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Chapter

Bio-Solvents: Synthesis, Industrial 
Production and Applications
Novisi K. Oklu, Leah C. Matsinha 

and Banothile C.E. Makhubela

Abstract

Solvents are at the heart of many research and industrial chemical processes 
and consumer product formulations, yet an overwhelming number are derived 
from fossils. This is despite societal and legislative push that more products be 
produced from carbon-neutral resources, so as to reduce our carbon footprint and 
environmental impact. Biomass is a promising renewable alternative resource for 
producing bio-solvents, and this review focuses on their extraction and synthesis 
on a laboratory and large scale. Starch, lignocellulose, plant oils, animal fats and 
proteins have been combined with creative synthetic pathways, novel technolo-
gies and processes to afford known or new bio-derived solvents including acids, 
alkanes, aromatics, ionic liquids (ILs), furans, esters, ethers, liquid polymers and 
deep eutectic solvents (DESs)—all with unique physiochemical properties that 
warrant their use as solvation agents in manufacturing, pharmaceutical, cosmet-
ics, chemicals, energy, food and beverage industries, etc. Selected bio-solvents, 
conversion technologies and processes operating at commercial and demonstration 
scale including (1) Solvay’s Augeo™ SL 191 renewable solvent, (2) Circa Group’s 
Furacell™ technology and process for making levoglucosenone (LGO) to produce 
dihydrolevoglucosenone (marketed as Cyrene™), (3) Sappi’s Xylex® technology 
and demonstration scale processes that aim to manufacture precursors for bio-
solvents and (4) Anellotech’s Bio-TCat™ technology and process for producing 
benzene, toluene and xylenes (BTX) are highlighted.

Keywords: bio-solvents, renewable resources, green chemistry, biorefinery, biomass

1. Introduction

Air quality deterioration, environmental, health and safety issues have raised 
serious concerns over continued processing of fossil-based feedstocks in producing 
chemical products such as fuels and solvents. As such, many efforts are being made 
to reduce the use of hazardous substances (particularly volatile organic solvents 
(VOCs)) and to eliminate or minimize waste generation in chemical processes. 
Switching from the currently widely used fossil-based solvents to greener ones 
derived from renewable resources constitutes a key strategy to drive sustainability 
as well as clean and safer chemical procedures in both industry and academia [1, 2].

Solvents are central to many chemical processes as they dissolve reagents and 
ensure sufficient interactions, at a molecular level, for chemical transformations to 
take place. For instance, the pharmaceutical industry is heavily reliant on solvents for 
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drug discovery, process development and drug manufacturing processes [3]. They 
are also used to extract and separate compounds from mixtures or natural products. 
Solvents are also important for performing compound purifications and form part of 
many manufacturing protocols as well as consumer products including fragrances, 
cleaning agents, cosmetics, paints, flavors, adhesives and inks, to name a few [1].

Many organic solvents are volatile, flammable and toxic; therefore, their use 
poses safety and health risks and impacts negatively on the environment. In order to 
address these issues, ‘solvent-free’ chemistry has been proposed, to mitigate against 
solvent exposure risks, and for chemical manipulations and formulations that abso-
lutely require solvents, a system of ranking them by their environmental, safety and 
health (ESH) attributes has been introduced. This system aims to aid in selecting 
and using those solvents with minimum ESH risks and good green profiles [4–6].

Making use of renewable resources in producing solvents is a promising and 
important strategy to move towards sustainable chemical processing and to replace 
organic solvents derived from fossil raw materials. To this end, bio-based feedstocks 
such as carbohydrates, carbohydrate polymers, proteins, alkaloids, plant oils and 
animal fats have been used to produce bio-based solvents (Figure 1). This often 
requires prior processing of the raw materials (typical by thermochemical and 
biochemical conversion methods) to give familiar solvents or to provide completely 
new and innovative solvent entries [7, 8]. There are some, such as essential oils 
extracted from citrus peels (which are rich in terpenes), that are used directly.

The main processing methods include biochemical and thermochemical conver-
sion [7]. Using one or a combination of these processing techniques, several classes 
of bio-based solvents (including alcohols [9–11], esters [12, 13], ethers [14], alkanes 
[15], aromatics [16] and neoterics [17, 18]) can be manufactured (Figure 1).

2. Alcohols

2.1 Methanol, ethanol, propanol and butanol

Bio-based ethanol is currently the most produced of all bio-solvents and is 
produced through biological transformation of sugars. These processes use either 
edible (sugarcane and corn) or nonedible (cellulose) feedstocks [19]. However, due 

Figure 1. 
The various sustainable solvents derived from biomass.
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to concerns over edible feedstock causing the rise of food prices, there has been a 
move towards optimizing processes that produce cellulosic ethanol [20, 21], and 
indeed the world’s first cellulosic ethanol commercial-scale production plant was 
commissioned in 2013 by Beta Renewable. This plant is situated in Milan, Italy, and 
uses Proesa™ technology for the pretreatment of agricultural waste (such as rice 
straw, giant cane (Arundo donax) and wheat straw) for production of ethanol at 
60,000 tons/year [9].

Ethanol’s most common uses are as a biofuel and solvent in consumer products 
such as perfumes, food coloring and flavoring, alcoholic drinks and in certain 
mediation. The latter can be in both synthetic medicines and natural products. 
For example, highly efficient ethanol-assisted extraction of artemisinin, an active 
antimalarial drug, from Artemisia annua, has been demonstrated [22].

The presence of the hydroxyl group in ethanol makes it capable of hydrogen 
bonding, and it is therefore miscible with water and other solvents such as toluene, 
pentane and acetone.

Large-scale production of methanol is currently achieved using fossil-derived 
sources, by hydrogenation of carbon monoxide in the presence of a catalyst such as 
ZnO/Cr2O3 and Cu/ZnO/Al2O3 [23]. It can be obtained in small amounts in fermen-
tation broths and from the gasification of biomass to produce bio-based syngas for 
subsequent conversion to methanol. The commercial viability of the latter is still 
under investigation [24].

Due to the structural similarity of methanol to ethanol, the former is often used 
in place of ethanol in synthetic procedures. However, its toxicity has limited its wide-
spread application as a solvent in consumer products. Still, other useful applications 
where methanol features not only as a solvent but as a reagent and fuel do exist. For 
instance, methanol is used in methanol fuel cells and is a key reagent in the manufac-
ture of fatty acid methyl esters (FAMEs) (biodiesel) through transesterification of 
triglycerides and in dimethyl ether (DME) (diesel substitute) production [24]. It is 
also used in acid-catalyzed formation of methyl levulinate from bio-derived furfural 
alcohol (FA) and 2,5-hydroxymethylfurfural (HMF) [25].

Thermochemical synthesis of alcohols such as methanol, ethanol and propanol 
(1-propanol and 2-propanol) from glycerol raw materials (Figure 2) is also known. 
This process is often promoted by a catalyst through a hydrogenolysis reaction [26–28].

n-Butanol production was first commercialized in the early 1900s, in the 
Weizmann process (ABE fermentation). Here, n-butanol, acetone and minute 
amounts of ethanol are produced from starch feedstock using Clostridium acetobu-
tylicum [10, 29]. Later, fossil-based production of n-butanol became more cost-
effective which led to abandonment of the Weizmann process. Today there are some 
ABE fermentation production units; however, most n-butanol is produced mainly 
from petroleum by either (1) the oxo synthesis which involves hydroformylation of 
propene and then hydrogenation of the afforded butraldehyde, in the presence of a 
rhodium or cobalt homogeneous catalysts, (2) the Reppe synthesis (which involves 
the treatment of propene with CO and H2O) in the presence of a catalyst such as 
iron or (3) a multistep, catalytic hydrogen borrowing, cascade process involving 
self-aldol condensation of acetaldehyde, dehydration and then hydrogenation of the 
resultant croton aldehyde [30].

n-Butanol has a low order of toxicity and has an energy density of 29.2 MJ/L, 
which is comparable to that of gasoline (32.5 MJ/L). It is also miscible with gasoline, 
and so it is not surprising that this alcohol is sometimes blended with gasoline to 
improve its properties. n-Butanol is also used as a solvent for coatings (varnishes, 
resins and waxes), paints and cosmetics and is an intermediate for making solvents 
(e.g. butyl propanoate, dibutyl ether and butyl acetate), polymer monomers  
(e.g. butyl acrylate and butyl vinyl ether) and plasticizers (e.g. butyl phthalates) [31].
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2.2 Furfuryl alcohol

The production of furfuryl alcohol involves two stages: (1) the pentosan is first 
hydrolysed to pentoses, e.g. xylose, and (2) cyclohydration of the pentoses into fur-
furyl alcohol. The reaction is catalysed by acids such as dilute sulfuric or phosphoric 
acid, and the furfuryl alcohol is recovered by steam distillation and fractionation. 
Yields are generally between 30 and 50% [32].

Furfuryl alcohol is a solvent used in the refining of lubricating oils [33]. During 
the production of butadiene, an extractive distillation step is required to remove 
impurities [34]. Furfuryl alcohol is one of the extractive solvents that have been 
used for this purpose on a commercial scale, for example, at TransFuran Chemicals, 
USA. Furfuryl alcohol is also used as a solvent during crystallization of anthracene 
oils and during the modification of high phenolic molding resins to improve the 
corrosion resistance of the cured resin [35].

2.3 Glycerol and its derivatives

Global biodiesel production has increased from 0.78 billion (in 2000) to 32.6  
billion liters by 2016 [36]. This has made large quantities of glycerol widely available, 
since biodiesel production generates 10,000 liters of glycerol for every 100,000  

Figure 2. 
Bio-based solvents derived from glycerol.
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liters of fuel produced. This oversupply of glycerol, and its low toxicity, has driven 
many efforts to increase the portfolio of glycerol applications both directly and 
indirectly (by using it as a raw material to access value-added products). Because 
of its sweet taste, it can be used directly as a sweetener in processed foods. It is also 
used as a thickener and stabilizer for foods containing water and oil. Glycerol func-
tions well as a solvent for processing cosmetics (this is where most glycerol is used) 
and forms part of pharmaceutical formulations to name a few [37].

More recently, glycerol has been used as a sustainable replacement for fossil-
derived monoethylene glycol in purification of bioethanol by extractive distillation. 
Using glycerol, up to 99% purity of bioethanol is recovered [38]. Although its high 
viscosity and boiling point complicate reaction workups, several examples of suc-
cessful Aza-Michael addition and Suzuki-Miyaura and Mizoroki-Heck reactions in 
glycerol have been reported [38, 39].

The conversion of glycerol leads to a variety of other products with solvent 
properties such as solketal, glycerol formal, glycerol carbonate, glycerol oligomers 
and polymers, deep eutectic solvents (DESs) as well as diols (Figure 1) [37, 40].

Solketal and glycerol formal are the products of acid-catalyzed acetone and 
formaldehyde reactions with glycerol, respectively [41], and currently solketal is 
sold commercially under the name Augeo™ SL 191. It is used as a solvent in interior-
scenting products and household cleaners [42]. Another route to solketal is by 
metal-catalyzed condensation of glycidol with acetone [43].

Solketal is polar and has a very high boiling point (188°C), which makes it useful 
as a coalescent solvent in paints and inks and in controlled release systems (where 
gradual release of species like pesticides and drugs is required). It is a good heat 
transfer fluid and fuel additive, especially in gasoline and biodiesel where it favor-
ably reduces the latter’s viscosity [41]. Its high sensitivity to acid has limited its use 
as a solvent for reactions.

2.3.1 Glycerol oligomers and polymers

The main route for preparing di-, tri-, tetra- and polyglycerol is by direct 
oligomerization or polymerization of glycerol using acid or base catalysts, such as 
potassium carbonate or sulfuric acid. The base catalyst is usually more efficient 
due to its better solubility in glycerol, albeit with poor selectivity [44]. Glycerol 
oligomers and polymers have hydrophilic heads which makes them useful for 
surfactant applications. By careful control of their length and branching during 
syntheses, desirable physiochemical properties can be built into them such that they 
can be used as lubricants, polymers and solvents. They have also been earmarked 
as replacement solvents for fossil-derived glycol ethers in paints, inks and cleaning 
agents [45].

2.3.2 Diols

In addition to methanol, ethanol and propanol [46], the hydrogenolysis of 
glycerol can lead to formation of ethylene glycol (EG) and propylene glycol  
(PG, 1,2-propanediol and 1,3-propanediol) (Figure 1) [47]. It is worth mention-
ing that diols can also be obtained from thermochemical conversion of fructose 
in the presence of homogeneous osmium and ruthenium catalysts [48] and from 
cellulose using a nickel-tungsten carbide catalyst [49]. Recently, Sappi Ltd. 
acquired Plaxica’s Xylex® technology which they plan to utilize in valorizing the 
hemicellulose component of their pulp processing waste, in producing, furfural 
and xylitol [50]. Changchun Dacheng Industrial Group operates a commercial 
integrated biological and thermochemical process that manufactures EG, PG 
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and 2,3-butanediol (2,3-BDO) from starch. Ten thousand tons of 2,3-BDO are 
produced annually [51].

Diols serve as dehumidifying and antifreeze agents. They have important appli-
cations as monomers (in polyester production) and work as solvents in the cosmetic 
and coating (varnishes and waxes) industries [46, 49].

3. Esters

3.1 Acyclic esters

Lactates are a class of non-toxic and green solvents obtained from treating 
lactic acid with various alcohols, such as ethanol, propanol and butanol. Lactic acid 
feedstock for making these solvents can be obtained via biochemical and thermo-
chemical routes. The latter is economical but uses toxic hydrogen cyanide and gives 
a racemic mixture of lactic acid, while the biological process uses microbial fermen-
tation technology and is more selective.

Ethyl lactate is the most common of the lactate esters, and Archer Daniels Midland 
Company, USA, operates a commercial production plant. Ethyl lactate has excellent 
physical properties, including a low vapor pressure and high boiling point (151–155°C) 
and solvent power (Kauri-butanol value > 1000). This makes it a good replacement for 
halogenated solvents, acetone and toluene and an excellent solvent for solubilizing res-
ins and polymers. As such, it is used to dissolve plastics and to remove salts from circuit 
boards. Ethyl lactate also dissolves grease, inks and solder paste and strips paint [52].

Fatty acid methyl esters are produced by the transesterification of triglycer-
ides, from vegetable oils or animal fats, with methanol for biodiesel applications. 
However, FAMEs can also be used as bio-based solvents and have been found to pos-
sess high solvent power. When mixed with ethyl lactate, evaporation is aided post 
utilization in dissolution or in cleaning industrial parts [53].

3.2 Glycerol carbonate and γ-valerolactone

Glycerol carbonate can be synthesized via direct or indirect routes. With direct 
routes, carbon monoxide and oxygen [54] or carbon dioxide [55] is treated with 
glycerol in the presence of metal catalysts such as Pd and Sn, respectively. The use 
of CO2 is more desirable due to its abundance and lower toxicity in comparison 
to CO; however, this route is low yielding (7–35%). The indirect route involves 
carbonation of glycerol with an activated carbonation source such as urea, dimethyl 
carbonate or phosgene, and among these dimethyl carbonate is preferred from an 
industrial production perspective [56].

Due to its favorable properties which include high polarity, boiling point 
(110–115°C) and flash point (109°C) and low vapor pressure, glycerol carbonate has 
interesting applications as a polar protic solvent, electrolyte liquid carrier, detergent 
solvent, humectant and nail polish/gel stripper [57]. It has also been demonstrated 
to serve as a promising solvent in pretreatment of sugarcane bagasse [13].

γ-Valerolactone (GVL) can be produced from 5-hydroxymethylfurfural or furfural 
alcohol via their dehydration and hydrolysis, respectively [58]. The resultant levulinic 
acid can then be converted to GVL in the presence of hydrogen and a suitable catalyst 
[59, 60]. This therefore links the cost of GVL production to the production of hydro-
gen. This has resulted in the limited widespread production and use commercially. 
The increased number of hydrogen production plants by water electrolysis (or use of 
transfer hydrogenation techniques) should aid in improving the process and econom-
ics to favor GVL commercial-scale production in the near future.
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The physical and chemical properties of GVL favor its application as a solvent and 
illuminating fuel. It has a low melting point, high boiling and flash point and low toxicity 
and has a characteristic herbal smell that can be used to identify leaks or spills [61]. GVL 
has been used as a solvent in many biomass conversion reactions. For example, it was 
used as a solvent in the pretreatment of lignocellulose, hydrolysis of lignocellulose and 
dehydration of carbohydrates to furans [61, 62]. It has also been used as solvent in cross-
coupling reactions such as Sonogashira [63], Hiyama [64] and Mizoroki-Heck [65].

3.3 Cyrene™

Cyrene (dihydrolevoglucosenone or 6,8-dioxabicyclo[3.2.1]octanone) is a ketone 
functionality containing solvent that can be prepared in a two-step process from 
cellulose [66]. The common starting point in its synthesis is from levoglucosenone 
(LGO), which can be obtained from a variety of cellulosic starting feedstocks such 
as Bilberry presscake [67], corn cob [68], poplar wood [69] or bagasse [70]. LGO 
has been successfully obtained from cellulose [71–73], by the patented Furacell™ 
process discovered by Circa Group Ltd., Australia. The process gives 40% yield 
of LGO and has consequently been scaled up to a 50 ton/year production [74]. 
The next step after the production of LGO is its hydrogenation to afford Cyrene™ 
(Figure 3). The hydrogenation of levoglucosenone to Cyrene has been largely 
dominated by heterogeneous Pd catalysts [75, 76].

Concerns over the use of toxic solvents (such as dimethyl sulfoxide (DMSO), 
dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP)) in the industry 
have led to the exploration of Cyrene™ as a potential replacement. These dipolar 
aprotic solvents have very similar properties to those of Cyrene™ [77]. As a result, 
more examples of its use as solvent in syntheses are becoming popular. For example, 
metal organic frameworks that were previously prepared in DMF solvent have been 
successfully synthesized in Cyrene™ [78]. Cyrene™ has also been used in amide 
bond formation reactions [79].

3.4 Alkanes and aromatics

3.4.1 Alkanes

Furfural and hydroxymethylfuran can react with acetone (derived from fermen-
tative processes) resulting in aldol-condensed products with longer carbon chain 
lengths. Subsequent hydrodeoxygenation of the aldol condensation products using 
a supported Pd catalyst, H2 (plus acetic and/or Lewis acid cocatalysts), produces 
alkanes as shown in Figure 4 [80–83].

Alkanes are useful for reactions requiring nonpolar medium because they are 
generally unreactive. Consequently, they have been used as reaction medium during 

Figure 3. 
Synthetic steps of Cyrene™ from cellulose.
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the synthesis of drugs, pesticides and other chemicals. Their use as fuels varies 
depending on the length of the carbon chains. Generally C3 and C4 alkanes are used 
as liquefied petroleum gas for cooking and in cigarette lighters, respectively, while 
C5–C18 alkanes are used in gasoline, diesel and aviation fuel.

3.4.2 Benzene, toluene and xylenes

Benzene, toluene and xylene (BTX) can be derived from wood and agricultural 
waste [84]. Anellotech, a US-based company, has scaled up a process that converts 
biomass, using their Bio-TCat™ technology, into BTX mixtures. Benzene, toluene 
and xylene have identical properties as their fossil-derived counterparts [85]. 
Benzene is used in the manufacture of resins, rubber lubricants, synthetic fibers, 
detergents, pesticides, drugs and plastics. Toluene is used in printing and leather 
tanning processes and as a solvent in paint, a nail polish remover, thinners and 
glues, while xylene finds use as a cleaning agent, ingredient in pesticide manufac-
turing, disinfectants, paints, paint thinners, polishes, waxes and adhesives.

An elegant multistep route to renewable p-xylene was proposed. It begins 
with (1) the conversion of glucose to fructose, (2) followed by dehydration of the 
fructose to HMF, (3) hydrodeoxygenation of HMF to 2,5-dimethylfuran (2,5-DMF) 
and (4) subjecting the resultant 2,5-DMF to Diels-Alder cycloaddition with ethylene 
to afford the product [86].

3.4.3 Terpenes

Terpenes are a class of natural solvents obtained from essential oils found in 
plants. They have C5H8 isoprene units and can be acyclic, bicyclic or monocyclic; 
therefore, they have varying physical and chemical properties. Extraction using 
water hetero-azeotropic distillation at low temperatures affords terpenes, and they 
in turn have been utilized as green alternative solvents for the extraction of oils 
from microalgae [87].

D-Limonene is extracted from citrus peels and pulp by steam distillation and 
alkali treatment [88]. Industrially, limonene is used as a solvent in place of various 
halogenated hydrocarbons. By 2023, the demand of D-limonene is expected to be 
65 kilotons/year [88]. It is also used as solvent to degrease and grease wool and cot-
ton wool and in the dissolution of cholesterol stone, where its performance is better 
than chloroform and diethyl ether (DEE) in the latter. The catalytic isomerization 

Figure 4. 
Synthetic steps for straight-chain alkanes from bio-derived furan compounds.
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and dehydrogenation of D-limonene give p-cymene, an aromatic hydrocarbon with 
equally good solvent properties [89].

α-Pinene is the most widely available terpenoid and is mostly found in essential 
oils of coniferous trees, or it can be recovered from paper pulping by-products, i.e. 
from crude sulphate turpentine [90]. Alpha-pinene is used as a household cleaning 
solvent and repellent for insects and in the production of perfumes. It also have 
medicinal properties as an anti-inflammatory and antibiotic agent.

3.5 Ethers

Bio-derived ethers are produced by the dehydration of bio-alcohols, mainly 
ethanol and methanol to form diethyl ether and dimethyl ether, respectively. These 
ethers are usually used as fuel additives to improve its octane rating and reduce 
emissions (NOx and ozone) and engine wear.

2-Methyltetrahydrofuran (2-MeTHF) is a biodegradable, non-toxic, non-ozone-
depleting, easy-to-recycle ether solvent with a good preliminary toxicology report 
[91]. It is produced from either furfural or levulinic acid via catalytic processes. For 
instance, the successive hydrogenation of furfural over Ni-Cu, Fe-Cu, Cu-Zn or 
Cu-Cr produces 2-MeTHF as illustrated in Figure 5 [92, 93].

The first two hydrogenations have been reported to quantitatively convert fur-
fural alcohol to 2-methylfuran using Ni-based catalysts followed by 2-methylfuran 
conversion over a Cu-Zn catalyst. 2-MeTHF can also be prepared from levulinic acid 
via consecutive hydrogenation and dehydrogenation steps. Here, Ru-based catalysts 
are the most active.

Pfizer, USA, has reported the application of 2-MeTHF as a solvent in two-phase 
reactions due to the poor solubility of water in 2-MeTHF [94]. This bio-derived 
solvent has also been used in place of dichloromethane (that has unfavourable 
environmental effects) because of its low boiling point, which makes it difficult to 
contain on a large scale. Using 2-MeTHF, high yields of product were afforded for 
amidations, alkylations and nucleophilic aromatic substitutions reactions.

Another pharmaceutical company, Actelion Pharmaceuticals Ltd. in 
Switzerland, uses 2-MeTHF as solvent in the synthesis of 5-phenylbicyclo-[2.2.2]
oct-5-en-2-one [95], an intermediate during the preparation of an important pre-
clinical candidate. Furthermore, the reaction was successfully upscaled to kilogram 
scale, and the reaction still gave excellent yields (98%) in 2-MeTHF.

4. Ionic liquids

Ionic liquids (ILs), defined here as materials that are made up of cations and 
anions (salts) which melt at or below 100°C, evolved from the nineteenth century. 
This field started with a report by Paul Walden, in which he studied the physical 
properties of ethylammonium nitrate ([EtNH3][NO3]), a salt which melted at 
around 14°C [96]. Ionic liquids are commonly formed through the combination of 
an organic cation (usually heterocyclic), such as dialkylimidazolium, and either an 

Figure 5. 
The successive hydrogenation of furfural to 2-methyltetrahydrofuran.
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inorganic or organic anion (such as halides or methanesulfonate) [97]. The advan-
tage with ionic liquids is their low vapor pressure, meaning the risk of atmospheric 
contamination and related health issues are reduced by using these solvents. It is 
for this particular reason that they are viewed as green solvents [98]; however, low 
volatility alone is not the only property that makes ionic liquids green. For instance, 
toxic and non-biodegradable ionic liquids will not be referred to as a green solvent 
even though they have negligible volatility [97]. In this regard, ionic liquids com-
posed of bio-derived components have the added advantage and are outstanding 
candidates as sustainable and green solvents.

4.1 Sugar-based ionic liquids

Since the depolymerization of hard-to-dissolve carbohydrate polymers can 
be achieved using ILs, it would be beneficial to develop sugar-based ILs with the 
aim of employing these in a ‘closed-loop’ carbohydrate polymer depolymerization 
process [99]. Some sugar-based ionic liquids which have potential in this regard 
have already been synthesized, even though they have been used for various other 
processes. The glucose-linked 1,2,3-triazolium ionic liquids were synthesized by 
copper(I)-catalysed regioselective cycloaddition of a glucose azide to a glucose 
alkyne, followed by quaternization with methyl iodide (Figure 6) [100]. The ILs 
were used as reusable chiral solvents and ligands in copper(I)-catalysed amination 
of aryl halides with aqueous ammonia. The triazolium salt affords the compound 
in its liquid state at room temperature, and hence the compound can be used as a 
solvent, while the free hydroxyl groups of the glucose moiety aids in stabilizing the 
copper(I) species during the reaction.

Methyl-D-glucopyranoside has also been used to synthesize an ionic liquid with 
promising solvent potential [101]. The synthetic sequence involved uses thex-
yldimethylsilyl chloride (TDSCl) to protect the hydroxyl at the primary position. 
The other secondary hydroxyl groups were converted to methyl ethers followed 
by reduction of the anomeric position and further deprotection of the primary 
hydroxyl. After deprotection of the primary hydroxyl group, it was then converted 
to a triflate to form an intermediate. This triflate intermediate finally underwent a 
nucleophilic substitution reaction using diethyl sulphide to afford an ionic liquid, 
with a triflate anion and a sulfonium cation, which was a liquid at room tempera-
ture (Figure 6).

Handy et al. have used fructose to synthesize room temperature ionic liquids 
[102]. In their synthetic protocol, copper carbonate, ammonia and formaldehyde 
were used to ring-close fructose and form hydroxymethylene imidazole. This 
imidazole was then taken through a series of alkylation steps (with 1-bromobutane 
followed by iodomethane) to form an imidazolium cation. Anion metathesis was 
performed to give a series of room temperature ionic liquids (Figure 7), which were 
used as recyclable solvents for Mizoroki-Heck cross-coupling of aryl iodides with 
alkenes.

An arabinose-based imidazolium IL was synthesized in 2018 starting with 
2,3,5-tri-O-benzyl-D-arabinofuranose [103]. The pentofuranoside starting material 
was prepared by benzylating all the hydroxyl groups of D-arabinose, except the 
hydroxyl group on the carbon adjacent the ring oxygen atom. The free hydroxyl 
group was then reacted with propane-1,3-diyldioxyphosphoryl chloride in the 
presence of 1-methylimidazole to form a mixture of anomeric phosphates. This 
was then reacted with 1-methylimidazolium chloride and trimethylsilyl triflate, in 
catalytic amounts, to give a pure anomeric ionic liquid with a chloride anion. Anion 
metathesis reactions gave two additional ionic liquids (Figure 7), which were used 
as co-solvents in the synthesis of alcohols from aromatic aldehydes.
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4.2 Alkaloid-based ionic liquids

Ionic liquids which contain ampicillin as active pharmaceutical ingredients 
were developed by Ferraz et al., by neutralizing basic ammonia solutions 
of ampicillin with different organic cation hydroxides. These ampicillin-
based ILs may be useful in the development of bioactive materials [104]. 
A chiral IL derived from ephedrine was synthesized by Wasserscheid et al. 
N-methylephedrine was synthesized from ephedrine and alkylated with dimethyl 
sulphate followed by ion exchange to form the IL, with a melting point of 54°C 
[105]. Heckel et al. reported the synthesis of ionic liquids derived from nicotine 
by the quaternization of the pyridine ring of nicotine with methyl iodide and 
ethyl bromide. The resulting chiral nicotine-based ILs were examined as chiral 
solvating agents (Figure 8) [106].

4.3 Lipid-based ionic liquids

Linoleate and oleate were used in the syntheses of four ILs with melting 
points below −21°C (Figure 9). Unsaturated fatty acids were initially taken 
through neutralization reactions with NaOH followed by ion exchange with either 

Figure 6. 
Glucose-based ionic liquids [(A and B) glucose-tagged triazolium ILs; (C) glucopyranoside-based IL].

Figure 7. 
ILs based on pentoses [(A) fructose-based ILs; (B) arabinose-based ILs].
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tetraoctylammonium or methyltrioctylammonium chloride. The ILs were then suc-
cessfully used as solvents in the extraction of metal ions from aqueous solutions [107].

Kwan et al. also synthesized ILs using lipids through alkylating a tertiary amine 
(Figure 10). The lipids used in this instance were methyl oleate and methyl stearate. 
In a third instance, cyclopropanated oleic acid methyl ester synthesized the reac-
tion of the double bond of the oleate with diiodomethane, and diethylzinc was 
used to alkylate the tertiary amine. After reacting the obtained alkyl iodide with 
the imidazoles, anion exchange of the iodide with bistriflimide gave imidazolium 
bistriflimide ILs [108].

5. Deep eutectic solvents

Deep eutectic solvents are analogous to ILs in the sense that they possess 
similar properties of low melting point and non-volatility, but they are, however, 
two different types of solvent systems. Unlike ILs, which are made up of one type 

Figure 9. 
Anions and cations used in the syntheses of lipid-based ILs.

Figure 10. 
Lipid-based imidazolyl ILs.

Figure 8. 
Alkaloid-based ILs [(A) ampicillin-based ILs; (B) ephedrine-based IL; (C) nicotine-based ILs].
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of discrete cation and anion [17], DESs are formed from an eutectic mixture of 
a hydrogen bond acceptor (HBA), mostly quaternary ammonium salts, and a 
metal salt or hydrogen bond donor (HBD). The mixture forms a eutectic phase 
which has a lower melting point than the individual components [109]. There is a 
charge delocalization created through hydrogen bonding between, for example, 
a halide anion of the HBA and the HBD which causes the decrease in the melt-
ing point [18]. DESs are usually formed from relatively inexpensive bio-based 
components which makes them biodegradable and affordable [17]. Abbott et al. 
initially developed DESs based on choline chloride and zinc chloride as cheaper 
alternatives to imidazolium-based ionic liquids, which would make them readily 
accessible for bulk applications in syntheses. These new solvents were made by 
heating mixtures of the choline chloride and zinc chloride in molar ratios of 1:1, 
1:2 and 1:3 until clear colorless liquids were obtained, with the 1:2 mixture giving 
the lowest freezing point of 25°C [110]. Choline is a provitamin which is derived 
from lecithin, found in plants and animal organs [111]. As such, choline-derived 

Hydrogen bond donor (HBD) ChCl/HBD ratio (mol/

mol)

M.p. of 

HBD/°C

1:2 32

1:1 96

1:1 99

1:2 62

Table 1. 
Novel room temperature liquid DESs derived from renewable sources [119].

Figure 11. 
DES based on choline chloride and urea.
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DESs are bio-based solvents, particularly where it is paired up with bio-sourced 
HBDs such as lactic acid, levulinic acid, glycerol and sugars. On a large scale, 
choline is produced by a single-step reaction between HCl, ethylene oxide and 
trimethylamine [17].

DESs based on urea (Figure 11) were prepared by mixing choline chloride 
(m.p. 302°C) and urea (m.p. 133°C) in different molar ratios. This showed that a 
eutectic phase occurs at a choline to urea ratio of 2. This DES has a very low freez-
ing point of 12°C, which was significantly lower than its constituents, thus giving 
a room temperature solvent [112]. The choline chloride-urea DES has been used 
as both a catalyst and solvent for the selective N-alkylation of various aromatic 
primary amines. This method avoids the complexity of multiple alkylations, which 
is a problem encountered when polar volatile organic solvents are used. After the 
reaction, DES recycling by simple biphasic extraction with ethyl acetate was carried 
out, and the DES was reused at least five times (with just a slight loss in activity) 
[113]. This same group have used the choline chloride-urea DES as a solvent and 
catalyst for the bromination of 1-aminoanthra-9,10-quinone [114] and for the 
Perkin reaction [115].

DESs based on choline chloride and glycerol or ethylene glycol have also been 
used as extraction solvents to remove excess glycerol from biodiesel [116–118]. 
Also, new choline chloride-based DESs with levulinic acid and sugar-based polyols 
as renewable hydrogen bond donors were synthesized. The best ratios of choline 
chloride (ChCl) and HBD which gave liquid DESs at room temperature are shown 
in Table 1 [119]. DESs based on different bio-based HBD (oxalic, lactic and malic 
acids) and HBA (choline chloride, betaine, alanine, glycine, histidine, proline and 
nicotinic acid) have also been prepared and tested as solvents for the dissolution of 
lignin, cellulose and starch. Majority of the resulting solvents exhibited high lignin 
solubility but poor cellulose solubility.

This was advantageous since DESs can be used in separating lignin from cel-
lulose [120]. DESs can be viewed as a more environmentally friendly alternative to 
volatile organic solvents—they are affordable, easily prepared and scalable, inflam-
mable and also biodegradable [121].

6. Conclusions

Rising concerns over depletion of fossil reserves and the drive towards sustain-
able and responsible consumption of resources have presented a challenge and 
opportunity for scientist and engineers to work together in developing methods, 
technologies and processes for producing of bio-based products. These include 
commodity chemicals, fuels and materials of which many of the chemicals have 
solvent properties. As such, they have been widely used in extractions and in solvat-
ing a range of physiochemical processes and numerous consumer goods  
(by either dissolving, stabilizing or modifying the latter’s properties) across the 
manufacturing research and development landscapes. This review has contextual-
ized and discussed some existing and emerging approaches in these areas.

Even though most bio-solvents are still volatile like their petroleum counter-
parts, the bio-solvents have the advantage of being biodegradable, derived from 
renewable resources, and their production often results in CO2 emission savings. 
A novel array of ionic liquids and deep eutectic solvents based on inexpensive 
bio-derived components has been developed, and because these solvents have low 
volatility, it presents a solution to the volatile organic solvent concern. Additionally, 
they are usually recyclable after use, with the benefit of tunability to bring about 
smart solvents for tailored applications.
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