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Chapter

Challenges and Advances in
Hemodialysis Membranes

Arash Mollahosseini, Amira Abdelrasoul and Ahmed Shoker

Abstract

Hemodialysis (HD) is a filtration vital process through which the bloods’ toxins
and contaminations are removed. However, several immune system activations
occur during dialysis, which can result in morbidity and mortality. The efficiency of
the currently available blood purification process is hindered, on one hand, by the
deficient toxins and middle molecule removal, and on the other hand, with the loss
of valuable blood components (such as plasma and its constituents). This chapter
offers an overview of the challenges and advances in HD membranes. It includes an
introduction of the end stage renal disease, concepts of dialysis, its historical back-
ground, and the path through which the configurations and materials evolved.

The interactions between membrane polymeric materials with human blood is also
discussed. The aspect of material modification is one of the critical areas in HD
technology as it targets to solve the most immediate and prevalent HD issue of
membrane bioincompatibility. High flux dialysis (HFD) and hemofiltration (HF)
are introduced and discussed. This class of membranes was introduced to solve
middle molecule (such as p2- microglobulin) related challenges. This chapter high-
lights the question of why the issue of incompatible materials still exists along with
current membrane modifications.

Keywords: end-stage renal diseases, hemodialysis, hemocompatibility, membrane
modification, blood purification, high flux dialysis, medium cutoff dialysis

1. Introduction

The kidneys are responsible for removing metabolic toxins created by the body’s
cells. Blood purification of metabolic toxins will result in an adjustment of pH and
maintains the normal condition of the body. Renal systems could experience several
types of complications and illnesses such as glomerular diseases or polycystic and
other cyst diseases. These could result in lack of functionality to various extents.
The worst extent of failure in the introduced systems is “end-stage renal diseases”
(ESRD) through which patients are experiencing chronic illnesses (chronic kidney
diseases (CKD)). Kidney transplant is the first option which only a small percentage
of patients could get. Hemodialysis would be one of the options beside transplant.
While hemodialysis therapies are proven to be life-sustaining to an extent, morbid-
ity side effects and mortality rates for acute renal failure patients are still a huge
concern despite several advances of the technology through past decades [1].
Enhancements have been attributed to many subsections of hemodialysis technol-
ogy such as membrane materials, membrane configurations, pore size distributions,
and cutoff and membrane modalities.
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Rotational celluphone tubes in still dialysate bath (rotating drum dialyzer) were
the initial configuration of dialyzers [2]. Unsubstituted and substituted cellulose
materials were also chosen for the membrane fabrication. With further advances in
the field, initial materials were identified as the source of hemoincompatibility, and
more effort was put in developing materials with higher level of blood compatibility
[3]. Synthetic polymers such as poly aryl sulfones and polyamides were the next
used choice for blood purification applications [4]. These membranes also failed to
perform ideally and modification resulted in next generations of hemodialysis
membranes. The historical pathway of advances though which the current hollow
fiber contactor modules were chosen as the best option could be found elsewhere
[4]. The question of “why life-sustaining hemodialysis therapy still is not working
to the best extent?” is not answered. The authors of this chapter believe the answer
would be material incompatibility, and the next sections will try to cover this topic
in addition to other aspects of hemodialysis.

2. Overview of dialysis process

The dialysis process is a chemical potential gradient-based separation process
[5]. The process’s idea was first mentioned by Graham using a semipermeable
barrier for selective transport of elements in a solution [6-10]. The dialysis process
contains two main streams on different sides of the membrane which is called a
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Figure 1.

Schematic diagram of a membrane in hemodialysis process: The left side describes the blood side of the
membrane and the right side shows the dialysate side of the process. P, and P, describe pressure within the blood
and dialysate side, respectively. Due to the difference in chemical potential, solutes in blood move through the
membrane to the dialysate side.
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dialyzer, one containing higher amount of targeted chemicals (blood from chronic
kidney diseases (CKD) or ESRD patient) and one with zero or lower concentrations
(dialyzing fluid or dialysate), as shown in Figure 1. The Uremic and metabolic-
resulted substances (which were commonly removed from blood by the kidney),
are passed through the membrane, from the bloodstream side to the dialyzer side
due to the difference in chemical potential.

Hemodialysis aims to remove toxins and extra water from human bodies with
renal failure diseases. Based on the controlling mechanism of solute removal from
the main bloodstream, diffusion, convection, or adsorption, the renal replacement
modality could be categorized into three main subsections [11]: in case diffusion is
controlling the process, the method is called “hemodialysis”; if convection is pre-
dominant, the method would be known as “hemofiltration”; and finally when
diffusion happens simultaneously with significant convection, the method is named
as “hemodiafiltration.” It is worth mentioning that adsorption occurs all the time,
however there are specific devices that use this as the main separation method in an
adsorptive column [12, 13].

3. Classification of different dialysis membranes and modalities

There are different classes based on which dialysis processes are classified. An
old classification divides membranes into cellulosic and synthetic-based
hemodialyzers. Based on the ability to remove small molecules (urea is chosen as
the reference with the molecular weight of 60 kDa), dialyzer membranes are cate-
gorized to high-performance and low-performance membranes [14]. Another clas-
sification is based on the ability of the membranes to remove middle size molecules
(f, macroglobulin with the molecular weight of 11,800 Da is chosen as the refer-
ence) which divides dialyzers into high-flux and low-flux membranes. Based on US
Food and Drug Administration (FDA), hemodialysis membranes are divided into
high-permeability and conventional membranes [14]. Modalities of hemodialysis
also divide the process into center or hospital dialysis, home dialysis (performed by
the patients), and limited care dialysis (performed out of hospitals and homes, in a
designated center, where patients perform their own dialyses and a technician is
responsible for the upkeep of the instruments) [15]. Going through each type and
modality of the hemodialysis therapy is strongly related to the patient’s condition
and the practitioner’s prescription [14].

4. Current Issues of hemodialysis membranes

Since the emergence of the technology, several aspects of hemodialysis have
been enhanced. Yet based on the reports, mortality rate in patients are still high.
More importantly patients are suffering from inter- and post-dialysis health com-
plications such as cardiovascular disease, cerebrovascular disease, peripheral vascu-
lar disease, and chronic obstructive pulmonary disease. A significant share of the
current hemodialysis membranes are made out of poly aryl sulfone (with distribu-
tion of 22% PES and 77% PSF) [16]. A research observing more than 139,000
patients revealed that most mortality rate is attributed to PSF membranes (com-
parison was made between cellulose triacetate (CTA), polyester polymer alloy, poly
(methyl methacrylate) (PMMA), PSF, PES, ethylene vinyl alcohol (EVAL), and
PAN [17]). The research announced PMMA membranes to have the lowest hazard
ratio (HR) (the factor that they defined for comparing membranes).
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The current hemodialysis membranes create inflammation responses due to their
bioincompatibility during the blood interaction with synthesized polymeric struc-
tures. This was reported for membranes with natural-based or synthetic-based poly-
mers [3, 4]. Each specific interaction (contact of blood proteins with membrane
surface which initiates different cascade reactions and results in immune system
response), is considered as an issue for dialysis membranes. Furthermore, beside four
main interactions (surface activation (coagulation), platelet, complement, and leu-
kocyte activation), infections, allergic reactions, complete disinfection of dialysate,
and finally backflow of contaminated compounds could be all mentioned as other
hemodialysis barriers [18]. It should be noted that these are all general aspects of the
hemodialysis therapies and each modality might have its own specific problems in
addition to previously mentioned ones. Another barrier to consider is the deficient
removal for middle size molecular products and uremic toxins.

Fouling and protein adsorption, the examples of the blood-polymer interaction
related reactions, are barriers for dialysis process. This might not be considered as
important as in other UF processes; however the reduction of performance, espe-
cially for common dialysis session with duration no longer as 5 hours, could affect
patients’ wellness and results in mortality. Moreover, higher extent of fouling
means more intense immune response of the body. Accordingly antifouling behav-
ior (lower protein adsorption) of the polymeric dialysis membranes owns a great
deal of importance to eliminate initial protein-polymer surface interaction and
consequently patients’ physiological response.

Hemocompatibility levels are slightly modified as not as much complement acti-
vation is reported for current membrane, as compared with regenerated cellulose
membranes used back in the 1960s [19]. Clearance factors were also improved since
the 1970s with the introduction of hollow fiber configurations for dialysis and using
countercurrent hollow fiber membrane modules [20, 21]. Currently, instrumental
progresses with higher control over dialysate temperature, plasma osmolality and
sodium profiling, ultrafiltration rates, and blood volume balance have led to a more
enhanced level hemodialysis [22, 23]. This is while there are still intensive ongoing
researches over reducing mortality rate and morbidity due to incompatibility issues.

5. Membrane-blood interaction and biological responses

The body’s immune systems are activated along with blood protein adsorption to
the surface (which is a complicated phenomena). Protein attachment to the surface
is commonly studied under the title of displacement processes (Vroman effect)
which might initiate the coagulation cascade [24, 25]. Any adhered cell (or triggered
cells by the surface) could be activated, which consequently results in cascade
activation (autocatalytic enzymatic processes) of other cells through production of
mediators (with various purposes ranging from hindering interfacial cell adherence
to defensive system activation) [26]. Defensive system activation in hemodialysis
reflects hemoincompatibility of the used polymeric membrane. Despite the fact that
membranes are only one element of the whole extracorporeal circuit and there are
other surfaces which blood contacts to reach to the membrane module and to return
to the body, as the filters have the highest surface area and the highest share of
contact with blood, they are considered as the primary culprit for hemoincom-
patibilty of blood purification systems.

The reactions resulting in incompatibility are complex, and there are many
unknown regions still to be covered; however, platelets, leukocytes, the
complement, and the coagulation system are proven to be role players of
this concept [26].
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5.1 Thrombogenesis

Platelet activation which is commonly known as one of its resultants, blood
clotting, could be initiated from either extrinsic or intrinsic pathway (with or without
injury respectfully). Due to the lack of endothelium functionality of the membranes,
polymeric surfaces are identified as a foreign threat to the body, and a series of
reactions involving numerous enzymes and proteins occurs to protect the body.
Activation of fibrinogen leads to their transformation to fibrin. Fibrins are turned into
fibrin clots with a crosslinked and steady structure as a result of factor XIII (fibrin
stabilizing factor) secretion which is activated by thrombin. Transformation of inac-
tive zymogenes into its activated form also assists the process. Platelets will be
activated and aggregated, boosting a continuous interaction which leads to blood
clotting. Furthermore, other blood cells are attracted to the clot and contribute in
more fibrin formation through enzymatic reactions. The formed biological layer or
“protein cake” contains plasma proteins like factor XII, fibrinogen, vitronectin,
kininogens, etc., which could result in further thrombogenesis [4, 27, 28].

5.2 Complement activation

Complement activation is a human immune system’s inflammatory response as a
result of foreign threats. It starts by local inflammatory mediator production (C5a,
C4a, and C3a). The elements of the complement cascade are mainly enzymes or
binding proteins. Along with the first 15 minutes of hemodialysis, C3 is produced
and cleaved into C3a, C3b, etc. The cascade continues into production of C5a and
C5b-9 during the next stages of dialysis. As reported by Poppelaars et al. [26] during
a single session of hemodialysis, the level designated to C5b-9 and C3d/C3 ratios in
plasma (measures of complement system activation) reaches up to 70%. However
this has been interpreted as an underestimation of the measures values as they are
only calculated for fluid phase, while solid phase (deposited complement system’s
element on the surface) is not considered. Considering all the efforts to clarify the
pathway of complement activation, it could be summarized that the base mecha-
nism is known to be the attachment of binding proteins (mannose-binding lectin
(MBL) and ficolin-2) to the membrane surface which leads to lectin pathway (LP)
activation. The same procedure also encounters for properdin and C3b which
results in alternative pathway (AP) activation.

5.3 Leukocyte activation

One result of complement activation in hemodialysis patients is the induced
expression of adhesion molecules on leukocytes (white blood cell) [29]. Activation
of neutrophils and other leukocytes results in activation of inflammatory mediators.
This could consequently improve the adhesion to endothelial cells, chemoattraction
for leukocytes, an additional activation of leukocytes or platelets on one hand,
and oxidization of monocytes and neutrophils to release oxidants on the other
hand [4, 29, 30].

Blood-membrane interactions could directly activate blood cells such as
leukocytes, platelets, and red blood cells or indirectly activate them through the
pathway that activates the complement system or coagulation factors.

5.4 Coagulation cascade

Contact activation of proteins could be initiated by factor XII conversion into
active enzyme state (factor XIIa) which leads to activation of prekallikrein (PK)).
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Figure 2.
Blood biological veactions including complement system activation, intrinsic and extrinsic coagulation
activation, fibrin network formation, platelet attachment to the surface, and leukocyte activation [34].

Activated factor XIIa also turns high molecular weight kallikrein (HMWK) contin-
uously into bradykinin. Contact activation to this extent also results in inflamma-
tion promotion as interleukins and tumor necrosis factors (TNFs) would be
produced along with stimulation of nitric oxide release [31-33]. A series of various
factors’ activation continues till factor Xa is generated from which thrombin and
fibrin production is stimulated. This is where clot formation happens. Factor Xa is
the common step that all intrinsic and extrinsic cascades reach, before clot
formation [34]. Figure 2 shows activation cascades process after blood-membrane
contact.

6. Current progress in hemodialysis membranes technology
6.1 Middle molecule removal: introduction to high flux hemodialysis

Despite all the advances in compatibility of blood purification membranes,
mortality rates are still reported to be high. Hemodialysis-related complications
such as headache, fatigue, lack of functionality and concentration, anemia, mineral
and bone metabolism disorder, and inadequate nutrition result in patients’ lower
quality of life. This reflects the fact that even conventional hemodialysis has con-
tributed in longer life span of patients, it fails to maintain full quality of life [35].

Humoral mediators including cytokines of inflammatory system and other high
molecular weight molecular structures of protein bonded toxins were identified as
probable responsible structures for deficient dialysis [36]. Systematic inflammatory
response syndrome (SIRS or sepsis) is the side effect of inflammatory activation
products. This includes several cytokines which are protein or pleiotropic
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polypeptides structures (hormone-like substances) secreted by the human body’s
immune system. There exist several types of cytokines, namely, chemokine, inter-
feron (IFN), interleukin (IL), lymphokines, colony-stimulating factors (CSF), and
tumor necrosis factor (TNF) with different molecular weights. SIRS will result in
coagulation, fibrinolytic, and complement activations which are all parts of plasma
protein cascade system. In a normal condition, there are other cytokines and pro-
teins secreted to mediate the condition, but in a SIRS, regulatory system’s element
fails to control the condition [37].

Middle and large molecular structures (with average molecular weights higher
than 500 Dalton) and excess water accumulation are mentioned to impose
concentration-dependent toxicity and, accordingly, higher mortality [35, 36]. These
molecular structures range from smaller ones such as phosphorus and uremia with
molecular weight less than 0.6 kDa to cytokines such as interleukin with molecular
weight equal to 26 kDa. Molecular structures such as urea, creatinine, and similar
structures with a molecular weight less than 500 Da are efficiently being removed
by HD. Higher molecular weight cutoff membranes are created for removal of
larger molecular weight toxins and toxin-bonded proteins. Modalities involving
higher fluxes use convection transport phenomena which are entitled as
hemofiltration membranes (HF). These methods are capable of eliminating molec-
ular substances with molecular weight equal to or higher than 40,000 Da. The
region between diffusive and convective membranes covers hemodiafiltration
membranes (HDF) [38, 39].

Convective dialysis is parallel to albumin and nutrient loss of the bloodstream.
Currently, hemodiafiltration blood purification membranes are recommended to be
more efficient in comparison with high-flux dialysis due to less intradialytic hypo-
tension and less nutrient loss [40]. Cutoff adjustment of new MCO membranes is
due to advances in membrane manufacturing technologies (high-tech fabrication
equipment, improved packing densities, enhanced spinning techniques, fiber
undulation, decreased internal filtration as a result of fiber diameter control) [41].
MCOs have permeability values between protein-leaking dialyzers and high cutoff
membranes with 3,-microglobulin and albumin sieving coefficients equal to 1.0 and
0.2, respectively [41]. Accordingly, efficient middle toxin removal would also not
solve the hemodialysis-related complications, and the solution to this problem
should be found in compatibility of the membrane materials.

6.2 Hemocompatibility enhancements

Since the two concepts of “biocompatibility” and “hemocompatibility” are fre-
quently being used instead of each other, there has to be a clear definition of these
two terms. While biocompatibility, as a more general concept, targets higher liquid
and solid parts of living tissues’ endurance to foreign items, hemocompatibility
focuses on eliminating blood’s interactions with non-blood surfaces and materials
[42]. There is also a defined framework for hemocompatibility assessment of a
material. The International Organization for Standardization (ISO) has issued
guideline over hemocompatibility measures in medical device evaluations (ISO
10993-4) [34, 43]. Accordingly, modified bio-hemocompatible hemodialysis mem-
brane should pass thrombosis, coagulation, platelet adhesion resistance, immunol-
ogy (complement systems and leukocytes), and hematology tests [34].

Different modification approaches were presented throughout the past few
decades which targeted hemocompatibility enhancement of blood-contacting
membranes. These efforts resulted in various generations of hemodialysis mem-
branes. First-generation hemodialysis membranes were commonly made out of
hydroxyl methacrylate or cellulose polymers without any specific surface treatment
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or modification. Poor hemocompatibility of the materials used led to poly(ethylene
glycol) (PEG) surface immobilization (second generation). PEG brushes enhanced
membranes to an extent, but instability and cleavage along with low
hemocompatibility was still an issue. Beside PEG, several hydrophilic structures,
such as poly(vinyl pyrrolidone) (PVP) [34] and poly(vinyl alcohol) (PVA) [44],
sulfonated structures [45], and nanomaterials [46, 47] were used for modification
of dialysis membranes. Currently, researchers are targeting third generation,
including zwitterionic polymeric surfaces which are believed to be better than
second generation due to better performance of the PEG immobilizations due to
higher hemocompatibility and stability [48-51].

Zwitterionic structures (ZW) are in fact the amino acid-mimicking structures
initially synthesized based on inner structures of specific human cells [52, 53].
Zwitterions have several applications in live cell imaging [54, 55], antibacterial
surfaces [56] and wound dressings [57], dental applications [58], separative mem-
brane coatings [59], and most importantly blood purification [51]. Academic efforts
over immobilization of ZWs on hemodialysis membranes have been reported over
different membrane materials (cellulose acetate (CA) [60], poly(ether sulfone)
(PES) [61-63], poly(sulfone) (PSF) [64], poly(dimethyl siloxane) (PDMS) [65],
poly(vinylidene fluoride) (PVDF) [66], etc.) using various chemical immobiliza-
tion approaches.

Three main types of ZW structures are sulfobetaine, phosphobetaine, and
carboxybetaine. Application of ZWs was initially introduced by phosphobetaine
derivatives as mimicking the structure of human blood cells; however the two other
types were more frequently used due to their less production cost and ease of
processing. As explained by Chapman et al., ZWs must have dual positive-negative
charged functional groups and own at least the following properties: electric charge
neutrality, lack of H-bond donation sites, and possess of H-bond acceptors [67].
Pseudo-zwitterionic materials (or mixed charged polymers), as newer classes of
biomedical surface modifiers, are enhanced semi-ZW structures with positively
dual charged structures that are not affected by other chemical functional groups
due to higher stability. Accordingly, they have been introduced as better candidates
for improving hemodialysis membranes by surface immobilization or forming
hydrogels [68-70].

Table 1 offers some of the most recent efforts focused on zwitterionization of
membrane surfaces. Researches presented in the table offer various polymeric
membranes zwitterionized with sulfobetaine (SBMA) and sodium polystyrene
sulfonate (SSNa). Common indexes of hemocompatibility measurements, including
clotting times, complement activation factors, and coagulation and hemolysis
percentage, are reflected for each research in case of availability in the related
literature.

Different surface immobilization techniques were used to enhance membranes’
surface with various types of zwitterionic materials. An important factor to consider
is the efficiency of grafting techniques which could be expressed by surface grafting
density of zwitterionics on the membranes. Moreover, hydrophilicity and surface
roughness are the other factors affecting the adsorption of proteins and conse-
quently initiation of cascade reactions. PVDF-SBMA membranes with in situ poly-
merization technique resulted in highest grafting density and one of the highest
hydrophilicity degrees. Yet the modified structure did not resist to platelet and
protein adhesion significantly. This could probably be due to the deficient surface
roughness of the enhanced hemodialysis membrane. PSF, PVDF, and PDMS mem-
branes with SBMA modification have more frequently resulted in zero platelet
adhesion [64, 71, 72, 76]. Among the three aforesaid membranes, PSF- and PDMS-
carboxy-terminated SBMA membranes showed zero protein adsorption [76].



Membrane-ZW Immobilization method ZW Density  Clotting time (sec) Hemolysis  Protein adhesion Platelet adhesion WCA  Ref.
mg/cm? . . . %) "> (degree
(mg/em®) — prr? 713 prt (P gree)
PDMS-GMA-SBMA N/A N/A N/A N/A N/A 90% fibrinogen 60% reduction 79 [65]
adhesion reduction
PVDF-SBMA Interfacial atmospheric plasma-induced 0.7 N/A N/A N/A 0.3 88% fibrinogen Zero adhesion 18 [71]
surface copolymerization adhesion reduction
PVDF-SBMA In situ immobilization 5 Plasma clotting time 2 90% fibrinogen 500 cells per mm? 10 [66]
was reported to be adhesion reduction
15 min
PSF-SBMA-r-SSNa Surface-initiated atom transfer radical 0.95 78 18 N/A N/A 4 pgpsa/ cm? and 2 Zero adhesion 12.3 [72]
polymerization pgprc/cm’
PSF-SBMA-b-SSNa Surface-initiated atom transfer radical 0.88 85 23 N/A N/A 16 pgpsa/ cm? and 13 87 x 10’ cells/cm? 17.2 [72]
polymerization ngprc/cm’
PSF-SBMA Surface-initiated atom transfer radical N/A 58 19 N/A 0.9 2.5 puggsa or BrG/CM” Zero adhesion 30 [64]
polymerization
PSF-DEPAS Surface-initiated atom transfer radical N/A N/A N/A N/A N/A 32.5 pgpsa/ cm? Qualitative reduction 38 [73]
polymerization
PSF-SBMA Surface-initiated atom transfer radical 0.171 52.5 2 1 N/A 2.70 pgpsa/cm” and 0.34 x 10° cells/cm? 3135 [74]
polymerization 2.51 pggpra/ cm’
PSF-SSNa Surface-initiated atom transfer radical 0.110 73.1 22 11 N/A 13.02 prSA/cm2 and 6.94 x 10° cells/cm? 20.80 [74]
polymerization 10.07 pggre/cm®
PES-SBMA In situ polymerization N/A 75 19 N/A N/A 8 pgpsa/cm? and 10 10 x 10° cells/cm? 111 [61]
ngerc/ cm’
PES-SSNa In situ polymerization N/A 115 18 N/A N/A 12.5 pgpsa/cm” and 12 40 x 10° cells/cm? 57 [62]
ugera/ cm?
PES-SBMA-SSNa In situ polymerization N/A 85 18 N/A N/A 8 pggsa/cm” and 7 60 x 10° cells/cm” 45 [62]
pgera/ cm?
PES-SSNa-SBMA Radical graft polymerization 0.2 55 30 10 N/A 6.5 pggsa/cm” and 4.2 3 x 10° cells/cm? 55 [63]
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Membrane-ZW Immobilization method ZW Density  Clotting time (sec) Hemolysis  Protein adhesion Platelet adhesion WCA  Ref.
mg/cm? . . . %) "> (degree
(mg/em®) — prr? 713 prt (P gree)
PES-SBMA Radical graft polymerization 0.22 51 30 10 N/A 5 pgpsa/cm” and 4 3 x 10° cells/cm? 54 [63]
pgera/ cm?
PES-SSNa Radical graft polymerization 0.14 90.10 30 10 N/A 10 pgpsa/ cm?and 7 37 x 10° cells/cm? 53 [63]
pgera/ cm?
PSF-carboxyl- Carbodiimide-free radical N/A N/A  N/A N/A N/A Zero fibrinogen Zero adhesion 32.8 [75]
terminated SBMA polymerization adsorption
PDMS-carboxyl- Carbodiimide-free radical N/A N/A N/A N/A N/A Zero fibrinogen Zero adhesion 10 [76]
terminated SBMA polymerization adsorption
PDMS-SBMA-co-AA Carbodiimide-free radical N/A N/A N/A N/A  N/A N/A 0.1 x 10° cells/cm®90% ~ N/A  [77]
polymerization adhesion reduction
PU-SBMA-co-AA Carbodiimide-free radical N/A N/A N/A N/A N/A N/A 0.2 x 10° cells/cm?80% N/A [77]
polymerization adhesion reduction
PLA-SBMA™® Atom transfer radical polymerization 13 N/A N/A N/A N/A N/A 3.2 x 10° cells/cm? 9 [78]

“None of the papers reported values for C3a, C5a, TAT, or PF4.

2 Activated partial thromboplastin time.

SThrombin time.

“Prothrombin time.

Hemolysis ranges: 0-2% of hemolysis, non-hemolytic; 2-5% of hemolysis, slightly hemolytic; more than 5% of hemolysis, hemolytic.
“Toxin clearance was reported as 66% urea and 60% creatinine.

7In case there ave flux recovery ratio measurements more than one cycle, the first cycle is reported.

Table 1.
Zwitterioniged hemodialysis membrane’s hemocompatibility assessment.
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Hemolysis percentage, which shows the extent of blood cell damage when it
touches the membrane surface, was reported to be the lowest for PVDF-SMBA
membranes with plasma-induced surface copolymerization as modification tech-
nique [71]. Different clotting time parameters were also observed, and despite other
parameters which were better for SBMA-modified surfaces, SSNa-zwitterionized
membranes showed higher clotting time in general [53, 63]. The higher anticoagu-
lant characteristics of SSNa-modified membranes could be interpreted into

higher extent of coagulation cascade-resulted enzyme blockages (factor XII,

factor XlIa, etc.).

Rather than ZW structures, other biomimetic surface modification approaches
have been assessed by researchers for hemodialysis hemocompatibility improve-
ments [5-7]. These bioinspired structures are mainly patterned from anticoagulants
which are commonly used during a dialysis session. One of the most frequent
reported structures from this class is heparin. Heparin and heparin-mimicking
structures have been reported to be efficient in controlling the blood clotting
process on the membrane and accordingly increasing its hemocompatibility. Due
to high content of carboxyl and sulfate functional groups, heparin and heparin-
mimicking structures are known as good candidate for both anticoagulation facili-
tator and membrane hydrophilicity’s enhancer [79]. Just like ZW, heparin is also
reported to be effective as attached to different membrane materials such as poly
(acrylonitrile) (PAN) [80], poly(lactic acid) (PLA) [81], PSF [82], etc.

The main hemocompatibility mechanisms of previous and current generations
of hemodialysis membranes are described to be related to hydrophilicity improve-
ments (thicker hydration layer and less resistance to blood particle movements
(higher degree of hemolysis)). Another class of modification which results in simi-
lar characteristics of surfaces is hydrogel. Several advantages of hydrogels in bio-
medical fields have been noted such as their living tissue resemblance or their 3D
porous structures [75, 83]. Since hydrogels are polymeric networks, almost all
possible polymeric modifications could be considered. This means adsorptive
nanoparticles, ZWs, and biomimetic structures could all be used within this tech-
nique to have advantages of hybrid approaches [84]. A sample of such an approach
is using graphene oxide-based heparin-mimicking hydrogel structures [85]. Inter-
estingly, in comparison with common hemocompatibility approaches, hydrogel-
based techniques could be significantly efficient. A support for such a hypothesis is
a research reported by [86] who immobilized a heparin-mimicking thin film
hydrogel on PES hemodialysis membrane which resulted in three times higher
clotting time than best modified blood purification membranes (activated partial
thromboplastin time value of 600 sec).

7. Conclusion and outlook

Several hemodialysis membranes’ enhancements for higher hemocompatibility
characteristics have been achieved experimentally as reported by various studies.
Nevertheless, there are many questions which are not answered nor assessed. As an
instance, several immobilization techniques have been introduced, but there is no
clear comparison that could recommend a final better method for surface modifi-
cation. More importantly, not all the membrane hemocompatibility studies consider
all standard aspects of hemocompatibility assessment. In other words, available
papers are reporting few factors of hemocompatibility assessment. Accordingly, no
accurate comparison between different immobilization techniques and enhancer
materials such as zwitterions or anticoagulants could truly be made based on the
literatures.
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Several aspects of hemodialysis have been improved since the emergence of
technology. Material improvement along with pore size adjustment and different
modalities of blood purification systems have resulted in higher hemocompatibility
of the membranes and wider range of products for hospital and home dialysis
sessions. Despite the improvements in different aspects of hemodialysis, the
patient’s quality of life is still not acceptable. Accordingly, there have to be more
efforts put on incompatibility issues of the membranes.
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