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Chapter

Analytic Prognostic in the Linear
Damage Case Applied to Buried
Petrochemical Pipelines and the
Complex Probability Paradigm
Abdo Abou Jaoude

Abstract

In 1933, Andrey Nikolaevich Kolmogorov established the system of five axioms
that define the concept of mathematical probability. This system can be developed
to include the set of imaginary numbers by adding a supplementary three original
axioms. Therefore, any experiment can be performed in the set C of complex
probabilities which is the summation of the set R of real probabilities and the set
M of imaginary probabilities. The purpose here is to include additional imaginary
dimensions to the experiment taking place in the “real” laboratory in R and hence
to evaluate all the probabilities. Consequently, the probability in the entire set C ¼
RþM is permanently equal to one no matter what the stochastic distribution of
the input random variable in R is; therefore the outcome of the probabilistic
experiment in C can be determined perfectly. This is due to the fact that the
probability in C is calculated after subtracting from the degree of our knowledge the
chaotic factor of the random experiment. Consequently, the purpose in this chapter
is to join my complex probability paradigm to the analytic prognostic of buried
petrochemical pipelines in the case of linear damage accumulation. Accordingly,
after the calculation of the novel prognostic model parameters, we will be able to
evaluate the degree of knowledge, the magnitude of the chaotic factor, the complex
probability, the probabilities of the system failure and survival, and the probability
of the remaining useful lifetime; after that a pressure time t has been applied to the
pipeline, which are all functions of the system degradation subject to random and
stochastic influences.

Keywords: probability norm, complex probability set, degree of our knowledge,
chaotic factor, remaining useful lifetime, degradation, analytic prognostic,
linear damage

1. Introduction

“An intellect which at any given moment knew all the forces that animate Nature

and the mutual positions of the beings that comprise it, if this intellect were vast

enough to submit its data to analysis, could condense into a single formula the

movement of the greatest bodies of the universe and that of the lightest atom: for such
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intellect nothing could be uncertain; and the future just like the past would be

present before its eyes”.

Marquis Pierre-Simon de Laplace.

“The Divine Spirit found a sublime outlet in that wonder of analysis, that portent of the ideal

world, that amphibian between being and not-being, which we call the imaginary

root of negative unity”.

Gottfried Wilhelm von Leibniz.

The high availability of technological systems, like defense, aerospace, auto-
mobile industries, and petrochemistry, is a central major objective of previous and
latest developments in the technology of system design. Pipelines are the primary
component of the systems of hydrocarbon transport in petrochemical industries.
They are vital for human activities because they serve to transport water, natural
gases, and oil from sources to all consumer sites. A novel analytic prognostic model
was established in my earlier research work and applied to the case of pipelines
subject to the effects of corrosion, to soil loading, and to internal pressure. These will
initiate micro-cracks in the body of the tubes that can spread suddenly and can lead to
failure. The increase of pipeline availability and the reduction of their global mission
cost and performance necessitate to elaborate a suitable process of prognostic.
Accordingly, a novel strategy based on degradation analytic laws was applied to
diverse dynamic systems and was developed in my research work [1–6].
Additionally, the remaining useful lifetime (RUL) was predicted and calculated
from a predefined threshold of degradation. Based on a system of a physical petro-
chemical pipeline, my publications developed a strategy to design a model of failure
prognostic that will be more elaborated and further enhanced in the present
book chapter.

Moreover, prognostic is a process involving a prediction capacity. Using prog-
nostic, we are able to evaluate the equipment remaining useful lifetime in terms of
its future usage and its history of functioning. Predicting the remaining useful
lifetime of industrial systems turns out to be presently a vital goal for industrialists
knowing that the consequences of failure, which can occur suddenly, are usually
very expensive. The traditional maintenance strategies [7, 8] founded on a static
threshold of alarm are no more practical and efficient since they do not consider the
instantaneous functioning state of a product. The establishment of a prognostic
approach as an “intelligent” maintenance consists of the health follow-up, monitor-
ing, and analysis, based on physical measurements utilizing sensors.

Also, earlier expert studies of prognostic belong in general to three categories of
technical approaches: the first category is the “experience-based prognostic” [9]
which is based on measurements taken from a machine health monitoring, for
example, those based on stochastic model, expert judgment, Bayesian approach,
reliability analysis, Markovian process, optimization of preventive maintenance,
etc. Their methodology of prognostic shows to be simple but inflexible toward
changes in the environment and in the system behavior. The second category is the
“estimation-based or trending prognostic” based on the statistics of vast measured
data. We can cite as illustrations the work relying on the behavior of degradation
expressed by abaci and utilizing a system expert description (process-mission-
environment) [10]; the work relying on artificial intelligence, machine learning
[11], neural network [12], and fuzzy logic [13]; and additionally the work based on
dissipativity-based fuzzy integral sliding mode control of continuous time T-S fuzzy
systems, SMC design for robust stabilization of nonlinear Markovian jump singular
systems, sliding mode control of fuzzy singularly perturbed systems with
application to electric circuits, the stabilization of quantized sampled-data neural
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network-based control systems, etc. Their methodologies are designated generally
as not very precise, but they propose a powerful tool to the theory of prognostic.
The third category is the “model-based prognostic” relying on the mathematical
description of the process of degradation and its evolution level utilizing nonde-
structive inspection (NDI) monitoring. It is designated to be more precise and
flexible than the two first categories. My earlier research illustrates a methodology
of analytical prognostic relying on analytic laws of damage, such as the linear
damage accumulation law of Palmgren-Miner and the fatigue crack propagation law
of Paris-Erdogan. It fits in the third category of models. This approach is used
whenever the law of damage of the studied system is analytically available. The
advantage of this approach is consequently its precise and realistic features in
evaluating the remaining useful lifetime of a system [14–17].

Additionally, pipes are petrochemical systems that transport natural gas and oil
in huge quantities and over long distances. Their life prognostic is crucial in this
industry because their availability has vital outcomes. Their major failures are due
to soil settlements, seismic ground waves, deformations, buckling, internal and
external corrosion, vibration and resonance, stress concentration in welding and
fitting, and pressure fluctuation over long period. The failures due to fatigue by
means of cracks propagation are noticed and measured by the tools of crack detec-
tion. Therefore, three case studies of pipelines were taken into consideration in my
earlier publications [18, 19]: buried, unburied, and subsea (offshore pipelines).
Each one of these situations necessitates different physical parameters like friction
and soil pressure, atmospheric and water pressure, and corrosion. The buried pipes
case will only be considered in the present chapter.

2. The purpose and the advantages of the present work

Computing probabilities is the main work of classical probability theory. Adding
new dimensions to the stochastic experiments will lead to a deterministic expres-
sion of probability theory. This is the original idea at the foundations of this work.
Actually, the theory of probability is a nondeterministic system in its essence; that
means that the event outcomes are due to the chance and randomness. The addition
of novel imaginary dimensions to the chaotic experiment occurring in the setRwill
yield a deterministic experiment, and hence a stochastic event will have a certain
result in the complex probability set C. If the random event becomes completely
predictable, then we will be fully knowledgeable to predict the outcome of stochas-
tic experiments that arise in the real world in all stochastic processes. Consequently,
the work that has been accomplished here was to extend the real probabilities setR
to the deterministic complex probabilities set C ¼ RþM by including the contri-
butions of the set M which is the imaginary set of probabilities. Therefore, since
this extension was found to be successful, then a novel paradigm of stochastic
sciences and prognostic was laid down in which all stochastic phenomena in R was
expressed deterministically. I called this original model “the Complex Probability
Paradigm” that was initiated and illustrated in my 12 research publications. [20–31].

Furthermore, although the analytic linear prognostic laws are deterministic and
very well-known in [14, 16], there are chaotic and stochastic influences and aspects
(such as humidity, temperature, material nature, geometry dimensions, applied
load location, water action, corrosion, soil pressure and friction, atmospheric pres-
sure, etc.) that influence the buried pipeline system and make its function of
degradation diverge from its computed trajectory modeled by these deterministic
laws. An updated follow-up of the degradation performance and behavior with
cycle number or time, which is subject to non-chaotic and chaotic influences, is
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made possible by what I called the system failure probability due to its definition
that estimates the jumps in the function of degradation D.

Additionally, my objective in this present work is to connect the complex prob-
ability paradigm to the buried pipeline system analytic prognostic in the case of
linear damage accumulation which is subject to fatigue. In fact, the system failure
probability derived from prognostic will be applied to and included in the complex
probability paradigm. This will lead to the original and novel model of prognostic
illustrated in this chapter. Thus, by determining the new prognostic model param-
eters, it becomes possible to evaluate the degree of our knowledge, the magnitude of
the chaotic factor, the complex probability, the RUL probability, and the system
failure and survival probabilities; after that a pressure cycle time t has been applied
to the buried pipeline, which are all functions of the system degradation subject to
chaotic and stochastic influences.

Accordingly, the advantages and the purpose of the current chapter are to:

1.Extend classical probability theory to the set of complex numbers and
therefore to link the theory of probability to the field of complex variables and
analysis. This job was started and elaborated in my previous 12 papers.

2.Do an updated follow-up of the degradation D performance and behavior
with cycle number or time which is subject to chaos. This follow-up is
accomplished by the real failure probability of the system due to its definition
that evaluates the jumps in D, therefore linking a system degradation to
probability theory in a novel and original way.

3.Apply the new axioms of probability and paradigm to system prognostic; thus,
I will extend the prognostic concepts to the set of complex probabilities C.

4.Show that all stochastic phenomena can be expressed deterministically in the
set of complex probabilities C.

5.Measure and compute both the degree of our knowledge and the chaotic factor
of the system remaining useful lifetime and its degradation.

6.Draw and illustrate the graphs of the parameters and functions of the original
paradigm corresponding to a buried pipeline prognostic.

7.Show that the classical concepts of random remaining useful lifetime and
degradation possess a probability permanently equal to one in the complex set;
hence, no randomness, no chaos, no uncertainty, no ignorance, no disorder,
and no unpredictability exist in:

C complex setð Þ ¼ R real setð Þ þM ðimaginary setÞ:

8.Show that by adding new and supplementary dimensions to any stochastic
phenomenon, whether it is a pipeline system or any other random experiment,
it becomes possible to do prognostic in a deterministic way in the set C of
complex probabilities.

9.Pave the way to implement this novel model to other areas in stochastic
processes and to the field of prognostics in science and engineering. These will
be the topics of my future research works.
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Concerning some applications of the original elaborated paradigm and as a
future work, it can be applied to a wide set of dynamic systems like vehicle suspen-
sion systems and offshore and buried petrochemical pipelines which are subject to
fatigue and in the cases of nonlinear and linear damage accumulation. Furthermore,
compared with existing literature, the main contribution of the present research
work is to apply the novel paradigm of complex probability to the concepts of
random remaining useful lifetime and degradation of a buried pipeline system
hence to the case of analytic prognostic in the case of linear damage accumulation
subject to fatigue. The following figure shows the main purposes of the complex
probability paradigm (CPP) (Figure 1).

To conclude and to summarize, in the real probability universeR, our degree of
our certain knowledge is regrettably imperfect; therefore we extend our study to
the complex set C which embraces the contributions of both the real probabilities
set R and the imaginary probabilities set M. Subsequently, this will lead to a
perfect and complete degree of knowledge in the universe C ¼ RþM (since
Pc = 1). In fact, working in the complex universe C leads to a certain prediction of
any random event, because in C we eliminate and subtract from the calculated
degree of our knowledge the quantified chaotic factor. This will yield a probability
in the universe C equal to one (Pc2 = DOK � Chf = DOK + MChf = 1 = Pc). Many

Figure 1.
The diagram of the main purposes of the complex probability paradigm and research work.

Figure 2.
The EKA or the CPP diagram.
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illustrations considering various continuous and discrete probability distributions in
my 12 previous research papers verify this hypothesis and novel paradigm [20–31].
The extended Kolmogorov axioms (EKA for short) or the complex probability
paradigm can be summarized and shown in the following figure (Figure 2).

3. Previous research work: analytic prognostic and linear damage
accumulation for buried petrochemical pipelines

In this section a comprehensive summary of a part of my previously published
PhD thesis [16] and of the formerly published IFAC conference paper [14] will be
done, and the results that this current chapter needs will be just cited.

3.1 A brief introduction to the adopted methodology

The objective of my earlier research study, which will be enhanced in the
present chapter and will be linked to CPP, was to develop an analytic linear model
of prognostic capable of predicting the remaining useful lifetime and the degrada-
tion D curves of a buried petrochemical pipeline system subject to fatigue starting
from an initial known damage and under a given environment [14, 16]. This shows
to be beneficial for many reasons which are fewer pipe bending; reduced plant
congestion, wind, and other loads; and protection from ambient temperature
changes. This work is restricted here to normal service loads that consist of only soil
action and internal pressure.

Petrochemical pipelines are systems that are used to transport natural gas and oil
between sites. We believe that pipeline tubes are a major element in petrochemical
industries. As a matter of fact, the prognostic of their life is essential in this industry
since their availability has decisive and critical consequences on the cost of exploi-
tation. Fatigue, which is due to internal pressure-depression variation along time, is
the major failure cause of these systems. These pipelines are typically devised for
ultimate limit states (resistance). Additionally, due to soil aggression influences,
buried pipelines are subject to corrosion. Pipelines are designed as cylindrical tubes
of thickness e and radius R.

A target failure probability of about 10�5 for pipelines is suggested by the DNV
2000 rules. Their major failure causes are soil settlements, seismic ground waves,
deformations, buckling, stress concentration in welding and fitting, internal and
external corrosion, pressure fluctuation over a long period, and vibration and
resonance. Moreover, crack detection tools detect the crack propagation caused by
failures due to fatigue.

An important part of the main pipes is exposed to external cracking, which is a
dangerous setback for the industry of pipes, for example, in the USA, Canada, and
Russia. External crack identification is accomplished using diverse nondestructive
evaluation (NDE) methods. If cracks were detected during inspection, we should
evaluate their influence on the remaining useful lifetime of the pipeline in order to
select the action of maintenance that should be applied: do nothing/repair/replace.
We judge the integrity of pipes by assuming that some defects after in-line inspec-
tion (ILI) can be still undetected; detected, but not measured; detected and
measured.

Moreover, the objective in my publications was to assess the evolution of the
lifetime of a system at each instant. Consequently, and for this purpose, the trajec-
tories of degradation had been utilized in terms of the time of operation or cycles’
number. Hence, we deduce the RUL variations from these trajectories of degrada-
tion. Thus, I have considered many industrial illustrations in the simulation of my
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model in these earlier publications and work to prove the effectiveness of my model
[1–6, 13–19]. Three case studies of pipelines were taken into consideration: buried,
unburied, and subsea (offshore pipes). Each one of these situations necessitates
different physical parameters like friction and soil pressure, corrosion, and atmo-
spheric and water pressure. One of these cases is elaborated here which is the
system of buried petrochemical pipes where three modes of pressure profiles (mode
1 = high, mode 2 = middle, and mode 3 = low-pressure conditions) were examined
and simulated. My model showed that it presented a useful tool for a prognostic
analysis and that it is very convenient in such industrial systems. Furthermore, it
proved that it is less expensive than other models that require a huge number of
measurements and data.

3.2 Fatigue crack growth

The stress intensity factor was introduced to calculate the correlation between
the crack growth rate, da/dN, and the stress intensity factor range, ΔK. The Paris-
Erdogan’s law [7] allows to evaluate the rate of propagation of the crack length a
after its detection. This damage growth law is expressed by the following equation:

da

dN
¼ C ΔKð Þm (1)

where
da
dN, the crack growth rate = the increase of the crack length a per cycle N.

ΔK að Þ ¼ Y að ÞΔσ ffiffiffiffiffiffi

π a
p

, the intensity factor of the stress.
Y að Þ, the component’s crack geometry function.
Δσ, the range of the applied stress in a cycle.
m and C, the constants of materials obtained experimentally; 2≤m≤4ð Þ and

0<C≪ 1ð Þ.

3.3 The modeling of linear cumulative damage

To do the prognostic of a degrading element, my approach was to evaluate and to
predict the end of life of the element by modeling and tracking the function of
degradation. My model of damage, whose progress is up to the macro-crack initiation
point, is illustrated in Figure 3 by the damage linear rule of Palmgren-Miner.

As a matter of fact, this law [7] is used to calculate the cumulative damage di of
different stress levels σi (i = 1, i = 2, ..., i = k) applied for ni cycles. Knowing thatNi is

Figure 3.
Palmgren-Miner’s linear rule of damage.
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the total cycle’s number of stress σi to be applied and that lead to failure. The linear
cumulative damage corresponding to the applied stresses (i = 1 to k) is provided by

Dk ¼
X

k

i¼1

di ¼
X

k

i¼1

ni
Ni

(2)

The initial detectable crack a0 at the cycle N0, the crack length aN at any cycle N,
and the crack length aC at the failure cycle NC are estimated by a sensor, and their
values are included in the model of damage prognostic in the equation of damage. It
is expressed in my model by the resulting relation

DN ¼ aN
aC � a0

(3)

Or in terms of the pressure cycle time t, the relation is given by

Dt ¼
at

aC � a0
(4)

To simplify the study, it is suitable to adopt a measurement of damage denoted
by D ϵ [0, 1] which is computed by the Palmgren-Miner’s law of linear cumulative
damage. The damage level in a system at a specific cycle which is due to fatigue is
illustrated by a scalar function of damage denoted by D(t) or D(N). “No damage”
corresponds to the value D = 0, and “total damage” or the appearance of the first
macro-crack corresponds to D = 1.

3.4 An expression for degradation

Therefore, my general prognostic analytic linear model function, which is a
recursive relation for the sequence of D, is given by [16]

DN ¼ D Nð Þ ¼ Prog aNð Þ

¼ aN�1

aC � a0
þ C

aC � a0
� πaN�1ð Þ3=2 � 0:6 � 1þ 2 aN�1=eð Þ

1� aN�1=eð Þ32

" #3

� PjR=e
� �3

(5)

where C, the environment parameter; e, the pipe thickness; R, the pipe radius;
a0, the initial crack length at the cycle N0; aN�1, the crack length at the load cycle
N–1; ac: the crack length at the failure cycle NC. It was assumed in the model that
aC ¼ e=8 for justified reasons [16]; Pj: the pipe internal pressure.

Or in terms of the pressure cycle time t, the recursive relation for the sequence of
D is given by

Dt ¼ D tð Þ ¼ Prog atð Þ

¼ at�1

aC � a0
þ C

aC � a0
� πat�1ð Þ3=2 � 0:6 � 1þ 2 at�1=eð Þ

1� at�1=eð Þ32

" #3

� PjR=e
� �3

(6)

Consequently, the previous recursive relation leads to a sequence of Dt values
with N0 ≤N ≤NC or t0 ≤ t≤ tC whose limit is DC = 1:

D0 ¼ a0
aC � a0

; D1 ¼
a1

aC � a0
; D2 ¼

a2
aC � a0

; ⋯ ; Dt�1 ¼
at�1

aC � a0
; Dt ¼

at
aC � a0

(7)
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We will consider three different levels of internal pressure to take into account
the diverse states of pressure conditions which are low, middle, and high. Moreover,
as the stress load is a function of the cycles N or of time t, then we can draw the
trajectories of degradation of D(N) or D(t) in addition to the trajectories of RUL(N)
or RUL(t) in terms of the total number of loading cyclesN or in terms of the pressure
time t. Therefore, my developed model of linear damage will be applied in order to
compute the pipeline system prognostic.

3.5 The three levels of internal pressure simulations

We will consider in our current work a pipeline transporting natural gas of
radius R = 240 mm and of thickness e = 8 mm. The parameters in this case are
C = 1.3 � 10�14 (under soil, buried pipelines) and m = 3 (metal). The initial crack
length is considered to be a0 = 0.02 mm. The crack length aC at the failure cycle
time tC was assumed in the model to be equal to e=8 for justified reasons [16].
Hence, from Eqs. (5) and (6), we get

D0 ¼ a0
aC � a0

¼ a0
e=8ð Þ � a0

¼ 0:02

8=8ð Þ � 0:02
¼ 0:02

0:98
¼ 0:020408163

The soil specific weight is γ = 9.843 kN/m3. The weight per linear meter of pipe
and gas content is Wp = 203.27 kg/m. The specific gravity of the pipe material and
of the natural gas are, respectively, γpipe = 7850 kg/m3 and γgas = 600 kg/m3. The
depth of the pipe is taken as H = 7R, and the friction coefficient interval is
0.5 ≤ μ ≤ 0.7 [16].

The internal pressure Pj is modeled following a triangular form and distribution
in order to be similar to the real case of pipeline operating condition (pressure-
depression) (Figure 4).

We will consider three maximal levels of Pj which are P0 = 3, 5, and 8 MPa and
with a period of repetition T. This repetition period varies depending on the condi-
tions of exploitation; it is considered to be equal to 20 h. We note that these three
levels are supposed to be the extreme conditions of the pipeline exploitations and
are mean estimations of the real and actual random period and pressure rates. A
trajectory of degradation D(N) is inferred at each of these three levels in terms of
the cycle number N or pressure cycle time t. When Dt or DN attains the unit value,
therefore the corresponding t = tC or N = NC is the lifetime of the pipeline in the
fatigue case.

For the purposes of simulations, in Table 1, the values of pressure Pj are consid-
ered to be equal to the maximal values P0. The analytic linear prognostic model

Figure 4.
Triangular variation of internal pressure.
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(Eqs. (5) and (6)) simulation is achieved for each internal pressure level (low,
middle, and high).

A huge amount of pressure simulations of the order of hundreds of millions are
required to estimate the real system lifetime; hence, we have used an approximated
model of lifetime simulation of the order of 10,000,000 iterations. Accordingly, we
have considered for this purpose a high-capacity computer system: a workstation
computer with parallel microprocessors, a 64-Bit operating system, a 64 GB RAM,
as well as a 64-Bit MATLAB version 2019 software.

3.6 RUL computation

The evaluation of the remaining useful lifetime of the system is the major
objective in a prognostic study. Since the RUL is the complement of the damage
curve D(t), it can be deduced from it. Accordingly, at each time t, the required RUL
is the length from cycle time t to the critical cycle time tC that corresponds to the
threshold D = 1. The entire RUL is inferred using the following relation:

RUL ¼ tC � t0 (8)

where tC is the necessary cycle time for the appearance of the first macro-cracks
that means to reach failure, and t0 is the initial cycle time considered in general to be
equal to 0.

Consequently, my prognostic model computes the RULs for the three internal
pressure modes that can be now simply inferred from these three curves at any
instant t or at any active cycle N in this manner:

For mode 3, RUL3(t) = tC3 – t.
For mode 2, RUL2(t) = tC2 – t.
For mode 1, RUL1(t) = tC1 – t.

3.7 The effects of environment in the suggested prognostic model

Two parameters which are C and m embody the effects of the environment.
These two parameters are associated to the material environment. C and m depend
on the initial crack length, on the geometry and size of the specimen, and on the
testing conditions (such as the loading ratio σ). These two parameters affect the
performance of the material during the process of fatigue through the crack propa-
gation. The influencing parameters on this fatigue process, like humidity, tempera-
ture, material nature, geometry dimensions, applied load location, corrosion, water
action, soil pressure and friction, atmospheric pressure, etc., can be stochastic and
can be also embodied by C and m. Furthermore, it is crucial to note here that these
two parameters can be as well random variables and hence can be represented by
probability distributions materializing the environment stochastic and chaotic
influences on the system. It is also important to mention that these two parameters
are computed by the mean of experiments in real conditions. We give here some

Pressure mode Pj (MPa) Model

High (mode 1) 8 Triangular

Middle (mode 2) 5 Triangular

Low (mode 3) 3 Triangular

Table 1.
Characteristics of each internal pressure mode.
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examples from several and other prognostic studies [7, 8]: C = 5.2 � 10�13 (free air,
unburied pipelines), C = 1.3 � 10�14 (under soil, buried pipelines), C = 2 � 10�11

(for offshore pipelines), and m = 3 (metal).

4. The complex probability paradigm applied to prognostic

In this section, the novel complex probability paradigm will be presented after
applying it to prognostic.

4.1 The basic parameters of the new model

It is very well-known that in systems engineering, the remaining useful lifetime
and the degradation prediction is profoundly linked to many aspects (like humidity,
temperature, material nature, geometry dimensions, applied load location, water
action, corrosion, soil pressure and friction, atmospheric pressure, etc.) that usually
have a stochastic and chaotic behavior which reduces the degree of our certain system
knowledge [32–35]. Consequently, the lifetime of the system becomes a random
variable and is computed by the arbitrary time tC which is evaluated when sudden
failure occurs due to these stochastic causes and chaotic factors. We can deduce from
the CPP that we can foretell the exact probabilities of RUL andDwith certitude in the
whole set C ¼ RþM if we add to the probability measure of a random variable in
the real setR the corresponding imaginary counterpartM since Pc = 1 perpetually
and constantly. In fact, prognostic is based on the forecast of a system remaining
useful lifetime at any cycleN or instant t and during the system operation. Therefore,
we can make use of this novel idea and procedure to do the prognostic analysis of the
system RUL and degradation prediction and evolution.

Let us consider a system degradation trajectory D(t) where we study a specific
instant (or cycle) tk. The system age is measured by the number of years and by the
variable tk (Figure 5). From the illustrated figures (Figures 5a and 5b), we can infer
that at the system age tk of the prognostic study must give the prediction of the
failure instant tC. Therefore, the RUL predicted here at the instant tk has the
following value:

RUL tkð Þ ¼ tC–tk (9)

As a matter of fact, at tk = 0 (at the beginning) (point J), the system is intact, then
the failure probability of the system is Pr = 0, the chaotic factor in our prognostic is
null (MChf = 0) because no chaos exists yet, and our knowledge of the unharmed and
undamaged system is complete and certain (DOK = 1); consequently,

RUL 0ð Þ ¼ tC � tk ¼ tC � 0 ¼ tC:

If tk = tC (point L), the system is completely damaged, then RUL(tC) = tC� tC = 0,
and therefore the failure probability of the system is one (Pr = 1). Failure occurs at
this point. Thus, our knowledge of the totally worn-out system is perfect (DOK = 1)
and the harmful task of chaos has finished; hence it is no more applicable
(MChf = 0).

If 0 < tk < tC (point K, where J < K < L), the probability of occurrence of this
instant and the probabilities of prediction of RUL and D are both less than 1 and are
imperfect in R (0 < Pr < 1). This is the result of non-zero chaotic factors influenc-
ing the system (MChf > 0). The system degree of our knowledge which is subject to
chaos is thus uncertain and is consequently less than one in R (0.5 < DOK < 1).
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Furthermore, by applying here the CPP paradigm, we can therefore determine
at any instant tk (0≤ tk ≤ tC) and, at any point between J and L inclusively, the RUL
and D of the system with certitude in the set C ¼ RþM because in C we have
Pc = 1 permanently.

Additionally, we can express two complementary phenomena or events E and E
by their respective probabilities as follows:

Prob Eð Þ ¼ p and Prob E
� �

¼ q ¼ 1� p:

Therefore, let the probability Prob Eð Þ as a function of the time tk be defined by

Prob Eð Þ ¼ Prob t≤ tkð Þ ¼ F tkð Þ (10)

where the classical and usual cumulative distribution function (CDF) of the
random variable t is denoted by the term F tð Þ.

Since Prob Eð Þ þ Prob E
� �

¼ 1, therefore, we deduce at an instant t = tk:

Prob E
� �

¼ 1� Prob Eð Þ ¼ 1� Prob t≤ tkð Þ ¼ Prob t> tkð Þ ¼ 1� F tkð Þ (11)

In addition, two particular instants can be defined:
t = t0 = 0 which corresponds to the system raw state and which is assumed to be

the initial time of functioning where D = D0.
t = tC which corresponds to the system wear-out state and which is the failure

instant where D = DC = 1.
Consequently, we can state the boundary conditions as follows:
For t = t0 = 0, we have D = D0 ≈ 0 (the initial damage that may be nearly 0) and

F tð Þ ¼ F t0ð Þ ¼ Prob t≤0ð Þ ¼ 0.
For t = tC, we have D = DC = 1 and F tð Þ ¼ F tCð Þ ¼ Prob t≤ tCð Þ ¼ 1.
We note also that since F(tk) is defined as a cumulative probability function,

then F(tk) is a non-decreasing function that varies between 0 and 1. In addition,
since RUL(tk) = tC � tk and tk is always increasing (0≤ tk ≤ tC), then RUL(tk) is a
non-increasing remaining useful lifetime function (Figure 5b).

Figure 5.
CPP. (a) The prognostic of degradation and (b) The prognostic of RUL.
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4.2 The new prognostic model

The novel model of prognostic basic assumption will be presented now [36–53].
We assume first the cumulative probability distribution function F(t) of the random
variable time t as being equal to the function of degradation itself, which means

F tkð Þ ¼ Prob t0 ≤ t≤ tkð Þ ¼
X

t¼tk

t¼t0

Prob tð Þ ¼ D tkð Þ (12)

We mention here that we are working with discrete random functions that
depend on the discrete random time t of pressure cycles.

This basic assumption is reasonable because:

1.BothD and F are cumulative functions starting from zero and ending with one.

2.Both are non-decreasing functions.

3.Both functions are without measure units: D is an indicator quantifying system
damage and degradation, as well as F which is an indicator quantifying
randomness and chance.

Afterward, we suppose that, at the instant t ¼ tk, the term Pr tð Þ=ψ j is the real

probability of system failure and is computed as follows:

Pr tkð Þ ¼ ψ j � Prob t≤ tkð Þ � Prob t≤ tk�1ð Þ½ � ¼ ψ j � F tkð Þ � F tk�1ð Þ½ �

¼ ψ j � D tkð Þ �D tk�1ð Þ½ �

¼ ψ j �
X

t¼tk

t¼t0

Prob tð Þ �
X

t¼tk‐1

t¼t0

Prob tð Þ
" #

¼ ψ j �
X

t¼tk

t¼tk�1

Prob tð Þ ¼ ψ j � Prob tk�1 ≤ t≤ tkð Þ

(13)

Figure 6.
Pr , degradation, and the CDF step function.
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= ψ j times the jump in F(t) or D(t) from t ¼ tk�1 to t ¼ tk (Figures 6 and 7).

where t ¼ 0, 1, 2, … , tk�1, tk, tkþ1, … , tC½ � is the time of pressure cycles and
t0 = 0 is the initial time of pressure cycles at the simulation beginning. It
corresponds to a degradation D = D(t0) = D0 which is generally considered to be
nearly equal to 0.

Hence, since F(tk) = D(tk) then F(t0) = D(t0) = 0.020408 ≈ 0, but F(t0) is taken
all over this research work as being equal to 0;

t1 = 1 = the first pressure cycle time ... tk = the kth pressure cycle time … tC = the
pressure cycles time that leads to system failure = the critical pressure time. It
corresponds to D = DC = 1. It follows directly that F(tC) = D(tC) = DC = 1.

ψ j is the simulation magnifying factor that depends on the pressure profile. It is

ψ1 ¼ 5082 for the high-pressure mode (j = 1, mode 1), ψ2 ¼ 6737 for the middle-
pressure mode (j = 2, mode 2), and ψ3 ¼ 9151 for the low-pressure mode (j = 3,
mode 3).

Thus, initially we have

Pr tk ¼ t0 ¼ 0ð Þ ¼ ψ j � F t0ð Þ ¼ ψ j � 0 ¼ 0

Moreover,

Pr tkð Þ ¼ ψ j � f j tkð Þ ) Pr tkð Þ=ψ j ¼ f j tkð Þ, (14)

where 1=ψ j is a normalizing constant that is used to reduce Pr tkð Þ function to a

probability density function (PDF) with a total probability equal to one. 1=ψ j is a

function of the pressure mode and conditions, and it depends on the parameters in
the degradation (Eqs. (5) and (6)). The decreasing values of 1=ψ j are logical since

pipeline failure probabilities are decreasing with the decreasing pressure modes;
hence, 1=ψ1 > 1=ψ2 > 1=ψ3. Consequently, we deduce that f j tkð Þ is the usual proba-
bility density function (PDF) for each pressure mode j. Knowing that, from classical
probability theory, we have always:

Figure 7.
Pr as a function of degradation D(t).
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X

tk¼tC

tk¼t0

f j tkð Þ ¼
X

tk¼tC

tk¼t0

Pr tkð Þ=ψ j ¼ 1 for any pressure profile j ¼ 1, 2, 3:

This result is reasonable since Pr tkð Þ=ψ j is here a probability density function

(Figure 6).
Therefore, we can deduce that

X

tk¼tC

tk¼t0

Pr tkð Þ ¼ ψ j �
X

t¼tC

t¼t0

Prob tð Þ ¼ ψ j � Prob t0 ≤ t≤ tCð Þ

¼ ψ j � F t ¼ tCð Þ � F t ¼ t0ð Þ½ � ¼ ψ j � D t ¼ tCð Þ �D t ¼ t0ð Þ½ �

¼ ψ j � F tCð Þ≈ψ j �D tCð Þ,

since D tCð Þ ¼ 1 and D t0ð Þ ¼ 0:020408≈0 and F t0ð Þ is taken as ¼ 0

¼ ψ j �
X

tk¼tC

tk¼t0

f j tkð Þ ¼ ψ j � 1 ¼ ψ j

)
X

tk¼tC

tk¼t0

Pr tkð Þ=ψ j ¼ 1, for any pressure profile j ¼ 1, 2, 3

(15)

We can understand that F(t) = D(t) is a discrete CDF where the amount of the
jump is Pr tð Þ=ψ j; then, Pr tð Þ=ψ j is a damage evolution and degradation function

(Figures 6 and 7). And we can infer from the preceding computations that Pr tð Þ=ψ j

is a probability density function. Accordingly, we can realize now that Pr tð Þ=ψ j

quantifies and measures the system degradation or failure probability. Conse-
quently, what we have achieved at this point is that we have linked degradation
measure to probability theory.

We can notice the following:

0≤Pr tkð Þ=ψ j ≤ 1, 0≤ F tkð Þ≤ 1, and D0 ≈0ð Þ≤D tkð Þ≤ DC ¼ 1ð Þ,

for every tk : 0≤ tk ≤ tC:

and
If tk ! 0 ) D ! D0 ¼ 0:020408≈0 ) F ! 0 ) Pr tkð Þ ! 0
if tk ! tC ) D ! DC ¼ 1 ) F ! 1 ) Pr tkð Þ ! 1.

This, since the degradation is very flat near 0 and starts increasing with t,
becoming very acute at t = tC, hence, near tC, Pr is the greatest and is equal to 1
(Figures 7 and 8).

Furthermore, we have:
RUL tkð Þ ¼ tC � tk and it corresponds to a degradation of D tkð Þ.
RUL tk�1ð Þ ¼ tC � tk�1 and it corresponds to a degradation of D tk�1ð Þ.

This implies that (Figure 9)

Pr tkð Þ ¼ ψ j � D tkð Þ �D tk�1ð Þ½ �

¼ ψ j � D tC � RUL tkð Þ½ � �D tC � RUL tk�1ð Þ½ �f g
(16)
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4.3 Analysis and extreme chaotic and random conditions

Although the analytic linear laws of prognostic are very well-known and deter-
ministic in [14, 16], there are general influences and aspects that can be chaotic and
stochastic (like humidity, temperature, material nature, geometry dimensions,
applied load location, water action, corrosion, soil pressure and friction, atmo-
spheric pressure, etc.). Moreover, various variables in the expressions (5) and (6) of
degradation which are considered as deterministic can also have a random aspect,
such as the magnitude of applied pressure (due to the different conditions of
pressure profile) and the length of the initial crack (potentially existing from the
process of manufacturing). All those stochastic factors, embodied in the model by
their mean values, influence the buried pipeline system and make its function of

Figure 9.
Pr , D, and RUL.

Figure 8.
Degradation and Pr .
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degradation diverge from its computed trajectory modeled by these deterministic
laws. An updated follow-up of the degradation performance and behavior with
cycle number or time, which is subject to non-chaotic and chaotic influences, is
made possible by Pr tkð Þ=ψ j due to its definition that evaluates the jumps in D. In

fact, chaos modifies and affects all the environment and system parameters
included in the degradation equations (Eqs. (5) and (6)). Consequently, chaos
total effect on the pipelines contributes to shape the degradation curve D and is
materialized by and counted in the pipeline system failure probability Pr tkð Þ=ψ j.

Actually, Pr tkð Þ=ψ j quantifies the resultant of all the nonrandom (deterministic) and

random (nondeterministic) parameters and aspects which are contained in the
equation of D, which affect the system and which lead to the consequent final
curve of degradation. Consequently, an accentuated influence of chaos on the
pipeline can lead to a smaller (or bigger) jump in the trajectory of degradation and
therefore to a smaller (or bigger) failure probability Pr tkð Þ=ψ j. If, for example, due

to extreme deterministic causes and random factors, D jumps directly from D0 ≈0
to 1 then RUL goes straight from tC to 0 and consequently Pr tkð Þ=ψ j jumps instantly

from 0 to 1:

Pr tkð Þ=ψ j ¼ D tkð Þ �D tk�1ð Þ ¼ D tCð Þ �D 0ð Þ≈ 1� 0 ¼
X

t¼tC

t¼0

Prob tð Þ ¼ 1

where t jumps directly from 0 to tC.
In the extreme ideal case, if the pipeline system never deteriorates (no stresses

or pressure) and with zero random causes and chaotic factors, then the resultant of
all the nondeterministic and deterministic influences is null (like in the pipeline
isolated and idle state). Accordingly, the system remains indefinitely at D0 ≈0 and
RUL stays equal to tC. So consequently, the jump in D is constantly zero. Hence, the
failure probability remains ideally 0:

Pr tkð Þ=ψ j ¼ D tkð Þ �D tk�1ð Þ½ � ¼ D0 �D0½ � ¼ 0

where D t0ð Þ ¼ D t1ð Þ ¼ … ¼ D tk�1ð Þ ¼ D tkð Þ ¼ D tkþ1ð Þ ¼ … ¼ D0 ¼
0:020408≈0, for k ¼ 0, 1, 2, 3, …∞.

Figure 6 illustrates the real probability of failure Pr(t) in terms of the random
degradation step CDF of the pipeline as a function of the cycle time t of pressure for
mode 1.

Figure 7 illustrates the real probability of failure Pr(t) in terms of the
random degradation of the pipeline as a function of the cycle time t of pressure for
mode 1.

Figure 8 illustrates the real probability of failure Pr(t) and the random
degradation D(t) of the pipeline in terms of the number of cycle time t of pressure
for mode 1.

Figure 9 illustrates the real probability of failure Pr(t) in terms of the random
degradation D(t) of the pipeline and the random RUL(t) of the pipeline as a
function of the cycle time t (in years) of pressure for mode 1.

4.4 The flowchart of the complex probability analytic linear prognostic model

The following flowchart summarizes all the procedures of the proposed complex
probability prognostic model:

17

Analytic Prognostic in the Linear Damage Case Applied to Buried Petrochemical Pipelines…
DOI: http://dx.doi.org/10.5772/intechopen.90157



4.5 The evaluation of the new paradigm parameters

We can infer from what has been elaborated previously the following:

The real probability is Pr tkð Þ ¼ ψ j � D tkð Þ–D tk�1ð Þ½ �, for pressure modes j ¼ 1, 2, 3

(17)

The imaginary probability is Pm tkð Þ ¼ i� 1–Pr tkð Þ½ � ¼ i� 1–ψ j � D tkð Þ–D tk�1ð Þ½ �
n o

(18)

The complementary probability is Pm tkð Þ=i ¼ 1–Pr tkð Þ ¼ 1–ψ j � D tkð Þ–D tk�1ð Þ½ �
(19)

The complex probability vector is Z tkð Þ ¼ Pr tkð Þ þ Pm tkð Þ ¼ Pr tkð Þ þ i� 1–Pr tkð Þ½ �
(20)
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The degree of our knowledge

DOK tkð Þ ¼ Z tkð Þj j2 ¼ 1þ 2iPr tkð ÞPm tkð Þ ¼ 1–2Pr tkð ÞPm tkð Þ=i ¼ 1–2Pr tkð Þ 1–Pr tkð Þ½ �
¼ 1–2Pr tkð Þ þ 2Pr

2 tkð Þ
(21)

The chaotic factor

Chf tkð Þ ¼ 2iPr tkð ÞPm tkð Þ ¼ �2Pr tkð ÞPm tkð Þ=i ¼ �2Pr tkð Þ 1� Pr tkð Þ½ �
¼ �2Pr tkð Þ þ 2Pr

2 tkð Þ (22)

Chf is null when Pr(Nk) = Pr(0) = 0 (point J) and when Pr(tk) = Pr(tC) = 1
(point L) (Figures 5a and 5b).

The magnitude of the chaotic factor MChf:

MChf tkð Þ ¼ ∣Chf tkð Þ∣ ¼ �2iPr tkð ÞPm tkð Þ ¼ 2Pr tkð ÞPm tkð Þ=i ¼ 2Pr tkð Þ 1� Pr tkð Þ½ �
¼ 2Pr tkð Þ � 2Pr

2 tkð Þ
(23)

MChf is null when Pr(tk) = Pr(0) = 0 (point J) andwhen Pr(tk) = Pr(tC) = 1 (point L)
(Figures 5a and 5b).

At any instant tk 0≤∀tk ≤ tC, the probability expressed in the complex set C is
the following:

Pc tkð Þ2 ¼ Pr tkð Þ þ Pm tkð Þ=i½ �2 ¼ Z tkð Þj j2 � 2iPr tkð ÞPm tkð Þ

¼ DOK tkð Þ � Chf tkð Þ

¼ DOK tkð Þ þMChf tkð Þ

¼ 1

(24)

then, Pc(tk) = Pr(tk) + Pm(tk)/i = Pr(tk) + [1 � Pr(tk)] = 1 always.
Therefore, the prognostic of RUL(tk) and D(tk) of the pipeline in the set C is

forever certain. The buried pipeline system is considered thereafter under three
modes of pressure in order to simulate the cumulative distribution function
D(tk) = F(tk) and hence in order to visualize, to quantify, as well as to draw all the
prognostic parameters and CPP.

5. The simulation of the new paradigm

We will simulate in this section the original model of prognostic for the three
internal pressure modes. We note that we have used the 64-Bit MATLAB version
2019 software to evaluate and find all the numerical values of the paradigm func-
tions analysis.

5.1 The parameter simulation in the pipeline prognostic for mode 1

See Figures 10–12.
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5.1.1 The complex probability cubes for mode 1

See Figures 13–15.

Figure 12.
Degradation, rescaled RUL, and CPP parameters with Chf (a) and with MChf (b) for mode 1.

Figure 10.
Pipeline degradation (a) and RUL (b) under linear damage law for high-pressure mode of excitation (mode 1).

Figure 11.
Degradation and CPP parameters with Chf (a) and with MChf (b) for mode 1.
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Figure 13.
DOK and Chf in terms of t and of each other for mode 1.

Figure 14.
Pr and Pm/i in terms of t and of each other for mode 1.
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5.2 The parameter simulation in the pipeline prognostic for mode 2

See Figures 16–18.

Figure 15.
The complex probability vector Z in terms of t for mode 1.

Figure 16.
Pipeline degradation (a) and RUL (b) under linear damage law for middle-pressure mode of excitation (mode 2).

Figure 17.
Degradation and CPP parameters with Chf (a) and with MChf (b) for mode 2.
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5.2.1 The complex probability cubes for mode 2

See Figures 19–21.

5.3 The parameter simulation in the pipeline prognostic for mode 3

See Figures 22–24.

5.3.1 The complex probability cubes for mode 3

See Figures 25–27.

Figure 18.
Degradation, rescaled RUL, and CPP parameters with Chf (a) and with MChf (b) for mode 2.

Figure 19.
DOK and Chf in terms of t and of each other for mode 2.
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Figure 20.
Pr and Pm/i in terms of t and of each other for mode 2.

Figure 21.
The complex probability vector Z in terms of t for mode 2.
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Figure 22.
Pipeline degradation (a) and RUL (b) under linear damage law for low-pressure mode of excitation (mode 3).

Figure 23.
Degradation and CPP parameters with Chf (a) and with MChf (b) for mode 3.

Figure 24.
Degradation, rescaled RUL, and CPP parameters with Chf (a) and with MChf (b) for mode 3.
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Figure 25.
DOK and Chf in terms of t and of each other for mode 3.

Figure 26.
Pr and Pm/i in terms of t and of each other for mode 3.

26

Fault Detection, Diagnosis and Prognosis



6. Final analysis: explanation and the general prognostic equations

We will present in this section the original general prognostic equations, we will
interpret all the achieved simulations and the obtained data, and we will do a final
analysis. Also, we will illustrate the results and a detailed discussion of the all the
previous simulations and figures and of the following corresponding tables.

Firstly, we have linked prognostic characterized by the degradation D(t) with
probability theory characterized by the CDF F(t) by supposing that D(t) = F(t) and
the justification for this assumption were given. Consequently, the deterministic D(t)
computed from deterministic analytic linear prognostic becomes a nondeterministic
cumulative probability distribution function. Therefore, the deterministic and dis-
crete variable of pressure cycles time t becomes a random and discrete variable. Thus,
the resultant of all the factors influencing the system which was deterministic
becomes a stochastic resultant because D(t) quantifies now the random degradation
of the pipeline in terms of the random cycle time t. Accordingly, all the parameters’
exact values of the D(t) expression (Eq. 6) become now the mean values of the
stochastic factors influencing the pipeline and are embodied by PDFs as functions of
the stochastic variable of pressure cycle time t (refer to Section 3.5). As a matter of
fact, this is the real-world case where randomness is omnipresent in one form or
another. What we consider and judge as a deterministic phenomenon is nothing
in reality but a simplification and an approximation of an actual chaotic and
stochastic phenomenon and experiment due to the impact of a huge number of
nondeterministic and deterministic forces and factors (a good example is a lottery
machine).

Subsequently, we do an updated follow-up of the performance of the random
degradation in terms of time or cycle number, which is subject to non-chaotic and

Figure 27.
The complex probability vector Z in terms of t for mode 3.
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chaotic influences, by using the quantity Pr tkð Þ=ψ j due to its definition that evalu-

ates the jumps in the stochastic degradation CDF D(t). Hence,

Pr tkð Þ ¼ ψ j � D tkð Þ �D tk�1ð Þ½ �, for any pressure mode j ¼ 1, 2, 3:

Referring to classical probability theory, this makes Pr tkð Þ=ψ j the system proba-

bility of failure at t = tk, with 0≤Pr tkð Þ=ψ j ≤ 1 and
Pt¼tC

t¼t0
Pr tð Þ=ψ j = [sum of all the

jumps in D from t0 to tC] = DC = 1, just like any probability density function (PDF).
In addition, in the simulations, a constant and very small increments in t have

been taken which lead to very small increments in D and hence in Pr tkð Þ=ψ j. So, we

have multiplied those very small jumps in D by a simulation magnifying factor that
we called ψ j. Note that 1=ψ j is a normalizing constant that is used to reduce Pr tkð Þ
function to a probability density function with a total probability equal to one. 1=ψ j

is a function of the pressure mode and conditions, and it depends on the parameters
in the degradation (Eq. (6)). We have from the simulations ψ1 ¼ 5082 for the high-
pressure mode (j = 1, mode 1), ψ2 ¼ 6737 for the middle-pressure mode (j = 2,
mode 2), and ψ3 ¼ 9151 for the low-pressure mode (j = 3, mode 3). So we get the
following: if t tends to t0 = 0, then Pr tkð Þ tends to 0, and if t tends to tC then Pr tkð Þ
tends to 1, so 0≤Pr tkð Þ≤ 1 and

Pt¼tC
t¼t0

Pr tð Þ ¼ ψ j �DC ¼ ψ j � 1 ¼ ψ j as if Pr tkð Þ was a

CDF although mathematically speaking it is not at all. This, since Pr tkð Þ is not
cumulative, it is just ψ j times the probability of failure at t = tk. Hence, in the

simulations, Pr tkð Þ becomes now the probability that the system failure occurs at
t = tk and is used accordingly to compute all the CPP parameters.

Therefore, D tkð Þ ¼ F tkð Þ ¼ Prob 0≤ t≤ tkð Þ = Prob(t = 0 or t = 1 or t = 2 or … or
t = tk) = sum of all failure probabilities between 0 and tk = probability that failure
will occur somewhere between 0 and tk. So, if tk = 0 then Prob t≤0ð Þ ¼ D 0ð Þ ¼ D0

= probability that failure will occur at t = 0 and before. If tk = tC then

Prob 0≤ t≤ tCð Þ ¼ D tCð Þ ¼ 1 = sum of all failure probabilities between 0 and
tC = probability that failure will occur somewhere between 0 and tC. If tk > tC then
Prob t> tCð Þ ¼ D tCð Þ ¼ 1 = probability that failure will occur beyond tC. We can see
that failure probability increases with the increase of the pressure cycles time tk
until at the end it becomes 1 when tk ≥ tC.

Hence, if t0 ¼ 0 and D t0ð Þ ¼ 0 then

D tkð Þ ¼ Prob 0≤ t≤ tkð Þ ¼
X

t¼tk

t¼0

Prob tð Þ ¼
X

t¼tk

t¼0

Pr tð Þ=ψ j

This implies that D tCð Þ ¼ Prob 0≤ t≤ tCð Þ ¼
P

t¼tC

t¼0
Prob tð Þ ¼

P

t¼tC

t¼0
Pr tð Þ=ψ j ¼ 1 and

D 0ð Þ ¼ Prob t≤0ð Þ ¼
X

t¼0

t¼0

Prob tð Þ ¼
X

t¼0

t¼0

Pr tð Þ=ψ j ¼ Pr 0ð Þ=ψ j ¼ 0:

If t0 6¼ 0 and D t0ð Þ 6¼ 0, then the prognostic equation in the new model is

D tkð Þ ¼ Prob t0 ≤ t≤ tkð Þ ¼
X

t¼tk

t¼t0

Prob tð Þ ¼
X

t¼tk

t¼t0

Pr tð Þ=ψ j (25)

for any mode j of pressure profile and with Pr t0ð Þ=ψ j ¼ D0.
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Moreover, since Pr tkð Þ ¼ ψ j D tkð Þ �D tk�1ð Þ½ �, this leads to the following recursive

relation:

D tkð Þ ¼ D tk�1ð Þ þ Pr tkð Þ=ψ j; for every tk, t0 ≤ tk ≤ tC: (26)

In the case of general prognostic, if we possess the PDF of system failure then it
can be included in Eqs. (25) and (26) and hence evaluate at any instant tk the system
degradation and vice versa. Consequently, all the other CPP model parameters
(DOK, Chf,MChf, Pr, Pm, Pm/i, Z, Pc) will follow. This would be our new prognostic
model general equation:

D tkð Þ ¼ Prob t0 ≤ t≤ tkð Þ ¼
X

t¼tk

t¼t0

Prob tð Þ ¼
X

t¼tk

t¼t0

PDFfailure tð Þ (27)

And the recursive relation

D tkð Þ ¼ D tk�1ð Þ þ PDFfailure tkð Þ (28)

with PDFfailure t0ð Þ ¼ D0.

It is crucial to indicate here that the PDFfailure function of the system failure has
all the mathematical characteristics and all the possible features of a probability
density function whether it is a continuous or a discrete stochastic function and it
can follow any imaginable probability distribution in condition only that it charac-
terizes the failure function and the random degradation of the studied system
whether it is a petrochemical pipe in the buried, unburied, or offshore case or a
vehicle suspension system or any nondeterministic system under the effect of
randomness and chaos. In fact, the function PDFfailure inherits all the attributes and
features of the failure system function and of the nondeterministic degradation.

Furthermore, by applying CPP to the pipe prognostic, and in the three simula-
tions of pressure modes, we were successful in the original prognostic model to
quantify in R (our real laboratory) both our chaos embodied by Chf and MChf and
our certain knowledge embodied by DOK. These three parameters of CPP are
evaluated and caused by the resultant of all the nonrandom (deterministic) and
random (nondeterministic) aspects influencing the system of pipeline. Knowing
that, in the novel paradigm, the factors’ resultant effect on RUL and D is material-
ized by the jumps in their curves and is accordingly expressed and concretized inR

by Pr and in M by Pm. As it was defined in CPP, M is an imaginary probability
extension of the real probability setR, and the complex probability set C is the sum
of both probability sets; thus, C ¼ RþM. Because Pm = i(1 – Pr), therefore it is the
complementary probability of Pr in M. Hence, if Pr is identified as the failure
probability of the system in R at the pressure cycle time t = tk, then Pm is identified
as the corresponding probability in the set M that the system failure will not occur
at the same pressure time t = tk. So, Pm is the associated probability in the set M of
the system survival at t = tk. It follows that Pm/i = 1 – Pr is the associated probability
but in the set R of the system survival at the same pressure cycles time. Accord-
ingly, we know that the sum in R of both complementary probabilities is surely 1
from classical probability theory. This sum is nothing but PC which is equal to
Pr + Pm/i = Pr + (1 – Pr) = 1 always. The sum in C of both complementary
probabilities is the complex random number and vector Z which is equal to
Pr + Pm = Pr + i(1 – Pr). And as the complex probability cubes show and illustrate, we
realize that Z is the sum in C of the real probability of failure and of the imaginary
probability of survival in the complex probability plane that has the equation
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Pr(t) = iPm(t) + 1 for ∀t : 0≤ t≤ tC, ∀Pr : 0≤Pr ≤ 1, and ∀Pm : 0≤Pm ≤ i. What is

interesting is that the square of the norm of Z which is Zj j2 is nothing but DOK, as it
was proved inCPP and in the newmodel. Moreover, sinceMChf =�2iPrPm = 2PrPm/i,
therefore it is twice the product inR of both the probability of failure and the
probability of survival, and it quantifies the magnitude of chaos since it is always 0 or
positive. All the simulations show and prove all these facts.

We can conclude from all the above that since D(t) is a CDF, since the factor
resultant is random, and since the jumps in D are the simulations failure probabil-
ities Pr tkð Þ, then we are dealing with a random experiment, thus the natural
appearance of Chf, MChf, DOK, Z, and hence Pc. So, we get in the simulations:

Chf tkð Þ ¼ �2Pr tkð ÞPm tkð Þ=i ¼ �2 ψ j D tkð Þ �D tk�1ð Þ½ �
n o

1� ψ j D tkð Þ �D tk�1ð Þ½ �
n o

:

(29)

MChf tkð Þ ¼ Chf tkð Þj j ¼ 2 ψ j D tkð Þ �D tk�1ð Þ½ �
n o

1� ψ j D tkð Þ �D tk�1ð Þ½ �
n o

: (30)

DOK tkð Þ ¼ 1� 2Pr tkð ÞPm tkð Þ=i
¼ 1� 2 ψ j D tkð Þ �D tk�1ð Þ½ �

n o

1� ψ j D tkð Þ �D tk�1ð Þ½ �
n o

: (31)

Z tkð Þ ¼ Pr tkð Þ þ Pm tkð Þ ¼ ψ j D tkð Þ �D tk�1ð Þ½ � þ i 1� ψ j D tkð Þ �D tk�1ð Þ½ �
n o

: (32)

Pc2 tkð Þ ¼ DOK tkð Þ � Chf tkð Þ ¼ DOK tkð Þ þMChf tkð Þ ¼ 1; for every tk, 0≤ tk ≤ tC:

(33)

Furthermore, in the new model, we have

RUL tkð Þ ¼ tC � tk:

Note that since t and D are random, then RUL is also a random function of t.
Thus, we have in the set R:

Prob RUL tkð Þ½ � ¼ Prob the system will survive for tk < t≤ tCð Þ
¼ 1–Prob the system will fail for t≤ tkð Þ
¼ 1–D tkð Þ
¼ Rescaled RUL tkð Þ½ � in all the three pressure modes simulations

(34)

Then, we get always Prob RUL tkð Þ½ � þD tkð Þ ¼ 1 everywhere.
This implies that Prob RUL tk ¼ 0ð Þ½ � ¼ 1�D tk ¼ 0ð Þ ¼ 1�D0 ≈ 1.
and Prob RUL tk ¼ tCð Þ½ � ¼ 1�D tk ¼ tCð Þ ¼ 1�DC ¼ 1� 1 ¼ 0.
Hence, we reach a new and general prognostic equation for RUL. If t0 6¼ 0 and

D t0ð Þ 6¼ 0 then

Prob RUL tkð Þ½ � ¼ Prob Survival : tk < t≤ tCð Þ ¼ 1� Prob Failure : t0 ≤ t≤ tkð Þ

¼ 1�
X

t¼tk

t¼t0

Pr tð Þ=ψ j; with Pr t0ð Þ=ψ j ¼ D0
(35)

¼ 1�D tkð Þ ¼
X

t¼tC

t¼tkþ1

Pr tð Þ=ψ j

¼ 1�
X

t¼tk

t¼t0

PDFfailure tð Þ; with PDFfailure t0ð Þ ¼ D0

(36)
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¼
X

t¼tC

t¼tkþ1

PDFfailure tð Þ (37)

for any mode j of pressure profile.
Moreover, from Eqs. (25), (26), (27), and (28) and for any mode j of pressure

profile, we have the following recursive relations:

Prob RUL tkð Þ½ � ¼ 1�D tkð Þ ¼ 1� D tk�1ð Þ þ Pr tkð Þ=ψ j

n o

(38)

¼ 1� D tk�1ð Þ þ PDFfailure tkð Þ
� �

(39)

¼ 1� 1� Prob RUL tk�1ð Þ½ � þ Pr tkð Þ=ψ j

n o

(40)

¼ Prob RUL tk�1ð Þ½ � � Pr tkð Þ=ψ j (41)

¼ Prob RUL tk�1ð Þ½ � � PDFfailure tkð Þ (42)

where Prob RUL tk�1ð Þ½ � ¼ 1�D tk�1ð Þ.
In the ideal case, if all the factors are 100% deterministic, then we have inR the

probability of failure for tk < tC is 0 and is 1 for tk ≥ tC; accordingly the probability of
system survival for tk < tC is 1 and is 0 for tk ≥ tC, since certain failure will occur only
at tk ¼ tC. So, degradation is determined surely everywhere in R, and its CDF is
replaced by a deterministic function and curve. Therefore, chaos is null, and hence
Chf = MChf = 0, and DOK = 1 always for all 0≤ tk ≤ tC. Thus, Prob RUL tk < tCð Þ½ � ¼ 1
and Prob RUL tk ≥ tCð Þ½ � ¼ 0.

Furthermore, at each instant t in the original prognostic paradigm, the stochastic
RUL(t) and D(t) are predicted with certitude in the complex probability set C with
Pc2 = DOK – Chf = DOK + MChf maintained as equal to 1 through a continuous
compensation between Chf and DOK. This compensation is from the instant t = 0
where D(t) = D0 = 0.020408 ≈ 0 until the instant of failure tC where D(tC) = 1.
Moreover, we can realize thatDOK does not include any uncertain knowledge (with
a probability less than 100%); it is the measure of our certain knowledge (proba-
bility = 100%) about the expected event. We can understand that we have elimi-
nated and subtracted in the equation above all the random factors and chaos (Chf)
from our random experiment when computing Pc2; hence no chaos exists in C, and
it only exists (if it does) in R; consequently, this has led to a 100% deterministic
outcome and experiment in C since the probability Pc is constantly equal to 1.
This is one of the advantages of extending R to M and therefore of working in

Table 2.
The new prognostic model parameters for any pipeline internal pressure mode.
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C ¼ RþM. Thus, in the original prognostic paradigm, our knowledge of all the
indicators and parameters (RUL, Prob, D, etc.) is totally predictable, always perfect,
and constantly complete because Pc = 1 permanently, independently of any random
factors or any pressure profile (Table 2).

Finally, we say that we have applied for pressure modes 2 and 3 the same
analysis, logic, and methodology that we have used for pressure mode 1 regarding
the remaining useful lifetime, the degradation, as well as all the CPP parameters
(Tables 3 and 4). Therefore, we can accordingly infer that whatever the pressure
conditions and environment are, then the results and conclusions are analogous.
This demonstrates the strength and soundness of the novel axioms adopted and of
the new prognostic paradigm developed.

7. Conclusion and perspectives

The high availability of technological systems, like defense, aerospace, automo-
bile industries, and petrochemistry, is a central major objective of previous and
latest developments in the technology of system design where it is very well-known

Table 3.
The new prognostic model and the relative pipeline pressure mode comparisons for 0<P r < 0:5.

Table 4.
The new prognostic model and the relative pipeline pressure mode comparisons for 0:5<P r < 1.
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that expensive failure may in general happen unexpectedly. A novel model of
analytic prognostic was established in my earlier work and publications as a coun-
terpart of existent classical strategies of maintenance in order to take into account
the evolving environment and product state and in order to make them more
efficient. We have applied this model to systems of petrochemical pipes that are
exposed to fatigue failure under cyclic repetitive triangular pressure. It is known
that the effects of fatigue will initiate micro-cracks that can spread rapidly and
hence will lead to failure. This model is founded on existing laws of damage in
fracture mechanics which are the law of Palmgren-Miner of linear damage accu-
mulation and the law of Paris-Erdogan of crack propagation. This prognostic model
estimates the system RUL from a predefined threshold of degradation DC. The
model of degradation established in this earlier work is founded on the damage
measurement D accumulation after each cycle time of pressure. The system is
judged to be in wear-out state when this measured and predefined threshold DC is
reached. Moreover, to make the model more realistic and accurate, we have taken
into consideration the stochastic influences afterward as well here. We have applied
this model to the industry of pipelines; therefore, a prognostic study of the pipeline
system enables us to enhance its strategies of maintenance.

In the present research work, the novel extended Kolmogorov paradigm of eight
axioms (EKA) was applied and bonded to the analytic and linear prognostic of
buried petrochemical pipeline systems subject to fatigue. Hence, a tight link
between the remaining useful lifetime or degradation and the original paradigm was
made. Therefore, the model of “complex probability” was more elaborated beyond
the scope of my previous 12 research works on this subject.

Although the analytic linear laws of prognostic are very well-known and deter-
ministic in [14, 16], there are general influences and aspects that can be chaotic and
stochastic (like humidity, temperature, material nature, geometry dimensions,
applied load location, water action, corrosion, soil pressure and friction, atmo-
spheric pressure, etc.). Moreover, various variables in the expressions (5) and (6) of
degradation which are considered as deterministic can also have a random aspect,
such as the magnitude of applied pressure (due to the different conditions of
pressure profile) and the length of the initial crack (potentially existing from the
process of manufacturing). All those stochastic factors, embodied in the model by
their mean values, influence the buried pipeline system and make its function of
degradation diverge from its computed trajectory modeled by these deterministic
laws. An updated follow-up of the degradation performance and behavior with
cycle number or time, which is subject to non-chaotic and chaotic influences, is
made possible by Pr tkð Þ=ψ j due to its definition that evaluates the jumps in D. In

fact, chaos modifies and affects all the environment and system parameters
included in the degradation equations (Eqs. (5) and (6)). Consequently, chaos total
effect on the pipelines contributes to shape the degradation curve D and is materi-
alized by and counted in the pipeline system failure probability Pr tkð Þ=ψ j. Actually,

Pr tkð Þ=ψ j quantifies the resultant of all the nonrandom (deterministic) and random

(nondeterministic) parameters and aspects which are contained in the equation of
D, which affect the system and which lead to the consequent final curve of degra-
dation. Consequently, an accentuated influence of chaos on the pipeline can lead to
a smaller (or bigger) jump in the trajectory of degradation and therefore to a smaller
(or bigger) failure probability Pr tkð Þ=ψ j.

Additionally, as it was verified and shown in the novel model, when the degra-
dation index is 0 or 1 and correspondingly the RUL is tC or 0, then the chaotic factor
(Chf and MChf) is zero, and the degree of our knowledge (DOK) is 1 since the
system state is totally known. During the process of degradation (0 < D < 1), we
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have �0.5 ≤ Chf < 0, 0 < MChf ≤ 0.5, and 0.5 ≤ DOK < 1. Notice that during
this whole process, we have always Pc2 = DOK – Chf = DOK + MChf = 1 = Pc,
which means that the phenomenon which looked to be stochastic and random in the
set R is now certain and deterministic in the set C ¼ RþM, and this after the
addition of the contributions of M to the phenomenon occurring in R and thus
after subtracting and eliminating the chaotic factor from the degree of our knowl-
edge. Moreover, the probabilities of the system survival and of failure
corresponding to each instant t have been evaluated, in addition to the probability
of RUL after a pressure cycles time t, which are all functions of the stochastic
degradation jump. Consequently, at each instance of t, all the novel CPP parameters
D, RUL, Pr, Pm, Pm=i, DOK, Chf, MChf, Pc, and Z are certainly and perfectly
predicted in the complex probability set C with Pc maintained as equal to 1 con-
stantly and permanently. Furthermore, using all these illustrated simulations and
drawn graphs all over the whole research work, we can quantify and visualize both
the certain knowledge (expressed by DOK and Pc) and the system chaos and
random effects (expressed by Chf and MChf) of the pipeline system. This is defi-
nitely very fascinating, fruitful, and wonderful and proves once again the advan-
tages of extending the five probability axioms of Kolmogorov and thus the novelty
and benefits of this original field in prognostic and applied mathematics that can be
called verily “The Complex Probability Paradigm.”

As a prospective and future work and challenges, and concerning some applica-
tions to practical engineering, it is planned to more elaborate the original created
prognostic paradigm and to implement it to a varied set of nondeterministic and
dynamic systems like vehicle suspension systems and offshore and buried petro-
chemical pipes which are under the influence of fatigue and in the cases of
nonlinear and linear damage accumulation. Furthermore, we will apply also CPP to
other random experiments in classical probability theory and in stochastic processes
and to the field of prognostic in engineering using the first order reliability method
(FORM) as well as to the random walk problems which have enormous applications
in physics, in economics, in chemistry, in applied and pure mathematics.
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Nomenclature

R The set of real probabilities of events
M The set of imaginary probabilities of events
C The set of complex probabilities of events
i The imaginary number where i2 ¼ �1 and i ¼

ffiffiffiffiffiffi

�1
p

EKA extended Kolmogorov axioms
CPP Complex probability paradigm
Prob any event probability
Pr system failure probability, probability in the real set R
Pm system survival probability inM, probability in the imaginary set

M corresponding to the real probability in R

Pm/i system survival probability in R

Pc probability in the complex set C, probability of an event inRwith
its associated event in M
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Z the sum of Pr and Pm, complex probability number and vector
DOK = |Z|2, the square of the norm of Z, degree of our knowledge of the

random event and experiment
Chf chaotic factor
MChf magnitude of the chaotic factor
t pressure cycle time
tC pressure cycle time till system failure
Pj pipelines internal triangular pressure
fj(t) probability density function for each pressure mode j
F(t) cumulative probability distribution function
ψ j simulation magnifying factors for each pressure mode j

1=ψ j the normalizing constant of Pr(t) for each pressure mode j

D degradation indicator of a system
RUL remaining useful lifetime of a system
Prob[RUL(t)] probability of RUL after a pressure cycle time t.
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