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Chapter

The Rising Role of Mesenchymal
Stem Cells in the Treatment of
Various Infectious Complications
Khalid Ahmed Al-Anazi, Waleed K. Al-Anazi

and Asma M. Al-Jasser

Abstract

Mesenchymal stem cells are heterogenous adult multipotent stromal cells that
can be isolated from various sources including: bone marrow, peripheral blood,
umbilical cord blood, dental pulp, and adipose tissue. They have certain immuno-
modulatory, immunosuppressive, and antimicrobial properties that enable them to
have several therapeutic and clinical applications including: treatment of autoim-
mune disorders, role in hematopoietic stem cell transplantation and regenerative
medicine, as well as treatment of various infections and their associated complica-
tions such as septic shock and acute respiratory distress syndrome. Although more
success has been achieved in preclinical trials on the use of mesenchymal stem cells
in animal models than in human clinical trials, particularly in septic shock and
Chagas disease, more progress has been made in both disorders after the recent use
of specific sources and certain doses of mesenchymal stem cells. Nevertheless, the
utilization of this type of stem cells has shown remarkable progress in the treatment
of few infections such as tuberculosis. The clinical application of mesenchymal stem
cells in the treatment of several diseases still faces real challenges that need to be
resolved. The following book chapter will be an updated review on the role of
mesenchymal stem cells in various infections and their complications.

Keywords: mesenchymal stem cells, host immunity, antimicrobial properties,
septic shock, Mycobacterium tuberculosis, Chagas disease,
human immunodeficiency virus

1. Introduction to mesenchymal stem cells

Mesenchymal stem cells (MSCs), which were first described by Alexander
Fridenstein in the 1960s, are heterogeneous, non-hematopoietic, adult multipotent
stromal progenitor cells that are capable of self-renewal as well as differentiation
into multiple lineages and various cell types [1–8]. They can be isolated from several
sources including bone marrow (BM), peripheral blood (PB), umbilical cord blood
(UCB), amniotic fluid, placenta, adipose tissue (AT), and dental pulp as shown
in Table 1 [1–8]. Although the BM is the main source of MSCs, these stromal
cells constitute only a small fraction of the total number of cells populating the
BM [2, 4–6].
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MSCs have the following distinguishing features: (1) ability to adhere to the plastic
vessel under optimal culture conditions; (2) capability to differentiate into osteoblasts,
adipocytes, and chondrocytes; and (3) having characteristic immunophenotypic pro-
file on flow cytometry [1–3, 5, 6, 8, 9]. MSCs are characteristically positive for: CD
105, CD 73, and CD 90 and characteristically negative for the following surface

1 Bone marrow

2 Peripheral blood

3 Umbilical cord blood: Wharton’s jelly

4 Placenta: chorionic villi of placenta

5 Amniotic fluid

6 Menstrual blood

7 Fallopian tubes and cervical tissue

8 Breast milk

9 Adipose tissues: fat

10 Dental pulp, periodontal ligaments, and exfoliated deciduous teeth

11 Palatal tonsils

12 Salivary glands

13 Skeletal muscle tissues

14 Dermal tissues

15 Lung tissues and alveolar epithelium

16 Liver tissues: fetal liver

17 Synovial membrane and fluid

18 Parathyroid glands

Table 1.
Sources of mesenchymal stem cells.

Positive Negative

Characteristic surface markers CD 105

CD 73

CD 90

CD 45

CD 34

CD 14

CD 11b

CD 19

CD 79a

HLA-DR

Other surface markers that may/may not be expressed CD 117
CD 166
CD 29
CD 44
CD 106
CD 9
CD 10
CD 13
CD 28

CD 33
CD 49b
CD 71
CD 164
CD 271
HLA-class I
Stro-1
SSEA-4
ITGA-11

CD 31
CD 33
CD 133

MSCs, mesenchymal stem cells; HLA, human leukocyte antigen.
The bold values are to differentiate characteristic from non-characteristic surface markers.

Table 2.
Surface markers of MSCs on Flow cytometry.
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markers: CD 45, CD 34, CD 11b, CD 14, CD 19, CD 79a, and HLA-DR. However,
certain types of MSCs can occasionally show positivity or negativity for specific
surface markers as shown in Table 2 [1–3, 5, 6, 8–14]. Also, MSCs can differentiate
into other cell types including: myocytes, cardiomyocytes, and neurons [5].

Several studies have shown that MSCs obtained from BM, AT, and other sources
do express CD 34 surface markers [4, 15–18]. MSCs can be seen in abundant
numbers in the circulation under the following circumstances: stem cell mobiliza-
tion with growth factors, tissue injuries, stroke, hypoxia, and inflammatory condi-
tions [4, 19–24]. Despite the efforts displayed over the last five decades including
identification of nine transcriptional factors, little is known about the molecular
basis underlying the stemness of MSCs and it is still unclear whether these recently
discovered genes regulate stemness or only differentiation of MSCs [7].

2. Functions, properties, and therapeutic indications of MSCs

MSCs have immunomodulatory and immunosuppressive properties that enable
them to have several therapeutic and clinical applications including: hematopoietic
stem cell transplantation (HSCT), autoimmune disorders, regenerative medicine
and tissue repair, neurological diseases, bone and cartilage disorders, as well as
treatment of several infections and acute respiratory distress syndrome (ARDS).
Details are shown in Table 3 [1, 2, 6, 8, 25–29]. MSCs are major constituents of the
BM microenvironment and the HSC niche and apparently they are the masters of

1.Hematopoietic stem cell transplantation:
a. Enhancement of engraftment
b. Prevention of graft versus host disease (GVHD)
c. Treatment of GVHD

2.Treatment of autoimmune diseases:
a. Systemic lupus erythromatosus
b. Rheumatoid arthritis
c. Systemic sclerosis
d. Type 1 diabetes mellitus
e. Multiple sclerosis
f. Crohn’s disease

3.Regenerative medicine and tissue repair:
a. Myocardial ischemia
b. Cardiac dysfunction
c. Chronic non-healing wounds
d. Liver injury
e. Myocardial infarction
f. Dilated cardiomyopathy
g. Critical limb ischemia
h. Spinal cord injuries

4.Treatment of various infections:
a. Bacterial infections including sepsis and its associated acute respiratory distress syndrome
b. Viral infections such as human immunodeficiency virus, hepatitis B and C viruses
c. Parasitic infections such as Chagas disease, schistosomiasis, and malaria
d. Mycobacterial infections such as tuberculosis

5.Other indications:
a. Macular degeneration, corneal reconstruction and transplantation
b. Bones and joints: osteogenesis imperfecta, osteoarthritis, and osteoporosis
c. Cancer gene therapy
d. Amyotrophic lateral sclerosis
e. Liver cirrhosis

Table 3.
Current and potential therapeutic indications for mesenchymal stem cells.
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survival and clonality [30–32]. The main functions of MSCs include: formation
of hematopoietic microenvironment, modulation of the activity of the immune
system, and regulating cell trafficking [33].

3. Role of MSCs in host defense and infections

The putative roles of BM-MSCs during infection are: (1) detection of pathogens,
(2) activation of host immune responses, (3) elimination of pathogens, (4) induc-
tion of proinflammatory gradients, and (5) modulation of proinflammatory host
immune response due to having specific immunoregulatory properties of MSCs
including: inhibition of differentiation of monocytes to dendritic cells (DCs), alter-
ation of cytokine profile of DCs, induction of tolerant phenotypes of naïve and
effector T-cells, inhibition of antibody production by B-cells, and suppression of
natural killer (NK) cell proliferation and NK-mediated cytotoxicity [1, 2, 28, 34].
BM-MSCs may augment antimicrobial responses, abridge proinflammatory and
damage responses, and ameliorate associated tissue injury and they appear to func-
tion as a critical fulcrum providing balance by promoting pathogen clearance during
the initial inflammatory response, and suppressing inflammation to preserve integ-
rity of the host and facilitate tissue repair [1, 2, 34].

The immunomodulatory properties of MSCs are mediated by cell-to-cell inter-
action and the secreted cytokines [35–37]. MSCs could potentially be involved at
multiple levels in host defense by mobilizing immune effector cells and modulation
of proinflammatory immune responses to minimize tissue damage [1, 37]. BM-
MSCs may protect against infectious challenge by direct effects on the pathogens or
through indirect effects on the host [1]. However, placenta-derived MSCs and fetal
membrane-derived MSCs are highly susceptible to herpes viruses including vari-
cella zoster virus (VZV) [2, 38]. Several types of stem cells including BM-MSCs and
neural stem cells can cross the blood brain barrier and reach not only brain tumors
but also ischemic and injured tissues caused by certain infections in the brain and
engraft there. Consequently, MSCs can be utilized as means of cellular carriers to
deliver therapeutic agents to sites of brain injury in order to exert their therapeutic
and tissue regenerative effects in the brain [39–43].

4. Antimicrobial properties of MSCs

MSCs have been shown to exhibit the following antimicrobial properties:
(1) capacity to enhance antibacterial activity by interaction with the host innate
immune system in order to increase antibiotic sensitivity, increase bacterial
killing, and slow bacterial growth; (2) capacity to enhance bacterial clearance in
preclinical models of sepsis, cystic fibrosis, and ARDS; and (3) secretion of
antimicrobial peptides such as: interleukin (IL)-17, indoleamine 2,3-dioxygenase
(IDO), β-defensins, lipocalin-2, and cathelicidin LL-37 [44–46]. Members of the che-
mokine family have been found to have antimicrobial peptide activity although the
role of chemokines in immunity during infection is rather complicated [47].

5. MSCs in sepsis, ARDS, and chronic bacterial infections

5.1 MSCs in sepsis syndrome and septic shock

Sepsis syndrome and septic shock represent major health problems worldwide and
they are leading causes of death in hospitalized patients due to their association with
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high rates of morbidity and mortality in the absence of effective therapy [48–51].
Sepsis is a potentially lethal syndrome that can develop following an infection in
which a breakdown in the immune homeostasis results in both proinflammatory and
anti-inflammatory mechanisms that become uncoupled from normal regulation [50].
The inflammatory-driven maladaptive response induces disruption of endothelial and
epithelial barriers, thus resulting in organ dysfunction. However, the host responds to
sepsis by stimulating the proliferation of HSCs in the BM or by activating emergency
hematopoiesis in an attempt to counteract the effects of sepsis on the function of
multiple body organs [51]. Septic shock is a devastating complication of uncontrolled
bacterial infection that carries a mortality rate of 20–50% [50, 52]. Currently, there is
no specific treatment for septic shock and the management of this devastating com-
plication of serious infections remains supportive. However, the following measures
should be taken into consideration: early identification, fluid resuscitation, prompt
institution of antibiotic therapy, control of the source of infection, circulatory sup-
port, and lung protection by mechanical ventilation [48, 49, 52, 53].

Based on numerous preclinical studies, cell-based therapies are potentially bene-
ficial in the treatment of septic shock and ARDS. However, various types of stem cells
including embryonic stem cells, MSCs, and induced pluripotent stem cells have been
used in the treatment of sepsis and ARDS, but MSCs are the most commonly used
stem cells in septic shock [53]. In patients with septic shock complicated by acute
lung injury (ALI) and ARDS, the paracrine factors secreted by MSCs can: mediate
endothelial and epithelial permeability, and increase alveolar fluid clearance in addi-
tion to other mechanisms that reduce the complications of septic shock [54].

In a mouse model of sepsis, lipopolysaccharide-preconditioned MSC transplan-
tation has been shown to: ameliorate survival rate after transplantation, protect cells
from apoptosis and organ damage, and have immunomodulatory therapeutic prop-
erties [55]. Also, transplanted MSC can secrete Toll-like receptor-4, which plays a
seminal role in attenuating in vivo Escherichia coli-induced pneumonia and ALI
through anti-inflammatory and antibacterial effects [56]. In experimental animal
models of sepsis, the effectiveness of BM-MSCs was compared to that of Wharton’s
jelly (WJ) of umbilical cord; both sources of MSCs regulated leukocyte trafficking
and reduced organ dysfunction but only WJ-MSCs were able to improve bacterial
clearance and survival [57]. In animal models of Staphylococcal toxic shock syn-
drome, MSCs; particularly AT derived MSCs; were able to suppress cytokine pro-
duction and attenuate sepsis but they failed to improve survival [58, 59].

Several preclinical sepsis studies have suggested that MSCs are capable of:
modulating inflammation, enhancing clearance of pathogens as well as tissue
repair, thus resulting in improvement in symptoms and reduction in organ damage and
finally improvement in survival and reduction in mortality rates [48–50, 52]. Ameta-
analysis that evaluated the preclinical use of MSCs in animal models of septic shock
demonstrated that MSC treatment significantly reducedmortality rates and the results
of this survey supported the decision to proceed to clinical trials that test the effective-
ness of MSCs in treating infections causing sepsis in humans [60].

In a phase I clinical trial that included patients admitted to the intensive care
unit (ICU) with septic shock, infusion of freshly cultured allogeneic BM-MSCs in
doses up to 3 million cells/kg into these ICU patients was shown to be safe as this
dose of stem cells did not exacerbate the elevated cytokine levels in the plasma of
patients with septic shock [52, 61].

5.2 MSCs in ALI and ARDS

Bacterial pneumonia and sepsis from non-pulmonary causes are the most com-
mon etiologies of ALI and ARDS that are associated with mortality rates ranging
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between 25 and 50% [62–65]. Management of ARDS is mainly supportive with:
protective ventilation, fluid conservation, and antimicrobial therapy [62, 64]. In
patients with bacterial pneumonia and sepsis, MSCs can attenuate inflammatory
process and enhance bacterial clearance [63, 65]. MSCs secrete paracrine factors
that can regulate lung permeability and decrease inflammation and this makes
MSCs a potentially attractive therapeutic modality for ALI [62]. In patients with
ARDS, MSCs can exert beneficial effects by secreting paracrine factors,
microvesicles, and transfer of mitochondria. These secretory products have: (1)
anti-inflammatory properties that participate in resolving injuries to lung endothe-
lium and alveolar epithelium; (2) regulatory effects on alveolar fluid clearance, thus
reducing lung edema; (3) antimicrobial effects mediated by release of antimicrobial
factors; and (4) upregulation of monocyte/macrophage phagocytosis [66]. In
Escherichia coli-injured human lungs, MSCs were able to: restore alveolar fluid
clearance, reduce inflammation, and exert antimicrobial activity partly through
secretion of keratinocyte growth factor [62].

In patients with bacterial pneumonia causing ALI and ARDS, MSCs could
become a promising novel therapeutic modality and an ideal candidate for future
cellular therapy due to the following reasons: (1) MSCs are able to differentiate into
various cell types, (2) MSCs can secrete multiple bioactive molecules that are
capable of stimulating recovery of injured cells and inhibiting inflammation, (3)
MSCs lack immunogenicity, and (4) MSCs can perform immunomodulatory func-
tions [62, 63, 65, 67]. In a phase I clinical trial, Jennifer Wilson et al. showed safety
of allogeneic BM-MSCs administered to patients with ARDS [56, 68]. However, the
role of MSCs in ARDS patients should be carefully evaluated by well-designed
multicenter randomized clinical trials [68].

5.3 MSCs in severe and chronic infections

Chronic implant and wound infections that are characterized by biofilm forma-
tion are often difficult to treat and they usually require continuous antibiotic ther-
apy for weeks to months. However, alternative therapies for chronically infected
wounds include: use of antibiotic impregnated implant materials or biological scaf-
folds, administration of biofilm disrupting agents, and combining cellular immu-
notherapy with antibiotics [44].

In patients with very severe aplastic anemia (VSAA), prolonged neutropenia
results in refractory and overwhelming bacterial infections as well as invasive
fungal infections that are associated with significant morbidity and mortality in
these severely immunocompromised individuals [69]. In patients with VSAA
lacking human leukocyte antigen identical sibling donors and having refractory
infections, co-transplantation of haploidentical HSCs and allogeneic BM-MSCs has
been shown to be a safe and a promising therapeutic modality [69].

Studies have shown that: (1) secretion of cathelicidin LL-37 by MSCs could
enhance bacterial products indicating that MSCs can upregulate antimicrobial
activity in the presence of infection and (2) activated MSCs, when administered
intravenously and in combination with conventional antibiotics, can potentially
suppress and eradicate chronic Staphylococcus aureus biofilm infection in difficult-
to-treat locations. Thus, treatment with activated MSCs represents a novel thera-
peutic option for patients having highly drug-resistant infections [44].

5.4 MSCs in bone, joint, and dental infections

The multidirectional differentiation potential of BM-MSCs is essential for tissue
repair after local injury of bones, joints, and medullary adipose tissue. Additionally,
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the regulation of multiple differentiation potentials of MSCs by various antimicro-
bial agents affects the recovery from bone and joint infectious diseases [70].
Minocycline induces the following favorable changes in MSCs: migratory capacity,
proliferation, gene expression, and growth factor release, ultimately resulting in
enhancement of angiogenesis. Also, the triple antimicrobial-loaded hydrogels
reduce bacterial bioburden and preserve viability of MSCs in the presence of
bacteria [71].

Gingival MSCs encapsulated in silver lactate-containing alginate hydrogel have
successfully differentiated into osteogenic tissue and have shown promise for bone
tissue engineering with antimicrobial properties against peri-implantitis caused by
gram negative bacterial infections [72]. Synthesized antibiotic-containing scaffolds
have been shown to possess significantly lower effects on proliferation and viability
of human dental pulp stem cells when compared to the saturated ciprofloxacin/
metronidazole solution [73].

6. MSCs in viral infections

Studies have shown that: (1) MSCs are susceptible to infection by members of
the herpes group of viruses such as: cytomegalovirus, Epstein-Barr virus, herpes
simplex virus (HSV) type 1, HSV-2, and VZV, and MSCs become functionally
defective following infection with herpes viruses; (2) AT-MSCs can differentiate
into functional hepatocyte-like cells but AT-MSCs undergoing hepatic differentia-
tion are not susceptible to infection by hepatitis B virus in vitro; (3) human MSCs
are permissive to the highly pathogenic avian influenza A/H5N1 infection and
infection of MSCs can cause apoptosis and loss of their immunomodulatory activity;
and (4) MSCs can significantly reduce the impairment of alveolar fluid clearance
induced by influenza A/H5N1 infection in vitro and prevent or reduce influenza
A/H5N1-associated ALI in vivo [28, 34, 74]. The extracellular vesicles (ECVs)
secreted by MSCs have anti-inflammatory and anti-influenza properties. Hence,
they can be used as cell-free therapy for influenza in humans [75]. Infection of
MSCs by respiratory syncytial virus (RSV) alters their immunoregulatory functions
by upregulating interferon (IFN)-β and IDO, thus accounting for the lack of pro-
tective RSV immunity and for the chronicity of RSV-associated lung diseases such
as bronchial asthma and chronic obstructive airway disease [76]. In mice models,
treatment with MSCs alleviates inflammation and mortality associated with
Japanese encephalitis virus, which is a leading cause of viral encephalitis in Asia
[77]. Zika virus infection of human MSCs promotes differential expression of pro-
teins that are linked to several neurological disorders such as Alzheimer’s disease,
Parkinson’s disease, autism, and amyotrophic lateral sclerosis [78].

MSCs exhibit immunomodulatory, anti-inflammatory, and pro-angiogenic
properties, and therefore have the potential to improve the outcome of allogeneic
HSCT in patients with AA. In a multicenter study that included 75 patients with AA,
the combination of HSCs obtained from BM and PB sources as well as MSCs has
resulted in amelioration of acute graft versus host disease (GVHD) and viremia
resulting ultimately in an improved survival benefit [79].

6.1 MSCs in HIV infection and AIDS

Acquired immunodeficiency syndrome (AIDS), which is caused by human
immunodeficiency virus (HIV), poses a real threat to human life [80]. Despite the
advent of highly active antiretroviral therapy (HAART) that suppresses plasma
viral load but does not cure disease, HIV-1 persists in latent tissue reservoirs, mainly
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in macrophages and T-helper lymphocytes, and this poses significant challenge to
long-term cure [2, 80–82]. HIV-1 predominantly infects HSCs such as macro-
phages, monocytes, and T-helper lymphocytes [82]. Non-immune responders
(NIRs) do respond to HAART, which effectively suppresses HIV replication, but do
not show any improvement in their immune status as reflected by an increase in
CD4+ T-cell counts [83]. More than 20% of HAART-treated HIV-infected individ-
uals exhibit NIR phenotype and these individuals are at risk of opportunistic infec-
tions, cancer, and reduced life expectancy [83].

Coexposure to MSC-conditioned media can enhance the latency-reactivation
efficacy of the approved latency reversing drugs vorinostat and panobinostat [81].
Undifferentiated AT resident MSCs are not permissive to HIV-1 infection despite
that HIV-1 exposure may increase the expression of some hematopoietic lineage
related genes [82]. It has been reported that transfusions of UCB-MSC or more
specifically WJ are well tolerated and can efficiently improve immune reconstitu-
tion in HIV-infected individuals who are NIRs [83, 84]. Memory CD4 T cells are the
key cells organizing all immune actions against HIV while being the targets of HIV
infection [85]. MSCs can express receptors that permit their infection by HIV-1.
Additionally, human T-lymphotropic virus (HTLV)-1 could infect and replicate in
human BM-MSCs possibly by involvement or infiltration of CD4+ lymphocytes
[2, 86, 87].

7. MSCs in parasitic infections

Recently, MSCs have been introduced to treat parasitic infections associated
with tissue damage in the form of granuloma formation or organ fibrosis such as:
schistosomiasis, malaria, and Chagas disease [88, 89]. Studies have shown that
MSCs can: (1) ameliorate liver injury and hepatic fibrosis induced by Schistosoma
japonicum, particularly when combined with conventional therapies such as
praziquantel and (2) play an important role in improving host protective immune
responses against malaria by modulating regulatory T cells [88, 89].

7.1 MSCs in Chagas disease

Chagas disease, which is caused by the protozoan Trypanosoma cruzi, is endemic
in Central and Latin America. However, incidence of the disease has recently
increased in the United States of America, Canada, Japan, Australia, and Europe due
to migratory movements [2, 90–93]. The disease has acute and chronic phases
[90–92]. The acute phase is characterized by intense parasitemia with no or few
symptoms while the chronic phase, which extends over indeterminate period of
time that may span over years or decades, is characterized by the evolution of
cardiac as well as gastrointestinal manifestations reflecting disease complications
[90, 91]. Pathogenesis of chronic Chagas cardiomyopathy (CMP) is still debatable
but the following have been proposed to be the main pathological mechanisms
involved: parasite persistence, microcirculatory alterations, autoimmune mecha-
nisms, and autonomic dysfunction [90, 94]. The cardiac complications of Chagas
disease include: myocarditis, dilated CMP, heart failure, arrhythmias, heart block,
thromboembolism, stroke, and sudden death [2, 90, 91, 94].

The available and future therapies of Chagas disease include: treatment of
arrhythmias and heart failure, antiparasitic therapy, resynchronization treatment,
heart transplantation, and stem cell therapies [2, 90, 91, 93, 95]. In patients with
chronic Chagas CMP and cardiac failure, conventional pharmacologic therapies are
limited by being not always effective, thus rendering the disease incurable [90, 91, 96].
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Heart transplantationmay occasionally be needed but the procedure has a number of
problems including: shortage of donors, high costs, and complications of long-term
immunosuppressive therapies administered to recipients of heart transplants [90, 95].

Different stem cell types and delivery approaches have been used in both pre-
clinical models as well as clinical trials with the aim of improving cardiac function
and reversing complications [95]. In animal models, stem cell therapies have shown
reductions in: right ventricular dilatation, and inflammatory infiltrates as well as
fibrosis [91, 93]. Stem cell therapy with BM-MSCs has emerged as a novel thera-
peutic option for Chagas CMP and heart failure [91, 93]. In a murine model of
Chagas disease, cotransplantation of autologous BM-MSCs and skeletal myoblasts
has been shown to be effective in reversing ventricular dysfunction [94]. Also, in an
animal model of chronic Chagas disease, genetic modification of MSCs mobilized by
granulocyte colony stimulating factor has increased the immunomodulatory actions
and paracrine functions of MSCs by recruitment of suppressor cells such as regula-
tory T-cells and myeloid-derived suppressor cells [97].

Transplantation of MSCs has shown clinical efficacy in animal or mouse models
but studies in humans have not shown equivalent success due to a number of
challenges that need to be overcome [2, 91, 93, 95, 98]. In animal models of chronic
Chagas CMP, cardiac MSCs have been shown to exert protective effects by
decreasing the degrees of fibrosis and inflammatory infiltrates in the affected myo-
cardium [99]. The beneficial effects of MSC therapy in Chagas mice models may be
an indirect action of the cells on the heart rather than a direct action of the large
numbers of transplanted MSCs on the myocardium [91, 96]. Tracking of infused
BM-MSCs in animal models has shown migration of these cells to the heart and their
participation in tissue repair or regeneration [91–93]. Although an early clinical trial
of intracoronary injection of autologous BM-cells in patients with chronic Chagas
CMP and heart failure showed safety and feasibility, a large multicenter, random-
ized double-blind, placebo-controlled trial using intracoronary infusion of BM-
mononuclear cells showed no improvement in cardiac function or in quality of life
in patients with chronic Chagas CMP [2, 99, 100].

8. MSCs in tuberculosis

Mycobacterium tuberculosis (MTB) remains a leading cause of morbidity and
mortality due to infectious diseases in humans [101]. Multidrug-resistant (MDR)
and extensively drug-resistant (XDR) TB, mainly caused by non-adherence to
antimicrobial therapy, are recognized health problems in: Eastern Europe, South
Africa, and South East Asia [101–103]. Therapeutic strategies that are employed
in the management of MDR/XDR TB include: directly observed treatment
(DOTS), DOTS-Plus, recombinant human IL-2 by aerosol therapy, and
recombinant IFN-γ [102].

Despite the strong host immune response in humans, MTB organisms are capa-
ble of persisting or staying dormant for prolonged periods of time, thus resulting in
latent infection [104–106]. Hypoxia or hypoxemic microenvironment may favor
dormancy of MTB and subsequent evolution of drug resistance [106]. MSCs play a
crucial role in the ability of MTB to evade the potent host immune responses and
cause TB. Hence, targeting MSCs or nitrous oxide (NO) seems a plausible thera-
peutic intervention for the design of new effective preventive strategies against TB
[107]. Studies have shown that MSCs are recruited into the tuberculous granulomas
and they position themselves between the harbored pathogen and the effector T-
cells [107–109]. CD271+ BM-MSCs can provide an antimicrobial protective intra-
cellular niche in the host in which dormant MTB can reside for prolonged periods of
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time [106, 109–111]. MTB infects and persists in a dormant form inside BM-MSCs
even after successful antimicrobial therapy [112]. Virulent mycobacteria can
manipulate Toll-like receptors and certain signaling pathways including nuclear
factor kappa-light-chain-enhancer of activated B cells in order to survive inside the
BM stem cells [112]. MSCs can increase NO production in Mycobacterium abscessus-
infected macrophages through activation of tumor necrosis factor (TNF)-α in the
presence of IFN-γ [113]. The cellular crosstalk between TNF-α and prostaglandin-
E2 is essential for the increased production of NO in macrophages [113]. Conse-
quently, MSCs may become an ideal choice as adjunct therapy in MDR and XDR TB
particularly in individuals with comorbid medical conditions [102, 103, 114]. There
are three main clinical trials on the use of MSCs in the treatment of MDR/XDR TB
[115–117]. In the first trial, 27 patients with MDR/XDR TB who had been unsuc-
cessfully treated with conventional anti-TB chemotherapy received autologous
MSCs, the following results were obtained: all patients showed positive responses to
MSC therapy, bacterial discharge from lungs was abolished in 20 patients, tissue
damage and lung cavitation resolved in 11 patients, and persistent remission of TB
was encountered in 56% of patients after 2 years of autologous MSC transplantation
[115]. In the second study, a phase I clinical trial, 36 patients with MDR/XDR TB
received anti-TB chemotherapy for 4 weeks; then, they were subjected to autolo-
gous MSC transplantation [116]. Six months after autologous transplantation of
MSCs: no major adverse events were reported, 70% of patients showed radiological
improvement, while 16.7% of patients showed stable radiological appearances.
Eighteen months after autologous transplantation of MSCs: 53% of patients were
cured, while 10% of patients showed evidence of treatment failure [116]. In the
third study, a randomized clinical trial, 72 patients with MDR/XDR TB were
included: 36 patients (control group) received conventional anti-TB chemotherapy
only, and the other 36 patients (study group) received anti-TB chemotherapy and
autologous MSC transplantation [117]. Successful outcomes were encountered in
81% of the study group and 40% of the control group. So, the addition of autologous
MSC transplantation to conventional anti-TB chemotherapy significantly enhanced
the response rates in patients with MDR/XDR TB [117]. Therefore, combining
standard anti-TB chemotherapy with autologous MSC transplantation may ulti-
mately become valuable in increasing the efficacy of anti-TB treatment in patients
with MDR-TB [2, 102, 115, 116].

9. MSCs in fungal infections

Administration of human MSCs does not have negative impact on host response
against Aspergillus fumigatus [118, 119]. Also, Aspergillus fumigatus does not stim-
ulate MSCs to secrete cytokines that play a major role in the pathogenesis of GVHD
indicating that Aspergillus fumigatus is not involved in the pathogenesis of GVHD
following HSCT. In an animal model, infusion of BM-MSCs into mice infected with
Paracoccidioides brasiliensis failed to induce any antimicrobial effects.

10. Conclusions and future directions

Since their first description in the 1960s, the history of MSCs has witnessed
steady progress that ultimately resulted in their clinical application in the treatment
of many disorders including several infectious diseases. Although the success has
not been uniform with regard to various infections and despite the gap between the
achievements in animal studies and results of clinical trials in humans, plenty of
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efforts have been made to resolve the remaining challenges in the clinical
applications of MSCs in several diseases.

Some of the remaining challenges facing the utilization of MSCs in the clinical
arena include: (1) encountering failure of treatment or resistance to therapy; (2) the
need to have quality control and safety measures; (3) implementation of guidelines
and design of specific protocols for: preparation and manufacture, banking and
cryopreservation of MSC products, administration and therapeutic use of each type
and source of MSCs, and finally tracing of infused MSCs; and (4) performing large
prospective multicenter clinical trials on the use of specific MSCs in certain diseases
in order to test their uniform efficacy and verify their long-term safety.

Author details

Khalid Ahmed Al-Anazi1*, Waleed K. Al-Anazi2 and Asma M. Al-Jasser3

1 Department of Hematology and Hematopoietic Stem Cell Transplantation,
Oncology Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia

2 Section of Cytogenetics, Department of Pathology, King Fahad Specialist Hospital,
Dammam, Saudi Arabia

3 Department of Research and Studies, General Directorate of Health Affairs in
Riyadh Region, Ministry of Health, Riyadh, Saudi Arabia

*Address all correspondence to: kaa_alanazi@yahoo.com

©2020TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

11

The Rising Role of Mesenchymal Stem Cells in the Treatment of Various Infectious Complications
DOI: http://dx.doi.org/10.5772/intechopen.91475



References

[1]Auletta JJ,DeansRJ, BartholomewAM.
Emerging roles formultipotent, bone
marrow-derived stromal cells in host
defense. Blood. 2012;119(8):1801-1809.
DOI: 10.1182/blood-2011-10-384354
[Epub: 6 January 2012]

[2] Al-Anazi KA, Al-Jasser AM.
Mesenchymal stem cells-their
antimicrobial effects and their
promising future role as novel therapies
of infectious complications in high risk
patients. In: Demirer T, editor. Progress
in Stem Cell Transplantation. Rijeka:
IntechOpen; 2015. DOI: 10.5772/60640

[3] Abdal Dayem A, Lee SB, Kim K,
Lim KM, Jeon TI, Seok J, et al.
Production of mesenchymal stem cells
through stem cell reprogramming.
International Journal of Molecular
Sciences. 2019;20(8):E1922. DOI:
10.3390/ijms20081922

[4]Al-Anazi KA, Bakhit K, Al-Sagheir A,
AlHashmi H, Abdulbaqi M, Al-Shibani
Z, et al. Cure of insulin-dependent
diabetes mellitus by an autologous
hematopoietic stem cell transplantation
performed to control multiple myeloma
in a patient with chronic renal failure
on regular hemodialysis. Journal of
Stem Cell Biology and Transplantation.
2017;1(2):11. DOI: 10.21767/2575-7725.
100011

[5] Bobis S, Jarocha D, Majka M.
Mesenchymal stem cells: Characteristics
and clinical applications. Folia
Histochemica et Cytobiologica. 2006;
44(4):215-230

[6] Kim N, Cho SG. Clinical applications
of mesenchymal stem cells. Korean
Journal of Internal Medicine. 2013;
28(4):387-402. DOI: 10.3904/
kjim.2013.28.4.387 [Epub: 1 July 2013]

[7] Liu TM. Stemness of mesenchymal
stem cells. Preliminary study. Journal of
Stem Cell Therapy and Transplantation.

2017;1:071-073. DOI: 10.29328/journal.
jsctt.1001008

[8] Squillaro T, Peluso G, Galderisi U.
Clinical trials with mesenchymal stem
cells: An update. Cell Transplantation.
2016;25(5):829-848. DOI: 10.3727/
096368915X689622 [Epub: 29
September 2015]

[9]Dominici M, Le Blanc K, Mueller I,
Slaper-Cortenbach I, Marini F,
Krause D, et al. Minimal criteria for
defining multipotent mesenchymal
stromal cells. The International Society
for Cellular Therapy position statement.
Cytotherapy. 2006;8(4):315-317. DOI:
10.1080/14653240600855905

[10]Nauta AJ, Kruisselbrink AB,
Lurvink E, Willemze R, Fibbe WE.
Mesenchymal stem cells inhibit
generation and function of both
CD34+-derived and monocyte-derived
dendritic cells. Journal of Immunology.
2006;177(4):2080-2087. DOI: 10.4049/
jimmunol.177.4.2080

[11]Murray IR, Péault B. Q&A:
Mesenchymal stem cells—Where do
they come from and is it important?
BMC Biology. 2015;13:99. DOI: 10.1186/
s12915-015-0212-7

[12]Wexler SA, Donaldson C, Denning-
Kendall P, Rice C, Bradley B, Hows JM.
Adult bone marrow is a rich source of
human mesenchymal ‘stem’ cells but
umbilical cord and mobilized adult
blood are not. British Journal of
Haematology. 2003;121(2):368-374.
DOI: 10.1046/j.1365-2141.2003.04284.x

[13] Lv FJ, Tuan RS, Cheung KM,
Leung VY. Concise review: The surface
markers and identity of human
mesenchymal stem cells. Stem Cells.
2014;32(6):1408-1419. DOI: 10.1002/
stem.1681

[14] Kundrotas G. Surface markers
distinguishing mesenchymal stem cells

12

Update on Mesenchymal and Induced Pluripotent Stem Cells



from fibroblasts. Acta Medica Lituanica.
2012;19(2):75-79. DOI: 10.6001/
actamedica.v19i2.2313

[15] Lin CS, Ning H, Lin G, Lue TF. Is
CD34 truly a negative marker for
mesenchymal stromal cells?
Cytotherapy. 2012;14(10):1159-1163.
DOI: 10.3109/14653249.2012.729817

[16] Sidney LE, Branch MJ, Dunphy SE,
Dua HS, Hopkinson A. Concise review:
Evidence for CD34 as a common marker
for diverse progenitors. Stem Cells.
2014;32(6):1380-1389. DOI: 10.1002/
stem.1661

[17] Stzepourginski I, Nigro G, Jacob JM,
Dulauroy S, Sansonetti PJ, Eberl G, et al.
CD34+ mesenchymal cells are a major
component of the intestinal stem cells
niche at homeostasis and after injury.
Proceedings of the National Academy of
Sciences of the United States of
America. 2017;114(4):E506-E513. DOI:
10.1073/pnas.1620059114 [Epub:
10 January 2017]

[18] Eto H, Ishimine H, Kinoshita K,
Watanabe-Susaki K, Kato H, Doi K,
et al. Characterization of human adipose
tissue-resident hematopoietic cell
populations reveals a novel macrophage
subpopulation with CD34 expression
and mesenchymal multipotency. Stem
Cells and Development. 2013;22(6):
985-997. DOI: 10.1089/scd.2012.0442
[Epub: 21 December 2012]

[19] Alvarez P, Carrillo E, Vélez C, Hita-
Contreras F, Martínez-Amat A,
Rodríguez-Serrano F, et al. Regulatory
systems in bone marrow for
hematopoietic stem/progenitor cells
mobilization and homing. BioMed
Research International. 2013;2013:
312656. DOI: 10.1155/2013/312656
[Epub: 17 June 2013]

[20] Rochefort GY, Delorme B, Lopez A,
Hérault O, Bonnet P, Charbord P, et al.
Multipotential mesenchymal stem cells
are mobilized into peripheral blood by

hypoxia. Stem Cells. 2006;24(10):
2202-2208 [Epub: 15 June 2006]

[21] Lund TC, Tolar J, Orchard PJ.
Granulocyte colony-stimulating factor
mobilized CFU-F can be found in the
peripheral blood but have limited
expansion potential. Haematologica.
2008;93(6):908-912. DOI: 10.3324/
haematol.12384 [Epub: 9 April 2008]

[22]Gilevich IV, Fedorenko TV,
Pashkova IA, Porkhanov VA,
Chekhonin VP. Effects of growth factors
on mobilization of mesenchymal stem
cells. Bulletin of Experimental Biology
and Medicine. 2017;162(5):684-686.
DOI: 10.1007/s10517-017-3687-0 [Epub:
31 March 2017]

[23] Xu L, Li G. Circulating
mesenchymal stem cells and their
clinical implications. Journal of
Orthopaedic Translation. 2014;2(1):1-7.
DOI: 10.1016/j.jot.2013.11.002

[24] Koning JJ, Kooij G, de Vries HE,
Nolte MA, Mebius RE. Mesenchymal
stem cells are mobilized from the bone
marrow during inflammation. Frontiers
in Immunology. 2013;4:49. DOI:
10.3389/fimmu.2013.00049
[eCollection 2013]

[25]Ding SSL, Subbiah SK, Khan MSA,
Farhana A, Mok PL. Empowering
mesenchymal stem cells for ocular
degenerative disorders. International
Journal of Molecular Sciences. 2019;
20(7):E1784. DOI: 10.3390/ijms200
71784

[26]Mansoor H, Ong HS, Riau AK,
Stanzel TP, Mehta JS, Yam GH. Current
trends and future perspective of
mesenchymal stem cells and exosomes
in corneal diseases. International Journal
of Molecular Sciences. 2019;20(12):
E2853. DOI: 10.3390/ijms20122853

[27] Leyendecker A Jr, Pinheiro CCG,
Amano MT, Bueno DF. The use of
human mesenchymal stem cells as

13

The Rising Role of Mesenchymal Stem Cells in the Treatment of Various Infectious Complications
DOI: http://dx.doi.org/10.5772/intechopen.91475



therapeutic agents for the in vivo
treatment of immune-related diseases: A
systematic review. Frontiers in
Immunology. 2018;9:2056. DOI:
10.3389/fimmu.2018.02056 [eCollection
2018]

[28] Thanunchai M, Hongeng S,
Thitithanyanont A. Mesenchymal
stromal cells and viral infection. Stem
Cells International. 2015;2015:860950.
DOI: 10.1155/2015/860950 [Epub: 29
July 2015]

[29] Yang K, Wang J, Wu M, Li M,
Wang Y, Huang X. Mesenchymal stem
cells detect and defend against
gammaherpesvirus infection via the
cGAS-STING pathway. Scientific
Reports. 2015;5:7820. DOI: 10.1038/
srep07820

[30] Azadniv M, Myers JR,
McMurray HR, Guo N, Rock P,
Coppage ML, et al. Bone marrow
mesenchymal stromal cells from acute
myelogenous leukemia patients
demonstrate adipogenic differentiation
propensity with implications for
leukemia cell support. Leukemia. 2019.
DOI: 10.1038/s41375-019-0568-8 [Epub
ahead of print]

[31] Pinho S, Lacombe J, Hanoun M,
Mizoguchi T, Bruns I, et al. PDGFRα
and CD51 mark human nestin+ sphere-
forming mesenchymal stem cells
capable of hematopoietic progenitor cell
expansion. The Journal of Experimental
Medicine. 2013;210(7):1351-1367. DOI:
10.1084/jem.20122252 [Epub: 17 June
2013]

[32] Pleyer L, Valent P, Greil R.
Mesenchymal stem and progenitor cells
in normal and dysplastic hematopoiesis-
masters of survival and clonality?
International Journal of Molecular
Sciences. 2016;17(7):E1009.
DOI: 10.3390/ijms17071009

[33] Shi C. Recent progress toward
understanding the physiological

function of bone marrow mesenchymal
stem cells. Immunology. 2012;136(2):
133-138. DOI: 10.1111/j.1365-2567.2012.
03567.x

[34] Al-Anazi KA, Al-Anazi WK,
Al-Jasser AM. The beneficial effects of
varicella zoster virus. Journal of
Hematology and Clinical Research.
2019;3:016-049. DOI: 10.29328/journal.
jhcr.1001010

[35] Kyurkchiev D, Bochev I, Ivanova-
Todorova E, Mourdjeva M,
Oreshkova T, Belemezova K, et al.
Secretion of immunoregulatory
cytokines by mesenchymal stem cells.
World Journal of Stem Cells. 2014;6(5):
552-570. DOI: 10.4252/wjsc.v6.i5.552

[36] Krampera M, Cosmi L, Angeli R,
Pasini A, Liotta F, Andreini A, et al. Role
for interferon-gamma in the
immunomodulatory activity of human
bone marrow mesenchymal stem cells.
Stem Cells. 2006;24(2):386-398. DOI:
10.1634/stemcells.2005-0008 [Epub: 25
August 2005]

[37] Castro-ManrrezaME,Montesinos JJ.
Immunoregulation bymesenchymal stem
cells: Biological aspects and clinical
applications. Journal of Immunological
Research. 2015;2015:394917. DOI: 10.1155/
2015/394917 [Epub: 19 April 2015]

[38] Avanzi S, Leoni V, Rotola A,
Alviano F, Solimando L, Lanzoni G, et al.
Susceptibility of human placenta derived
mesenchymal stromal/stem cells to
human herpesviruses infection. PLoS
One. 2013;8(8):e71412. DOI: 10.1371/
journal.pone.0071412. Print 2013

[39] Abdi Z, Eskandary H,
Nematollahi-Mahani SN. Effects of two
types of human cells on outgrowth of
human glioma in rats. Turkish
Neurosurgery. 2018;28(1):19-28. DOI:
10.5137/1019-5149.JTN.18697-16.1

[40]Dong HJ, Li G, Meng HP, Shang CZ,
Luo Y, Wen G, et al. How can

14

Update on Mesenchymal and Induced Pluripotent Stem Cells



mesenchymal stem cells penetrate the
blood brain barrier? Turkish
Neurosurgery. 2018;28(6):1013-1014.
DOI: 10.5137/1019-5149.JTN.22639-18.1

[41] Conaty P, Sherman LS, Naaldijk Y,
Ulrich H, Stolzing A, Rameshwar P.
Methods of mesenchymal stem cell
homing to the blood-brain barrier.
Methods in Molecular Biology. 1842;
2018:81-91. DOI: 10.1007/978-1-
4939-8697-2_6

[42] Liu L, Eckert MA, Riazifar H,
Kang DK, Agalliu D, Zhao W. From
blood to the brain: can systemically
transplanted mesenchymal stem cells
cross the blood-brain barrier? Stem Cells
International. 2013;2013:435093. DOI:
10.1155/2013/435093 [Epub: 12 August
2013]

[43] Christodoulou I, Goulielmaki M,
Devetzi M, Panagiotidis M, Koliakos G,
Zoumpourlis V. Mesenchymal stem cells
in preclinical cancer cytotherapy: A
systematic review. Stem Cell Research
and Therapy. 2018;9(1):336. DOI:
10.1186/s13287-018-1078-8

[44] Johnson V, Webb T, Norman A,
Coy J, Kurihara J, Regan D, et al.
Activated mesenchymal stem cells
interact with antibiotics and host innate
immune responses to control chronic
bacterial infections. Scientific Reports.
2017;7(1):9575. DOI: 10.1038/
s41598-017-08311-4

[45] Alcayaga-Miranda F, Cuenca J,
Khoury M. Antimicrobial activity of
mesenchymal stem cells: Current status
and new perspectives of antimicrobial
peptide-based therapies. Frontiers in
Immunology. 2017;8:339. DOI: 10.3389/
fimmu.2017.00339 [eCollection 2017]

[46] Sutton MT, Fletcher D, Ghosh SK,
Weinberg A, van Heeckeren R, Kaur S,
et al. Antimicrobial properties of
mesenchymal stem cells: therapeutic
potential for cystic fibrosis infection,
and treatment. Stem Cells International.

2016;2016:5303048. DOI: 10.1155/2016/
5303048 [Epub: 26 January 2016]

[47] Valdivia-Silva J, Medina-Tamayo J,
Garcia-Zepeda EA. Chemokine-derived
peptides: Novel antimicrobial and
antineoplasic agents. International
Journal of Molecular Sciences. 2015;
16(6):12958-12985. DOI: 10.3390/
ijms160612958

[48] Laroye C, Gibot S, Reppel L,
Bensoussan D. Concise review:
Mesenchymal stromal/stem cells: A new
treatment for sepsis and septic shock?
Stem Cells. 2017;35(12):2331-2339. DOI:
10.1002/stem.2695 [Epub: 16 September
2017]

[49] Laroye C, Lemarié J, Boufenzer A,
Labroca P, Cunat L, Alauzet C, et al.
Clinical-grade mesenchymal stem cells
derived from umbilical cord improve
septic shock in pigs. Intensive Care
Medicine Experimental. 2018;6(1):24.
DOI: 10.1186/s40635-018-0194-1

[50] Johnson CL, Soeder Y, Dahlke MH.
Concise review: Mesenchymal stromal
cell-based approaches for the treatment
of acute respiratory distress and sepsis
syndromes. Stem Cells Translational
Medicine. 2017;6(4):1141-1151. DOI:
10.1002/sctm.16-0415 [Epub: 9 January
2017]

[51] Skirecki T, Mikaszewska-
Sokolewicz M, Godlewska M,
Dołęgowska B, Czubak J, Hoser G, et al.
Mobilization of stem and progenitor
cells in septic shock patients. Scientific
Reports. 2019;9(1):3289. DOI: 10.1038/
s41598-019-39772-4

[52]McIntyre LA, Stewart DJ, Mei SHJ,
Courtman D, Watpool I, Granton J, et
al., Canadian Critical Care Trials Group;
Canadian Critical Care Translational
Biology Group. Cellular immunotherapy
for septic shock. A phase I clinical trial.
The American Journal of Respiratory
and Critical Care Medicine. 2018;197(3):

15

The Rising Role of Mesenchymal Stem Cells in the Treatment of Various Infectious Complications
DOI: http://dx.doi.org/10.5772/intechopen.91475



337-347. DOI: 10.1164/rccm.201705-
1006OC

[53] Guillamat-Prats R, Camprubí-
Rimblas M, Bringué J, Tantinyà N,
Artigas A. Cell therapy for the treatment
of sepsis and acute respiratory distress
syndrome. Annals of Translational
Medicine. 2017;5(22):446. DOI:
10.21037/atm.2017.08.28

[54] Li J, Huang S, Wu Y, Gu C, Gao D,
Feng C, et al. Paracrine factors from
mesenchymal stem cells: A proposed
therapeutic tool for acute lung injury
and acute respiratory distress syndrome.
International Wound Journal. 2014;
11(2):114-121. DOI: 10.1111/iwj.12202
[Epub: 26 December 2013]

[55] Saeedi P, Halabian R, Fooladi AAI.
Antimicrobial effects of mesenchymal
stem cells primed by modified LPS on
bacterial clearance in sepsis. Journal of
Cellular Physiology. 2019;234(4):
4970-4986. DOI: 10.1002/jcp.27298
[Epub: 14 September 2018]

[56]Wilson JG, Liu KD, Zhuo H,
Caballero L, McMillan M, Fang X, et al.
Mesenchymal stem (stromal) cells for
treatment of ARDS: A phase 1 clinical
trial. The Lancet Respiratory Medicine.
2015;3(1):24-32. DOI: 10.1016/
S2213-2600(14)70291-7 [Epub: 17
December 2014]

[57] Laroye C, Boufenzer A, Jolly L,
Cunat L, Alauzet C, Merlin JL, et al.
Bone marrow vs Wharton's jelly
mesenchymal stem cells in experimental
sepsis: A comparative study. Stem Cell
Research & Therapy. 2019;10(1):192.
DOI: 10.1186/s13287-019-1295-9

[58] Kim H, Darwish I, Monroy MF,
Prockop DJ, Liles WC, Kain KC.
Mesenchymal stromal (stem) cells
suppress pro-inflammatory cytokine
production but fail to improve survival
in experimental staphylococcal toxic
shock syndrome. BMC Immunology.
2014;15:1. DOI: 10.1186/1471-2172-15-1

[59] Asano K, Yoshimura S, Nakane A.
Adipose tissue-derived mesenchymal
stem cells attenuate Staphylococcal
enterotoxin A-induced toxic shock.
Infection and Immunity. 2015;83(9):
3490-3496. DOI: 10.1128/IAI.00730-15
[Epub: 22 June 2015]

[60] Lalu MM, Sullivan KJ, Mei SH,
Moher D, Straus A, Fergusson DA, et al.
Evaluating mesenchymal stem cell
therapy for sepsis with preclinical
meta-analyses prior to initiating a
first-in-human trial. eLife. 2016;5:
e17850. DOI: 10.7554/eLife.17850

[61] Schlosser K, Wang JP, Dos Santos C,
Walley KR, Marshall J, Fergusson DA, et
al., Canadian Critical Care Trials Group
and the Canadian Critical Care
Translational Biology Group. Effects of
mesenchymal stem cell treatment on
systemic cytokine levels in a phase 1
dose escalation safety trial of septic
shock patients. Critical Care Medicine.
2019;47(7):918-925. DOI: 10.1097/
CCM.0000000000003657

[62] Lee JW, Krasnodembskaya A,
McKenna DH, Song Y, Abbott J,
Matthay MA. Therapeutic effects of
human mesenchymal stem cells in
ex vivo human lungs injured with live
bacteria. The American Journal of
Respiratory and Critical Care Medicine.
2013;187(7):751-760. DOI: 10.1164/
rccm.201206-0990OC

[63] Sung DK, Chang YS, Sung SI,
Yoo HS, Ahn SY, Park WS. Antibacterial
effect of mesenchymal stem cells against
Escherichia coli is mediated by secretion
of beta- defensin- 2 via toll- like receptor
4 signalling. Cellular Microbiology. 2016;
18(3):424-436. DOI: 10.1111/cmi.12522
[Epub: 27 October 2015]

[64]Wang YY, Li XZ, Wang LB.
Therapeutic implications of
mesenchymal stem cells in acute lung
injury/acute respiratory distress
syndrome. Stem Cell Research &

16

Update on Mesenchymal and Induced Pluripotent Stem Cells



Therapy. 2013;4(3):45. DOI: 10.1186/
scrt193

[65]Morrison T, McAuley DF,
Krasnodembskaya A. Mesenchymal
stromal cells for treatment of the acute
respiratory distress syndrome: The
beginning of the story. Journal of the
Intensive Care Society. 2015;16(4):
320-329. DOI: 10.1177/
1751143715586420 [Epub: 21 May 2015]

[66] Laffey JG, Matthay MA. Fifty years
of research in ARDS. Cell-based therapy
for acute respiratory distress syndrome.
Biology and potential therapeutic value.
The American Journal of Respiratory
and Critical Care Medicine. 2017;
196(3):266-273. DOI: 10.1164/
rccm.201701-0107CP

[67]Hayes M, Curley G, Laffey JG.
Mesenchymal stem cells - a promising
therapy for acute respiratory distress
syndrome. F1000 Medicine Reports.
2012;4:2. DOI: 10.3410/M4-2 [Epub: 3
January 2012]

[68] Zhang GY, Liao T, Zhou SB, Fu XB,
Li QF. Mesenchymal stem (stromal)
cells for treatment of acute respiratory
distress syndrome. The Lancet
Respiratory Medicine. 2015;3(4):e11-
e12. DOI: 10.1016/S2213-2600(15)
00049-1

[69] Yue C, Ding Y, Gao Y, Li L, Pang Y,
Liu Z, et al. Cotransplantation of
haploidentical hematopoietic stem cells
and allogeneic bone marrow-derived
mesenchymal stromal cells as a first-line
treatment in very severe aplastic anemia
patients with refractory infections.
Europian Journal of Haematology. 2018;
100(6):624-629. DOI: 10.1111/ejh.13060
[Epub: 25 April 2018]

[70] Li H, Yue B. Effects of various
antimicrobial agents on multi-directional
differentiation potential of bone marrow-
derived mesenchymal stem cells. World
Journal of Stem Cells. 2019;11(6):322-336.
DOI: 10.4252/wjsc.v11.i6.322

[71]Guerra AD, Rose WE, Hematti P,
Kao WJ. Minocycline enhances the
mesenchymal stromal/stem cell pro-
healing phenotype in triple
antimicrobial-loaded hydrogels. Acta
Biomaterialia. 2017;51:184-196. DOI:
10.1016/j.actbio.2017.01.021 [Epub: 7
January 2017]

[72]Diniz IM, Chen C, Ansari S,
Zadeh HH, Moshaverinia M, Chee D,
et al. Gingival mesenchymal stem cell
(GMSC) delivery system based on RGD-
coupled alginate hydrogel with
antimicrobial properties: A novel
treatment modality for peri-implantitis.
Journal of Prosthodontics. 2016;25(2):
105-115. DOI: 10.1111/jopr.12316 [Epub:
27 July 2015]

[73] Kamocki K, Nör JE, Bottino MC.
Dental pulp stem cell responses to novel
antibiotic-containing scaffolds for
regenerative endodontics. International
Endodontic Journal. 2015;48(12):
1147-1156. DOI: 10.1111/iej.12414 [Epub:
24 December 2014]

[74] Chan MC, Kuok DI, Leung CY,
Hui KP, Valkenburg SA, Lau EH, et al.
Human mesenchymal stromal cells
reduce influenza A H5N1-associated
acute lung injury in vitro and in vivo.
Proceedings of the National Academy of
Sciences of the United States of
America. 2016;113(13):3621-3626. DOI:
10.1073/pnas.1601911113 [Epub: 14
March, 2016]

[75] Khatri M, Richardson LA, Meulia T.
Mesenchymal stem cell-derived
extracellular vesicles attenuate influenza
virus-induced acute lung injury in a pig
model. Stem Cell Research & Therapy.
2018;9(1):17. DOI: 10.1186/s13287-018-
0774-8

[76] Cheung MB, Sampayo-Escobar V,
Green R, Moore ML, Mohapatra S,
Mohapatra SS. Respiratory syncytial
virus-infected mesenchymal stem cells
regulate immunity via interferon beta

17

The Rising Role of Mesenchymal Stem Cells in the Treatment of Various Infectious Complications
DOI: http://dx.doi.org/10.5772/intechopen.91475



and indoleamine-2,3-dioxygenase. PLoS
One. 2016;11(10):e0163709. DOI:
10.1371/journal.pone.0163709
[eCollection 2016]

[77] Bian P, Ye C, Zheng X, Yang J,
Ye W, Wang Y, et al. Mesenchymal
stem cells alleviate Japanese encephalitis
virus-induced neuroinflammation and
mortality. Stem Cell Research &
Therapy. 2017;8(1):38. DOI: 10.1186/
s13287-017-0486-5

[78] Beys-da-Silva WO, Rosa RL, Santi L,
Berger M, Park SK, Campos AR, et al.
Zika virus infection of human
mesenchymal stem cells promotes
differential expression of proteins
linked to several neurological diseases.
Molecular Neurobiology. 2019;56(7):
4708-4717. DOI: 10.1007/s12035-018-
1417-x [Epub: 30 October 2018]

[79]Chen M, Zheng Z, Hu J, Yang T. Co-
transplantation of mesenchymal stem
cells can ameliorates acute GVHD and
viremia after allo-HSCT for aplastic
anemia: A multi-center retrospective
study of 75 patients. HemaSphere. 2019;
3:710. Poster Session II: Stem cell
transplantation—Clinical. PS1537. DOI:
10.1097/01.HS9.0000564408.36600.07

[80]Halder UC. Bone marrow stem cells
to destroy circulating HIV: A
hypothetical therapeutic strategy.
Journal of Biological Research-
Thessaloniki. 2018;25:3. DOI: 10.1186/
s40709-018-0075-5 [eCollection: 29
December 2018]

[81] Chandra PK, Gerlach SL, Wu C,
Khurana N, Swientoniewski LT, Abdel-
Mageed AB, et al. Mesenchymal stem
cells are attracted to latent HIV-1-
infected cells and enable virus
reactivation via a non-canonical PI3K-
NFκB signaling pathway. Scientific
Reports. 2018;8:14702. DOI: 10.1038/
s41598-018-32657-y

[82]Nazari-Shafti TZ, Freisinger E,
Roy U, Bulot CT, Senst C, Dupin CL,

et al. Mesenchymal stem cell derived
hematopoietic cells are permissive to
HIV-1 infection. Retrovirology. 2011;
8(1):3. DOI: 10.1186/1742-4690-8-3

[83] Allam O, Samarani S, Ahmad A.
Mesenchymal stem cell therapy in HIV-
infected HAART-treated nonimmune
responders restores immune
competence. AIDS. 2013;27(8):
1349-1352. DOI: 10.1097/QAD.
0b013e32836010f7

[84] Zhang Z, Fu J, Xu X, Wang S, Xu R,
Zhao M, et al. Safety and immunological
responses to human mesenchymal stem
cell therapy in difficult-to-treat HIV-1-
infected patients. AIDS. 2013;27(8):
1283-1293. DOI: 10.1097/QAD.0b01
3e32835fab77

[85] Zhang J, Crumpacker C. Eradication
of HIV and cure of AIDS, now and how?
Frontiers in Immunology. 2013;4:337.
DOI: 10.3389/fimmu.2013.00337

[86] Cotter EJ, Chew N, Powderly WG,
Doran PP. HIV type 1 alters
mesenchymal stem cell differentiation
potential and cell phenotype ex vivo.
AIDS Research and Human Retroviruses.
2011;27(2):187-199. DOI: 10.1089/
aid.2010.0114 [Epub: 7 October 2010]

[87] Rodrigues ES, de Macedo MD,
Pinto MT, Orellana MD, Rocha
Junior MC, de Magalhães DA, et al.
HTLV-1 infects human mesenchymal
stromal cell in vitro and modifies their
phenotypic characteristics. Virology.
2014;449:190-199. DOI: 10.1016/j.
virol.2013.11.022 [Epub: 6 December
2013]

[88] Zhang Y, Mi JY, Rui YJ, Xu YL,
Wang W. Stem cell therapy for the
treatment of parasitic infections: Is it far
away? Parasitology Research. 2014;
113(2):607-612. DOI: 10.1007/s00436-
013-3689-4 [Epub: 26 November 2013]

[89] Xu H, Qian H, Zhu W, Zhang X,
Yan Y, Mao F, et al. Mesenchymal stem

18

Update on Mesenchymal and Induced Pluripotent Stem Cells



cells relieve fibrosis of Schistosoma
japonicum-induced mouse liver injury.
Experimental Biology and Medicine
(Maywood, NJ). 2012;(5):237, 585-592.
DOI: 10.1258/ebm.2012.011362

[90] de Carvalho AC, Carvalho AB. Stem
cell-based therapies in Chagasic
cardiomyopathy. Biomed Research
International. 2015;2015:436314. DOI:
10.1155/2015/436314 [Epub: 15 June
2015]

[91] Jasmin, Jelicks LA, Koba W,
Tanowitz HB, Mendez-Otero R, et al.
Mesenchymal bone marrow cell
therapy in a mouse model of chagas
disease. Where do the cells go? PLoS
Neglected Tropical Diseases. 2012;
6(12):e1971. DOI: 10.1371/journal.
pntd.0001971

[92] Souza BS, Azevedo CM, d Lima RS,
Kaneto CM, Vasconcelos JF,
Guimarães ET, et al. Bone marrow cells
migrate to the heart and skeletal muscle
and participate in tissue repair after
Trypanosoma cruzi infection in mice.
International Journal of Experimental
Pathology. 2014;95(5):321-329. DOI:
10.1111/iep.12089 [Epub: 30 June 2014]

[93] Irion CI, Paredes BD, Brasil GV,
Cunha STD, Paula LF, Carvalho AR,
et al. Bone marrow cell migration to the
heart in a chimeric mouse model of
acute Chagasic disease. Memórias do
Instituto Oswaldo Cruz. 2017;112(8):
551-560. DOI: 10.1590/0074-
02760160526

[94] Guarita-Souza LC, Carvalho KA,
Woitowicz V, Rebelatto C,
Senegaglia A, Hansen P, et al.
Simultaneous autologous
transplantation of cocultured
mesenchymal stem cells and skeletal
myoblasts improves ventricular
function in a murine model of Chagas
disease. Circulation. 2006;114(1 Suppl):
I120-I1124. DOI: 10.1161/
CIRCULATIONAHA.105.000646

[95] de Carvalho KA, Abdelwahid E,
Ferreira RJ, Irioda AC, Guarita-Souza
LC. Preclinical stem cell therapy in
Chagas disease: Perspectives for future
research. World Journal of
Transplantation. 2013;3(4):119-126.
DOI: 10.5500/wjt.v3.i4.119

[96] Jasmin, Jelicks LA, Tanowitz HB,
Peters VM, Mendez-Otero R, de
Carvalho ACC, et al. Molecular imaging,
biodistribution and efficacy of
mesenchymal bone marrow cell therapy
in a mouse model of Chagas disease.
Microbes and Infection. 2014;16(11):
923-935. DOI: 10.1016/j.micinf.
2014.08.016 [Epub: 16 September 2014]

[97] Silva DN, Souza BSF,
Vasconcelos JF, Azevedo CM,
Valim CXR, Paredes BD, et al.
Granulocyte-colony stimulating factor-
overexpressing mesenchymal stem cells
exhibit enhanced immunomodulatory
actions through the recruitment of
suppressor cells in experimental Chagas
disease cardiomyopathy. Frontiers in
Immunology. 2018;9:1449. DOI:
10.3389/fimmu.2018.01449 [eCollection
2018]

[98] Ribeiro Dos Santos R, Rassi S,
Feitosa G, Grecco OT, Rassi A Jr, da
Cunha AB, et al., Chagas Arm of the
MiHeart Study Investigators. Cell
therapy in Chagas cardiomyopathy
(Chagas arm of the multicenter
randomized trial of cell therapy in
cardiopathies study): A multicenter
randomized trial. Circulation. 2012;
125(20):2454-2461. DOI: 10.1161/
CIRCULATIONAHA.111.067785 [Epub:
20 April 2012]

[99] Silva DN, de Freitas Souza BS,
Azevedo CM, Vasconcelos JF,
Carvalho RH, Soares MB, et al.
Intramyocardial transplantation of
cardiac mesenchymal stem cells reduces
myocarditis in a model of chronic
Chagas disease cardiomyopathy. Stem
Cell Research & Therapy. 2014;5(4):81.
DOI: 10.1186/scrt470

19

The Rising Role of Mesenchymal Stem Cells in the Treatment of Various Infectious Complications
DOI: http://dx.doi.org/10.5772/intechopen.91475



[100] Vilas-Boas F, Feitosa GS,
Soares MB, Mota A, Pinho-Filho JA,
Almeida AJ, et al. Early results of bone
marrow cell transplantation to the
myocardium of patients with heart
failure due to Chagas disease. Arquivos
Brasileiros de Cardiologia. 2006;87(2):
159-166. DOI: 10.1590/
s0066-782x2006001500014

[101] Joshi L, Chelluri LK, Gaddam S.
Mesenchymal stromal cell therapy in
MDR/XDR tuberculosis: A concise
review. Archivum Immunologiae et
Therapiae Experimentalis. 2015;63(6):
427-433. DOI: 10.1007/s00005-015-
0347-9

[102] Iyer RN, Chelluri EP, Chelluri LK.
Role of mesenchymal stem cell based
therapies in MDR/XDR TB and co-
morbidities. Journal of Stem Cell
Research & Therapy. 2015;5:284. DOI:
10.4172/2157-7633.1000284

[103] Khan FN, Zaidi KU, Thawani V.
Stem cell therapy: An adjunct in the
treatment of mdr tuberculosis. Journal
of Stem Cell Research & Therapeutics.
2017;3(3):259-261. DOI: 10.15406/
jsrt.2017.03.00099

[104] Sikri K, Tyagi JS. The evolution of
Mycobacterium tuberculosis dormancy
models. Current Science. 2013;105(5):
607-616

[105] Tornack J, Reece ST, Bauer WM,
Vogelzang A, Bandermann S, Zedler U,
et al. Human and mouse hematopoietic
stem cells are a depot for dormant
Mycobacterium tuberculosis. PLoS
One. 2017;12(1):e0169119. DOI:
10.1371/journal.pone.0169119
[eCollection 2017]

[106] Garhyan J, Bhuyan S, Pulu I,
Kalita D, Das B, Bhatnagar R. Preclinical
and clinical evidence of Mycobacterium
tuberculosis persistence in the hypoxic
niche of bone marrow mesenchymal
stem cells after therapy. The American
Journal of Pathology. 2015;185(7):

1924-1934. DOI: 10.1016/j.
ajpath.2015.03.028 [Epub: 8 June 2015]

[107]Mittal R. Mesenchymal stem cells:
the new players in the pathogenesis of
tuberculosis. Journal of Microbial &
Biochemical Technology. 2011;03(03).
DOI: 10.4172/1948-5948.100000e3

[108] Raghuvanshi S, Sharma P, Singh S,
Van Kaer L, Das G. Mycobacterium
tuberculosis evades host immunity by
recruiting mesenchymal stem cells.
Proceedings of the National Academy
of Sciences of the United States of
America. 2010;107(50):21653-21658.
DOI: 10.1073/pnas.1007967107 [Epub:
6 December 2010]

[109] Al-Anazi KA, Al-Jasser AM,
Alsaleh K. Infections caused by
Mycobacterium tuberculosis in
recipients of hematopoietic stem cell
transplantation. Frontiers in Oncology.
2014;4:231. DOI: 10.3389/
fonc.2014.00231 [eCollection 2014]

[110]Das B, Kashino SS, Pulu I, Kalita D,
Swami V, Yeger H, et al. CD271(+) bone
marrow mesenchymal stem cells may
provide a niche for dormant
Mycobacterium tuberculosis. Science
Translational Medicine. 2013;5(170):
170ra13. DOI: 10.1126/scitranslmed.
3004912

[111] Beamer G, Major S, Das B,
Campos-Neto A. Bone marrow
mesenchymal stem cells provide an
antibiotic-protective niche for persistent
viable Mycobacterium tuberculosis that
survive antibiotic treatment. The
American Journal of Pathology. 2014;
184(12):3170-3175. DOI: 10.1016/j.
ajpath.2014.08.024 [Epub: 16 October
2014]

[112]Naik SK, Padhi A, Ganguli G,
Sengupta S, Pati S, Das D, et al. Mouse
bone marrow Sca-1+ CD44+
mesenchymal stem cells kill avirulent
Mycobacteria but not Mycobacterium
tuberculosis through modulation of

20

Update on Mesenchymal and Induced Pluripotent Stem Cells



cathelicidin expression via the p38
mitogen-activated protein kinase-
dependent pathway. Infection and
Immunity. 2017;85(10). DOI: 10.1128/
IAI.00471-17. Print October 2017.
pii: e00471-17

[113] Kim JS, Cha SH, Kim WS, Han SJ,
Cha SB, Kim HM, et al. A novel
therapeutic approach using
mesenchymal stem cells to protect
against Mycobacterium abscessus. Stem
Cells. 2016;34(7):1957-1970. DOI:
10.1002/stem.2353 [Epub: 27 March
2016]

[114] Arora VK, Dhot PS, Singhal P.
Stem cells in MDR-TB and XDR-TB.
Current Respiratory Medicine Reviews.
2014;10(4):238-240. DOI: 10.2174/
1573398X11666150109223613

[115] Erokhin VV, Vasil’eva IA,
Konopliannikov AG, Chukanov VI,
Tsyb AF, Bagdasarian TR, et al.
Systemic transplantation of autologous
mesenchymal stem cells of the bone
marrow in the treatment of
patients with multidrug-resistant
pulmonary tuberculosis. Problemy
Tuberkuleza i Boleznei Legkikh. 2008;
10:3-6

[116] Skrahin A, Ahmed RK, Ferrara G,
Rane L, Poiret T, Isaikina Y, et al.
Autologous mesenchymal stromal cell
infusion as adjunct treatment in patients
with multidrug and extensively drug-
resistant tuberculosis: An open-label
phase 1 safety trial. The Lancet
Respiratory Medicine. 2014;2(2):
108-122. DOI: 10.1016/S2213-2600(13)
70234-0 [Epub: 9 January 2014]

[117] Skrahin AE, Jenkins HE,
Hurevich H, Solodovnokova V,
Isaikina Y, Klimuk D, et al. Potential
role of autologous mesenchymal stromal
cells in the treatment of multidrug and
extensively drug-resistant tuberculosis.
European Respiratory Journal. 2016;48:
PA1919. DOI: 10.1183/13993003.
congress-2016.PA1919

[118] Schmidt S, Tramsen L,
Schneider A, Schubert R, Balan A,
Degistirici Ö, et al. Impact of human
mesenchymal stromal cells on
antifungal host response against
Aspergillus fumigatus. Oncotarget. 2017;
8(56):95495-95503. DOI: 10.18632/
oncotarget.20753. [eCollection: 10
November 2017]

[119] Arango JC, Puerta-Arias JD,
Pino-Tamayo PA, Salazar-Peláez LM,
Rojas M, González Á. Impaired anti-
fibrotic effect of bone marrow-derived
mesenchymal stem cell in a mouse
model of pulmonary paracoccidioido-
mycosis. PLoS Neglected Tropical
Diseases. 2017;11(10):e0006006.
DOI: 10.1371/journal.pntd.0006006.
[eCollection: October 2017]

21

The Rising Role of Mesenchymal Stem Cells in the Treatment of Various Infectious Complications
DOI: http://dx.doi.org/10.5772/intechopen.91475


