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Chapter

One-Pot Synthesis of Coumarin 
Derivatives
Inul Ansary and Abu Taher

Abstract

Coumarin derivatives have a myriad of applications in medical science, biomedi-
cal research, and many industrial branches. For this reason, many efforts are being 
dedicated to the development of novel and more practical methods for synthesizing 
these compounds. This chapter describes several methods of one-pot synthesis of 
coumarin derivatives, including von Pechmann condensation, Knoevenagel con-
densation, Baylis-Hillman reaction, Michael addition, Kostanecki reaction, vinyl 
phosphonium salt-mediated electrophilic reaction, and Heck-lactonization reac-
tion. The methods are compared with each other, and the advantages and disadvan-
tages of each of them are addressed.

Keywords: coumarin derivatives, one-pot synthesis, methods and procedures, 
advantages and disadvantages

1. Introduction

Coumarin (2H-chromen-2-one) derivatives have spawn great interest over the 
years because of their significant biological importance [1]. They are associated 
with various biological activities viz. antiviral [2, 3], antibacterial [4, 5], anti-
microbial [6], anticoagulant [7], anti-inflammatory [8, 9], anticancer [10, 11], 
anticonvulsant [12], antioxidant [13], antifungal [14, 15], and anti-HIV [16]. 
They also possess the properties like inhibition of platelet aggregation [17] and 
inhibition of steroid 5α-reductase [18]. Besides, they are attracting consider-
able attention of chemists due to their wide range of applications such as optical 
brighteners [19], photosensitizers [20], fluorescent and laser dyes [21], and 
additives [22] in food, perfumes, cosmetics, and pharmaceuticals. The novel 
compounds are also utilized in drug and pesticidal preparations [23]. Considering 
these multifarious activities of coumarins, synthetic chemists are actively 
engaged in developing new and superior methods for the isolation of coumarin 
derivatives. The most widely used method for their synthesis is Pechmann reac-
tion [24–27], which involves the condensation between phenols and β-keto esters, 
in the presence of an acid catalyst. This method employs both homogeneous 
catalysts such as concentrated H2SO4 [24, 25], trifluoroacetic acid (TFA) [28], 
and Lewis acids (LA) such as AlCl3 [29], ZnCl2 [30], ZrCl4 [31], TiCl4 [32], etc. 
and heterogeneous catalysts such as cation-exchange resins [33], Nafion resin/
silica composites [34], zeolite H-BEA (H-beta, SiO2/Al2O3 = 14) [35], and other 
solid acids.
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2. Methods to synthesize coumarin derivatives

2.1 Pechmann condensation reaction

The general reaction sequence of Pechmann reaction and its mechanism, shown 
in Figure 1, involves an esterification/transesterification between the phenol 1 and 
β-keto ester 2 in the presence of protonic acid or Lewis acid (LA) catalyst to produce 
species 4 followed by an attack to the activated carbonyl carbon by the aromatic 
ring at ortho-position to yield the new ring in species 5. Finally, dehydration of 
species 5 affords coumarin derivative 2.

A series of substituted coumarins 8 have been synthesized in 25–77% yields by 
the reactions of substituted phenols 6 with ethyl acetoacetate 7 in the presence of 
zinc-iodine mixture in refluxing toluene (Figure 2) [36]. It is observed that phenols 
containing electron-donating substituent like ▬CH3 group result in higher yields 
compared to unsubstituted phenols and phenols having electron-withdrawing 
group such as NO2 group.

When 3-(N,N-dimethylamino)phenol 9 is subjected to react with ethyl 2-acetamide-
3-oxobutyrate 10 in the presence of anhydrous ZnCl2 in absolute ethanol under reflux 
condition, the acetamido coumarin 11 is obtained only in 12.4% yield (Figure 3) [30].

Substituted coumarins 14 have been achieved in moderate to good yields from 
substituted phenols 12 and methyl acetoacetate 13 under conventional and micro-
wave heating, respectively, catalyzed by concentrated H2SO4 (Figure 4) [37]. It is 
found that the reactions using the latter method are faster coupled with product in 
better yields compared to former one.

Synthesis of substituted coumarins 16 in 62–98% yields has also been described 
by Maheswara et al. [38] via reactions of substituted phenols 1 with β-keto esters 15 
in the presence of a heterogeneous catalyst, HClO4.SiO2 under solvent-free condi-
tions (Figure 5, Condition A). The aforementioned method involves recoverable 
cheap catalyst and shorter reaction time with high product yields. However, rela-
tively lower yields (35–55%) of substituted coumarins 16 have been isolated from 
the similar starting precursors catalyzed by Amberlyst-15 acidic catalyst [39] in 
toluene under refluxing condition (Figure 5, Condition B).

Pechmann condensation reactions for the synthesis of substituted coumarins 
using various homogeneous and heterogeneous catalysts have been reported in 
literature and some important ones are summarized in Table 1.

Figure 1. 
Mechanism for the acid-catalyzed Pechmann condensation.
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From Table 1, it is quite evident that the reactions under microwave as well as 
ultrasound irradiation occur at a faster rate than those of the conventional methods 
(entries 10, 14, 15, 16, 25, 31, 32, and 39). Unsubstituted phenol produces lower 
yields of corresponding coumarin derivatives and/or requires longer reaction time 
(entries 2–4, 7, 10, 12, 13, 24, 28, 30, and 38), higher temperature (entries 2, 3, 7, 
and 12), and excess amount of catalysts (entries 7 and 12) than di- and trihydric 
phenols. This may presumably be due to the less reactivity of unsubstituted phenol 
toward Pechmann condensation reaction compared to di- and trihydric phenols. In 

Figure 2. 
Synthesis of substituted coumarins.

Figure 3. 
Synthesis of acetamido coumarin.

Figure 4. 
Synthesis of substituted coumarins.

Figure 5. 
Synthesis of substituted coumarins.
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addition, the substitution of an electron-donating group such as m/p-Me or p-OMe 
in the phenols leads to decrease of catalytic activity and, hence, requires longer 
reaction time and/or gives rise to lower yields of products (entry 13). The reactivity 
of monohydric phenols having electron-withdrawing groups such as m-NH2 and 
m-OMe is also lowered compared with simple di- and trihydric phenols (entries 
19, 28, and 37). 1-Naphthol and 2-naphthol need longer reaction time (entries 
13, 33, and 39) and/or furnish products with lower yields (entries 13, 37, and 40) 
compared to other phenols, due to the presence of another phenyl ring. However, 
better yield of benzocoumarin is obtained from the reaction between 1-naphthol 
and more reactive β-keto ester, ethyl 4-chloro-3-oxobutanoate (entry 37). It is 
interesting to note that β-keto ester having phenyl group at the β-position such as 
ethyl 3-oxo-3-phenylpropanoate is found to be less reactive in Pechmann conden-
sation with resorcinol and 1,3-dihydroxy-5-methyl benzene due to the presence 
of conjugated keto center, which lengthens the reaction time than in the reactions 
of EAA and/or ethyl 4-chloro-3-oxobutanoate with resorcinol and 1,3-dihydroxy-
5-methyl benzene (entries 21, 28, and 37). Besides, the reactivity of different 
types of phenols and β-keto esters, catalyst efficiency, and solvent effect of 
Pechmann condensation has also been studied. It is observed that TiCl4 (entry 
5) is the most effective catalyst as far as reaction time is considered, whereas 
montmorillonite K-10 (entry 1) and sulfated zirconia (SZr) (entry 9) are found 
to be less effective. Ionic liquids (ILs) such as 1-butyl-3-methylimidazolium 
hexafluorophosphate [bmim]PF6 and 1,3-disulfonic acid imidazolium hydrogen 
sulfate (DSIMHS) have been used as effective and reusable catalysts and reaction 
media as well (entries 6 and 18).

Lewis acid−surfactant-combined catalyst (LASC) such as nano-TiO2 on 
dodecyl-sulfated silica support (NTDSS) is used as a reusable and highly effective 
catalyst for Pechmann condensation of phenols containing different types of sub-
stituents in water led to excellent product yields (entry 20). Other recyclable solid 
acid catalysts have also been employed in Pechmann condensation reactions leading 
to coumarin derivatives in good to excellent yields under solvent-free (entries 
22–24, 26–27, 29–30, and 42), microwave irradiation (entry 25) and/or ultrasound 
irradiation (entry 39) conditions.

More importantly, sulfonic acid-supported silica-coated magnetic nanopar-
ticles (Fe3O4@SiO2@PrSO3H), CuFe2O4 nanoparticles, and zirconium(IV) 
complex grafted silica coated magnetic nanoparticles are found to be the most 
efficient catalysts toward Pechmann condensation, in which case the catalyst can 
be effortlessly separated by external magnet after completion of the reaction and 
reused for 22, 6, and 5 consecutive runs, without any significant loss in catalytic 
efficiency (entries 33–35).

Pechmann condensation of pyrogallol and resorcinol with ethyl acetoacetate 
over nanosponge MFI zeolite in comparison with conventional zeolites (MFI, BEA, 
and USY) and other layered MFI (lamellar, pillared, and self-pillared) have been 
investigated. It is important to note that the nanosponge catalysts exhibit the best 
catalytic performance with respect to the products’ selectivity in the liquid-phase 
condensation reactions among all the investigated zeolites (entry 36).

On the other hand, the catalytic behavior of metal–organic frameworks such 
as Cu-benzene-1,3,5-tricarboxylate (CuBTC) and Fe-benzene-1,3,5-tricarboxylate 
(FeBTC) is investigated and compared with large-pore zeolites, beta (BEA), and 
ultrastable Y (USY) (entry 41). It is clear that zeolites BEA and USY are found to be 
more active catalysts in transformations of the most active substrates like resorcinol 
and pyrogallol but a low conversion of naphthol is observed. However, almost total 
transformation of naphthol (93–98% conversion) to the target product occurs within 
23 h of the reaction time over metal–organic frameworks, CuBTC and FeBTC.  
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Entry Catalyst Reaction conditions Time Yields (%) Reference

1 Montmorillonite K-10 K-10 (30 wt% of 12), 

toluene, reflux

8–10 h 66–94 [40]

2 1-Butyl-3-

methylimidazolium 

chloroaluminate [bmim]

Cl. 2AlCl3

[bmim]Cl.2AlCl3 (1.1 

equiv. of 12), 30–120°C

10–120 min 40–95 [41]

3 InCl3 InCl3 (10 mol%), 

65–130°C

30–240 min 65–98 [42]

4 ZrCl4 ZrCl4 (2 mol%), 70°C 5–30 min 56–95 [31]

5 TiCl4 TiCl4 (0.5 equiv. of 

12), rt

50–70 s 56–95 [32]

6 1-Butyl-3-

methylimidazolium 

hexafluorophosphate 

[bmim]PF6

[bmim]PF6 (4 ml), 

solvent-free, 100°C

45 min 90–95 [43]

7 Bi(NO3).5H2O Bi(NO3).5H2O 

(5–10 mol%), 80–130°C

15–300 min 47–94 [44]

8 SO4
2−/CeO2-ZrO2 SO4

2−/CeO2-ZrO2 

(10 wt% of 12), 120°C

4–143 min 80–94 [45]

9 SZr (sulfated zirconia) SZr (1 wt% of 12), 80°C 24 h 52–92 [46]

10 Ceric ammonium nitrate 

(CAN)

Condition A: CAN 

(10 mol%), solvent-

free, 110°C

Condition B: CAN 

(10 mol%), solvent-

free, MW (300 W)

10–15 min

2–3 min

92–96

94–97

[47]

11 ClSO3H ClSO3H (0.2 ml), 

solvent-free, 10°C

10 min 91–98 [48]

12 LiBr LiBr (10–20 mol%), 

75–125°C

15–90 min 54–92 [1]

13 Nanocrystalline-cellulose-

supported sulfonic acid 

ionic liquid

NCC-supported sulfonic 

acid IL (10 wt% of 12), 

solvent-free, 80°C

18 min-24 h 20–98 [49]

14 Cu(ClO4)2 Cu(ClO4)2 (20 mol%), 

solvent-free, US 

(35 kHz), 45–50°C

30–50 min 70–96 [50]

15 Selectfluor Condition A: Selectfluor 

(10 mol%), solvent-

free, rt.

Condition B: Selectfluor 

(10 mol%), solvent-free, 

US (30 kHz, 780 W)

85–90 min

15–40 min

70–79

82–94

[51]
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16 I2 Condition A: I2 
(25 mol%), toluene, 
90°C
Condition B: I2 
(1 mol%), MW

18 h
1.5–5 min

42–89
80–96

[52]
[53]

17 AgOTf AgOTf (10 mol%), 
solvent-free, 60°C

3–12 h 60–95 [54]

18 1,3-Disulfonic acid 
imidazolium hydrogen 
sulfate (DSIMHS)

DSIMHS (7 mol%), 
solvent-free, 70°C

2–27 min 80–96 [55]

19 N,N′-
dimethylaminoethanol 
hydrosulfate ([N112OH]
[HSO4])

[N112OH][HSO4] 
(5 mol%), solvent-free, 
90°C

3–24 h 20–99 [56]

20 Nano-TiO2 on dodecyl-
sulfated silica support 
(NTDSS)

NTDSS (5 mol% TiO2), 
H2O, reflux

3–8 h 89–98 [57]

21 ZrOCl2.8H2O/SiO2 ZrOCl2.8H2O/SiO2 
(10 mol%), solvent-
free, 90°C

5–80 min 75–99 [58]

22 Polydivinylbene-bound 
perfluoroalkylsulfonyl 
imide polymers 
(H-PDVB-x-SSFAI)

H-PDVB-x-SSFAI 
(10 mol%), solvent-
free, 140°C

2 h 78–94 [59]

23 Polyaniline–fluoroboric 
acid–dodecyl hydrogen 
sulfate (PANI–HBF4–DHS)

PANI–HBF4–DHS 
(20 wt.% of 12), 
solvent-free, 150°C

6 h 94–98 [60]

24 Silica sulfuric acid (SSA) SSA (15 mol%), solvent-
free, 80°C

0.5–2 h 70–97 [61]

25 ZrPW (Zirconium IV 
Phosphotungstate)
12-TPA/ZrO2 
(12-Tungstophosphoric
acid supported onto ZrO2)

Condition A: ZrPW 
(0.2 g), solvent-free, 
130°C
Condition B: ZrPW 
(0.2 g), solvent-free, 
MW (250 W), 130°C
Condition C: 12-TPA/
ZrO2 (0.2 g), solvent-
free, 130°C
Condition D: 12-TPA/
ZrO2 (0.2 g), solvent-
free, MW (250 W), 
130°C

8 h
30 min
8 h
30 min

42–65
47–66
38–63
41–65

[62]

26 12-Tungstophosphoric 
acid supported on 
SnO2 nanoparticles 
(12-TPA-SnO2)

12-TPA-SnO2 (30 wt% 
of TPA), solvent-free, 
120°C

2 h 78 [63]

27 Poly(4-vinylpyridine)-
supported copper iodide

P4VPy-CuI (0.1 g), 
solvent-free, 80°C

10–90 min 84–92 [64]

28 Polystyrene-supported 
GaCl3 (PS–GaCl3)

PS–GaCl3 (10 mol%), 
ethanol, reflux

45–300 min 45–96 [65]

29 Silica tungstic acid (STA) STA (5 mol%), solvent-
free, 80°C

20–90 min 75–97 [66]

30 CMK-5 supported sulfonic 
acid (CMK-5-SO3H)

CMK-5-SO3H (3 mol%), 
solvent-free, 130°C

15–120 min 60–97 [67]

31 FeF3 FeF3 (0.05 g), solvent-
free, MW (450 W), 
110°C

6–9 min 61–98 [68]

Entry Catalyst Reaction conditions Time Yields (%) Reference
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Catalytic activity of many other catalysts under different reaction conditions is 
delineated in the recently published review [80].

2.2 Knoevenagel condensation reaction

An efficient green one-pot synthetic method for the synthesis of 3-substituted 
coumarin derivatives 21/22 has been observed by Knoevenagel condensation of 
various o-hydroxybenzaldehydes 18/19 with 1,3-dicarbonyl compounds 20 using 

32 FeCl3 FeCl3 (10 mol%), 
solvent-free, US 
(20 kHz, 130 W)

1–20 min 55–99 [69]

33 Sulfonic acid supported 
silica coated magnetic 
nanoparticles (Fe3O4@
SiO2@PrSO3H)

Fe3O4@SiO2@PrSO3H 
(1.6 mol%), solvent-
free, 130°C

3–50 min 87–98 [70]

34 CuFe2O4 nanoparticles CuFe2O4 (5 mol%), 
H2O, rt

15–34 min 82–98 [71]

35 Zr(IV)-HMNQ@
ASMPs [Zirconium(IV)-
3-hydroxy-2-methyl-
1,4-naphthoquinone 
(HMNQ )@3-
aminopropylated 
silica coated magnetic 
nanoparticles (ASMPs)]

Zr(IV)-HMNQ@
ASMPs (20 mg), 
solvent-free, 110°C

10 min 95–100 
(selectivity)

[72]

36 MFI nanosponge zeolite 
(MFI-NSZ)

MFI-NSZ (0.1 g), 
dodecane (0.5 g, 
internal standard), 
nitrobenzene, 
120–150°C

70 h 80–90 
(selectivity)

[73]

37 In(OTf)3 In(OTf)3 (1 mol%), 
solvent-free, 80°C

10–87 min 68–98 [74]

38 Mg(NTf2)2 Mg(NTf2)2 (1 mol%), 
solvent-free, 80°C

25–60 min 85–98 [75]

39 Poly(4-vinylpyridinium) 
hydrogen sulfate (PVPHS)

PVPHS (2 mol%), 
solvent-free, US 
(35 kHz, 200 W)

3–18 min 62–96 [76]

40 Polyvinylpolypyrrolidone-
bound boron trifluoride 
(PVPP-BF3)

PVPP-BF3 (33 mol%), 
ethanol, reflux

2–3 h 76–96 [77]

41 Zeolites e.g., beta (BEA) 
and ultrastable Y (USY)
Metal–organic 
frameworks (MOFs) such 
as Cu-benzene-1,3,5-
tricarboxylate (CuBTC) 
and Fe-benzene-1,3,5-
tricarboxylate (FeBTC)

Condition A: Zeolite 
(0.2 g), nitrobenzene, 
130°C
Condition B: MOF 
(0.2 g), nitrobenzene, 
130°C

23 h
23 h

23–91 
(conversion)
2–98 
(conversion)

[78]

42 Zn0.925Ti0.075O NPs Zn0.925Ti0.075O 
(10 mol%), solvent-
free, 110°C

3–5 h 51–89 [79]

Table 1. 
Synthesis of substituted coumarins via Pechmann condensation reactions.

Entry Catalyst Reaction conditions Time Yields (%) Reference
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nano-ZnO catalyst under microwave or thermal conditions, which affords moderate 
to good yield of the products (Figure 6) [81]. Reactions under microwave-irradia-
tion conditions are found to be more convenient than thermal conditions.

Various coumarin-3-carboxylic acid derivatives 25/26 have been synthesized 
in good yields using catalytic amounts of SnCl2.2H2O under solvent-free condition 
(Figure 7) [82].

Ultrasound irradiation technique is also useful to synthesize 3-aryl coumarin 
derivatives. Treatment of o-hydroxybenzaldehydes 18 with aryl substituted acetyl 
chloride 27 in the presence of K2CO3 as a catalyst in tetrahydrofuran (THF) using 
ultrasound irradiation leads to the formation of 3-aryl coumarin derivatives 28 in 
moderate to high yields (Figure 8) [83]. This green method appears to be a conve-
nient and simple pathway than that of conventional heating.

Coumarin-substituted benzimidazole or benzoxazole derivatives 32 that are 
known as coumarin dyes have been synthesized in good yields from 4-diethyl-
amino-2-hydroxybenzaldehyde 29, ethyl cyanoacetate 30, and ortho-phenylene-
diamine/phenylenehydroxyamine derivatives 31 in the presence of reusable green 
solid acid like HZSM-5 zeolite, heteropoly acids, e.g., tungstophosphoric acid 
(H3PW12O40), and/or tungstosilicic acid (H4O40SiW12) in n-pentanol or water and 
even solvent-free conditions (Figure 9) [84].

Cellulose sulfonic acid (CSA) is an efficient catalyst for the synthesis of 3- 
substituted coumarin via Knoevenagel condensation reaction. Thus, 3-acetyl  coumarin 
34 is obtained in 88% yield in the reaction between salicylaldehyde 33 and ethyl 
acetoacetate 7 in the presence of CSA under solvent-free conditions (Figure 10) [85].

Figure 7. 
Synthesis of coumarin 3-carboxylic acid derivatives.

Figure 6. 
Synthesis of 3-substituted coumarins.
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Shaabani et al. [86] have described the synthesis of 3-substituted coumarins 
21 in good yields via Knoevenagel condensation of 2-hydroxybenzaldehydes 
18 with β-dicarbonyl compounds 35 in the presence of a recyclable ionic liquid 
1,1,3,3-N,N,N′,N′-tetramethylguanidinium trifluoroacetate (TMGT) under 
thermal heating (Figure 11, Condition A) and/or microwave irradiation condi-
tions (Figure 11, Condition B). 3-Substituted coumarins 21 are also synthesized 
from similar starting precursors using the 1,3-dimethylimidazolium methyl sulfate 
[MMIm][MSO4] ionic liquid in the presence of L-proline as an additional promoter 
under heating condition (Figure 11, Condition C) [87].

Imidazolium based phosphinite ionic liquid (IL-OPPh2) catalyzed synthesis of 
3-substituted coumarin derivatives has been reported in literature; when o-hydroxy 
benzaldehydes 18 are treated with active methylene containing compounds 35 in 
the presence of IL-OPPh2 catalyst at 60°C, 3-substituted coumarin derivatives are 
obtained in moderate to good yields (Figure 12) [88]. TSIL plays both the reaction 
media and catalyst as well.

Reactions of o-hydroxybenzaldehydes 18 with activated methylene compounds 
35 catalyzed by Bronsted acid ionic liquid (BAIL) and 1-(4-sulfonic acid)butyl-
3-methylimidazolium hydrogen sulfate [(CH2)4SO3HMIM][HSO4] in water lead to 
3-substituted coumarin derivatives in good yields (Figure 13) [89].

Synthesis of substituted coumarins via Knoevenagel condensation using various 
organic catalysts such as piperidine, ammonia, L-lysine, L-proline, benzoic acid, 
etc. has been reported in literature and some are summarized in Table 2.

Figure 8. 
Synthesis of 3-aryl coumarin derivatives.

Figure 9. 
Synthesis of coumarin-substituted benzimidazoles/benzoxazoles.

Figure 10. 
Synthesis of 3-acetyl coumarin.
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It is quite evident that in Table 2 several methodologies for the synthesis of 
substituted coumarins using different organic catalysts are established. Among 
these, L-proline-catalyzed reactions offer high yields (entry 3), which explains 
synthesis of 3-substituted coumarins by the condensation of o-hydroxybenzalde-
hydes with a variety of active methylene compounds catalyzed by 1,3-dimethyl 
imidazolium methyl sulfate [MMIm][MSO4] and L-proline. Another L-proline-
catalyzed synthesis of coumarins is known, but in that case, the yield is very poor 
(entry 4). Similar result is also observed under L-lysine-catalyzed synthesis of 
coumarins (entry 5).

A series of 3-phenyl substituted coumarin analogues have been achieved via 
a two-step process involving esterification using 1,1-carbonyldiimidazole (CDI) 
followed by condensation reaction in the presence of 1,8-diazabicyclo[5.4.0]undec-
7-ene (DBU) under mild conditions (entry 1).

Microwave-assisted synthesis of coumarins is also known, which not only reduces 
the reaction time but also increases the yields of the products (entries 2, 6, and 7).

Benzocoumarin derivatives have been synthesized from 1-hydroxy-4-methyl-
naphthalene-2-carbaldehyde and compounds containing active methylene group 
via piperidine-catalyzed Knoevenagel condensation reaction (entry 8). Moreover, 
benzothiazolyl coumarins with isothiocyanate functionality have been synthesized 
from commercially available 2-hydroxy-4-nitro benzoic acid in the presence of 
piperidine in ethanol (entry 9).

Application of sonochemistry for the synthesis of different coumarin derivatives 
is also useful due to better yield and shorter reaction time compared with the classi-
cal procedures (entry 10).

Figure 11. 
Synthesis of 3-substituted coumarins.

Figure 12. 
Synthesis of 3-substituted coumarins.
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Figure 13. 
Synthesis of 3-substituted coumarins.

Entry Catalyst Reaction conditions Time Yield 

(%)

Reference

1 CDI-DBU (i) CDI (1.2 equiv.), DCM, rt.

(ii) DBU (1.0 equiv.), DCM, rt

30 min

1–2 h

42–59 [90]

2 PhCOOH Condition A: Polyphosphoric acid, 

MW (900 W), 100°C

Condition B: H2SO4, Benzoic acid, 

MW (900 W), 90°C

Condition C: benzoic acid, 

n-pentanol, MW (900°C), 110°C

4–6 min

3–4 min

3 min

60–75

58–75

85–95

[91]

3 L-proline 1,3-dimethyl imidazolium methyl 

sulfate, [MMIm][MSO4], L-proline 

(1 equiv.), 90°C

15–1440 min 87–99 [87]

4 L-proline L-proline (20 mmol%), EtOH, rt 15–20 h 54–76 [92]

5 L-lysine L-lysine (20 mol%), H2O, rt. −80°C 6–24 h 50–90 [93]

6 Piperidine Piperidine (catalytic), rt. 20 min 84 [94]

7 Piperidine Piperidine (2.0 mol%), solvent-

free, MW (400 W)

1 min 50–97 [95]

8 Piperidine Piperidine (1.48 equiv.), EtOH, 

reflux

30 min 85–92 [96]

9 Piperidine Piperidine (catalytic), EtOH, reflux 2 h 82 [97]

10 Piperidine Piperidine (1.0 equiv.), AcOH 

(2.5 mol%), EtOH, US, rt

5–30 min 49–90 [98]

11 Piperidine Piperidine, EtOH, rt-reflux 1–2 h 82–92 [99]

12 Piperidine Piperidine (7.4 equiv.), EtOH, reflux 2 h 92 [100]

Table 2. 
Synthesis of substituted coumarins via Knoevenagel condensation reactions.
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6,8-Diiodocoumarin derivatives have also been synthesized in good yields by 
Knoevenagel condensation using piperidine as catalyst (entry 11). The reaction of 
3-ethoxysalicylaldehyde with ethyl acetoacetate in the presence of piperidine leads 
to 3-acetyl-8-ethoxycoumarin (entry 12).

2.3 Baylis-Hillman reaction

Baylis-Hillman strategy has been employed to the synthesis of substituted couma-
rins as shown in Figure 14. When 2-hydroxybenzaldehydes 18 are subjected to react 
with methyl acrylate 39a (R2 = Me) in the presence of DABCO (1,4-Diazabicyclo[2.2.2]
octane), a mixture of chromenes 40 and coumarins 41 are formed [101, 102]. However, 
similar reactions of 2-hydroxybenzaldehydes 18 with tert-butyl acrylate 39b (R2 = tBu) 
under classical method [103] and/or microwave irradiation [104] afford corresponding 
Baylis-Hillman adducts 42, which undergo cyclization under reflux in AcOH yielding 
a mixture of 3-substituted chromene 43 and coumarin 44. Treatment of the Baylis-
Hillman adducts 42 with concentrated HCl in refluxing AcOH produces 3-(chloro-
methyl) coumarins 45 in excellent yields. Moreover, the reaction of 42 with HI under 
reflux in a mixture of Ac2O and AcOH furnishes 3-methyl coumarins 46, which upon 
further reaction with SeO2 affords the corresponding 3-formyl coumarins 47.

The suggested mechanism for the formation of the coumarin derivatives 
44/45/46 is shown in Figure 15.

Kaye et al. have also demonstrated the synthesis of substituted coumarins employ-
ing Baylis-Hillman strategy in different ways as shown in Figure 16 [105, 106].

2.4 Kostanecki reaction

4-Arylcoumarins 59 have been synthesized in good yields employing Kostanecki 
reaction between 2-hydroxybenzophenones 57 and acetic anhydride 58 in the pres-
ence of DBU under mild condition (Figure 17) [107].

The mechanism of the Kostanecki reaction is outlined in Figure 18.
Similarly, 3,4-disubstituted coumarins 65 are isolated from readily available 

2-acyloxybenzophenones 64 under Kostanecki reaction conditions (Figure 19) [107].

2.5 Michael addition reaction

Michael addition could be applied [108] to the synthesis of 3-aroylcoumarins 68 
in good yields from easily available 2-hydroxybenzaldehydes 66 and α-aroylketene 
dithioacetals (AKDTAs) 67 in the presence of a catalytic amount of piperidine in 
refluxing THF (Figure 20).

The reaction proceeds via initial Michael addition followed by intramolecular 
aldol condensation reaction as depicted in Figure 21.

2.6 Wittig reaction

Kumar and coworkers [109] have reported the synthesis of substituted couma-
rins 3 from phenolic compounds 23 containing ortho-carbonyl group and triphenyl 
(α-carboxymethylene)phosphorane imidazole ylide 73 via intramolecular Wittig 
cyclization in good yields (Figure 22). All the reactions proceed via formation of 
the phosphorane intermediates 74 as established by spectroscopic results.

2.7 Vinyl phosphonium salt-mediated electrophilic substitution reaction

A series of 4-carboxy(ethyl/methyl) coumarins 76 have been syn-
thesized in good yields from substituted phenols 1 and di(ethyl/methyl)
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acetylene-dicarboxylate 75 in the presence of phosphinite ionic liquid (IL-OPPh2) 
under solvent-free microwave irradiation conditions (Figure 23) [110]. It is noticed 
that the diphenylphosphine group in ionic liquid accelerates the reaction.

The proposed mechanism for the formation of coumarins 76 via vinyl phospho-
nium salt-mediated electrophilic substitution is shown in Figure 24.

4-Carboxymethyl coumarins 82 have been synthesized by Yavari et al. [111] 
in moderate to excellent yields from the reactions of substituted phenols 1 and 
dimethyl acetylenedicarboxylate (DMAD) 81 in the presence of triphenylphosphine 
(Figure 25) via vinyl triphenylphosphonium salt-mediated aromatic electrophilic 

Figure 14. 
Synthesis of 3-substituted coumarins.

Figure 15. 
Possible mechanism for the formation of 3-substituted coumarins.
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substitution reaction as mentioned in Figure 24. Similar results are found from the 
given starting materials under microwave irradiation in shorter reaction time [112].

However, reactions of di- and trihydric phenols with dimethyl acetylenedicar-
boxylate (DMAD) in the presence of triphenylphosphine in toluene under reflux 
afford polyfunctionalized coumarin analogues along with unwanted by-products in 
appreciable amount (Figure 26) [113].

Figure 18. 
Mechanism for Kostanecki reaction.

Figure 16. 
Synthesis of 3-substituted coumarins.

Figure 17. 
Synthesis of 4-arylcoumarins.
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Similar reactions of 2-hydroxybenzaldehydes 18 with di(ethyl/methyl)acetyl-
enedicarboxylates 75 leads to the corresponding 4-carboxy(ethyl/methyl)-8-formyl 
coumarins 93 in moderate to good yields (Figure 27) [114].

The methodology has also been employed to the synthesis of angular pyridocou-
marins 97/98 and benzo-fused 6-azacoumarin 100 as shown in Figure 28 [115].

Figure 19. 
Synthesis of 3,4-disubstituted coumarins.

Figure 20. 
Synthesis of 3-aroylcoumarins.

Figure 21. 
Probable mechanism for the formation of 3-aroylcoumarins.
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2.8 Palladium-catalyzed reactions

Palladium-catalyzed reactions between substituted phenols 101 and ethyl 
propiolates 102 lead to substituted coumarins 103/104 (Figure 29) [116, 117].

Unsymmetrical monohydric phenols having m-OMe or m-Me substituent as 
respectively in 3-methoxyphenol and m-cresol show regioselectivity toward the 

Figure 22. 
Synthesis of substituted coumarins.

Figure 23. 
Synthesis of 4-carboxy(ethyl/methyl) coumarins.

Figure 24. 
Proposed mechanism for the synthesis of substituted coumarins via vinyl phosphonium salt-mediated 
electrophilic substitution.
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formation of a new bond in coumarins, which occurs at the para position to the 
methoxy group, and therefore, the regioisomers 103 are found to be formed pre-
dominantly over 104. However, symmetrical dihydric phenol with OMe substituent 
like that in 5-methoxybenzene-1,3-diol affords the regioisomer 104 predominantly 
over 103 under the reaction condition applied. This may be due to the steric effects 

Figure 25. 
Synthesis of 4-carboxymethyl coumarins.

Figure 26. 
Synthesis of polyfunctionalized coumarin analogues.

Figure 27. 
Synthesis of 4-carboxy(ethyl/methyl)-8-formyl coumarins.
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of the R4 group of ethyl propiolate 102, which dominates over the electronic effect 
of the methoxy group of the phenol.

A proposed mechanism for the formation of coumarins 103/104 is shown in 
Figure 30.

Substituted coumarins 3 have been synthesized in moderate yields (42–69%) 
via Pd(OAc)2-catalyzed reaction of substituted phenols 1 with substituted propiolic 
acid 110 (R3 = CO2H) in TFA under mild conditions (Figure 31, Condition A) [118]. 
However, a mixture of catalysts FeCl3 and AgOTf showed better catalytic efficiency 
toward yields (60–93%) of coumarin derivatives 3 (Figure 31, Condition B).  
Propiolic acid ester 110 (R3 = CO2Et) also furnishes the desired products 3 upon 

Figure 28. 
Synthesis of pyridocoumarins and benzo-fused azacoumarin.

Figure 29. 
Synthesis of substituted coumarins.
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reactions with substituted phenols 1 under specified conditions as provided in 
Figure 31 (Conditions C and D) [119–121].

4,6-Disubstituted coumarins 113 have been achieved employing palladium-
catalyzed tandem Heck-lactonization of the Z- or E-enoates 112 with o-iodophenols 
111 (Figure 32, Conditions A, B, and C) [122, 123].

For Heck-lactonization, the enoate Z-112a is found to be more reactive than 
its E-isomer, leading to the corresponding coumarin 113 in good yields (68–84%) 
under all reaction conditions studied. The enoate Z-112b leads to coumarin deriva-
tive 113 in relatively lower yields (42–56%), which may be due to the presence of the 
bulky tBu ester group that hampers the lactonization step. Moreover, the reactiv-
ity of E-enoates depends on the β-substituent. E-enoates 112c (R2 = CH2CHMe2, 

Figure 30. 
Possible mechanism for Pd-catalyzed synthesis of coumarins.

Figure 31. 
Synthesis of substituted coumarins.
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Figure 32. 
Synthesis of 4,6-disubstituted coumarins.

Figure 33. 
Synthesis of 3, and 4-substituted and 3,4-disubstituted coumarins.

Figure 34. 
Possible mechanism for the synthesis of coumarins via carbonylative annulation.
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R3 = CH3) and 112d (R2 = R3 = CH3) having CH2CHMe2 and CH3 group, respectively, 
at the β-carbon, and their double bonds are therefore less sterically hindered than 
that in E-enoate 112a. This reduced hindering is a major factor for the higher 
reactivity of E-enoates 112c and 112d than E-enoate 112a.

Palladium-catalyzed carbonylative annulation of terminal alkynes 110 (R2 = H; 
R3 = nPr, Ph, SiMe3, SiEt3, CO2Et, etc.) with o-iodophenols 111 affords 3-substituted 
coumarins 114 (R2 = H) in poor yields (18–36%) (Figure 33) [124]. On the other 
hand, both 3- and 4-substituted coumarins 114 (R2 = H) and 115 (R2 = H) have been 
synthesized from o-iodophenols 111 and terminal alkynes 110 (R2 = H; R3 = nC4H9, 
nC8H17) bearing long alkyl chain. In addition, a wide variety of 3,4-disubstituted 
coumarins 114/115 (R2, R3 ≠ H) have also been achieved in moderate to good yields 
(43–78%) via carbonylative annulation between o-iodophenols 111 and internal 
alkynes 110 (R2, R3 ≠ H) [125].

The suggested mechanism of the carbonylative annulation is presented in 
Figure 34. The carbonylative annulation process is believed to proceed via (a) 
oxidative addition of o-iodophenol 111 to Pd(0), (b) insertion of alkyne 110 into the 
aryl-palladium complex 116, (c) CO insertion into the resulting vinylic palladium 
species 118, and (d) nucleophilic attack of the phenolic oxygen on the carbonyl 
carbon of the acylpalladium complex 119 with simultaneous regeneration of the 
Pd(0) catalyst.

3,4-Disubstituted coumarins 121 are also isolated in good to excellent yields from 
readily available 2-(1-hydroxyprop-2-ynyl)phenols 120 via palladium-catalyzed 

Figure 35. 
Synthesis of 3,4-disubstituted coumarins.

Figure 36. 
Synthesis of 4-arylcoumarins.

Figure 37. 
Synthesis of 4-arylcoumarins.
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dicarbonylation process in the presence of KI in MeOH at room temperature 
(Figure 35) [126].

Furthermore, electrophilic palladium-catalyzed cycloisomerization of bro-
minated arylpropiolates 122 followed by Suzuki coupling with arylboronic acids 
furnishes 4-arylcoumarins 123 in moderate to good yields (Figure 36) [127]. This 
strongly suggests that a single loading of catalyst Pd(OAc)2 could be used to conduct 
sequential reactions for the synthesis of substituted coumarins.

2.9 Other methods

CuOAc-catalyzed hydroarylation of methyl phenylpropiolates 124 having a 
methoxy methyl (MOM)-protected hydroxyl group at the ortho-position with 
various arylboronic acids followed by acidic workup leads to 4-arylcoumarins 59 in 
good to excellent yields (Figure 37) [128].

Substituted coumarins 126 are obtained in moderate to excellent yields by 
Yb(OTf)3-catalyzed reactions of substituted phenols 1 with alkylidene Meldrum’s 
acid 125 in CH3NO2 at 100°C (Figure 38) [129].

A series of 3-alkylcoumarins 128 are obtained in moderate yields from 
2-hydroxybenzaldehydes 18 and α,β-unsaturated aldehydes 127 via generation 
of N-heterocyclic carbenes (NHC) in ionic liquid under conventional heating 
(Figure 39, Condition A) and/or microwave irradiation conditions (Figure 39, 
Condition B) [130].

3-Benzoylcoumarins 130/131 and coumarin-3-carbaldehydes 47 have also been 
isolated in moderate to good yields from the reactions of 2-hydroxybenzaldehydes 
18/19 with phenylpropionyl chloride 129a and/or propionyl chloride 129b under 
esterification conditions (Figure 40) [131].

An electrochemical method has been developed for the synthesis of 6H-benzo[c]
chromen-6-ones 133 in good to excellent yields from biphenyl-2-carboxylic acids 
132 via radical arene carbon–oxygen bond formation reaction (Figure 41) [132]. 

Figure 38. 
Synthesis of substituted coumarins.

Figure 39. 
Synthesis of 3-alkylcoumarins.
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The method involves DDQ as a redox mediator, inexpensive glassy carbon elec-
trodes to facilitate an intramolecular lactonization of biphenyl-2-carboxylic acid 
derivatives, and 2,6-lutidine as an additive, in 0.1 M nBu4NClO4 electrolyte mixture 
of 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP).

3. Concluding remarks

In this chapter, we have discussed a plethora of methods for the one-pot synthesis 
of coumarin derivatives and their advantages and/or demerits compared to other 
methods. Both the Pechmann as well as Knoevenagel condensation reactions under 
microwave and/or ultrasound irradiation conditions, and catalyzed by ionic liquids 
and/or solid acids have several advantages including high products yields, diminutive 
reaction times, ease of isolation of products, recycle of catalysts, and green aspects 
by avoiding toxic catalysts and solvents. Chemo- and regioselective syntheses of 
3-substituted coumarins have been reported via Baylis-Hillman reactions under 
mild conditions. On the other hand, vinyl phosphonium salt-mediated electrophilic 
substitution reactions of phenols afford 4-carboxyalkyl coumarin derivatives in 
good yields under neutral conditions. This method offers significant advantages for 
the synthesis of coumarins having acid sensitive functional groups. In contrast, the 
most widely used method von Pechmann condensation requires acidic conditions. 
Moreover, palladium-catalyzed Heck lactonization protocol has been employed 
for the regioselective synthesis of coumarin derivatives from o-iodophenols and 
enoates. It is revealed that this reaction is sensitive to steric hindrance around the 
double bound in the enoates. Regioselective synthesis of 3,4-disubstituted coumarins 

Figure 40. 
Synthesis of 3-benzoyl coumarins and coumarin-3-carbaldehyde.

Figure 41. 
Synthesis of 6H-benzo[c]chromen-6-ones.
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