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Chapter

A Global Method for a
Two-Dimensional Cutting Stock
Problem in the Manufacturing
Industry

Yao-Huei Huang, Hao-Chun Lu, Yun-Cheng Wang,
Yu-Fang Chang and Chun-Kai Gao

Abstract

A two-dimensional cutting stock problem (2DCSP) needs to cut a set of given
rectangular items from standard-sized rectangular materials with the objective of
minimizing the number of materials used. This problem frequently arises in differ-
ent manufacturing industries such as glass, wood, paper, plastic, etc. However, the
current literatures lack a deterministic method for solving the 2DCSP. However,
this study proposes a global method to solve the 2DCSP. It aims to reduce the
number of binary variables for the proposed model to speed up the solving time and
obtain the optimal solution. Our experiments demonstrate that the proposed
method is superior to current reference methods for solving the 2DCSP.

Keywords: two-dimensional cutting stock problem (2DCSP), rectangular items,
optimal solution, deterministic model

1. Introduction

Two-dimensional cutting stock problem (2DCSP) is a well-known problem in
the fields of management science and operations research. The problem frequently
arises in the manufacturing processes of different products such as wood, glass,
paper, steel, etc. In the 2DCSP, a set of given rectangular items is cut from a set of
rectangular materials with the aim of determining the minimum number of mate-
rials [1, 2]. These applications include sawing plates from wood stocks [3], reel
and sheet cutting at a paper mill [4], cutting plates of thin-film-transistor liquid-
crystal display (TFT-LCD) from glass substrate [5, 6], placing devices into a
system-on-a-chip circuit [7], and container loading or calculation of containers
[8, 9]. Minimizing the number of materials is normally the target in this type of the
problem because it does not only reduce the overhead consumption but also
enhances environmental protection. The problem in the literatures have been
classified as one-dimensional, 1.5-dimensional, and 2DCSPs (Hinxman [10] and
Lodi et al. [11]) and suggested two categories of approaches in solving the problems,
namely, the heuristic and deterministic approaches (Belov [12], Burke et al. [13],
Chen et al. [14], Hopper and Turton [15], Lin [16] and Martello et al. [17]).
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Various heuristic approaches have been proposed and discussed in the litera-
tures. The primary advantage of this approach is easier in solving the 2DCSP within
an acceptable and economical timeframe [18, 19]. The feasible solution is obtained
within a reasonable time, while the optimal solution cannot be guaranteed.
Chazelle [20] first proposed a popular heuristic algorithm, called the bottom-left
heuristic algorithm. Berkey and Wang [21] proposed a finite best strip heuristic
algorithm to improve the original bottom-left method which packs the items
directly into the bins with a best-fit policy. On the other hand, Lodi et al. [22]
proposed an integrated heuristic approach that initiates the solution by paralleling
the edges of the items and bins (i.e., materials) and utilizes a Tabu search [23, 24]
to explore the neighborhood and refine the possible solution. In order to enhance
the effectiveness of the algorithm used, Boschetti and Mingozzi [25, 26] consider
empty bins in turn and fill the bins with items in a sequence defined by the prices
attributed to the items and update them iteratively. Likewise, Monaci and Toth [27]
initially used Lagrangian-based heuristic to generate a set of covering programming
model to obtain a lower bound solution, in which the items cannot be rotated.
They applied geometric analytical techniques and Dantzig-Wolfe decomposition to
produce various lower bounds of the 2DCSP so that a better solution can be
compared and obtained [28-31].

Despite the development of heuristic approaches can obtain possible solution in
a reasonable time, however there is a scarcity of literature attempting to ensure the
achievement of an optimal solution. Moreover, the distance between one random
teasible solution and the actual global optimal solution can be enlarged with an
increasing problem size. Only a few studies attempted to develop deterministic
approaches for an optimal solution. For example, Chen et al. [32] formed a mathe-
matical model for packing a set of given rectangular items into a rectangular space
in which the dimension of the rectangular space is minimized. The packing problem
is equal to the cutting problem, and the problem can also be called as an assortment
problem. Moreover, Williams [33] formulated a mathematical model considering
the increased generalization of 2DCSP, to solve the problem with various sizes of
bins. However, Williams’ model contains an excessive number of binary variables
as indicated by Pisinger and Sigurd [31] who showed that Williams’ model has
difficulty in solving a standard 2DCSP by their computational experiments. The
subsequent studies by Li and Chang [34], Li et al. [35, 36], Hu et al. [37], and Tsai
et al. [38] (these approaches are called Li’s approach in this study) enhanced Chen’s
model with reformulation techniques based on reducing binary variables and
piecewise linearization technique. The deterministic approaches can guarantee the
achievement of global optimization with an acceptable tolerance; however, these
approaches are only suitable for the assortment problem (i.e., cutting rectangular
items from one material only), while many manufacturing situations require
considering minimal number of materials.

Aiming to close the knowledge gap, this study modifies the two programs of the
assortment problem proposed by Chen et al. [32] and Li and Chang [34] to be two
corresponding deterministic models for the 2DCSP. As an innovative approach, a
global approach of the 2DCSP with a logarithmic number of binary variables and
extra constraints is proposed and demonstrated.

The remainder of this study is organized as follows: Section 2 discusses the
2DCSP formulations. Section 3 proposes the 2DCSP models with logarithmic
number of binary variables and extra constraints. Numerical examples are given in
Section 4 to demonstrate the theoretical advances and advantages of the proposed
global approach. Section 5 gives the concluding remarks.
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2. Problem formulations

Given n small rectangular items, the 2DCSP is to cut all items within large
rectangular materials with the objective of minimizing the number of materials
used. Denote x and y as the width and the length of the enveloping rectangle. By
referring to the method of Chen et al. [32], a mathematical program can be formed
with the objective of minimizing the volume (i.e., Min xy) as discussed in Section
2.1. In the 2DCSP, the minimal number of materials can reduce the manufacturing
costs. Thus Section 2.2 explains how to reformulate two new 2DCSP programs based
on the original model in Section 2.1. Firstly, the terminologies, including decision
variables and parameters, are introduced in Tables 1 and 2.

2.1 Cutting problem in one material

The cutting problem considering one material is also called the assortment
problem, which considers cutting a set of given rectangular items within a rectan-
gular material of minimum area. Avoiding the overlapping of items is the core
requirements. Chen et al. [32] and Li and Chang [34] use four binary variables
(ai,j,bij,cij>dij) and two binary variables (u; j,v; ;), respectively, to handle the
non-overlapping conditions, as shown in Table 3.

The following assortment program is proposed by Chen et al. [32]:

Original (a)

Min xy

SLXj+ps +qj(1 —sj) <x; —H_c(l — ai,j) fori,j=1,..,nandi<j, (1)

Parameter Meaning

n The number of given rectangular items needed to be cut

m The number of rectangular materials with the same size

(p:>4;) The width and length of given rectangular item i fori = 1,...,n

(%,7) X and j are the upper bounds of x and y, respectively. These items also denote the width and length of a

given rectangular material

Table 1.
Parameters in the 2DCSP.

Variable Meaning
(xi9:) The bottom-left coordinate of rectangular item i
(%, 9) The top-right coordinate of the rectangular material

(aij»bij,cij»di;j) A setof binary variables expressing the non-overlapping conditions for a pair of rectangular items i
and rectangular items j for i < j, which are defined by Chen et al. [32]

(uij,vi5) A pair of binary variables expressing the non-overlapping conditions for a pair of rectangular items
i and rectangular items j for i < j, which are defined by Li and Chan [34]

S An orientation indicator for a given rectangular item i.s; = 1if p; is parallel to the x-axis; otherwise,
s; = 0 if p; is parallel to the y-axis (s; is a binary variable)

Y The accumulated length of all materials used.

Table 2.
Decision variables in the 2DCSP.
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Method Chen et al. [32] Li and Chang [34] Condition
Case a;; b;; Cij d;j Ui,j Ui j
1 1 0 0 0 0 0 .
j i
2 0 1 0 0 1 0 .
ilJ
3 0 0 1 0 0 1 .
i
J
4 0 0 0 1 1 1 .
J
i
Table 3.
Four cases of non-overlapping conditions.
x;i +psi+q;(1—s;) <x; —l—a_c(l — b,',j) fori,j=1,..,mandi<j, (2)
¥ +4q5 —i—pj(l —5;)<y; +¥(1—¢;j) fori,j=1,..,nand i<}, (3)
Y +qsi+p(1—si)<y; +y(1—d,) fori,j=1,..,nandi<j, (4)
ai,j + bi,]‘ + Ci,j + di,]‘ =1for l,] =1,..,n and ¢ <j, (5)
Xi+psi+q,(1—s;)<x<xfori=1,..,n, (6)
Y, +qsi+p,1—si)<y<yfori=1,.,n, )

where a; ;,b; j,¢; j,d; j, and s; are binary variables; x; and y; are nonnegative
continuous variables; Constraints (1)—(5) ensure that the rectangular items are non-
overlapping, and Constraints (6) and (7) are to cut all of the rectangular items
within an enveloping rectangular material (¥, 7).

Remark 1. Original (a) uses 21> — n binary variables (a;, isbijscij,d;j) and 2.5n
(n — 1) + 2n constraints to formulate an assortment problem with 7 rectangular items.

By referring to Li and Chang [34], an alternative mathematical model can be
expressed as follows:

Original (b)

Min xy

s.t. (6) and (7),

Xj+ps —I—qj(l —sj) <x;i +%(ui; + v ;) fori,j=1,..,mandi<j, (8)
x;i +psi+q;(1—s5;) <x; +3_c(1 — Ui +vi,]~) fori,j=1,..,nandi<j, 9)
y;+q5;+p;(1-5) <y, + 71 +uij —vj) fori,j=1,.,nandi<j,  (10)
Vi +asi+p;(1—5i)<y; +3(2 —uij —vi;) fori,j=1,..,nand i<}, (11)

where u; j,v; ;, and 5; are binary variables; x; and y; are nonnegative continuous
variables; and Constraints (8)—(11) ensure that the rectangular items are non-overlapping.

Remark 2. Original (b) uses n” binary variables (u;, j» vi,;) and 2n? constraints to
formulate an assortment problem with # rectangular items.

However, these two models are inappropriate for directly solving the general
2DCSP because the objective of the 2DCSP must minimize the number of materials
used for cutting all items. By referring to the two models above, two corresponding
2DCSP models are proposed in Section 2.2.
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2.2 General deterministic models of 2DCSP

As mentioned above, we need to find out the minimal number of materials
used for cutting all items. Original (a) is then reformulated as a general
deterministic model of 2DCSP, where cutting # rectangular items from » materials,
as shown in P1 (a):

P1 (a)
Min Y
s.t. (1), (2) and (5) in Original (a),
y;+q5+p;(1=5) <y, +my(l—ci;) fori,j=1,...,nandi<}, (12)
y; +qsi +p;(1—si)<y; +my(1 —dy;) fori,j =1,..,nand i <j, (13)
xi+p;si+q,(1—s)<xfori=1,..,n, (14)
Y +q5i +p,(1—s5i) < ZkyQi,k fori =1,..,n, (15)
k=1
92> (k—1)§Q; fori=1,...,n, (16)
k=1
Z Qip=1fori=1,..,n, (17)
k=1
v, +qsi+p,(1—s;))<Yfori=1,..,n, (18)

where s;,a; ;,b; j, ¢ij, d; j, and Q;, are binary variables; x;,y; and Y are nonnega-
tive continuous variables; Constraints (1), (2), (5), (12) and (13) ensure that the
rectangular items are non-overlapping; Constraints (15)—(17) mean that each rect-
angular item is fitly cut from one of the m materials; Constraint (18) obtains the
accumulated length of materials used; and the objective function minimizes the
accumulated length of materials used.

There are nm new binary variables (i.e., Q;, fori =1,2,..,nand k = 1,2, ...,m)
in Constraints (15)-(17) of P1 (a) model. It aims to cut the ith rectangular item from
the kth material if Q;, = 1, and Constraint (17) forces any rectangular item to be
cut from one of such materials. Supposing that rectangular item 7’ is cut from the
k'th material, then Q; ;y =1and Q;;, = 0 fork # k' and k = 1,2, ...,m. Constraints

(15)—(17) will force the y-axis position of rectangular item i’ cut from the k'th
material as shown below:

Vi +qpsy +ps(1—s7) Sk/)_” (19)
(' = 1)y <y, (20)

Remark 3. P1 (a) requires 2n? — n(1 — m) binary variables and (512 + 3n)/2
constraints to form a 2DCSP program.

Referring to the Original (b), another corresponding 2DCSP program can be
formulated as follows:

P1 (b)

Min Y

s.t. (8), (9), (14)-(18),

y;+qsi+pi(1—5) <y, +my(l+uij —vi) fori,j=1,..,mandi<j, (21)
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Y, +q.5i +p;(1—5i) <y; +m)7(2 — U — vi,]-) fori,j=1,..,nandi<j, (22)

where s;,u; j,v;;, and Q;, are binary variables and x;,y;, and Y are nonnegative
continuous variables.

Remark 4. P1 (b) requires n”> + nm binary variables and 2n(n + 1) constraints to
formulate a 2DCSP program.

Although both P1 (a) and P1 (b) can obtain a minimal number of materials used,
there is mainly an issue needed to be addressed. That is, an excessive number of
binary variables Q; , is used to assign rectangular item 7 into one of the materials;
such that the computational load becomes a serious burden as the size of the
problem grows.

As indicated by Li et al. [39], reducing the number of binary variables can
accelerate the solving speed. Hence, we can roughly estimate the number of mate-
rials by the following remark.

Remark 5. The number of materials can be reduced from m to f where f <m by
the following initial calculating:

fo [;‘x,—%@], (23)

where if f value is not big enough, i.e., in solving P1(a) and P1(b) are infeasible,
then we can accumulate f i.e., f =f + 1, until feasible solutions exist.

By referring to Remark 5, the number of binary variables in Constraints
(15)—(18) can be reduced from nm to nf where f <m. Moreover, this study
proposes a reformulation technique using logarithmic number of binary variables
for the P1 (a) and P1 (b) models. The detail of technique is then discussed in
Section 3.

3. Logarithmic reformulation technique of 2DCSP

After considering Remark 5, for a 2DCSP with # rectangular items and f mate-
rials, the P1 (a) and P1 (b) models will require #f binary variables (Q;,) to cut each
rectangular item from one of the materials. The computational efficiency of the P1
(a) and P1 (b) models become a serious burden when an increasing size of the

2DCSP. For any rectangular item 7, Constraint (17) (Zile,-,k =1) is an SOS1
constraint [40], which is an ordered set of variables where only one variable may be
one. An SOS1 constraint model with size f will generally require f binary variables.
However, Vielma and Nemhauser [41] use SOS1 constraint with a logarithmic
number of binary variables and constraints. This section utilizes the concept of
Vielma and Nemhauser [41] and introduces the binary variables Q;, (: =1, ...,n and
r=1,.., [log, f]) toreplace the original binary variables (Q; ) of the P1 (a) and P1
(b) models. Thus, the number of required binary variables can be reduced from #f
ton[log,f]. The following remarks and propositions discuss the logarithmic
reformulation technique of the 2DCSP.

Remark 6. Let K = {1, 2,.f= 2‘9}, 0 = [log,f1, and k € K be the injective

function for B : {1,2,...,2°} — {0, 1}, which can be expressed as follows:

k
21’—1

B(k) = (w1, wo, ...,wg]T andw, =1 — ([ ]%2) forr=1,...,0. (24)

Proposition 1. Let K = {1, ...,f}, § = [log,f| and k € K; the original SOS1
Constraint in (25) which requires f binary variables (Q,) can be replaced by the
Constraint set (26) and (27):

6
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f
Y Q,=1andQ, €{0,1}. (25)
k=1

The Constraint set (25) and (26) only requires 0 binary variables (Q,.), 20
additional constraints, and f additional continuous variables (4):

f
D =1, (26)
k=1
Y k=Qforr=1,..,0, (27)
keSt(r)
where
i.Q,€{0,1}.

ii. B(k) is an injective function based on Remark 6 (i.e., B(k) = [w1, w2, ..., wg]T
with w, €{0,1} forr =1, ...,0).

iii. ST (r) = {k € K|VB(k) where w, = 1} and S~ (r) = {k € K|VB(k) where w, = 0}.

Proof: Following Li et al. [39], Constraints (26) and (27) are used to construct
the SOS1 property.

Following Proposition 1, we then have Proposition 2 that uses [ log,f] binary
variables to determine whether rectangular item 7 could be exactly cut from one of
the given materials.

Proposition 2. Let f be the number of materials, y the length of material, and
y; the y-axis position of rectangular item i. The original Constraint set (15)—(17)
of the P1 (a) and P1 (b) models will be re-expressed by the following

linear system, which holds the rectangular item 7 to be cut from one of the given
materials:

f
Y+ 45 +pi(1—5:) < Y kyhiy, fori =1,..,m, (28)
k=1
f
9> Z(k — VA fori =1,...,m, (29)
k=1
f
Z/L-,k =1fori=1,...,n, (30)
k=1
Z dig =Q;, fori=1,.,nandr =1,..,0 = [log, f], (31)
keSt(r)

where S (r) and S™(r) are the same as the notations in Proposition 1 and
Sis Qi,r (S {O, 1}

Proof: According to Proposition 1, the continuous variables 4;;, with the
Constraint set (30) and (31) have the characteristics of binary variables. Therefore,
the Constraint set (28)-(30) is equivalent to the Constraint set (15)—(17).

Two types of 2DCSP models are formulated by utilizing Proposition 2 as the
following P2 (a) and P2 (b), respectively:

7
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Items P1(a) P1(b) P2(a) P2(b)
Concept of non-overlapping Chenetal. Liand Chang Chenetal. [32] Liand Chang
[32] [34] [34]

. - p B f B -, .
'Constr.amts for a.ss1gn1ng rectangular S Q=1 Y% Q=1 Proposition 2 Proposition 2
items into materials

No. of binary variables 2% —n(1-f) n* + nf n(2n+60—1) n(n+0)
No. of continuous variables n+1 n+1 n+nf +1 n+nf +1
No. of constraints (5n% + 5n) /2 W2 +3n  n(5n+10)+ 49 n(2n+ 20+ 3)

where 0 = [log, f1

Table 4.
Comparison of the four ways of expressing the 2DCSP.

P2 (a)

Min Y

s.t. (1), (2), (5), (12)-(14), (18) and (28)—-(31),

where Y,xi,yi, /11',1@ >0 and ﬂi,j,l’)i,]’, c,-,j,di,j,s,-, Qi,r S {O, 1} for l,] =1,..,n, i<j,
k=1,.,f,andr=1,2,..[log, f].

Remark 7. P2 (a) requires n (Zn + [log f ] — 1) binary variables and 512 + 10n +
[log, f] constraints to express a 2DCSP model.

P2 (b)

Min Y

5.2.(8), (9), (14), (18), (28)-(31),

where Y, x;,y;, 4ix >0 and s;,u;,0;;,Q;, €{0,1} fori,j =1,..,n,i<j, k =
1,..,fandr=1,..,[log,f].

Remark 8. P2 (b) requires #(n + [log, f]) binary variables and
n(2n +2[log, f1 + 3) constraints to express another 2DCSP model.

Table 4 shows a comparison of the four ways of expressing the 2DCSP, and it
clearly lists the number of binary variables, auxiliary continuous variables, and
constraints.

4. Numerical examples

There are two examples modified from Tsai et al. [38]. The detail sizes of
rectangular items and materials are listed in Table 5. We implement a Java pro-
gram, which embedded an optimization package GUROBI (2011) as an MIP solver

Problem Sizeof Qty.of f Size of items (p;, ¢;)
material  items
1 (40, 69) 8 2 (25,20), (16, 20), (15, 20), (14, 20), (20, 18), (15, 17), (30, 16),
(30,14)
2 (25, 150) 12 2 (32,24), (26, 20), (25, 20), (24, 20), (40, 18), (35, 17), (20, 16),

(18, 16), (38, 15), (50, 15), (18, 4), (25, 5)

Table 5.
Sizes of rectangular items and materials.



A Global Method for a Two-Dimensional Cutting Stock Problem in the Manufacturing Industry
DOI: http://dx.doi.org/10.5772/intechopen.89376

Items P1 (a) P1 (b) P2 (a) P2 (b)
Problem 2 No. of 0-1 variables 136 80 128 72
v=83 No. of cont. variables 17 17 33 33
No. of constraints 180 152 404 168
Iterations 621,821 686,982 263,296 293,432
Nodes 176,776 211,564 70,154 111,173
Solving time 18.8 18.0 7.5 91
Problem 2 No. of 0-1 variables 300 168 288 156
Ohjectivel= 293 No. of cont. variables 25 25 49 49
No. of constraints 390 324 844 348
Iterations 31,166,357 1,017,922 1,114,911 805,136
Nodes 9,766,654 244,444 266,672 229,701
Solving time 856.5 24.5 34.9 19.4

Table 6.
Experiment results of two problems.

60 (20,15) (20,14) aog
(0,54) (20,54)
50 119 -
(30,16)
ap | 1038 109 o
30 (20,18) 99 -
(20,16)
(20,20
(0,20
20 89
10 (25,20) 79
(15,17) (30,14)
(0,0) (15,0) (0,69)
(1] T T T 69 T T 1
] 10 20 30 40 (1} 10 20 30 40

Figure 1.
Visualization result of Example 1.

for solving the two examples with the four proposed models (P1 (a), P1 (b), P2 (a),
P2 (b)). The experimental tests were run on a PC equipped with an Intel® Core™
2 Duo CPU, 4GB RAM, and 32 bit Windows 7 operating system.

The two problems with the number of materials firstly estimated to be 2 (i.e.,

f =2) are solved by using the four models including P1(a), P1(b), P2(a), and P2
(b). Table 6 shows the experiment results of two problems. Both of Figures 1 and 2
depict the visualization solutions. In solving four models, we obtain the same
objective values of (83) and (293) in Problem 1 and Problem 2, respectively. The
results clearly indicate that solving P2(a) and P2(b) is much more
computationally efficient than that of P1(a) and P1(b). By observing the four
models, we know that both P2(a) and P2(b) use proposed approach to reduce
the numbers of binary variables. The results demonstrate that the adoption of a
smaller number of binary variables can enhance the solving efficiency in
solving 2DCSP.
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150 300 -
140 (24,20) 290 (25,20}
130 o 280
w0.273)
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120 - 270
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110 % - 260
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fe.224)
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Figure 2.

Visualization vesult of Example 2.

5. Conclusions

This study develops a logarithmic reformulation technique for reducing the
required binary variables of the mixed integer program for two-dimensional cutting
stock problem in the manufacturing industry. A reformulated logarithmic tech-
nique in the deterministic method reduces the number of binary variables to speed
up the solving time. The deterministic methods are guaranteed to find a global
optimal solution, but the computational complexity grows rapidly by increasing the
number of variables and constraints. Future studies are suggested to enhance the
computational efficiency for globally solving large-scale 2DCSP, such as column
generation, cloud computing and meta-heuristic algorithms.
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