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Chapter

Hyperspectral Image Classification
Rajesh Gogineni and Ashvini Chaturvedi

Abstract

Hyperspectral image (HSI) classification is a phenomenal mechanism to analyze
diversified land cover in remotely sensed hyperspectral images. In the field of
remote sensing, HSI classification has been an established research topic, and
herein, the inherent primary challenges are (i) curse of dimensionality and
(ii) insufficient samples pool during training. Given a set of observations with known
class labels, the basic goal of hyperspectral image classification is to assign a class
label to each pixel. This chapter discusses the recent progress in the classification of
HS images in the aspects of Kernel-based methods, supervised and unsupervised
classifiers, classification based on sparse representation, and spectral-spatial classi-
fication. Further, the classification methods based on machine learning and the
future directions are discussed.

Keywords: hyperspectral imaging, classification, supervised and unsupervised
classification, machine learning

1. Introduction

The technological progression in optical sensors over the last few decades
provides enormous amount of information in terms of attaining requisite spatial,
spectral and temporal resolutions. Especially, the generous spectral information
comprises of hyperspectral images (HSIs) establishes new application domains and
poses new technological challenges in data analysis [1]. With the available high
spectral resolution, subtle objects and materials can be extracted by hyperspectral
imaging sensors with very narrow diagnostic spectral bands for the variety of
purposes such as detection, urban planning [2], agriculture [3], identification, sur-
veillance [4], and quantification [5, 6]. HSIs allow the characterization of objects of
interest (e.g., land cover classes) with unprecedented accuracy, and keep invento-
ries up to date. Improvements in spectral resolution have called for advances in
signal processing and exploitation algorithms.

Hyperspectral image is a 3D data cube, which contains two-dimensional spatial
information (image feature) and one-dimensional spectral information (spectral-
bands). Especially, the spectral bands occupy very fine wavelengths, while the
image features such as Land cover features and shape features disclose the disparity
and association among adjacent pixels from different directions at a confident
wavelength.

In the remote sensing community, the term classification is used to denote the
process that assigns individual pixels to a set of classes. The output of the classifi-
cation step is known as the classification map. With respect to the availability of
training samples, classification approaches can be split into two categories, i.e.,
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supervised and unsupervised classifiers. Supervised approaches classify input data
for each class using a set of representative samples known as training samples.
Hyperspectral (HS) image classification always suffers from varieties of artifacts,
such as high dimensionality, limited or unbalanced training samples [7], spectral
variability, and mixing pixels. The Hughes phenomenon is a common problem in
the supervised classification process [8]. The power of classification increases
with the increase of available training samples. The limited availability of training
samples decreases the classification performance with the increase of feature
dimension. This effect is famously termed as “Hughes phenomenon” [9]. It is well
known that increasing data dimensionality and high redundancy between features
might cause problems during data analysis. There are many significant challenges
that need to be addressed when performing hyperspectral image classification.
Primarily, supervised classification faces challenge about the imbalance between
high dimensionality and incomplete accessibility of training samples or the presence
of mixed pixels in the data [10]. Further, it is desirable to integrate the essential
spatial as well as spectral information so as to combine the complementary features
that stem from source images [11]. A considerable amount of literature has been
published with regard to overcoming these challenges, and performing
hyperspectral image classification effectively.

Hyperspectral image classification could attract scientific community which
aims at assigning a pixel (or a spectrum) to one of a certain set of predefined classes.
Maximum likelihood (ML) methods, neural networks architectures [12], support
vector machine (SVM) [13], Bayesian approach [14] as well as kernel methods [15]
are the prominent methods which have been investigated in recent years for the
identification or classification of hyperspectral data.

Based on the usage of training sample, image classification task is categorized as
supervised, unsupervised and semi-supervised hyperspectral image classification.

2. Unsupervised classification

The paramount challenge for HSI classification is the curse of dimensionality
which is also termed as Hughes phenomenon. To confront with this difficulty,
feature extraction methods are used to reduce the dimensionality by selecting
the prominent features. In unsupervised methods, the algorithm or method
automatically groups pixels with similar spectral characteristics (means, standard
deviations, etc.) into unique clusters according to some statistically determined
criteria. Further, unsupervised classification methods do not require any prior
knowledge to train the data. The familiar unsupervised methods are principal
component analysis (PCA) [16] and independent component analysis (ICA) [17].

2.1 Principal component analysis

It is the most widely used technique for dimensionality reduction. In compara-
tive sense, appreciable reduction in the number of variables is possible while
retaining most of the information contained by the original dataset. The substantial
correlation between the hyperspectral bands is the basis for PCA. The analysis
attempts to eliminate the correlation between the bands and further determines the
optimum linear combination of the original bands accounting for the variation of
pixel values in an image [18].

The mathematical principle of PCA relies upon the eigen value decomposition of
covariance matrix of HSI bands. The pixels of hyperspectral data are arranged as a
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vector having its size same as the number of bands. Xi ¼ x1, x2, ::… xN½ �T, where N is
the number of HS bands. The mean of all the pixel vectors is calculated as:

m ¼
1

M

X

M

i¼1

x1 x2 … xN½ �Ti (1)

where M = p ⋆ q is the number of pixel vectors for a HS image of “p” rows and
“q” columns. The covariance matrix is determined as:

C ¼
1

M

X

M

i¼1

Xi �mð Þ Xi �mð ÞT (2)

The covariance matrix can also be written as:

C ¼ ADAT (3)

D is the diagonal matrix composed of eigen values λ1, :… λNf g of C and A is the
orthogonal matrix with the corresponding eigen vectors (each of size N) as col-

umns. The linear transformation yi ¼ ATXi, i ¼ 1, 2:…M, is adapted to achieve the
modified pixel vectors which are the PCA transformed bands of original images.

The first K rows of the matrix AT are selected such that, the rows are the eigen
vectors corresponding to the eigen values arranged in a descending order. The
selected K rows are multiplied with the pixel vector Xi to yield the PCA bands
composed of most of the information contained in the HS bands.

In hypespectral data, most of the elements are covered by the sensors with high
spectral resolution which cannot be well described by the second order characteris-
tics. Hence, PCA is not an effective tool for HS image classification since it deals
with only second-order statistics.

2.2 Independent component analysis (ICA)

Independent component analysis successfully executes the independence of
the components with higher-order statistics, and is relatively more suitable to
encounter high dimensionality of HS images. ICA is an attractive tool for dimen-
sionality reduction, feature extraction, blind source separation, etc., as well as to
preserve the information which cannot be retrieved using second order statistics
[19, 20].

Let us consider a mixture of random variables x1, x2, … xN, where each xi ∈Rd.
These random variables are defined as a linear combination of another random
variables p1, p2, … , pN, where each pi ∈Rn. In such scenario, the mixing model can
be mathematically written as,

X ¼ AP (4)

where X ¼ x1, x2, … , xN½ � is the observed vector, P ¼ p1, p2, … , pN

� �

is the
unknown source, A is the mixing matrix, “n” denotes the number of unknown
sources and “d” represents the number of observations made. In order to find the
independent components, the unmixing matrix W is to be estimated (inverse of A).
The independent components are obtained using Eq. (5).

ICA Xð Þ ¼ P ¼ A�1X ¼ WX (5)
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If X∈Rd�N is considered as the hyperspectral image,

Pn�N ¼ Wn�dXd�N (6)

where N is the number of pixels in each band, d represents the number of
spectral bands and n gives the number of sources or materials present in the image.
The estimation of the ICA model is conceivable, only if the following presumptions
and limitations are fulfilled: (i) Sources should be statistically independent (ii)
Independent components should possess non Gaussian distribution (iii) Matrix A
should be a square and full rank matrix.

3. Supervised classification

The supervised classification takes the advantage of rich spectral information
and has explored many applications including urban development [21], the moni-
toring of land changes [22], target detection [23], and resource management [24].
In supervised classification only labeled data is used to train the classifier. A large
number of supervised classification methods have been discussed in the literature,
some of the prominent methods are maximum likelihood (ML), nearest neighbor
classifier, decision trees, random forest, support vector machines (SVMs), etc.

Figure 1 shows the conventional steps of supervised classification of HSIs.

3.1 ML classifier

The ML classifier assumes that the statistics for each class in each band are
normally distributed and estimates the probability that a given pixel belongs to a
certain specific class [25]. Unless a probability threshold is selected, all pixels are
classified. Each pixel is assigned to a particular class that manifests the maximum
probability. If the estimated maximum probability is smaller than a threshold, the
pixel remains unclassified. The following discriminant functions for each pixel in
the image are implemented in ML classification.

Figure 1.
Flowchart of HSI supervised classification.
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gi xð Þ ¼ ln p wið Þ �
1

2
ln ∣σi∣�

1

2
x�mið Þtσ�1

i x�mið Þ (7)

where i = class; x = n-dimensional data (where n represents the number of
bands); p wið Þ = probability that class wi occurs in the image and is assumed the
same for all classes; ∣σi∣ = determinant of the covariance matrix of the data in class

wi; σij j�1 = its inverse matrix; and mi = mean vector.
Implementation of the ML classification involves the estimation of class mean

vectors and covariance matrices using training pattern chosen from known examples
of each particular class [26]. It usually acquires higher classification accuracy com-
pared to other traditional classification approaches. It assumes that each band is
normally distributed and the chosen training samples are comprised of exhaustively
defined set of classes. For hyperspectral data with tens of hundreds of spectral bands,
discrimination of land cover classes is not an easy task, whereas, the classification
accuracy of ML classifier is based on the accurate selection of the training samples.
Thus, for the hyperspectral imagery with poorly represented labeled training sam-
ples, it is preferable to adapt an alternative to the standard multiclass classifier.

3.2 k-nearest-neighbor (kNN) classifier

kNN is one of the widely used simplest classifier, and has been applied for HSI
classification [27, 28].

kNN method operates on majority voting rule, presumes that all the neighbors
make equal contributions to the classification of the testing point. Another impor-
tant feature of kNN classifier is Euclidian is used as distance metric, which assumes
the data is homogeneous.

LetX ¼ x1, … ,xN½ � be the N-point training data, with d as the dimension of each
point.Xi ¼ xi1, … ,xik½ � be the k nearest neighbors of xi. The testing data (Nt points)
is denoted as Xt with x0 is a random testing point. The k nearest neighbors from the
testing data with labels [l1, l2:… lk] is indicated as X0 ¼ x01, … ,x0k½ �. Let assume
that Ω½ � ¼ Ω1, … ,ΩC½ � are the “C” classes in the data.

The kNN classifier finds the k nearest neighbors of a testing point in the training
data and assigns the testing point to the most frequently occurring class of its k
neighbors. The classification of x0 by majority voting rule is exercised using the
following expression:

j ∗ ¼ arg max
j¼1, … , C

X

k

i¼1

δ li, jð Þ (8)

where δ is the Kronecker delta.
A distance metric learned from the given training data is used to enhance the

accuracy of kNN classifier.

dis xi,x j

� �

¼ T xi � x j

� ��

�

�

�

2
(9)

T denotes a linear transformation.
The decision rule of kNN can be modified by assigning different weights to the

neighbors. Further, the testing point is assigned to the class for which the sum of
weights chosen for the neighbors is largest.

j ∗ ¼ arg max
j¼1, … , C

X

k

i¼1

wiδ li, jð Þ (10)
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It is also referred as decision rule for weighted kNN (WkNN), where wi is the
weight of x0i.

3.3 Spectral angle mapper (SAM)

SAM is a supervised classification technique for HSIC [29]. SAM classifier
admits very quick classification using the spectral angle information of HSI data.

The reference spectra are usually determined from the field measurements or
from the image data, is used to measure the spectral angle. The spectral angle is a n-
dimensional vector between image and reference spectra. Smaller the angles
between two spectrums, higher the similarity and vice versa. The classification
approach using SAM is described in Figure 2.

This technique is comparatively insensitive to illumination and albedo effects when
reflectance data is used for analysis. The spectral angle can be calculated as follows:

θ¼ cos �1

PN
i¼1TiRi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1T

2
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1R

2
i

q

0

B

@

1

C

A
(11)

Figure 2.
SAM classification approach.
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3.4 Support vector machine (SVM)

SVM is typically a linear classifier associative with kernel functions and optimi-
zation theory and is prominent for HSI classification [13, 30, 31]. SVM outperforms
the conventional supervised classification methods particularly in prevailing condi-
tions like increased number of spectral bands and the limited availability of training
samples [32–34].

3.4.1 Linear SVM: Linearly separable case

Let xi ∈ℝ
d, i ¼ 1, 2…Nð Þ be the set of training vectors, and a target

yi ∈ �1,þ1f g is corresponding to each vector xi. The problem is treated as a binary
classification and the two classes are linearly separable. Hence, at least one hyper-
plane must exist to separate the two classes without errors. The discriminant func-
tion associated with hyperplane can be defined as:

f xð Þ ¼ wxþ b (12)

where w∈ℝ
d is a vector normal to hyperplane, b∈ℝ is a bias. w and b must

satisfy the following condition to estimate such a hyperplane,

yi w:xi þ bð Þ>0, for i ¼ 1, 2…N (13)

The optimal hyperplane can be estimated by solving the following convex
problem.

min
1

2
wk k2 s:t yi w:xi þ bð Þ≥ 1, for i ¼ 1, 2…N (14)

3.4.2 Linearly nonseparable case

For practical data classification problem, the linearly separable condition may not
be true in different conditions. To solve the classification problem of nonseparable
data, hyperplane separation has been generalized. A cost function is formulated
comprising two conditions: margin maximization (as in the case of linearly separable
data) and error minimization (to penalize the wrongly classified samples).

ψ w, ξð Þ ¼
1

2
wk k2 þ C

X

N

i¼1

ξi (15)

Where, ξi are slack variables derived to account for the nonseparability of data
and C is a regularization parameter. The larger the C value, the higher the penalty
associated with misclassified sample.

The minimization of the cost function defined in Eq. (15) is subject to the
following conditions:

yi w:xi þ bð Þ≥ 1� ξi, i ¼ 1, 2:…N: (16)

ξi ≥0, i ¼ 1, 2:…N: (17)

For nonseparable data, two types of support vectors coexist: (1) margin support
vectors that lie on the hyperplane margin and (2) nonmargin support vectors that
fall on the “wrong” side of this margin [13].
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3.4.3 Nonlinear SVM -kernel method

The effective discriminant function to solve the nonlinear classification problem
can be expressed as:

f xð Þ ¼
X

i∈ S

αi yiK xi, xð Þ þ b (18)

A common example of kernel type that fulfills Mercer’s condition is the Gaussian
radial basis function:

K xi, xð Þ ¼ exp �γ xi � xk k2
� 	

(19)

where, γ is a parameter that is inversely proportional to width of the Gaussian
kernel. The more details about kernel functions for this case can be referred in [35].

4. Random forest classifier

A random forest (RF) is a group of tree-based classifiers where each tree is
trained with a bootstrapped set of training data. The data to be classified is applied
as an input to each tree in the forest. The classification given by each tree is known
as a “vote” for that class. In the classification, the forest chooses the class having the
most votes (over all the trees in the forest). In RF classification a split is determined
by searching across a random subset of variables at each node [36, 37].

The Random forest classifier (RFC) features two main characteristics: relatively
high accuracy and the speed of processing. However, the correlation/independence
of trees can affect the accuracy of final land cover map. The primitive components
of Random Forest are explored as:

4.1 CART-like trees

Classification and regression tree (CART), a binary tree in which splits are
resolved by the variables obtained from the strong change in impurity or minimum

impurity (̂i tð Þ),

î tð Þ ¼
X

i 6¼ j

P̂ xi j tð ÞP̂ x j j t
� �

(20)

where P̂ xijtð Þ is the estimated probability of sample xi ∈ class i. The definite
classification takes place during training process. Either the impurity is zero or all
the splits result in only one node then the growth of the tree terminates.

4.2 Binary hierarchy classifier (BHC)

In contrary to CART, the split on each node in BHC is based on classes. The
optimal split at each node is based on class separability and further the splits are pure.

Let us consider a single meta-class case, which split into two into 2 meta-classes
and so on, until the true classes are realized in the leaves, while simultaneously
computing the Fisher discriminant and projection.

Let μγ, and σγ, γ ∈ y, β

 �

are the estimated mean vector and co-variance matrix

of the meta class wγ, then the data projected using w:

8

Processing and Analysis of Hyperspectral Data



w ¼ W�1 μα � μβ
� �

(21)

The inverse of class covariance matrix W

W ¼ P ωαð Þσα þ P ωβ

� �

σβ (22)

P() is a prior probability. The discriminant T Wð Þ can be maximized as:

T wð Þ ¼
wTBw

wTWw
(23)

Where, B is the covariance matrix between classes.

B ¼ μα � μβ
� �

μα � μβ
� �T

: (24)

Like the CART trees, the BHC trees can be combined as a forest (RF-BHC) to
realize an ensemble of classifiers, where the best splits on classes are performed on
a subset of the features in the data to diversify individual trees and/or to stabilize
the W.

5. Spatial-spectral classification

The pixel-wise classification methods incur some difficulties: Discriminating the
classes is very difficult due to less interclass spectral variability. If interclass vari-
ability is high, it is very hard to determine a given class. The pixel-wise classification
capability can be enhanced by the exploration of additional information called
spatial dependency. The classification performance can be improved by incorpo-
rating spatial information into HSIC. This rationale motivates the study of spatial-
spectral classification methodologies [38]. The spatial dependency system for
spectral-spatial-based classification is depicted in Figure 3. The spatial dependency
(primary information for spatial-spectral classification techniques) is carried by
two identities called pixel and associated label. The correlation among spatially
related pixels is spatial dependency, hence spatially related pixels are termed as
neighboring pixels. The spatial dependency is associated with (i) Pixel dependency
indicates the correlation of neighboring pixels and (ii) Label dependency indicates
the correlation of labels of neighboring pixels. Distinct approaches of spatial-
spectral classification are as follows [39]:

i. Structural filtering: The spatial information from a region of the hyperspectral
data is extracted by evaluating the metrics like mean and standard deviation
of neighboring pixels over a window. The relevant methods include spectral-
spatial wavelet features [40], Gabor features [41], Wiener filtering [42], etc.

ii. Morphological profile (MP): mathematical morphology (MM) intent to
investigate spatial relationships between pixels using a set of known shape
and size which is called the structuring element (SE). Dilation and erosion are
the two elemental MM operations used for nonlinear image processing. The
concept of extracting the information regarding contrast and size of the
structures present in an image is termed as granulometry. The morphological
profile (MP) of size n has been defined as the composition of a granulometry
of size n built with opening by reconstruction and a (anti)granulometry of
size n built with closing by reconstruction [43].
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MP nð Þ Ið Þ ¼ ϕ nð Þ
r Ið Þ, … ,ϕ 1ð Þ

r Ið Þ, I, γ 1ð Þ
r Ið Þ, … , γ nð Þ

r Ið Þ
h i

(25)

From a single panchromatic image, the MP results in a (2n + 1)-band image.
However, for hyperspectral images the direct construction of the MP is not
straightforward, because of the lack of ordering relation between vector. In order to
overcome this shortcoming, several approaches have been considered [44].

i. Random field: random field-based methods have been studied broadly for HSI
classification. Markov random fields (MRFs) and conditional random fields
(CRFs) are two major variants of RF-based classification methods. CRF
methods adapt conditional probability for labeling the data and attain
favorable performance by utilizing the optimal spatial information; whereas,
MRF-based techniques achieve substantial reduction in computational
complexity by estimating class parameters independently from field
parameters. The basic formulation of random fields as follows:

Let S ¼ 1, … ::, nf g denote a set of integers indexing the n pixels of a
hyperspectral image. A conditional probability P y=x

� �

(a posteriori) is defined with

x ¼ x1, x2, ::… xnf g∈Rd�n denotes d-dimensional feature vectors composes a
hyperspectral image and y ¼ y1, y2:… yn


 �

is an image of lables. The a posteriori

probability can be expressed as:

p y=x
� �

¼
1

Z ω,xð Þ
exp

X

i∈S

log p yijxi,ω
� �

þ μ
X

i, jð Þ∈ C

δ yi � y j

� 	

0

@

1

A

(26)

The normalizing facor Z ω, xð Þ, also known as partition function is defined as:

Figure 3.
Spatial dependency system in spectral-spatial classification.
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Z ω,xð Þ ¼
X

y

exp
X

i∈S

log p yijxi,ω
� �

þ μ
X

i, jð Þ∈ C

δ yi � y j

� 	

0

@

1

A (27)

where, p yijxi,ω
� �

=the class probability given by the learning parameter ω.

μ = parameter controlling the degree of smoothness on the image of labels.
δ yð Þ = unit impulse function and C is a set of cliques.
The CRFs not only avoids label bias problem but also its conditional nature

motivates the relaxation of independence assumptions. Recently, Distributed ran-
dom Forest (DRF) have gained interest for HSIC [45] owing to its inherent merit.

The salient features of DRF are (1) the relaxation of conditional independence of
the observed data. (2) the exploitation of probabilistic discriminative models
instead of the generative MRFs. and (3) the simultaneous estimation of all DRF
parameters from the training data.

6. Sparse-representation (SR)-based classification

The role of SR theory has become prevalent in almost all the image processing
applications. The SR theory presumes that the training samples can be represented
as a linear combination of smallest possible number of atoms (columns) of an over-
complete dictionary.

The test sample xi can be represented as xi ¼ Dαþ ϵ. where, D∈Rn�k is a
dictionary with n samples of k dimensions and the sparse coefficients vector α can
be determined by solving the following optimization problem.

α̂ ¼ argmin ∥α∥0 s:t:∥xi �Dα∥2 ≤ ϵ (28)

The term :k k0 is l0 norm that counts the number of nonzero entries. The opti-
mization problem in Eq. (28) can be solved with greedy pursuit algorithms [46], in
which the l0 norm is replaced with the l1 norm.

For HSIC, the Eq. (28) can be replaced as:

min
α

1

2
∥xi �Dα∥22 þ τ∥α∥1, α≥0: (29)

where, the parameter τ is a Lagrange multiplier that balances the tradeoff
between the reconstruction error and the sparse solution: τ ! 0 when ϵ ! 0.

In order to incorporate the spatial information a spatial weight is added and the
modified SR model for HSIC is formulated as:

min
α

1

2
∥xi �Dα∥22 þ τ∥Wα∥1, α≥0 (30)

The choice of a spatial weight matrix W, yields different classification strategies
for HSIs namely neighboring pixels [47], neighboring filtering [38], histogram-
based [47], spatial information based on super pixels [48], etc.

The class labels can be implied on the basis of the following formulation:

^class xið Þ ¼ arg min
j∈ 1, … , cf g

∥xi �D jα j∥2: (31)

A sparsity-based algorithm to improve the classification performance is pro-
posed in [49]. The principle depends on the sparse representation of a hyperspectral

11

Hyperspectral Image Classification
DOI: http://dx.doi.org/10.5772/intechopen.88925



pixel by a linear combination of a few training samples from a structured dictio-
nary. The sparse vector is recovered by solving a sparsity-constrained optimization
problem, and it can directly determine the class label of the test sample. Zhang et al.
[50] proposed a nonlocal weighted joint sparse representation (NLW-JSRC) to
further improve the classification accuracy. The method enforced a weight matrix
on the pixels of a patch in order to discard the invalid pixels whose class was
different from that of the central pixel. A few of the recent investigations [51–53]
approved that a compact and discriminative dictionary learned from the training
samples can significantly reduce the computational complexity.

6.1 Segmentation-based methodologies

The segmentation process is performed after spectral-based classification in
some of HSIC techniques. The extraction and classification of homogeneous objects
is presented in [54] is the first classifier that used spatial postprocessing. The
comprehensive survey of other methodologies of this category is presented in [43].

7. Deep learning (DL)

Deep learning involves a class of models which try to hierarchically learn deep
features of input data with very deep neural networks, typically deeper than three
layers. The network is first layer-wise initialized via unsupervised training and
subsequently, tuned in a supervised manner. In this scheme, high level features are
learned from low level ones, whereas, the proper features can be formulated for
pattern classification towards the end. Deep models can potentially lead to progres-
sively more abstract and complex features at higher layers, and more abstract
features are generally invariant to the most local changes experienced by the input
data.

7.1 Deep learning for HSI classification

The DL theory presents a dynamic way for unsupervised feature learning using
very large raw image dataset. Unlike the traditional classification techniques, DL-
based techniques can represent and organize multiple levels of information to
express complex relationships between data.

Deep Learning (DL) is a sort of more complex architecture simulating human
brains, based on neural networks begins to apply hyperspectral image classification
[55]. The deep learning models for HSIC usually consists of three layers, to extract
the more complex characteristics layer by layer. (i) Input data (ii) Deep layer
construction (iii) Classification [56]. The notable methodologies include deep belief
network (DBN) [57], stacked auto encoder (SAE) [58], and convolutional neural
network (CNN) [59].

Deep belief networks (DBNs) [60] are an important development in DL
research and train one layer at a time in an unsupervised manner by restricted
Boltzmann machines (RBMs) [61]. The DBNs admit unsupervised pretraining over
unlabeled samples at first and then a supervised fine-tuning over labeled samples.
Since the pretrained DBN captures the useful information from the unlabeled sam-
ples, the fine-tuning with the pretrained DBN performes well over small number of
labeled samples [57, 62]. The simple structure of DBN is presented in Figure 4.

The conventional training of DBN incur two problems; The first is coadaptation
of latent factors [63, 64]. This activity is described as several latent factors tend to
behave very similarly. This phenomenon implies that the model parameters
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corresponding to the latent factors might be very similar. These similar latent
factors make most of the computations to be performed redundantly and also
decrease DBN’s description ability. The second is the set of many “dead” (never
responding) or “potential over-tolerant” (always responding) latent factors (neu-
rons) in the DBN learned with the usual sparsity promoting priors [65]. The “dead”
or “potential over-tolerant” latent factors directly correspond to the decrease of the
model’s description sources. These problems reduce the DBN’s description ability as
well as the classification performance. The first problem is solved by trying to
perform the latent factors diversely. The “dead” and “potential over-tolerant” latent
factors (neurons) are related to the sparsity and selectivity of activations of visual
neurons and the selectivity and sparsity are just two epiphenomena of the diversity
of receptive fields. Hence, both the problems can be solved together by diversifying
the DBN models.

The classification performance enhancement through the diversification of
latent factors of a given model has became attractive topic in recent years [66–68].
The determinantal point process (DPP) is used as a prior for probabilistic latent
variable models in [68]. Probabilistic latent variable models are one of the vital
elements of machine learning. The determinantal point process enables a modeler to
specify a notion of similarity on the space of interest, which in this case is a space of
possible latent distributions, via a positive definite kernel. The DPP then assigns
probabilities to particular configurations of these distributions according to the
determinant of the Gram matrix. This construction naturally leads to a generative
latent variable model in which diverse sets of latent parameters are preferred over
redundant sets.

Figure 4.
The simple structure of the standard DBN. (RBM- Restricted Boltzmann Machine).
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Restricted Boltzmann Machine (RBM)s has demonstrate immense effectiveness
in clustering and classification. In [69], divesified RBM (DRDM) is proposed to
enhance the diversity of the hidden units in RBM. To combat the phenomenon that
many redundant hidden units are learned to characterize the dominant topics as
best as possible with the price of ignoring long-tail topics by imposing a diversity
regularizer over these hidden units to reduce their redundancy and improve their
coverage of long-tail topics. First-order Hidden Markov Models (HMM) provides a
fundamental approach for unsupervised sequential labeling. A diversity-
encouraging prior over transition distributions is incorporated to extend HMM to
diversified HMM (dHMM) [66]. The dHMM shows great effectiveness in both the
unsupervised and supervised settings of sequential labeling problems. A successful
attempt has been made to improve the HSI classification by diversifying a deep
model in [70]. A new diversified DBN is developed through regularizing pretraining
and fine-tuning procedures by a diversity promoting prior over latent factors.
Moreover, the regularized pretraining and fine-tuning can be efficiently
implemented through usual recursive greedy and back-propagation learning
framework.

The conventional applications of the diversified models include image classifi-
cation [69], image restoration [67], and video summarization [71].

Two hyperspectral data sets, Indian Pines and the University of Pavia scenes are
selected for the evaluation of diversified DBN (D-DBN)-based classification method.
The Indian Pines data set has 220 spectral channels in 0.4 to 2.45 μm region of the
visible and infrared spectrumwith a spatial resolution of 20 m� 20m. The 20 spectral
bands were removed due to noise and water absorption, and the data set contains 200
bands of size 145 � 145 pixels. A three-band false color image and the ground truth
data are presented in Figure 5. The University of Pavia data set with a spectral
coverage ranging from 0.43 to 0.86 μm is presented in Figure 6. The image contains
610 � 340 pixels and 115 bands. After removing 12 bands due to noise and water
absorption, the image contains 103 bands with a spatial resolution as 1.3 m � 1.3 m.

The structure of the DBN for the Indian Pines data set is set as 200–50 - … - 50 -
8, which means the input layer has 200 nodes corresponding to the dimension of
input data, the output layer has eight nodes corresponding to the number of classes,
and all the middle layers have 50 nodes. Particulars about the number of training
and testing samples are presented in Table 1. The performance of the DBN can be
significantly improved by modifying the pretraining and fine-tuning of D-DBNs.
DBN-based classification methods realizes comparatively fast inference and

Figure 5.
Indian Pines data set. (a) Original image produced by the mixture of three bands. (b) Ground truth with eight
classes. (c) Map color.
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competent representation of hyperspectral image and thus good classification per-
formance.

7.2 Convolutional neural networks (CNN)

Quite a few number of neural network-based classification methods have been
proposed in the literature to deal with both supervised and unsupervised nonpara-
metric approaches [72–74]. The feedforward neural network (FN)-based classifiers
are extensively used with the variation of second-order optimization-based strate-
gies, which are faster and need fewer input parameters [75, 76]. The extreme
learning machine (ELM) learning algorithm has became popular that train single
hidden-layer FNs (SLFN) [77, 78]. Then, the concept has been extended to multi-
hidden-layer networks [79], radial basis function (RBF) networks [80], and kernel

Figure 6.
University of Pavia data set. (a) Original image produced by the mixture of three bands. (b) Ground truth
with nine classes. (c) Map color.

ID Indian pines University of Pavia

Class name Training Test Class name Training Test

1 Corn-notill 200 1234 Asphalt 200 6431

2 Corn-mintill 200 634 Meadows 200 18,499

3 Grass-pasture 200 297 Gravel 200 1899

4 Hay-windrowed 200 289 Trees 200 2864

5 Soybean-notill 200 768 Sheets 200 1145

6 Soybean-mintill 200 2268 Bare soil 200 4829

7 Soybean-clean 200 414 Bitumen 200 1130

8 Woods 200 1094 Bricks 200 3482

9 Shadows 200 747

Total 1600 1800 40,976

Table 1.
Number of training and test samples.
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learning [81, 82]. ELM-based networks are remarkably efficient in terms of accu-
racy and computational complexity and have been successfully applied as nonlinear
classifiers for hyperspectral data, providing results comparable with state-of-the-art
methodologies.

In recent years, convolutional neural network (CNN) has acquired auspicious
achievements in remote sensing [58, 83–85]. The deep structure of CNNs allows the
model to learn highly abstract feature detectors and to map the input features into
representations that can clearly boost the performance of the subsequent classifiers.
The advantage of such approaches over probabilistic methods result mainly from
the fact that neural networks do not need prior knowledge about the statistical
distribution of the classes. Their attractiveness increased because of the availability
of feasible training techniques for nonlinearly separable data citepbenedikts-
son1990statistical, although their use has been traditionally affected by their algo-
rithmic and training complexity [86] as well as by the number of parameters that
need to be tuned.

The CNN is a multi-layer architecture with multiple stages for effective feature-
extraction. Generally, each stage of CNN is composed of three layers. (i)
convolutional layer (ii) nonlinearity layer and and (iii) pooling layer. The classical
CNN is composed of one, two, or three feature-extraction stages, followed by one or
more fully connected layers and a final classifier layer.

Convolutional layer: The input to the convolutional layer is represented as xim,n,

with r number of features maps xi, each map is of size m� n. The convolutional
layer consists of filter banks W of size l� l� q that connects input filter map to
output filter map. The output of convolutional layer is a three-dimensional array
m1 � n1 � k , composed of k feature maps of size m1 � n1. The output of the
convolutional layer is determined as:

zs ¼
X

q

i¼1

Ws
i ∗ x

i þ bs (32)

Where, b is the bias paprameter.
Nonlinearity layer: The nonlinearity layermeasures the output featuremap

as ¼ f zsð Þ, as f(.) is usually selected tobe a rectified linear unit (ReLU) f(x)=max(0,x).
Pooling Layer: The pooling layer involves executing a max operation over the

activations within a small spatial region G of each feature map: ps
G ¼ max i∈G ais.

After the multiple feature-extraction stages, the entire network is trained with back
propagation of a supervised loss function such as the classic least-squares output,
and the target output γ is represented as a L-of-K vector, where K is the number of
output and L is the number of layers:

J θð Þ ¼
X

N

i¼1

1

2
∥h xi, θð Þ � γ∥2

� 


þ λ
X

L

l

sum ∥θ lð Þ∥2
� 	

, (33)

where l indexes the layer number. Primary goal is to minimize J θð Þ as a function
of θ. To train the CNN, stochastic gradient descent with back propagation is
exercised to optimize the function.

The three fundamental parts of a CNN are a convolutional layer, non linear
function and a pooling layer. A deep CNN can be formulated by stacking several
convolution layers with nonlinear operation and several pooling layers. A deep CNN
can hierarchically extract the features of inputs, which tend to be invariant and
robust [87]. The architecture of a deep CNN for spectral classification is shown in
Figure 7.
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A systematic survey on deep networks for remote sensing data has been
presented in [56]. In [83], CNN was investigated to exploit deep representation
based on spectral signatures and the performance proved to be superior to that of
SVM. The high level spatial features are extracted using CNN [88], deep CNN for
pixel classification while learning unsupervised sparse features [59], deep CNN to
learn pixel-pair features [89] and few more.

The performance of the HSI classification method proposed in [83] termed as
deep CNN (D-CNN) is compared with a traditional SVM classifier. Two
hyperspectral data sets including Indian Pines and University Of Pavia are used for
the evaluation. The Indian Pines data set consists of 220 spectral channels in the
0.4–2.45 μm region of the visible and infrared spectrum with a spatial resolution of
20 m. The University of Pavia data set with a spatial coverage of 610 � 340 pixels
covering the city of Pavia and has 103 spectral bands prior to water band removal. It
has a spectral coverage from 0.43 to 0.86 μm and a spatial resolution of 1.3 m. All
the layer parameters of these two data sets for CNN classifier are set as specified in
[83]. The comparison of classification performance between D-CNN and SVM is
presented in Table 2. Figures 8 and 9 interpret the corresponding classification

Figure 7.
A spectral classifier based on a deep CNN.

Data set D-CNN (%) SVM (%)

Indian pines 90.18 87.54

University of Pavia 92.64 90.42

Table 2.
Comparison of results between the D-CNN and SVM using two data sets.

Figure 8.
RGB composition maps resulting from classification for the Indian Pines data set. From left to right: ground
truth, SVM, and D-CNN.
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maps obtained with D-CNN and SVM classifier. Furthermore, compared with tra-
ditional SVM the D-CNN classifier has higher classification accuracy for the overall
data sets.

Furthermore, the application of Deep learning to hyperspectral image classifica-
tion has some potential issues to be investigated.

i. Deep learning methods may lead to a serious problem called overfitting,
which means that the results can be very good on the training data but poor
on the test data. To deal with this issue, it is necessary to use powerful
regularization methods.

ii. In contrast to natural images, the high resolution remote sensing (RS) images
are complex in nature. The complexity of RS images leads to some difficulty
in descriminative representation and learning features from the objects
with DL.

iii. The deepaer layers in supervised networks like CNNs can learn more complex
distributions. Research on appropriate depth for a DL model for a given data
set is still an open research topic to be explored.

iv. Deep learning methods can be combined with other methods, such as sparse
coding and ensemble learning which is another research area in hyperspectral
data classification.

Figure 9.
Thematic maps resulting from classification for University of Pavia data set. From left to right: ground truth,
SVM, and D-CNN.
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