTL* is a temporal logic which allows to specify both linear and branching properties. The

syntax of CTL* is given by the following grammar:

ppppppsp

ppssss

UX

false

ϕϕϕϕϕϕϕϕ

ϕϕϕϕϕφϕ

||||

|||||

∧¬≡

∃∀∧¬≡

In the grammar, φ∈ PV stands for an atomic proposition. ϕs and ϕp define respectively

formulas that express properties of states and execution paths. ∀ ("for all paths") and ∃
("there exists a path") are path quantifiers, whereas U ("until") and X ("next") are temporal

operators (path operators). The sublogics CTL and LTL are defined as follows:

• In CTL formulas, every occurrence of a path operator is immediately preceded by a

path quantifier: ϕϕϕϕϕϕϕϕϕφϕ XXUUfalse ∃∀∃∀∧¬≡ ||)(|)(||||

• In LTL, formulas are supposed to be in the form ∀ϕp where state subformulas of ϕp are

propositions: ϕϕϕϕϕϕφϕ XUfalse ||||| ∧¬≡

 To ease CTL* formulas writing, some abbreviations are used: F ϕ = (true U ϕ), ∃ ϕ = ¬ ∀ ¬ ϕ
and G ϕ = ¬ F ¬ϕ.

CTL* formulas are interpreted on states and execution paths of a model M =(S,V), where

S=(S, →, s0) is a transition system and V: S → 2PV is a valuation function which associates
with each state the subset of atomic propositions it satisfies.

Let s∈S be a state of S, π(s) the set of all execution paths starting from s, and

....3210 221100 ssss
ttt ⎯⎯ →⎯⎯⎯ →⎯⎯⎯ →⎯= θθθρ an execution path with ρi its suffix starting

from si. The formal semantics of CTL* is given by the satisfaction relation ⊨ defined as

follows (the expression M, s ⊨ ϕ is read: "s satisfies property ϕ in the model M "):

• M, s ⊭ false,

• M, s ⊨ φ iff φ ∈ V(s),

• M, x ⊨ ¬ϕ iff M, x ⊭ ϕ for x ∈{s, ρ },

• M, x ⊨ ϕ ∧ ψ iff M, x ⊨ ϕ and M, x ⊨ ψ for x ∈{s, ρ },

• M, s ⊨ ∀ϕ iff ∀ρ∈π(s), M, ρ ⊨ ϕ,

• M, s ⊨ ∃ϕ iff ∃ρ∈π(s), M, ρ ⊨ ϕ,

• M, ρ ⊨ ϕ iff M, s0 ⊨ ϕ, for a state formula ϕ,

• M, ρ ⊨ X ϕ iff M, ρ1 ⊨ ϕ,

• M, ρ ⊨ ϕ U ψ iff ∃j≥0, M, ρj ⊨ ψ and ∀0≤i<j, M, ρi ⊨ ϕ.

We say that M satisfies ϕ, written M ⊨ ϕ, iff M, s0 ⊨ ϕ. For instance M, s0 ⊨ ∀(ϕ U ψ), iff for

any execution path starting from s0, ϕ is true in s0 and the following states, until a state that

satisfies ψ is reached.

www.intechopen.com

Model Checking of Time Petri Nets

183

To be able to specify explicitly time constraints of some important real-time properties such

as, for example, the bounded response property, timed versions have been proposed for

these logics (MITL, TCTL). Among these logics, we consider here a subclass of TCTL logic

for an on-the-fly model checking.

3.2 TCTL and its semantics

TCTL is a timed extension of CTL (computation tree logic) where a time interval is

associated with each temporal operator. The syntax of TCTL formulas is defined by the

following grammar (in the grammar, φ ∈ PR and index I is an interval of Q+× (Q+∪{∞}):

ϕ ≡ false | φ | ¬ϕ | ϕ∧ϕ | ∀(ϕ UI ϕ) | ∃(ϕ UI ϕ)

TCTL formulas are also interpreted on states and execution paths of a model M =(S,V). To

interpret a TCTL formula on an execution path, we introduce the notion of dense execution

path. Let s∈S be a state of S, π(s) the set of all execution paths starting from s,

and
0 0 1 10 1
t t

s s
θ θρ = ⎯⎯→ ⎯⎯→ an execution path of s. The dense path of the execution path

ρ is the mapping SR →+:ρ̂ defined by: δρ += isr)(ˆ s.t. ∑ −
= += 1

0

i

j jr δθ
, i≥0 and 0≤δ≤θi.

The formal semantics of TCTL is given by the satisfaction relation = defined as follows:

• M, s ⊭ false,

• M, s ⊨ φ iff φ ∈ V(s),

• M, s ⊨ ¬ϕ iff M, s ⊭ ϕ ,

• M, s ⊨ ϕ ∧ ψ iff M, s ⊨ ϕ and M, s ⊨ ψ ,

• M, s ⊨ ∀(ϕ UI ψ) iff∀ρ∈π(s), ∃r∈ I, M,)(ˆ rρ ⊨ ψ and ∀0≤r’<r, M,)'(ˆ rρ ⊨ ϕ.

• M,s⊨ ∃(ϕ UI ψ) iff ∃ρ∈π(s), ∃r∈ I, M,)(ˆ rρ ⊨ ψ and∀0≤r’<r, M,)'(ˆ rρ ⊨ ϕ.

The TPN model is said to satisfy a TCTL formula ϕ iff M, s0 ⊨ ϕ. When interval I is omitted,

its value is [0, ∞] by default. Our timed temporal logic, we call TCTLTPN, is defined as

follows:

TCTLTPN ≡ ∀(ϕm UI ϕm) | ∃(ϕm UI ϕm) | ϕm ⇝Ir ϕm | ∃GI ϕm | ∀GI ϕm | ∃FI ϕm | ∀FI ϕm

ϕm ::= ϕm ∧ ϕm | ϕm ∨ ϕm | ¬ ϕm | φ | false

φ is a proposition on markings (i.e., φ ∈ PR). I is a time interval. Ir is a time interval which

starts from 0. Formula φ1⇝Ir φ2 is a shorthand for TCTL formula ∀G(φ1 ⇒∀FIr φ2) which

expresses a bounded response property.

Several efficient model checking techniques were developed in the literature for LTL, CTL,
CTL*, MITL and TCTL, using timed Büchi automata, fix point techniques, or hesitant

alternating automata (Penczek & Polrola, 2004); (Tripakis et al., 2005); (Tripakis et al., 2001);

(Visser & Barringer, 2000). To apply these techniques to time Petri nets, we must construct a

finite abstraction for its generally infinite state space which preserves properties of interest.

www.intechopen.com

Petri Net: Theory and Applications

184

4. TPN state space abstractions

Abstraction techniques aim to construct by removing some irrelevant details, a finite
contraction of the state space of the model, which preserves properties of interest (markings,
linear or branching properties). The preserved properties are then verified on the
contraction using the classical model checking techniques. The challenge is to construct,
with less resources (time and space), a much coarser abstraction preserving properties of
interest.

4.1 Abstract state space

An abstract state space of the TPN model is defined as a structure AS=(A,⇒, α0) where

(Boucheneb & Hadjidj, 2006):

• A is a cover of S or Σ3. Each element α of A, called abstract state, is an agglomeration of
some states sharing the same marking.

• α0 is the initial abstract state class of AS, such that s0 ∈ α0, and

• ⇒ ⊆ A × T × A is the successor relation that satisfies condition EE, i.e.:

i. ','', ,)',,(sssst
t

aαααα ∈∃∈∃⇒∈∀ and

ii.)' ''(,', s.t. ,)',,(αααααα ⇒∧∈∈∃∈∈∀∈∀
t

sAsAsts a

The first part of condition EE prevents the connection of two abstract states with no

connected states. The second one ensures that all sequences of transitions in the state space

are represented in the abstraction.

Note that there are some differences between condition EE presented here and those given

in (Berthomieu & Vernadat, 2003) and (Penczek & Polrola, 2004):

• EE in (Berthomieu & Vernadat, 2003):

]')','',[(,)',,(αααααα ⇒⇔∈∃∈∃××∈∀
tt

ssssATAt a

• EE in (Penczek & Polrola, 2004):

]')','',[(,)',,(αααααα ⇒⇒∈∃∈∃××∈∀
tt

ssssATAt a

Theses conditions impose to connect each two abstract states α and α' whenever some state

of the first one has a successor in the second one. However, TPN abstractions proposed in

the literature do not obey this rule, while they are still valid. As an example, consider the

TPN with its Strong State Class Graph SSCG4 shown in figure 1. Inequalities associated with

each abstract state characterize the clock domains of all states agglomerated in the abstract

state. The abstract state α3 has a state which has a successor by t0 in α5, but no transition by

t0 exists from α3 to α5. In fact, the transition from α3 to α1 by t0 ensures that some state in α3

has as successor by t0 the unique state of α1. However, there is no transition from α3 to α5 by

t0, while the unique state of α1 belongs also to α5. This situation contradicts conditions EE

given in (Berthomieu & Vernadat 2003) and (Penczek & Polrola, 2004).

3 A cover of a set X is a collection of sets whose union contains X.
4 The SSCG is a TPN abstraction proposed in (Berthomieu & Vernadat, 2003).

www.intechopen.com

Model Checking of Time Petri Nets

185

α0: p0+p2+3p3
 t0=0

α1: p0+p1+p2+2p3
 t0=t1=0

α2: p0+2p1+p2+p3
 0≤t0≤0∧ 1≤t1

α3: p0+p2+3p3
 1≤t0≤2

α4: p0+3p1+p2
 1≤t1

α5: p0+p1+p2+2p3
 0≤t0≤2 ∧ t1=0

α6: p0+2p1+p2+p3
 t0=t1=0

α7: p0+2p1+p2+p3
 t0=0 ∧ 0≤t1<1

α8: p0+p1+p2+2p3
 1≤t0≤2 ∧ t1=0

α7: p0+p1+p2+2p3
 0<t0≤2 ∧ t1=0

α7: p0+p2+3p3
 t0=2

α7: p0+p2+3p3
 1<t0≤2

Fig. 1. A TPN model and its SSCG.

The relation ⇒ may satisfy other additional conditions such as (see figure 2):

 EA: ',,'' ,)',,(sssst
t

aαααα ∈∃∈∀⇒∈∀ ,

AE: ','', ,)',,(sssst
t

aαααα ∈∃∈∀⇒∈∀

t1 t0

[1,∞]

p3

p0 p1 p2

[1,2]

www.intechopen.com

Petri Net: Theory and Applications

186

Fig. 2. Conditions EE, EA and AE.

A state class space which satisfies condition AE is called an atomic state class graph. An
abstract state which satisfies condition AE for each outgoing edge is said to be atomic
The theorem below establishes a relation between conditions AE, EA and properties of the

model preserved in the abstraction.

Theorem (Boucheneb & Hadjidj, 2006): Let AS=(A,⇒,α0) be an abstraction of a TPN. Then:

1. If (AS satisfies condition EA and α0= {s0}) then AS preserves LTL properties of the TPN,
2. If AS satisfies condition AE then it preserves CTL* properties of the TPN.

4.2 Abstract states

We can find, in the literature, several state space abstractions for the TPN model: the state

class graph SCG (Berthomieu & Vernadat, 2003), the zone based graph ZBG (Gardey &

Roux, 2003), the geometric region graph GRG (Yoneda & Ryuba, 1998), the strong state class

graph SSCG (Berthomieu & Vernadat, 2003) and the atomic state class graphs ASCGs

(Boucheneb & Hadjidj, 2006); (Berthomieu & Vernadat, 2003); (Yoneda & Ryuba, 1998).

These abstractions may differ mainly in the characterization of abstract states (interval states

(Berthomieu & Vernadat, 2003), clock states (Boucheneb & Hadjidj, 2006) or firing dates

(Yoneda & Ryuba, 1998), the agglomeration criteria of states, the kind of properties they

preserve and their size.

In all these abstractions except the GRG, abstract states are defined as a couple α=(m,f),
where m is a marking and f is a conjunction of atomic constraints of the form x-yp c, - x p c

or x p c, where c ∈ Q∪{-∞,∞}, p ∈ {=, ≤, ≥, <, >}, and x, y are time variables. Each transition

enabled in m is represented in f by a time variable, with the same name, representing either

its delay or its clock (Var(f)=En(m)). All time variables are either clocks (clock abstract states)

or delays (interval abstract states). Time variables are clocks in the SSCG, ZBG and ASCGs

(clock state abstractions) but they are delays in the SCG (an interval state abstraction).

Abstract states of the SCG, SSCG, ZBG and ASCGs are respectively called state classes,

strong state classes, state zones and atomic state classes.

Abstract states of the GRG are triples (m,f,η), where m is the marking obtained by firing

from the initial marking m0 the sequence of transitions η and f is a set of atomic constraints

on firing dates of transitions in m and their parents (transitions of η which made transitions

of En(m) enabled). This definition needs more time variables and constraints. It is therefore

less interesting than those used in other abstractions. In addition, the relation of equivalence

used in GRG involves large graphs and may induce infinite abstractions for some time Petri

www.intechopen.com

Model Checking of Time Petri Nets

187

nets with unbounded firing intervals (Berthomieu & Vernadat, 2003). Two abstract states are

equivalent if they have the same marking, their enabled transitions have the same parents,

and these parents could be fired at the same dates. For all these reasons, we do not consider

here the abstract state definition of the GRG.

Though the same domain may be expressed by different conjunctions of atomic constraints,

equivalent formulas have a unique form, called canonical form. Canonical forms make

operations needed to compute and compare abstract states more simple. Let f be a

conjunction of atomic constraints. The canonical form of f is:

)(
}){)((,

yxSupyxf f
yx

f
ofVaryx

−−= −

∪∈
∧ p

where Var(f) is the set of time variables of f, o represents the value zero, Supf (x-y) is the

supremum of x-y in the domain of f, yx
f
−p is either ≤ or <, depending respectively on

whether x-y reaches its supremum in the domain of f or not. Dom(f) denotes the domain of f.
By convention, we suppose that Is(o)=[0,0].
The canonical form of f is usually represented by a DBM B (Daws et al., 1996) of order

|Var(f)|+1, defined by:

)),((B},{)((, x y
yx

ff yxSupofVaryx
−−=∪∈∀ p

An element of a DBM is called a bound. Operations like +, -, <, ≤, ≥, =, and min on bounds of

DBMs are defined as usual: },,,,{,),(),,(2211 ≥=<≤∈∀∈∀ ppp Bcc

• 1 1 2 2(,) (,)c cp p p iff (1 2 1 2 1 2()c c c c∧ = ⇒p p pp); (”<” is less than operator “≤”).

• 1 1 2 2 1 2 1 2(,) (,) (,min(,))c c c c+ = +p p p p ;

• 1 1 2 2 1 2 1 2(,) (,) (, min(,))c c c c− = −p p p p ;

• 1 1 1 1(,) (,))c c− = −p p

• 1 1 2 2 1 1 2 2 1 1 2 2min((,), (,)) (,) (,) (,) (,)c c if c c then c else c= ≤p p p p p p

The computation of canonical forms is based on the shortest path Floyd-Warshall's algorithm
and is considered as the most costly operation (cubic in the number of variables in f)
(Berhmann et al., 2002). In (Boucheneb & Mullins, 2003) and (Boucheneb & Hadjidj, 2006),
authors have shown how to compute, in O(n2), for respectively the SCG and the SSCG, the
canonical form of each successor abstract state, n being the number of variables in the
abstract state. An abstract state is said in canonical form iff its formula is in canonical form.
The convexity of abstract states is an important criterion to maintain their computation

simple. The simplicity of the method is particularly guaranteed by the usage of DBMs. This

data structure adapts well to all computation aspects involved in constructing abstractions,

but fails to efficiently represent non convex domains (DBMs are not closed under set-union).

To avoid this limitation, Clock Difference Diagrams (CDDs) (Larsen et al., 1999) seems to be a

better alternative. CDDs allow to represent in a very concise way the union of convex

domains. They are also closed under set-union, intersection and complementation.

However, due to the lack of a known simple computing canonical form, CDDs fail to

compete with DBMs when it comes to computing successors and predecessors of abstract

www.intechopen.com

Petri Net: Theory and Applications

188

states. A detailed description of CDDs can be found in (Berhmann et al., 2002) and (Larsen et

al., 1999), where the authors use this data structure to represent computed state zones in the

list PASSED of the reachability algorithm, implemented in the tool UPPAAL. Yet, they still

use DBMs to compute successors of abstract states. Note that abstract states within the list

PASSED are handled using only two basic operations which are well supported by CDDs

(set-union and inclusion).

4.3 Abstractions preserving linear properties

An abstraction is said to preserve linear properties if it has exactly the same firing sequences

as its concrete state space. In abstractions preserving linear properties, we distinguish, in

general, three levels of abstraction (see figure 3). In the first level, states reachable by time

progression may be either represented (ZBG) or abstracted (SCG, GRG, SSCG). In the

second level, states reachable by the same firing sequence independently of their firing times

are agglomerated in the same node. In the third level, the agglomerated states are then

considered modulo some relation of equivalence (firing domain of the SCG (Berthomieu &

Vernadat, 2003), the approximations of the ZBG (Gardey & Roux, 2003) and the SSCG

(Berthomieu & Vernadat, 2003)). These abstractions, except the GRG, are finite for all

bounded time Petri nets. Indeed, for some bounded TPNs with unbounded static firing

intervals, the GRG may be infinite. However, in (Pradubsuwun et al., 2005), authors used

the approximation of timed automata to ensure the convergence of the construction of the

GRG for bounded TPNs with unbounded static firing intervals.

Fig. 3. Different levels of abstraction

4.3.1 Basic operations on abstract states

Let α be an abstract state and t a transition of T. We define the basic operations on α, used to
construct abstractions preserving linear properties:

• }s',|'{),(⎯→⎯∈∃= t
def

ssstsucc αα is the set of all states reachable from α by firing

immediately transition t.

t

t2
t3

t1
t1

t2

t2

t2

t3
t1
t1

t1

t1

t1

t2

t2

a) The first level

b) the second and third levels

θs1 s2
ts1 s2

s’1

s2

t
s1 s2 s’1

θ t θs1 s2 s’1

www.intechopen.com

Model Checking of Time Petri Nets

189

• }s',,|'{ ⎯→⎯∈∃∈∃= + θθαα sRss
defr

contains α and all states reachable from α via some

time progression.
Let us now show how to compute successor abstract states for clock abstract states and for
interval abstract states.

Let α=(m,f) be a clock abstract state in canonical form, and t a transition of T:

succ(α,t)≠∅ iff t∈En(m) and ttIsf ≤↓∧)(is consistent. This means that there is at least a

state in α such that t is firable from it (its clock reaches its static firing interval).

If succ(α,t)≠∅ then succ(α,t) = (m’,f’) is computed in four steps:

1. ∀p∈P, m’(p)=m(p)-Pre(p,t)+Post(p,t).

2. Initialize f’ with ttIsf ≤↓∧)(. This step eliminates from f states from which t

is not immediately firable.
3. Put f’ in canonical form and eliminate t and all transitions conflicting with t in

m.

4. Add constraints 0'
)',('

=∧
∈

t
tmNewt

and put f’ in canonical form (clocks of newly

enabled transitions are set to 0).

•)',(fm=α
r

 is computed in three steps:

1. Initialize f’ with f;
2. Replace all constraints t – o ≤ c with t – o ≤↑Is(t). Clocks increase with time

until reaching upper bounds of the static firing intervals of their transitions or
their transitions are fired or disabled.

3. Put f’ in canonical form.

Let α=(m,f) be an interval abstract state in canonical form, and t a transition of T:

• succ(α,t)≠∅ iff t∈En(m) and 0=∧ tf is consistent. This means that there is at least a

state in α such that t is firable from it (its delays is equal to 0).

If succ(α,t)≠∅ then succ(α,t) = (m’,f’) is computed in four steps:

1. ∀p∈P, m’(p)=m(p)-Pre(p,t)+Post(p,t).

2. Initialize f’ with 0 =∧ tf . This step eliminates from f states from which t is

not immediately firable.
3. Put f’ in canonical form and eliminate t and all transitions conflicting with t in

m.

4. Add constraints)'(')'(
)',('

tIsttIs
tmNewt

≤↑≤↓∧
∈

and put f’ in canonical form. The

firing interval of each newly enabled transition is set to its static firing interval.

•)',(fm=α
r

 is computed in three steps:

1. Initialize f’ with f;
2. Replace each constraint o – t ≤ c with o – t ≤ 0. Delays decrease with time until

reaching 0 or their transitions are fired or disabled.
3. Put f’ in canonical form.

4.3.2 Approximation of clock abstract states

Let α=(m,f) be a clock abstract state in canonical form and En=∞(m)={t |t∈En(m)∧ ↑Is(t)=∞}
the set of unbounded transitions enabled in m.

www.intechopen.com

Petri Net: Theory and Applications

190

The SSCG approximation of α denoted approxSSCG(α) produces a partition of α: {(m, fe) | (e ⊆
En=∞(m) ∨ e=∅}, where fe is a consistent formula characterizing states of (m, f) in which all

transitions of e have not yet reached their minimal delays, while those of En=∞(m)-e have

reached or over-passed their minimal delays. fe is computed in three steps:

1. Initialize fe with:))'('())((
)('

tIsttIstf
emEntet

≥↓∧<↓∧ ∧∧
−∈∈ ∞=

;

2. Put fe in canonical form and eliminate all variables in En=∞(m)-e;

3. Add the constraint ')'(
)('

ttIs
emEnt

≤↓∧
−∈ ∞=

.

Steps (2) and (3) extend fe with possibly non reachable states when replacing the domain of

each variable t' in En=∞(m)-e by [↓Is(t'),∞]. Nevertheless, these states correspond all to the

same interval state (Berthomieu & Vernadat, 2003). Therefore, this operation preserves

linear properties of the abstract state α.

Let k be the greatest finite bound appearing in the static firing intervals of the considered

TPN. The ZBG approximation of α, proposed in (Gardey & Roux, 2003), denoted approxk(α),
is the abstract state (m,f’) where f’ is the canonical form of the formula computed from f as

follows: For each t ∈ En=∞(m), x ∈ En(m)∪{o},
1. Replace constraint x – t p c with x – t ≤ – k, if c <- k;
2. Remove constraint t – x p c if k < c.
Step (1) replaces by k the lower bound of t - x which exceeds k (x – t p c <- k is equivalent to k
< - c p t - x). Step (2) is equivalent to replace by ∞ the upper bound of t – x which exceeds k.

This operation extends f with possibly non reachable states but the added states do not alter

linear properties of the abstract state α (Gardey & Roux, 2003). In (Boucheneb et al., 2006),

authors proposed two other approximations for the ZBG, denoted respectively approxkx and

approxkx’ which lead to much compact graphs. They showed that α, approxkx(α) and

approxkx’(α) have the same firing domain and then the same firing sequences.

approxkx(α) is the abstract state (m,f’) where f’ is the canonical form of the formula computed

from f as follows: For each t ∈ En=∞(m), x ∈ En(m)∪{o},
1. Replace constraint x – t p c with x – t ≤ – ↓Is(t), if c ≤-↓Is(t);

2. Remove constraint t – x p c, if ↓Is(t) p c.

approxkx’(α) is the abstract state (m,f’) where f’ is the canonical form of the formula computed

from f as follows: For t, t’ ∈ En(m),
1. Replace the constraint o – t p c with o – t ≤ 0, if t ∈ En=∞(m) ;

2. Remove constraint t’ – t p c’ if t∈En=∞(m) or the constraint o– tp c is s.t. c’–↓Is(t’) ≥c.
approxkx’ has been integrated recently in the tool Romeo5 in replacement of the one proposed
in (Gardey & Roux, 2003). This approximation is referred in the sequel as approxZBG.

4.3.3 Construction of abstractions preserving linear properties

An abstraction preserving linear properties is generated progressively by computing the

successors of the initial abstract states and those of each newly computed abstract state, until

no more new abstract states are generated. All computed abstract states are considered

5 http://romeo.rts-software.org

www.intechopen.com

Model Checking of Time Petri Nets

191

modulo some relation of equivalence. In table 1, we give the formal definition of the SCG,

ZBG and SSCG from which the construction algorithms can be derived.

AS SCG ZBG SSCG

Initial
abstract state

(m0,f0)
)()(

)(
0 tIsttIsf

mEnt

≤↑≤↓= ∧
∈

)),((00 fmapproxZBG

0
)(

0 == ∧
∈

tf
mEnt

)),((00 fmapproxSSCG

0
)(

0 == ∧
∈

tf
mEnt

(α,t,α’) ∈
⇒AS

≠),(tsucc α
r ∅ ∧

),(' tsucc αα
r

=

≠),(tsucc α ∅ ∧

)),((' tsuccapproxZBG αα =

≠),(tsucc α
r ∅ ∧

)),((' tsuccapproxSSCG αα
r

∈

A }|{
*

0 ααα
SCG⇒ })(|{

*

0 ααα
ZBGZBGapprox ⇒

r }|{
*

0 ααα
SSCG⇒

Table 1. Definition of SCG, ZBG and SSCG.

4.3.4 Interval state abstractions versus clock state abstractions
Clock based abstractions are less interesting than the SCG when only linear properties are of
interest. They are in general larger, and their computation takes more time. The origin of
these differences stems from the relationship between the two characterizations of states
which can be stated as follows: Let (m,v) be a clock state. Its corresponding interval state is
(m,I) s.t. ∀t ∈ En(m), I(t) = [max(0,↓Is(t)-v(t)), ↑Is(t)-v(t)]. Note that for any real value u ≥
↓Is(t), if ↑Is(t) =∞, ↑Is(t) - u = ∞ and max(0, ↓Is(t)-u)=0. This means that many clock states
may map to the same interval state. In such a case, all these states will obviously exhibit the
same future behaviour. The same remark extends also to interval abstract states and clock
abstract states. As an example, consider the model shown in figure 4.a. The repetitive firing
of transition t0, from the initial abstract state, generates 2 strong state classes sc1 and sc2

(figure 4.c) which map to the state class c1 (figure 4.b). Moreover, the number of strong state
classes which map to c1 depends and increases with the value of ↑Is(t1). For example,
for↑Is(t1)= 9, we obtain 5 strong state classes which correspond to the state class c1.
Moreover, abstractions based on clocks do not enjoy naturally the finiteness property for
bounded TPNs with unbounded intervals as it is the case for abstractions based on intervals.
The finiteness is enforced using an approximation operation on clock abstract states, which
may involve some overhead computation. Another point which contributes to generate
coarser abstractions concerns states reachable by time progression. We obtain coarser
abstractions when we add to each abstract state all states reachable from it by time
progression (relaxing abstract states). Indeed, two different abstract states may have the
same relaxed abstract state. As an example, the two SCG state classes α1=(m, 2 ≤ t ≤ 3) and
α2=(m, 1 ≤ t ≤ 3) are s.t. α1 ≠ α2 and).30,(21 ≤≤== tmαα

rr
 To achieve more contractions, we

define a relaxed version to the SCG, named relaxed state class graph (RSCG), as a structure
(A,⇒RSCG, 0α

r
) where:

1. α0=(m0,f0) where m0 is the initial marking and)()(
)(

0 tIsttIsf
mEnt

≤↑≤↓= ∧
∈

.

2. ∀α, α’, t, (α,t,α’) ∈⇒RSCG iff ≠),(tsucc α ∅ and),(' tsucc αα = .

3. A = { α | 0α ⇒RSCG α}.

However, abstractions based on intervals are not appropriate for constructing abstractions
preserving branching properties (ASCGs). Indeed, this construction, based on splitting
abstract states, is not possible on state classes (the union of intervals is irreversible) whereas
it is possible on clock abstract states. Together, the mentioned remarks suggest that the

www.intechopen.com

Petri Net: Theory and Applications

192

interval characterization of states is more appropriate to construct abstractions preserving
linear properties but is not appropriate to construct abstractions preserving branching
properties.
We have implemented and tested several abstractions. We report in table 2 sizes
(nodes/edges) and computing times of the RSCG, SCG, SSCG and ZBG we obtained for the
producer consumer model (figure 5) and the level crossing model (figure 6). The level
crossing model T(n) is obtained by putting in parallel one copy of the controller model, n
copies of the train model (with m = n) and one copy of the barrier model. Trains and the
barrier are synchronized with the controller on transitions with the same names. The
producer consumer model P(n) is the parallel composition of n-1 copies of the model in
figure 6.b with one copy of the model in figure 6.a while merging all places named P1 in one
single place. The obtained results confirm that the RSCG is in general smaller and faster to
compute too.

Fig. 4. Example showing the abstracting power of the interval state abstraction.

Fig. 5. The crossing level model

[2,3] [0,2]

p0
p1

t0 t1

t0 [0,2]

t0 [0,2] b) SCG state classes of t0
+

c) SSCG classes of t0+

a) A TPN model

t0 [0,2]

t0 [0,2]

t0 [0,2]

c0 = (p0+p1, 0 ≤ t0 ≤ 2 ∧ 2 ≤ t1 ≤ 3)

 c1 = (p0+p1, 0 ≤ t0 ≤ 2 ∧ 0 ≤ t1 ≤ 3)

sc0 = (p0+p1, t0 = t1 = 0)

sc1 = (p0+p1, t0 = 0 ∧ 0 ≤ t1 ≤ 2)

sc2 = (p0+p1, t0 = 0 ∧ 0 ≤ t1 ≤ 3)

www.intechopen.com

Model Checking of Time Petri Nets

193

Fig. 6. The producer consumer model

TPN RSCG SCG SSCG ZBG (approxkx’)
ZBG

(approxkx)

P(2)
cpu(s)

593 / 1922
0.01

748 / 2460
0.02

7963 / 42566
0.73

593 / 1922
0.14

2941 / 9952
0.31

P(3)
cpu(s)

3240 / 15200
0.12

4604 / 21891
0.30

122191 /
1111887

37.86

3240 / 15200
0.20

100060 /
385673
210.22

P(4)
cpu(s)

9267 / 54977
0.73

14086 / 83375
1.76

? 6
9504 / 56038

1.05
?

P(5)
cpu(s)

20877 / 145037
2.01

31657 / 217423
5.67

?
20877 / 145037

13.06
?

T(2)
cpu(s)

113 / 198
0

123 / 218
0

141 / 254
0

114 / 200
0

147 / 266
0

T(3)
cpu(s)

2816 / 6941
0.07

3101 / 7754
0.09

5051 / 13019
0.5

2817 / 6944
0.18

5891 / 15383
0.54

T(4)
cpu(s)

122289 / 391240
5.74

134501 / 436896
6.33

?
122290 / 391244

9.40
?

Table 2. Comparison of abstractions preserving linear properties

4.4 Abstractions preserving branching properties

Abstractions preserving branching properties (CTL* properties) are built using a partition

refinement technique in two steps (Paige & Tarjan, 1987). An abstraction, which does not

necessarily preserve branching properties, is first built then refined in order to restore the

condition AE (the resulting graph is atomic).

4.4.1 Refinement process

Let AS = (A, ⇒, α0) be an abstract state space of a TPN model, α=(m,f), α’=(m’,f’) two abstract

states of A, t a transition of T s.t. (α, t, α’)∈⇒ and }s',''|{),,'(a
tdef

ssstpred αααα ∈∃∈= . To

verify the atomicity of α for the edge (α, t, α'), it suffices to verify that α is equal or included

6 The computation has not completed after an hour of time, or aborted due to a lack of
memory.

www.intechopen.com

Petri Net: Theory and Applications

194

in),,'(αα tpred . In case α is not atomic, it is partitioned into a set of convex subclasses so as

to isolate the predecessors of α' by t in α, from those which are not.

Pred(α', t, α)=(m,f") is computed in five steps:
1. Initialize f" to 0''

),'('

=∧ ∧
∈

tf
tmNewt

,

2. Put f” in canonical form and eliminate by substitution all transitions in New(m', t),

3. Add constraints: ↓Is(t) ≤ t,)'('
)'('

tIst
mEnt

≤↑∧
∈

 and θ ≥ 0,

4. Replace each variable t by t + θ , put f” in canonical form then eliminate θ,
5. Add all constraints of f and put f” in canonical form.
Knowing that the firing of transition t sets the clock of each newly enabled transition to zero,
step (1) extracts from α' the subset of states where the clocks of newly enabled transitions
are equal to zero. Step (3) adds the firing constraints of transition t. Step (4) goes back in
time (each clock is decreased by θ time units). Finally, step (5) adds all constraints of class α.

Since the domain of the difference is not necessarily convex, we construct a partition of α -
Pred(α', t, α) such that all its parts are convex. Let α = (m, f) and α' = (m, f') be two abstract

states such that α’⊆ α. A partition of the complement of α' in α, denoted Comp(α, α’), is
computed as follows:

Algorithm Comp(α = (m, f), α' = (m, f'))
{ Part:=∅;

X:= f;
For each atomic constraint g of f'

 { if (X ⋀ ¬ g) is consistent then Part := Part ∪ {(m,X ⋀ ¬ g);

X:= (X ⋀ f);
 }
 Return Part;

}

The refinement proceeds according to the following algorithm: After its splitting, α is

replaced by its partition. Each subclass inherits all connections of α in accordance with
condition EE. The refinement step is repeated until condition AE is established. The
refinement process generates a finite graph iff the intermediate abstraction is finite
(Berthomieu & Vernadat, 2003).

Algorithm Refine(AS)

{ Repeat { For each α ∈ A such that α is not atomic for some transition 'αα ⇒
t

 { α":=Pred(α', t, α);
 Part: = Comp(α, α");
 Part:= Part ∪ {α"};

 Replace α by Part in AS;
 }

 } while (AS is not atomic)
}

www.intechopen.com

Model Checking of Time Petri Nets

195

4.4.2 Intermediate abstractions
The intermediate abstractions used in (Yoneda & Ryuba, 1998) (GRG) and (Berthomieu &
Vernadat, 2003) (SSCG) preserve linear properties. However, these abstractions are in
general large graphs with a high degree of state redundancy (the same state may appear in
several abstract states). Experimental results showed that this redundancy induces the
refinement procedure to waste time and space computing redundant abstract states. For
instance, if an abstract state is included into another one, refining both abstract states may
result in identical atomic abstract states. If both abstract states are replaced by the most
including one, no pertinent information will be lost while refinement steps get reduced. To
reduce state redundancy in abstraction preserving linear properties, we proposed to group
together abstract states whenever one of them includes all the others (Boucheneb & Hadjidj,
2006) or their union is convex (Boucheneb & Hadjidj, 2004). When a set of abstract states are
grouped, they are replaced by a new abstract state representing their union. All transitions
between these abstract states become loops for their union. Ingoing and outgoing transitions
of the grouped abstract states become respectively ingoing and outgoing of their union. If
one of the grouped abstract states contains the initial abstract state, their union becomes the
initial abstract state. The contraction may be performed either during or at the end of the
construction. With these abstractions, we obtain an important reduction in refinement times
and memory usage, resulting in graphs closer in size to the optimal (see table 3). Despite the
simplicity of the used models, they allowed to illustrate some interesting features related to
the computation pattern followed by the refinement procedure, depending on which
abstraction is refined (see figure 7). If an inclusion or convex-combination abstraction is
used, the refinement follows a linear pattern (i.e., the size of the graph grows linearly in time
during its construction). When an abstraction preserving linear properties is refined, the size
of the computed graph starts first to grow up to a peek size then decreases until an atomic
state class space is obtained. In certain cases, the peek size grows out of control, leading to a
state explosion.
The inclusion test is performed as follows: Let α=(m,f) and α’=(m,f') be two abstract states
sharing the same marking and B, B’ their DBMs in canonical form. (m,f) is included in (m,f’)
iff: ∀ x, y ∈ En(m) ∪ {o}, Bx y ≤ B’x y.
For the convex-combination, before explaining how to perform the grouping of abstract
states, we first define what a convex-hull is. Let α=(m,f), α’=(m,f') be two abstract states
sharing the same marking (see figure 8):

• The convex-hull of α and α’, denoted)',(ˆ ααα , is the abstract state α”=(m,f”) where:

)(" ''
}{)(,

yxSupyxf ff
yx
ff

omEnyx

−−= ∨
−
∨

∪∈
∧ p

• Let α”=(m,f”) be the convex-hull of α and α’. α”=(m,f”) is the canonical form of the

union of α and α’ iff (Dom(f”) - Dom(f)) ⊆ Dom(f’).
The convex-combination test of two abstract states involves three operations: convex-hull,
complement of a domain and a test of inclusion. Moreover, abstract states which may not
combine two by two may combine three by three or more. Figure 9 illustrates some
situations involving the convex combination of abstract states with two enabled transitions

only. In case a), abstract states α and α' are combined into the abstract state α". Case b)
shows two abstract states whose union is not convex and therefore cannot be grouped by

convex combination. Case c) illustrates a situation where three abstract states α, α' and α"

cannot combine when taken two by two, but combine well in α" if taken all together. Cases

www.intechopen.com

Petri Net: Theory and Applications

196

d) and e) show other situations, where the grouping two by two is not possible, but becomes
possible for other grouping.

Fig. 7. A TPN model and the refinement patterns of its SSCG and CSCG7

7 CSCG is a contraction by inclusion of the SSCG.

||

www.intechopen.com

Model Checking of Time Petri Nets

197

TPN Refining SSCG Refining CSCG Refining CCSCG Optimal

P(2)
cpu(s)

2615/ 28263
8.42

2444 / 26358
1.15

2411 /26138
1.01

2334 / 25046
9.41

P(3)
cpu(s)

?
31197 / 485960

40.18
30828 / 480987

35.62
28319 / 430875

3887.30

P(4)
cpu(s)

?
151384 / 2887295

358.06
151384 / 2887295

358.06
?

T(2)
195 / 849

0.02
192 / 844

0.02
188 / 814

0.01
185 / 786

0.03

T(3)
6983 / 50044

5.00
6966 / 49802

2.11
6918 / 49025

1.49
6905 / 48749

60.88

T(4) ?
356940 / 3447624

288.21
356930 / 3447548

317.29
?

Table 3. Refining SSCG, CSCG and CCSCG.

Fig. 8. Convex-hull of two abstract states

Fig. 9. Grouping abstract states by convex-combination.

www.intechopen.com

Petri Net: Theory and Applications

198

To achieve a high degree of contraction, we need to test all possible combinations of abstract

states sharing the same marking and having states in common. But this operation is

computationally very expensive. Experimental results have shown that performing the test

on abstract states two by two, results in very satisfactory contractions, in relatively short

computing times too. Furthermore, when two abstract states are such that one is included

into the other, their convex combination is simply the most including abstract state. So,

before performing the convex combination test, we check first for inclusion in O(n2), where n

is the number of transitions enabled in the shared marking of the two abstract states.

All CTL* model checking techniques can be applied directly on the atomic state class graphs

to determine linear and branching properties of time Petri nets. All states within the same

atomic abstract state have the same CTL* properties and are then considered as an

indivisible unit.

5. Model checking timed properties of time Petri nets

To verify some timed properties, in (Toussaint, J. et al., 1997), authors used observers to

express them in the form of TPNs and reduce them to reachability properties. However,

properties on markings are quite difficult to express with observers. Other techniques define

translation procedures from the TPN model into timed automata (Cassez & Roux, 2006);

(Lime & Roux, 2003), in order to make use of available model checking techniques and

tools (Penczek & Polrola, 2004); (Tripakis et al., 2005). Model checking is then performed

on the resulting timed automata, with results interpreted back on the original TPN model.

The translation into timed automata may be either structural (each transition is translated

into a timed automata using the same pattern) (Cassez & Roux, 2006) or semantic (the

state class graph of the TPN is first constructed and then translated into a timed

automaton) (Lime & Roux, 2003). Such translations show that CTL*, TCTL, LTL, MITL

model checking are decidable for bounded TPNs and that developed algorithms on timed

automata may be extended to TPNs. Though effective, these techniques face the difficulty

to interpret back and forth properties between the two models. In (Virbitskaite & Pokozy,

1999), authors proposed a method to model check TCTL properties of TPN. The method is

based on the region graph method and is similar to the one proposed in (Alur & Dill,

1990) for timed automata. However, the region graph is known to be a theoretical method

which is not applicable in practice because of its lack of efficiency.

To achieve the same goal, it is possible to adapt to the TPN, the method proposed in

(Penczek & Polrola, 2004) and (Tripakis et al., 2005) for timed automata. The verification of a

TCTL formula proceeds by adding a transition named ts8 to the TPN, translating the TCTL

formula into some CTL formula, constructing an abstraction which preserves CTL properties

of the completed TPN and then applying a CTL model checking technique. The

transformation of TCTL formulas into CTL ones needs to extend CTL with atomic

propositions of the form ts∈ I, and a particular next operator Xts defined by: for each formula

ψ and each state s' of the TPN, s' satisfies Xts ψ iff the state resulting by firing ts satisfies ψ.

8 This transition is used to deal with time constraints of the property to be verified. Its firing

interval is [0,∞].

www.intechopen.com

Model Checking of Time Petri Nets

199

For example, the formula ϕ = ∀(ϕ1 UI ϕ1) is translated into the formula ϕ' = Xts (∀ (ϕ1' U (ϕ2'

∧ ts ∈ I)). The verification of ϕ' is performed using the classical CTL model checking

technique by constructing an abstraction which preserves ϕ'. However, this method needs to

compute the whole abstraction of the model before it is analyzed and then runs up against

the state explosion problem. To attenuate the state explosion problem, on-the-fly model

checking methods may be a good alternative, as they allow to verify a property during the

construction of an abstraction preserving linear properties. The construction of the graph is

stopped as soon as the truth value of the property is obtained. On-the-fly methods have

proven to be very effective to model-check a subclass of TCTL on zone graphs of timed

automata. So, they can be straightforward adapted to clock based abstractions of time Petri

nets. However, TPN abstractions based on intervals are in general smaller and faster to

compute than TPN abstractions based on clocks. So, applying on-the-fly methods on TPN

abstractions based on intervals should give better performances. In this sense, in (Hadjidj &

Boucheneb, 2006), we proposed, using the state class method (SCG), a forward on-the-fly

model checking technique for a subclass of TCTL properties. The verification proceeds by

augmenting the TPN model under analysis with a special TPN, called Alarm shown in figure

10, to allow the capture of relevant time events (reaching, over passing a time interval). A

forward on-the-fly exploration combined with an abstraction by inclusion is then applied on

the resulting TPN. In the sequel, we give algorithms to model check TCTLTPN properties.
Note that all following developments apply similarly to both the SCG and the RSCG. The
SCG will be considered for explanations.

Let ℵ be a TPN model and ϕ=φ1 ⇝[0,b] φ2. Model checking ϕ on ℵ could be performed by

analyzing each execution path of the TPN SCG, until the truth value of ϕ is established. The

SCG is progressively constructed, depth first, while looking for the satisfaction of property
φ1. If φ1 is satisfied at an abstract state α, φ2 is looked for in each execution paths which starts

from α (i.e., ∀ρ∈ π(α)). For each execution path ρ ∈π(α), φ2 is required to be satisfied at a

state class α' such that the time separating α and α' is within the time interval [0,b]. If this is

the case the verification of ϕ is restarted again from α', and so forth, until all state classes are

explored. Otherwise, the exploration is stopped, and ϕ is declared invalid.

 Fig. 10. The Alarm TPN

www.intechopen.com

Petri Net: Theory and Applications

200

Fig. 11. cyclic TPN model

Some attention is required when dealing with transitions ta and tb. If transition ta can be fired

at exactly the same time as another transition t, and t is fired before ta, ϕ might be declared

wrongly false if the resulting state class satisfies φ2. A similar situation might arise for
transition tb if it is fired before a transition t which can be fired at exactly the same time. To
deal with these two special situations, we assign a high firing priority to transition ta, so that it
is fired before any other transition which can be fired at exactly the same time. At the
contrary, we assign a low firing priority to tb so that it is fired after any other transition which
can be fired at exactly the same time. To cope with this priority concepts, we need to change
the way we decide if a transition is firable or not, and the way the successor of a state class
α=(m,f), by a transition t, is computed (i.e., operation succ). succAC(α,t) replaces succ(α,t) to
check whether a transition is firable or not and compute successor state classes. What
changes is the way the firing condition fc is computed:

1. If (t≠ta and ta∈En(m)) then attffc <=∧= 0

2. If (t=tb and tb∈En(m)) then 0tffc ∧=∧= (
{ }

'
)('

ttb
tmEnt b

<∧
−∈

)

3. If (t=ta or (ta∉En(m) and t≠tb)) then 0=∧= tffc .
In case ta is enabled while we want to fire a different transition t (case 1), we need to make
sure that t is fired ahead of time of ta. In case tb is enabled and is the one we want to fire
(case 2), we need to make sure that tb is the only transition that can be fired. The remaining
cases are handled exactly as before.

SuccAC(α,t)≠∅ iff fc is consistent. If succAC(α,t)≠∅ then succAC(α,t) = (m’,f’) is computed in

four steps:

1. ∀p∈P, m’(p)=m(p)-Pre(p,t)+Post(p,t).
2. Initialize f’ with fc. This step eliminates from f states from which t is not immediately

firable.
3. Put f’ in canonical form and eliminate t and all transitions conflicting with t for m.

4. Add constraints)'(')'(
)',('

tIsttIs
tmNewt

≤↑≤↓∧
∈

and put f’ in canonical form. The firing

interval of each newly enabled transition is set to its static firing interval.

www.intechopen.com

Model Checking of Time Petri Nets

201

The verification of ϕ proceeds as follows: During the generation of the SCG of ℵ||Alarm, if
φ1 is satisfied in a state class α=(m,f), transition ta is enabled in α to capture the event

corresponding to the beginning of time interval Ir. ta is enabled by changing the marking m
in α such that place Pa would contain one token, and replacing f with f ∧ ta=a. These two
actions correspond to artificially putting a token in place Pa of Alarm. Since a=0 and
transition ta has the highest priority, it is fired before all others. When ta is fired (which

means that time has come to start looking for φ2, tb gets enabled in the resulting state class
α=(m,f’) to capture the event corresponding to the end of interval Ir. If tb is fired during the

exploration, ϕ is declared invalid and the exploration stops. If before firing tb, φ2 is satisfied

in a state class α”=(m”,f”) transition tb is disabled in α” by changing the marking m” such
that place Pb would contain zero tokens, and eliminating variable tb from f”. These two

actions correspond to artificially removing the token in place Pb. After α” is modified, ϕ is

checked again starting from α”. Note that in this technique, the fact of knowing a state class
and the transition that led to it, is sufficient to know which action to take9. This means that
there is no need to keep track of execution paths during the exploration, and hence, the
exploration strategy of the SCG (depth first, breadth first,..) is irrelevant. This in turn solves
the problem of dealing with cycles and infinite execution paths for bounded TPN models.

Let α=(m,f) be a state class and t the transition that led to it. The different cases that might

arise during the exploration are given in what follows:

1. The case where ta, tb ∉ En(m) and t∉ {ta,tb} corresponds to a situation where we are

looking for φ. In case φ1 is satisfied in α, we enable ta in α,
2. The case where tb∈ En(m) corresponds to a situation where we are looking for φ2. If φ2 is

satisfied in α then we disable tb and get in a situation where we are looking for φ1 (i.e.,
(1)).

3. The case where t=tb corresponds to a situation where interval Ir has expired while we

are looking for φ2. In this case, we stop the exploration and declare ϕ invalid.
Another problem may arise for zeno TPNs. Indeed, if the model is zeno and has a zeno

execution path such that all its state classes satisfy φ1 but its time is less that b. In this case, tb
will never get fired to signal the end of interval Ir, and the verification would conclude that
the property is valid while it is not. To correct this problem, one solution consists in
detecting zeno cycles during the verification, but not any zeno cycle. The zeno cycles of
interest are only those which arise when transition ta or tb is enabled.

Algorithm modelCheck(ϕ)
{ continue:=true; /*global variable */
 valid:=true; /*global variable */
 COMPUTED:= ∅;
 α0 := (m0,f0);

9 For uniformity reasons, we assume a fictitious transition tε as the transition which led to

the initial state class.

www.intechopen.com

Petri Net: Theory and Applications

202

 α0':= checkStateClassϕ(α0,tε);
 WAIT={α0’};
 while (continue)
 { remove α=(m,f) from WAIT;
 for (t ∈ En(m) s.t. succAC(α

r
,t)≠∅) provided continue

 { α':=succAC(α
r

,t);
 If (ϕ≠∃(φ1 U φ2) and (ta∈En(m) or tb∈En(m)) and ↓Is(t) =0) then Connect α to α’;
 α'':=checkStateClassϕ(α',t);

 if (continue ∧ α''≠∅ ∧ ∄αp ∈ COMPUTED s.t. α''⊆ αp) then
 { for(αp ∈ COMPUTED s.t. αp ⊆ α'') remove αp from COMPUTED and from WAIT;
 add α'' to COMPUTED and to WAIT;
 }
 }
 }
 If (ϕ≠∃(φ1 U φ2) and COMPUTED has a cycle s.t. ta or tb is enabled in all its state classes) then

valid := false;
 Return valid;
}

The on-the-fly TCTLTPN model checking of formula ϕ is based on the following exploration

algorithm modelCheck(ϕ). This algorithm uses two lists: WAIT and COMPUTED, to manage

state classes, and calls a polymorphic satisfaction function checkStateClassϕ to check the

validity of formula ϕ. COMPUTED contains all computed state classes, while WAIT contains
state classes of COMPUTED which are not yet explored. The algorithm generates state
classes by firing transitions. The initial state class is supposed to result from the firing of a

fictive transition tε. Each time a state class α is generated as the result of firing a transition t,
α and t are supplied to checkStateClassϕ to perform actions and take decisions. In general,

checkStateClassϕ enables or disables transitions ta and tb in α. It also takes decisions, and
record them in two global boolean variables continue and valid, to guide the exploration

process. Finally, it returns either α after modification or ∅ in case α needs to be no more
explored (i.e., ignored). The exploration continues only if continue is true. valid is used to

record the truth value of ϕ. After checkStateClassϕ is called, the state class α' it returns is
inserted in the list WAIT only if it is not included in a previously computed state class.

Otherwise, α' is inserted in the list WAIT, while all state classes of the list COMPUTED

which are included into α' are deleted from both COMPUTED and WAIT. This strategy,
used also in the tool UPPAAL (Behrmann et al., 2002), attenuates considerably the state

explosion problem. So instead of exploring both α and α', exploring α' is sufficient.

Operation checkStateClassϕ takes as parameters: a state class, and the transition that led to it.

Three different implementations of checkStateClassϕ are required for the three principal forms

of ϕ, i.e., φ1⇝Ir φ2, ∀ (φ1 UI φ2) and ∃(φ1 UI φ2), with I=[a,b] and Ir=[0,b] (bound b can be either
finite or infinite). All of these implementations handle four mutually exclusive cases
corresponding to four types of state classes that can be encountered on an execution path.

The first implementation corresponds to property ϕ=φ1⇝Ir φ2. The first case it handles
corresponds to a state class not reached by the firing ta nor tb, and neither of them is enabled

www.intechopen.com

Model Checking of Time Petri Nets

203

in it. The remaining cases correspond respectively to: a state class where transition tb is
enabled and a state class reached by the firing of transition tb.

Algorithm checkStateClassφ1⇝Ir φ2(α=(m,f),t)

{ if (ta,tb ∉ En(m) ∧ t∉ {ta,tb}) then
 if(φ1(m)) then enable ta in α;
 if(tb∈ En(m) ∧ φ 2(m)) then disable tb in α;
 if (t=tb) then { valid=false ; continue=false; }
 Return α;
}

The second implementation corresponds to property ϕ=∀ (φ1 UI φ2). In it first case, this
implementation looks for the initial state class only. The remaining cases are similar to those
of the first implementation, but different actions are taken for each one of them. Intuitively

the verification of property ϕ=∀ (φ1 UI φ2) checks if proposition φ1 is true in the initial state
class and all state classes following it, until ta fires. From the moment ta is fired, the verifier

checks for the satisfaction of either φ1 or φ2, until φ2 is true or tb is fired. If φ2 becomes true in

a state class α, α is no more explored. In case tb is fired, the exploration is stopped and the
property is declared invalid.

Algorithm checkStateClass∀ (φ1 UI φ2) (α=(m,f),t)
{ if(t=tε) then
 { if (φ1(m)) then enable ta in α;
 else if(¬ φ2(m) ∨ a>0) then { valid=false; continue=false; }
 else { valid=true; continue=false; }
 }
 if (ta∈ En(m) ∧ ¬ φ1(m)) then { valid=false; continue=false; }
 if (tb ∈ En(m)) then
 if (¬ φ2(m)) then
 { if (¬ φ 1(m)) then { valid=false; continue=false; }
 } else Return ∅;
 if (t=tb) then { valid=false; continue=false; }
 Return α;
}

The implementation of checkStateClass∃ (φ1 UI φ2) corresponds to property ϕ=∃ (φ1 UI φ2). It
handles four similar cases as the previous implementation, but different actions are taken.
For instance, this implementation initializes variable valid to false as soon as the initial state

class is entered, and stops the exploration of a state class α if it does not comply with the

semantics of ϕ. It also aborts the exploration as soon as a satisfactory execution path is
found.
To illustrate our verification approach, we consider the simple TPN model shown in figure

11, we call cyclic. The TCTLTPN property we verify is ϕ= φ1⇝[0,3] φ2, with proposition φ1(m)=
(m(P0)=0) and proposition φ2(m)= (m(P1)=1). For simplicity reasons, we selected a cyclic TPN

model with a single execution path, for which property ϕ is trivially valid.

www.intechopen.com

Petri Net: Theory and Applications

204

The verification process of ϕ starts first by constructing the TPN model cyclic||Alarm, such
that a=0 and b=3, then runs according to the following steps:

1. Compute the initial state class of cyclic||Alarm: α0= (P0, 1≤ t0 ≤ 2).

2. Check if φ1 is valid in α0: φ1 is not valid in α0.

3. Fire t2 from α0 and put the result in α1: α1= (P1, 2≤ t1 ≤ 3).

4. Check if φ1 is valid in α1: φ1 is valid in α1.

5. Enable ta in α1: α1 becomes ((P1+Pa, 2≤ t1 ≤ 3 ∧ ta=0).

6. Fire ta from α1 and put result in α2: α2 = (P1+Pb, 2≤ t1 ≤ 3 ∧ tb=3).

7. Check if φ2 is satisfied in α2: φ 2 is not satisfied in α2.

8. Fire t1 from α2 and put the result in α3: α3= (P0+Pb, 1≤ t0 ≤ 2 ∧ 0≤ tb≤ 1).

9. Check if φ 2 is satisfied in α3: φ 2 is satisfied in α3.

10. Disables tb in α3: α3 becomes (P0, 1≤ t0 ≤ 2).

11. Declare ϕ valid since α3 has already been explored (α3=α0).

We have implemented and tested this approach on the level classical model. The properties

we considered are:

12. The gate is never open whenever a train is crossing:)(
1

1 i
ni

onopenG ∨
≤≤

∧¬∀=ϕ .

13. If a train approaches, the gate closes in less than 2 time units: ϕ2 = coming ⇝ [0,2] closed.
14. The level crossing model is deadlock free: ϕ3=∀G (En(m)≠∅).
Table 3 reports results obtained for model checking the selected properties using our
approach, applied on the SCG. Each result is given in terms of the final size of the list
COMPUTED and the total number of explored state classes, followed by the exploration
time. The second column recalls the size and computing time of the ASCGs. All properties
have been successfully tested valid.

TPN ASCG ϕ1 ϕ2 ϕ3

T(2)
cpu(s)

188 / 814
0.01

38 / 116
0

41 / 91
0

38 / 116
0

T(3)
cpu(s)

6918 / 49025
1.49

173 / 790
0

182 / 646
0.01

173 / 790
0.01

T(4)
cpu(s)

356930 / 3447548
317.29

1176 / 7162
0.12

1194 / 6073
0.1

1176 / 7162
0.12

T(5)
cpu(s)

?
10973 / 81370

2.37
11008 / 71152

2.04
10973/81370

2.30

T(6)
cpu(s)

?
128116/1103250

110.81
128184/986939

100.92
128116/1103250

111.18

Table 4. Comparison of ASCGs with our on-the-fly method

6. Conclusion

In this chapter, we presented and discussed model checking techniques of time Petri nets.
We pointed out some strategies which allow to make model checking techniques more
efficient. For model checking LTL properties, we proposed a contraction for the state class

www.intechopen.com

Model Checking of Time Petri Nets

205

graph (SCG), called RSCG, which is both smaller and faster to compute than other
abstractions. For CTL* model checking, we showed that refining abstractions contracted by
inclusion or convex-combination allow to improve significantly the refinement process. For
all tested models, the refinement follows a linear pattern when an inclusion or convex-
combination abstraction is used. When an abstraction preserving linear properties is refined,
the size of the computed graph starts first to grow up to a peek size then decreases until an
atomic state class space is obtained. Finally, to attenuate the state explosion problem of
model checking techniques, we considered a subclass of TCTL and proposed an on-the-fly
method for the RSCG and SCG. On-the-fly methods have proven to be very effective to
model-check a subclass of TCTL of timed automata.

7. References

Alur, R. & Dill, D. (1990) . Automata for modelling real-time systems, Proceedings of
17ème ICALP, LNCS 443, pp. 322–335. Springer-Verlag, 1990.

Behrmann, G. ; Bengtsson, J.; David, A.; Larsen, K. G.; Pettersson, P. & Yi, W. (2002).
UPPAAL Implementation Secrets, Proceedings of the 7th International Symposium
on Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS 2469, pp. 3–
22. Springer-Verlag, 2002.

Berthomieu, B. & Vernadat, F. (2003). State class constructions for branching analysis of
time Petri nets, In Proceedings of TACAS 2003, LNCS 2619, pp. 442–457. Springer-
Verlag. 2003.

Boucheneb, H.; Gardey, G. & Roux. O. H. (2006). TCTL model checking of time Petri nets.
Technical Report IRCCyN number RI2006-14, 2006.

Boucheneb, H. & Hadjidj, R. (2006). CTL* model checking for time Petri nets, Theoretical
Computer Science journal, vol. 353(1-3)(1-3), pp. 208-227, 2006.

Boucheneb, H. & Hadjidj, R. (2004). Towards optimal CTL* model checking of Time Petri
Nets, Proceedings of the International Workshop on Discrete Event Systems
(WODES). Reims-France, 2004.

Boucheneb, H. & Mullins, J. (2003). Analyse de réseaux de Petri temporels. Calculs des

classes en O(n2) et des temps de chemin en O(m × n), Technique et Science
Informatiques, vol. 22, no. 4, 2003.

Bucci, G. & Vicario, E. (1995). Compositional validation of time-critical systems using
communicating Time Petri nets, IEEE transactions on software engineering, vol. 21,
no. 12. pp. 969–992 December 1995.

Cassez, F. & Roux, O. H. (2006). Structural translation from time Petri nets to timed
automata, Journal of Systems and Software, 79(10), pp. 1456-1468, 2006

Clarke, E. M.; Grumberg, O. & Peled, D. (1999). Model Checking, MIT Press, Cambridge,
MA. 1999.

Daws, C.; Olivero, A.; Tripakis, S. & Yovine, S. (1996). The tool Kronos, In Hybrid Systems
III, Verification and Control, LNCS 1066, pp. 208–219, Springer-verlag, 1996.

Gardey, G. & Roux, O. H. Using zone graph method for computing the state space of a time
Petri net, In Formal Modeling and Analysis of Timed Systems (FORMATS), LNCS
2791, pp 246-259, Springer-Verlag, Marseille, France, September 2003.

Hadjidj, R. & Boucheneb, H. (2006). On-the-fly TCTL model checking for time Petri nets
using the state class method, In Proceedings of the 6th International Conference on

www.intechopen.com

Petri Net: Theory and Applications

206

Application of Concurrency to System Design (ACSD), IEEE Computer Society
Press, 2006.

Hadjidj, R. & Boucheneb, H. (2005). Much compact Time Petri Net state class spaces useful
to restore CTL* properties, In Proceedings of the Sixth International Conference on
Application of Concurrency to System Design (ACSD), IEEE Computer Society
Press, 2005

Henzinger, T. A.; Ho, P-H. & Wong-Toi, H. (1997). HyTech : A Model Checker for Hybrid
Systems, Software Tools for Technology Transfer 1, 1997.

Larsen, K.G.; Weise, C.; Yi, W. & Pearson, J. (1999) Clock difference diagrams. Nordic J.
Comput. 26(3), pp. 271–298 (1999).

Lime, D. & Roux, O. H. (2003). State class timed automaton of a time Petri net, In
Proceedings of the 10th Int. Workshop on Petri Nets and Performance Models
(PNPM). IEEE Comp. Soc. Press, 2003.

Paige, R. & Tarjan, R. (1987). Three partition refinement algorithms. SIAM, J. Comput. 16(6),
pp. 973–989 (1987).

Penczek, W. & Polrola, A. (2004). Specification and Model Checking of Temporal Properties
in Time Petri Nets and Timed Automata, In Proceedings of ICATPN’01, pp. 37–76,
2004.

Pettersson, P. (1999). Modelling and Verification of Real-Time Systems Using Timed
Automata: Theory and Practice, Ph.D. thesis, Uppsala University, 1999.

Pradubsuwun, D.; Yoneda, T. & Myers, C. (2005) Partial order reduction for detecting safety
and timing failures of timed circuits, IEICE Trans. Inf. & Syst., vol. E88-D, no. 7,
July 2005.

Toussaint, J.; Simonot-Lion, F. & Thomesse, J.P. (1997). Time constraint verifications
methods based on time Petri nets. In Proceedings of the 6th Workshop on Future
Trends in Distributed Computing Systems, 1997.

Tripakis, S.; Yovine S. & Bouajjani, A. (2005). Checking Timed Buchi Automata Emptiness
Efficiently, Formal Methods in System Design, 26(3), 2005.

Tripakis, S. & Yovine, S. (2001). Analysis of timed systems using time-abstracting
bisimulations, Formal Methods in System Design, 18(1), 2001.

Vicario, E. (2001) Static analysis and dynamic steering of time dependent systems, IEEE
Transactions on Software Engineering, 2001.

Virbitskaite, I. & Pokozy, E. (1999). A partial order method for the verification of time Petri
nets, In Fundamentals of Computation Theory, LNCS 1684, Springer-Verlag, 1999.

Visser, W. & Barringer, H. (2000). Practical CTL model checking - should SPIN be extended?
Software Tools for Technology Transfer, 2(4):350--365, Apr. 2000.

Yoneda, T. & Ryuba, H. (1998). CTL Model Checking of Time Petri Nets Using Geometric
Regions, IEICE Trans. Inf. And Syst., Vol. E99-D, no. 3, 1998.

Yoneda. T & Schlingloff, B.H. (1997). Efficient Verification of Parallel Real-Time Systems,
Formal Methods in System Design, Kluwer Academic Publishers, vol. 11, no. 2,
pp.187-215, August 1997.

www.intechopen.com

Petri Net, Theory and Applications

Edited by Vedran Kordic

ISBN 978-3-902613-12-7

Hard cover, 534 pages

Publisher I-Tech Education and Publishing

Published online 01, February, 2008

Published in print edition February, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Although many other models of concurrent and distributed systems have been de- veloped since the

introduction in 1964 Petri nets are still an essential model for concurrent systems with respect to both the

theory and the applications. The main attraction of Petri nets is the way in which the basic aspects of

concurrent systems are captured both conceptually and mathematically. The intuitively appealing graphical

notation makes Petri nets the model of choice in many applications. The natural way in which Petri nets allow

one to formally capture many of the basic notions and issues of concurrent systems has contributed greatly to

the development of a rich theory of concurrent systems based on Petri nets. This book brings together

reputable researchers from all over the world in order to provide a comprehensive coverage of advanced and

modern topics not yet reflected by other books. The book consists of 23 chapters written by 53 authors from

12 different countries.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hanifa Boucheneb and Rachid Hadjidj (2008). Model Checking of Time Petri Nets, Petri Net, Theory and

Applications, Vedran Kordic (Ed.), ISBN: 978-3-902613-12-7, InTech, Available from:

http://www.intechopen.com/books/petri_net_theory_and_applications/model_checking_of_time_petri_nets

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

